Electrical Excitation of Long-Range Surface Plasmons in PC/OLED Structure with Two Metal Nanolayers
Corresponding Author: Valery Konopsky
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 35
Abstract
A current-driven source of long-range surface plasmons (LRSPs) on a duplex metal nanolayer is reported. Electrical excitation of LRSPs was experimentally observed in a planar structure, where an organic light-emitting film was sandwiched between two metal nanolayers that served as electrodes. To achieve the LRSP propagation in these metal nanolayers at the interface with air, the light-emitting structure was bordered by a one-dimensional photonic crystal (PC) on the other side. The dispersion of the light emitted by such a hybrid PC/organic-light-emitting-diode structure (PC/OLED) comprising two thin metal electrodes was obtained, with a clearly identified LRSP resonance peak.
Highlights:
1 Long-range surface plasmons were first excited in a hybrid photonic-crystal/organic-light-emitting-diode microstructure containing two metal nanolayers.
2 These surface plasmons were excited without any external laser light, but by injecting current through the two metal nanolayers, which serve as thin metal electrodes for organic light-emitting microfilm between the layers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.J. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003). https://doi.org/10.1103/PhysRevLett.90.027402
- M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev et al., Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009). https://doi.org/10.1038/nature08318
- R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009). https://doi.org/10.1038/nature08364
- Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian et al., Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012). https://doi.org/10.1126/science.1223504
- W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, T.W. Odom, Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506–511 (2013). https://doi.org/10.1038/nnano.2013.99
- F. van Beijnum, P.J. van Veldhoven, E.J. Geluk, M.J.A. de Dood, G.W. ’t Hooft, M.P. van Exter, Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013). https://doi.org/10.1103/PhysRevLett.110.206802
- C.-J. Lee, H. Yeh, F. Cheng, P.-H. Su, T.-H. Her et al., Low-threshold plasmonic lasers on a single-crystalline epitaxial silver platform at telecom wavelength. ACS Photon. 4, 1431–1439 (2017). https://doi.org/10.1021/acsphotonics.7b00184
- J. Lu, M. Jiang, M. Wei, C. Xu, S. Wang, Z. Zhu, F. Qin, Z. Shi, C. Pan, Plasmon-induced accelerated exciton recombination dynamics in ZnO/Ag hybrid nanolasers. ACS Photon. 4, 2419–2424 (2017). https://doi.org/10.1021/acsphotonics.7b00476
- S. Pourjamal, T.K. Hakala, M. Nečada, F. Freire-Fernández, M. Kataja et al., Lasing in Ni nanodisk arrays. ACS Nano 13, 5686–5692 (2019). https://doi.org/10.1021/acsnano.9b01006
- D. Wang, W. Wang, M.P. Knudson, G.C. Schatz, T.W. Odom, Structural engineering in plasmon nanolasers. Chem. Rev. 118, 2865–2881 (2018). https://doi.org/10.1021/acs.chemrev.7b00424
- D. Sarid, Long-range surface-plasma waves on very thin metal films. Phys. Rev. Lett. 47, 1927–1930 (1981). https://doi.org/10.1103/PhysRevLett.47.1927
- A.E. Craig, G.A. Olson, D. Sarid, Experimental observation of the long-range surface-plasmon polariton. Opt. Lett. 8, 380 (1983). https://doi.org/10.1364/OL.8.000380
- P. Berini, Highlighting recent progress in long-range surface plasmon polaritons: guest editorial. Adv. Opt. Photon. 11, ED19 (2019). https://doi.org/10.1364/AOP.11.00ED19
- V.N. Konopsky, E.V. Alieva, Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface. Phys. Rev. Lett. 97, 253904 (2006). https://doi.org/10.1103/PhysRevLett.97.253904
- V.N. Konopsky, E.V. Alieva, Long-range plasmons in lossy metal films on photonic crystal surfaces. Opt. Lett. 34, 479 (2009). https://doi.org/10.1364/OL.34.000479
- V.N. Konopsky, D.V. Basmanov, E.V. Alieva, S.K. Sekatskii, G. Dietler, Size-dependent hydrogen uptake behavior of pd nanoparticles revealed by photonic crystal surface waves. Appl. Phys. Lett. 100, 083108 (2012). https://doi.org/10.1063/1.3690085
- S.M. Hamidi, R. Ramezani, A. Bananej, Hydrogen gas sensor based on long-range surface plasmons in lossy palladium film placed on photonic crystal stack. Opt. Mater. 53, 201–208 (2016). https://doi.org/10.1016/j.optmat.2016.01.050
- E.V. Alieva, V.N. Konopsky, D.V. Basmanov, S.K. Sekatskii, G. Dietler, Blue surface plasmon propagation along thin gold film–gas interface and its use for sensitive nitrogen dioxide detection. Opt. Commun. 309, 148–152 (2013). https://doi.org/10.1016/j.optcom.2013.05.058
- D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, V.I. Belotelov, Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Sci. Rep. 6, 28077 (2016). https://doi.org/10.1038/srep28077
- V.N. Konopsky, E.V. Alieva, S. Yu Alyatkin, A.A. Melnikov, S.V. Chekalin, V.M. Agranovich, Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1d photonic crystals. Light Sci. Appl. 5, e16168 (2016). https://doi.org/10.1038/lsa.2016.168
- N.R. Fong, M. Menotti, E. Lisicka-Skrzek, H. Northfield, A. Olivieri et al., Bloch long-range surface plasmon polaritons on metal stripe waveguides on a multilayer substrate. ACS Photon. 4, 593–599 (2017). https://doi.org/10.1021/acsphotonics.6b00930
- V. Konopsky, Long-range surface plasmon amplification with current injection on a one-dimensional photonic crystal surface. Opt. Lett. 40, 2261 (2015). https://doi.org/10.1364/OL.40.002261
- I. Degli-Eredi, J.E. Sipe, N. Vermeulen, TE-polarized graphene modes sustained by photonic crystal structures. Opt. Lett. 40, 2076 (2015). https://doi.org/10.1364/OL.40.002076
- V.N. Konopsky, Long-range surface plasmons on duplex metal nanolayers. Photonics Nanostructures - Fundam. Appl. (in press) (2020)
- P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B. 6, 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370
- A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998). https://doi.org/10.1364/AO.37.005271
- A.D. Rakić, Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl. Opt. 34, 4755 (1995). https://doi.org/10.1364/AO.34.004755
- J.H. Youn, S.J. Baek, H.P. Kim, D.H. Nam, Y. Lee, J.G. Lee, J. Jang, Improving the lifetime of a polymer light-emitting diode by introducing solution processed tungsten-oxide. J. Mater. Chem. C 1, 3250 (2013). https://doi.org/10.1039/c3tc00855j
- N.A. Talik, K.L. Woon, B.K. Yap, W.S. Wong, T.J. Whitcher et al., Highly efficient processable molybdenum trioxide as a hole blocking interlayer for super-yellow organic light emitting diode. J. Phys. D-Appl. Phys. 49, 395105 (2016). https://doi.org/10.1088/0022-3727/49/39/395105
- J.C. Bernède, L. Cattin, S.O. Djobo, M. Morsli, S.R.B. Kanth et al., Influence of the highest occupied molecular orbital energy level of the donor material on the effectiveness of the anode buffer layer in organic solar cells. Phys. Status Solidi 208, 1989–1994 (2011). https://doi.org/10.1002/pssa.201127047
- V.N. Konopsky, Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces. New J. Phys. 12, 093006 (2010). https://doi.org/10.1088/1367-2630/12/9/093006
- F. Yang, J.R. Sambles, G.W. Bradberry, Long-range surface modes supported by thin films. Phys. Rev. B 44, 5855–5872 (1991). https://doi.org/10.1103/PhysRevB.44.5855
- H. Yang, N. Alexopoulos, Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Trans. Antennas Propag. 35, 860–863 (1987). https://doi.org/10.1109/TAP.1987.1144186
- X.H. Wu, A.A. Kishk, A.W. Glisson, A transmission line method to compute the far-field radiation of arbitrarily directed hertzian dipoles in a multilayer dielectric structure: theory and applications. IEEE Trans. Antennas Propag. 54, 2731–2741 (2006). https://doi.org/10.1109/TAP.2006.882164
- H.S. Chu, P. Bai, E.P. Li, W.R.J. Hoefer, Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits. Plasmonics 6, 591–597 (2011). https://doi.org/10.1007/s11468-011-9239-y
- D. Dai, H. Wu, W. Zhang, Utilization of field enhancement in plasmonic waveguides for subwavelength light-guiding, polarization handling, heating, and optical sensing. Materials 8, 6772–6791 (2015). https://doi.org/10.3390/ma8105341
- R.A. Flynn, C.S. Kim, I. Vurgaftman, M. Kim, J.R. Meyer et al., A room-temperature semiconductor spaser operating near 15 μm. Opt. Express 19, 8954 (2011). https://doi.org/10.1364/OE.19.008954
- P. Berini, I. De Leon, Surface plasmon–polariton amplifiers and lasers. Nat. Photon. 6, 16–24 (2012). https://doi.org/10.1038/nphoton.2011.285
- A.S.D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W.J. Potscavage et al., Indication of current-injection lasing from an organic semiconductor. Appl. Phys. Express 12, 061010 (2019). https://doi.org/10.7567/1882-0786/ab1b90
References
D.J. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003). https://doi.org/10.1103/PhysRevLett.90.027402
M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev et al., Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009). https://doi.org/10.1038/nature08318
R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009). https://doi.org/10.1038/nature08364
Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian et al., Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012). https://doi.org/10.1126/science.1223504
W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, T.W. Odom, Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506–511 (2013). https://doi.org/10.1038/nnano.2013.99
F. van Beijnum, P.J. van Veldhoven, E.J. Geluk, M.J.A. de Dood, G.W. ’t Hooft, M.P. van Exter, Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013). https://doi.org/10.1103/PhysRevLett.110.206802
C.-J. Lee, H. Yeh, F. Cheng, P.-H. Su, T.-H. Her et al., Low-threshold plasmonic lasers on a single-crystalline epitaxial silver platform at telecom wavelength. ACS Photon. 4, 1431–1439 (2017). https://doi.org/10.1021/acsphotonics.7b00184
J. Lu, M. Jiang, M. Wei, C. Xu, S. Wang, Z. Zhu, F. Qin, Z. Shi, C. Pan, Plasmon-induced accelerated exciton recombination dynamics in ZnO/Ag hybrid nanolasers. ACS Photon. 4, 2419–2424 (2017). https://doi.org/10.1021/acsphotonics.7b00476
S. Pourjamal, T.K. Hakala, M. Nečada, F. Freire-Fernández, M. Kataja et al., Lasing in Ni nanodisk arrays. ACS Nano 13, 5686–5692 (2019). https://doi.org/10.1021/acsnano.9b01006
D. Wang, W. Wang, M.P. Knudson, G.C. Schatz, T.W. Odom, Structural engineering in plasmon nanolasers. Chem. Rev. 118, 2865–2881 (2018). https://doi.org/10.1021/acs.chemrev.7b00424
D. Sarid, Long-range surface-plasma waves on very thin metal films. Phys. Rev. Lett. 47, 1927–1930 (1981). https://doi.org/10.1103/PhysRevLett.47.1927
A.E. Craig, G.A. Olson, D. Sarid, Experimental observation of the long-range surface-plasmon polariton. Opt. Lett. 8, 380 (1983). https://doi.org/10.1364/OL.8.000380
P. Berini, Highlighting recent progress in long-range surface plasmon polaritons: guest editorial. Adv. Opt. Photon. 11, ED19 (2019). https://doi.org/10.1364/AOP.11.00ED19
V.N. Konopsky, E.V. Alieva, Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface. Phys. Rev. Lett. 97, 253904 (2006). https://doi.org/10.1103/PhysRevLett.97.253904
V.N. Konopsky, E.V. Alieva, Long-range plasmons in lossy metal films on photonic crystal surfaces. Opt. Lett. 34, 479 (2009). https://doi.org/10.1364/OL.34.000479
V.N. Konopsky, D.V. Basmanov, E.V. Alieva, S.K. Sekatskii, G. Dietler, Size-dependent hydrogen uptake behavior of pd nanoparticles revealed by photonic crystal surface waves. Appl. Phys. Lett. 100, 083108 (2012). https://doi.org/10.1063/1.3690085
S.M. Hamidi, R. Ramezani, A. Bananej, Hydrogen gas sensor based on long-range surface plasmons in lossy palladium film placed on photonic crystal stack. Opt. Mater. 53, 201–208 (2016). https://doi.org/10.1016/j.optmat.2016.01.050
E.V. Alieva, V.N. Konopsky, D.V. Basmanov, S.K. Sekatskii, G. Dietler, Blue surface plasmon propagation along thin gold film–gas interface and its use for sensitive nitrogen dioxide detection. Opt. Commun. 309, 148–152 (2013). https://doi.org/10.1016/j.optcom.2013.05.058
D.O. Ignatyeva, G.A. Knyazev, P.O. Kapralov, G. Dietler, S.K. Sekatskii, V.I. Belotelov, Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Sci. Rep. 6, 28077 (2016). https://doi.org/10.1038/srep28077
V.N. Konopsky, E.V. Alieva, S. Yu Alyatkin, A.A. Melnikov, S.V. Chekalin, V.M. Agranovich, Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1d photonic crystals. Light Sci. Appl. 5, e16168 (2016). https://doi.org/10.1038/lsa.2016.168
N.R. Fong, M. Menotti, E. Lisicka-Skrzek, H. Northfield, A. Olivieri et al., Bloch long-range surface plasmon polaritons on metal stripe waveguides on a multilayer substrate. ACS Photon. 4, 593–599 (2017). https://doi.org/10.1021/acsphotonics.6b00930
V. Konopsky, Long-range surface plasmon amplification with current injection on a one-dimensional photonic crystal surface. Opt. Lett. 40, 2261 (2015). https://doi.org/10.1364/OL.40.002261
I. Degli-Eredi, J.E. Sipe, N. Vermeulen, TE-polarized graphene modes sustained by photonic crystal structures. Opt. Lett. 40, 2076 (2015). https://doi.org/10.1364/OL.40.002076
V.N. Konopsky, Long-range surface plasmons on duplex metal nanolayers. Photonics Nanostructures - Fundam. Appl. (in press) (2020)
P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B. 6, 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370
A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998). https://doi.org/10.1364/AO.37.005271
A.D. Rakić, Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl. Opt. 34, 4755 (1995). https://doi.org/10.1364/AO.34.004755
J.H. Youn, S.J. Baek, H.P. Kim, D.H. Nam, Y. Lee, J.G. Lee, J. Jang, Improving the lifetime of a polymer light-emitting diode by introducing solution processed tungsten-oxide. J. Mater. Chem. C 1, 3250 (2013). https://doi.org/10.1039/c3tc00855j
N.A. Talik, K.L. Woon, B.K. Yap, W.S. Wong, T.J. Whitcher et al., Highly efficient processable molybdenum trioxide as a hole blocking interlayer for super-yellow organic light emitting diode. J. Phys. D-Appl. Phys. 49, 395105 (2016). https://doi.org/10.1088/0022-3727/49/39/395105
J.C. Bernède, L. Cattin, S.O. Djobo, M. Morsli, S.R.B. Kanth et al., Influence of the highest occupied molecular orbital energy level of the donor material on the effectiveness of the anode buffer layer in organic solar cells. Phys. Status Solidi 208, 1989–1994 (2011). https://doi.org/10.1002/pssa.201127047
V.N. Konopsky, Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces. New J. Phys. 12, 093006 (2010). https://doi.org/10.1088/1367-2630/12/9/093006
F. Yang, J.R. Sambles, G.W. Bradberry, Long-range surface modes supported by thin films. Phys. Rev. B 44, 5855–5872 (1991). https://doi.org/10.1103/PhysRevB.44.5855
H. Yang, N. Alexopoulos, Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Trans. Antennas Propag. 35, 860–863 (1987). https://doi.org/10.1109/TAP.1987.1144186
X.H. Wu, A.A. Kishk, A.W. Glisson, A transmission line method to compute the far-field radiation of arbitrarily directed hertzian dipoles in a multilayer dielectric structure: theory and applications. IEEE Trans. Antennas Propag. 54, 2731–2741 (2006). https://doi.org/10.1109/TAP.2006.882164
H.S. Chu, P. Bai, E.P. Li, W.R.J. Hoefer, Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits. Plasmonics 6, 591–597 (2011). https://doi.org/10.1007/s11468-011-9239-y
D. Dai, H. Wu, W. Zhang, Utilization of field enhancement in plasmonic waveguides for subwavelength light-guiding, polarization handling, heating, and optical sensing. Materials 8, 6772–6791 (2015). https://doi.org/10.3390/ma8105341
R.A. Flynn, C.S. Kim, I. Vurgaftman, M. Kim, J.R. Meyer et al., A room-temperature semiconductor spaser operating near 15 μm. Opt. Express 19, 8954 (2011). https://doi.org/10.1364/OE.19.008954
P. Berini, I. De Leon, Surface plasmon–polariton amplifiers and lasers. Nat. Photon. 6, 16–24 (2012). https://doi.org/10.1038/nphoton.2011.285
A.S.D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W.J. Potscavage et al., Indication of current-injection lasing from an organic semiconductor. Appl. Phys. Express 12, 061010 (2019). https://doi.org/10.7567/1882-0786/ab1b90