Natural and Eco-Friendly Materials for Triboelectric Energy Harvesting
Corresponding Author: Andrei L. Kholkin
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 42
Abstract
Triboelectric nanogenerators (TENGs) are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment. Several designs of triboelectric energy harvesters relying on biocompatible and eco-friendly natural materials have been introduced in recent years. Their ability to provide customizable self-powering for a wide range of applications, including biomedical devices, pressure and chemical sensors, and battery charging appliances, has been demonstrated. This review summarizes major advances already achieved in the field of triboelectric energy harvesting using biocompatible and eco-friendly natural materials. A rigorous, comparative, and critical analysis of preparation and testing methods is also presented. Electric power up to 14 mW was already achieved for the dry leaf/polyvinylidene fluoride-based TENG devices. These findings highlight the potential of eco-friendly self-powering systems and demonstrate the unique properties of the plants to generate electric energy for multiple applications.
Highlights:
1 An up-to-date review of the natural materials used for triboelectric energy harvesting is provided.
2 Major parameters of the electric output are identified and compared for different materials.
3 Best results (14 mW) were obtained for dry leaf powder in combination with poly(vinylidene fluoride) in contact-separation mode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, Parasitic power harvesting in shoes, in Digest of Papers Second International Symposium on Wearable Computers, pp. 132–139 (1998). https://doi.org/10.1109/ISWC.1998.729539
- S. Li, Q. Zhong, J. Zhong, X. Cheng, B. Wang et al., Cloth-based power shirt for wearable energy harvesting and clothes ornamentation. ACS Appl. Mater. Interfaces 7(27), 14912–14916 (2015). https://doi.org/10.1021/acsami.5b03680
- G.X. Liu, W.J. Li, W.B. Liu, T.Z. Bu, T. Guo et al., Soft tubular triboelectric nanogenerator for biomechanical energy harvesting. Adv. Sustain. Syst. 2(12), 1800081 (2018). https://doi.org/10.1002/adsu.201800081
- T.-C. Hou, Y. Yang, H. Zhang, J. Chen, L.-J. Chen et al., Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2(5), 856–862 (2013). https://doi.org/10.1016/j.nanoen.2013.03.001
- M.P. Soares dos Santos, J.A.F. Ferreira, J.A.O. Simões, R. Pascoal, J. Torrão et al., Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction. Sci. Rep. 6(1), 18579 (2016). https://doi.org/10.1038/srep18579
- M.P. Soares dos Santos, A. Marote, T. Santos, J. Torrão, A. Ramos et al., New cosurface capacitive stimulators for the development of active osseointegrative implantable devices. Sci. Rep. 6(1), 30231 (2016). https://doi.org/10.1038/srep30231
- R.L. Harne, M.E. Schoemaker, B.E. Dussault, K.W. Wang, Wave heave energy conversion using modular multistability. Appl. Energy 130, 148–156 (2014). https://doi.org/10.1016/j.apenergy.2014.05.038
- X. Wang, Z.L. Wang, Y. Yang, Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic-triboelectric-thermoelectric effects. Nano Energy 26, 164–171 (2016). https://doi.org/10.1016/j.nanoen.2016.05.032
- Q. Shen, X. Xie, M. Peng, N. Sun, H. Shao et al., Self-powered vehicle emission testing system based on coupling of triboelectric and chemoresistive effects. Adv. Funct. Mater. 28(10), 1703420 (2018). https://doi.org/10.1002/adfm.201703420
- D.A. Engers, M.N. Fricke, A.W. Newman, K.R. Morris, Triboelectric charging and dielectric properties of pharmaceutically relevant mixtures. J. Electrostat. 65(9), 571–581 (2007). https://doi.org/10.1016/j.elstat.2006.12.002
- J.V. Wasem, B.L. LaMarche, S.C. Langford, J.T. Dickinson, Triboelectric charging of a perfluoropolyether lubricant. J. Appl. Phys. 93(4), 2202–2207 (2003). https://doi.org/10.1063/1.1536011
- M. Sakaguchi, S. Shimada, H. Kashiwabara, Mechanoions produced by mechanical fracture of solid polymer. 6. A generation mechanism of triboelectricity due to the reaction of mechanoradicals with mechanoanions on the friction surface. Macromolecules 23(23), 5038–5040 (1990). https://doi.org/10.1021/ma00225a027
- M. Sakaguchi, H. Kashiwabara, A generation mechanism of triboelectricity due to the reaction of mechanoradicals with mechanoions which are produced by mechanical fracture of solid polymer. Colloid Polym. Sci. 270(7), 621–626 (1992). https://doi.org/10.1007/BF00654038
- M. Lungu, Electrical separation of plastic materials using the triboelectric effect. Miner. Eng. 17(1), 69–75 (2004). https://doi.org/10.1016/j.mineng.2003.10.010
- J.R. Mountain, M.K. Mazumder, R.A. Sims, D.L. Wankum, T. Chasser et al., Triboelectric charging of polymer powders in fluidization and transport processes. IEEE Trans. Ind. Appl. 37(3), 778–784 (2001). https://doi.org/10.1109/28.924759
- Y. Yair, Charge generation and separation processes. Space Sci. Rev. 137(1–4), 119–131 (2008). https://doi.org/10.1007/s11214-008-9348-x
- D.J. Lacks, A. Levandovsky, Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. J. Electrostat. 65(2), 107–112 (2007). https://doi.org/10.1016/j.elstat.2006.07.010
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- B. Chen, Y. Yang, Z.L. Wang, Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8(10), 1702649 (2018). https://doi.org/10.1002/aenm.201702649
- A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, S.J. Kim, Sustainable human-machine interactive triboelectric nanogenerator toward a smart computer mouse. ACS Sustain. Chem. Eng. 7(7), 7177–7182 (2019). https://doi.org/10.1021/acssuschemeng.9b00175
- A. Chandrasekhar, G. Khandelwal, N.R. Alluri, V. Vivekananthan, S.J. Kim, Battery-free electronic smart toys: a step toward the commercialization of sustainable triboelectric nanogenerators. ACS Sustain. Chem. Eng. 6(5), 6110–6116 (2018). https://doi.org/10.1021/acssuschemeng.7b04769
- A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, S.J. Kim, A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting morse code. Nano Energy 60, 850–856 (2019). https://doi.org/10.1016/j.nanoen.2019.04.004
- Z.L. Wang, L. Lin, J. Chen, S. Niu, Y. Zi, Triboelectric Nanogenerators (Springer, Basel, 2017), p. 517. https://doi.org/10.1007/978-3-319-40039-6
- L. Li, S. Liu, X. Tao, J. Song, Triboelectric performances of self-powered, ultra-flexible and large-area poly(dimethylsiloxane)/Ag-coated chinlon composites with a sandpaper-assisted surface microstructure. J. Mater. Sci. 54(10), 7823–7833 (2019). https://doi.org/10.1007/s10853-019-03428-5
- D. Kim, S.-B. Jeon, J.Y. Kim, M.-L. Seol, S.O. Kim et al., High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy 12, 331–338 (2015). https://doi.org/10.1016/j.nanoen.2015.01.008
- A. Šutka, K. Mālnieks, L. Lapčinskis, P. Kaufelde, A. Linarts et al., The role of intermolecular forces in contact electrification on polymer surfaces and triboelectric nanogenerators. Energy Environ. Sci. 12(8), 2417–2421 (2019). https://doi.org/10.1039/C9EE01078E
- S.D. Cezan, A.A. Nalbant, M. Buyuktemiz, Y. Dede, H.T. Baytekin et al., Control of triboelectric charges on common polymers by photoexcitation of organic dyes. Nat. Commun. 10, 276 (2019). https://doi.org/10.1038/s41467-018-08037-5
- U.G. Musa, S.D. Cezan, B. Baytekin, H.T. Baytekin, The charging events in contact-separation electrification. Sci. Rep. 8, 2472 (2018). https://doi.org/10.1038/s41598-018-20413-1
- H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
- S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12(12), 6339–6346 (2012). https://doi.org/10.1021/nl303573d
- B.K. Yun, J.W. Kim, H.S. Kim, K.W. Jung, Y. Yi et al., Base-treated polydimethylsiloxane surfaces as enhanced triboelectric nanogenerators. Nano Energy 15, 523–529 (2015). https://doi.org/10.1016/j.nanoen.2015.05.018
- J. Ruhe, And there was light: prospects for the creation of micro- and nanostructures through maskless photolithography. ACS Nano 11(9), 8537–8541 (2017). https://doi.org/10.1021/acsnano.7b05593
- Y.H. Ko, S.H. Lee, J.W. Leem, J.S. Yu, High transparency and triboelectric charge generation properties of nano-patterned PDMS. RSC Adv. 4, 10216–10220 (2014). https://doi.org/10.1039/c3ra47199c
- P. Wang, R. Liu, W. Ding, P. Zhang, I. Pan et al., Complementary electromagnetic-triboelectric active sensor for detecting multiple mechanical triggering. Adv. Funct. Mater. 28(11), 1705808 (2018). https://doi.org/10.1002/adfm.201705808
- Z.-H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai et al., A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem. Int. Ed. 52(19), 5065–5069 (2013). https://doi.org/10.1002/anie.201300437
- G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan et al., Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13(2), 847–853 (2013). https://doi.org/10.1021/nl4001053
- L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu et al., Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13(6), 2916–2923 (2013). https://doi.org/10.1021/nl4013002
- Q. Jing, G. Zhu, P. Bai, Y. Xie, J. Chen et al., Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 8(4), 3836–3842 (2014). https://doi.org/10.1021/nn500694y
- G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou et al., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12(9), 4960–4965 (2012). https://doi.org/10.1021/nl302560k
- R. Zhang, M. Hummelgård, J. Örtegren, M. Olsen, H. Andersson et al., Interaction of the human body with triboelectric nanogenerators. Nano Energy 57, 279–292 (2019). https://doi.org/10.1016/j.nanoen.2018.12.059
- O. Rubes, Z. Hadas, Design and simulation of bistable piezoceramic cantilever for energy harvesting from slow swinging movement, in IEEE 18th International Power Electronics and Motion Control Conference (PEMC), pp. 663–668 (2018). https://doi.org/10.1109/EPEPEMC.2018.8521846
- H.C. Cui, R. Hensleigh, D.S. Yao, D. Maurya, P. Kumar et al., Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 18, 234–241 (2019). https://doi.org/10.1038/s41563-018-0268-1
- Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373–4395 (2016). https://doi.org/10.1002/adma.201504366
- A. Cadei, A. Dionisi, E. Sardini, M. Serpelloni, Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors. Meas. Sci. Technol. 25, 012003 (2014). https://doi.org/10.1088/09570233/25/1/012003
- N.R. Hosseini, J.-S. Lee, Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv. Funct. Mater. 25(35), 5586–5592 (2015). https://doi.org/10.1002/adfm.201502592
- W.-K. Zhu, H.-P. Cong, H.-B. Yao, L.-B. Mao, A.M. Asiri, Bioinspired, ultrastrong, highly biocompatible, and bioactive natural polymer/graphene oxide nanocomposite films. Small 11(34), 4298–4302 (2015). https://doi.org/10.1002/smll.201500486
- S.Y. Lee, S.T. Tan, K.W. Cheong, K.K. Ming, Y.X. Heng et al., Development of biocompatible natural rubber latex film incorporated with vegetable oil microemulsion as plasticizer: effect of curing conditions. AIP Conf. Proc. 1985, 040004 (2018). https://doi.org/10.1063/1.5047181
- Y. Yu, X. Wang, Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech. Lett. 9(3), 514–530 (2016). https://doi.org/10.1016/j.eml.2016.02.019
- S. Wang, Y. Zi, Y.S. Zhou, S. Li, F. Fan et al., Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A 4, 3728–3734 (2016). https://doi.org/10.1039/C5TA10239A
- S.-H. Shin, Y.H. Kwon, Y.-H. Kim, J.-Y. Jung, M.H. Lee et al., Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 9(4), 4621–4627 (2015). https://doi.org/10.1021/acsnano.5b01340
- S. Rajala, T. Siponkoski, E. Sarlin, M. Mettänen, M. Vuoriluoto et al., Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl. Mater. Interfaces 8(24), 15607–15614 (2016). https://doi.org/10.1021/acsami.6b03597
- E.-L. Tan, M.G. Potroz, G. Ferracci, J.A. Jackman, H. Jung et al., Light-induced surface modification of natural plant microparticles: toward colloidal science and cellular adhesion applications. Adv. Funct. Mater. 28(18), 1707568 (2018). https://doi.org/10.1002/adfm.201707568
- K. Liu, J. Jiang, Z. Zhou, X. Cai, H. Tao et al., Silk: new opportunities for an ancient material in MEMS/NEMS, in IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 558–560 (2016). https://doi.org/10.1109/MEMSYS.2016.7421686
- M.-L. Seol, J.-H. Woo, D.-I. Lee, H. Im, J. Hur et al., Nature-replicated nano-in-micro structures for triboelectric energy harvesting. Small 10(19), 3887–3894 (2014). https://doi.org/10.1002/smll.201400863
- Z.Q. Fang, H.L. Zhu, Y.B. Yuan, D. Ha, S.Z. Zhu et al., Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14(2), 765–773 (2014). https://doi.org/10.1021/nl404101p
- Y.H. Jung, T.-H. Chang, H. Zhang, C. Yao, Q. Zheng et al., High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015). https://doi.org/10.1038/ncomms8170
- X. He, H. Guo, X. Yue, J. Gao, Y. Xi et al., Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale 7, 1896–1903 (2015). https://doi.org/10.1039/C4NR05512H
- J.H. Lee, R. Hinchet, S.K. Kim, S. Kim, S.-W. Kim, Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 8, 3605–3613 (2015). https://doi.org/10.1039/C5EE02711J
- J.-G. Sun, T.-N. Yang, C.-Y. Wang, L.-J. Chen, A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring. Nano Energy 48, 383–390 (2018). https://doi.org/10.1016/j.nanoen.2018.03.071
- Y. Chen, Y. Jie, J. Wang, J. Ma, X. Jia et al., Triboelectrification on natural rose petal for harvesting environmental mechanical energy. Nano Energy 50, 441–447 (2018). https://doi.org/10.1016/j.nanoen.2018.05.021
- F. Meder, I. Must, A. Sadeghi, A. Mondini, C. Filippeschi et al., Energy conversion at the cuticle of living plants. Adv. Funct. Mater. 28(51), 1806689 (2018). https://doi.org/10.1002/adfm.201806689
- Y. Jie, X. Jia, J. Zou, Y. Chen, N. Wang et al., Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy. Adv. Energy Mater. 8(12), 1703133 (2018). https://doi.org/10.1002/aenm.201703133
- Y. Feng, I. Zhang, Y. Zheng, D. Wang, F. Zhou et al., Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 55, 260–268 (2019). https://doi.org/10.1016/j.nanoen.2018.10.075
- D. Choi, D.W. Kim, D. Yoo, K.J. Cha, M. La et al., Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy 36, 250–259 (2017). https://doi.org/10.1016/j.nanoen.2017.04.026
- M. Pohanka, The piezoelectric biosensors: principles and applications a review. Int. J. Electrochem. Sci. 12, 496–506 (2017). https://doi.org/10.20964/2017.01.44
- R. Fu, S. Chen, Y. Lin, S. Zhang, J. Jiang et al., Improved piezoelectric properties of electrospun poly(vinylidene fluoride) fibers blended with cellulose nanocrystals. Mater. Lett. 187, 86–88 (2017). https://doi.org/10.1016/j.matlet.2016.10.068
- S. Tuukkanen, S. Rajala, Nanocellulose as a piezoelectric material. Piezoelectricity—Organic and Inorganic Materials and Applications. IntechOpen (2018). https://doi.org/10.5772/intechopen.77025
- Q. Zheng, H. Zhang, H. Mi, Z. Cai, Z. Ma et al., High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly(dimethylsiloxane) (PDMS) aerogel films. Nano Energy 26, 504–512 (2016). https://doi.org/10.1016/j.nanoen.2016.06.009
- M.M. Alam, D. Mandal, Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility. ACS Appl. Mater. Interfaces 8(3), 1555–1558 (2016). https://doi.org/10.1021/acsami.5b08168
- J. Peng, H. Zhang, Q. Zheng, C.M. Clemons, R.C. Sabo et al., A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 9(4), 1428–1433 (2017). https://doi.org/10.1039/C6NR07602E
- S. Parandeh, M. Kharaziha, F. Karimzadeh, An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy 59, 412–421 (2019). https://doi.org/10.1016/j.nanoen.2019.02.058
- P. Cui, K. Parida, M.-F. Lin, J. Xiong, G. Cai et al., Transparent, flexible cellulose nanofibril-phosphorene hybrid paper as triboelectric nanogenerator. Adv. Mater. Interfaces 4(22), 1700651 (2017). https://doi.org/10.1002/admi.201700651
- K. Shi, X. Huang, B. Sun, Z. Wu, J. He et al., Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy 57, 450–458 (2019). https://doi.org/10.1016/j.nanoen.2018.12.076
- M.-L. Seol, J.-W. Han, D.-I. Moon, K.J. Yoon, C.S. Hwang et al., All-printed triboelectric nanogenerator. Nano Energy 44, 82–88 (2018). https://doi.org/10.1016/j.nanoen.2017.11.067
- J.D. Fontana, A.M. Desouza, C.K. Fontana, I.L. Torriani, J.C. Moreschi et al., Acetobacter cellulose pellicle as a temporary skin substitute. Appl. Biochem. Biotechnol. 24(1), 253–264 (1990). https://doi.org/10.1007/bf02920250
- G. Zhang, Q. Liao, Z. Zhang, Q. Liang, Y. Zhao et al., Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv. Sci. 3(2), 1500257 (2016). https://doi.org/10.1002/advs.201500257
- S. Wan, T. Li, C.J. Chen, W.Q. Kong, S.Z. Zhu et al., Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Adv. Funct. Mater. 28(24), 1707491 (2018). https://doi.org/10.1002/adfm.201707491
- H.-J. Kim, E.-C. Yim, J.-H. Kim, S.-J. Kim, J.-Y. Park et al., Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33, 130–137 (2017). https://doi.org/10.1016/j.nanoen.2017.01.035
- W.D. Greason, I.M. Oltean, Z. Kucerovsky, A.C. Ieta, Triboelectric charging between polytetrafluoroethylene and metals. IEEE Trans. Ind. Appl. 40(2), 442–450 (2004). https://doi.org/10.1109/tia.2004.824439
- R.K. Dwari, K.H. Rao, P. Somasundaran, Characterisation of particle tribo-charging and electron transfer with reference to electrostatic dry coal cleaning. Int. J. Miner. Process. 91(3–4), 100–110 (2009). https://doi.org/10.1016/j.minpro.2009.02.006
- P. Bai, G. Zhu, Y.S. Zhou, S.H. Wang, J.S. Ma et al., Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res. 7(7), 990–997 (2014). https://doi.org/10.1007/s12274-014-0461-8
- C. Yao, A. Hernandez, Y. Yu, Z. Cai, X. Wang, Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 30, 103–108 (2016). https://doi.org/10.1016/j.nanoen.2016.09.036
- Y. Yang, H. Zhang, R. Liu, X. Wen, T.-C. Hou et al., Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 3(12), 1563–1568 (2013). https://doi.org/10.1002/aenm.201300376
- K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Mandal, Natural sugar-assisted, chemically reinforced, highly durable piezoorganic nanogenerator with superior power density for self-powered wearable electronics. ACS Appl. Mater. Interfaces 10(50), 44018–44032 (2018). https://doi.org/10.1021/acsami.8b15320
- J. Chun, J.W. Kim, W.-S. Jung, C.-Y. Kang, S.-W. Kim et al., Mesoporous pores impregnated with au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 8, 3006–3012 (2015). https://doi.org/10.1039/C5EE01705J
- D. Kim, S.-J. Park, S.-B. Jeon, M.-L. Seol, Y.-K. Choi, A triboelectric sponge fabricated from a cube sugar template by 3D soft lithography for superhydrophobicity and elasticity. Adv. Electron. Mater. 2(4), 1500331 (2016). https://doi.org/10.1002/aelm.201500331
- D. Park, S.-H. Shin, I.-J. Yoon, J. Nah, Ferroelectric nanoparticle-embedded sponge structure triboelectric generators. Nanotechnology 29(18), 185402 (2018). https://doi.org/10.1088/1361-6528/aaafa3
- Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi et al., Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2(3), e1501478 (2016). https://doi.org/10.1126/sciadv.1501478
- W. Jiang, H. Li, Z. Liu, Z. Li, J. Tian et al., Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv. Mater. 30(32), e1801895 (2018). https://doi.org/10.1002/adma.201801895
- Y. Chi, K. Xia, Z. Zhu, J. Fu, H. Zhang et al., Rice paper-based biodegradable triboelectric nanogenerator. Microelectron. Eng. 216, 111059 (2019). https://doi.org/10.1016/j.mee.2019.111059
- W. Yang, R. Cao, X. Zhang, H. Li, C. Li, Air-permeable and washable paper-based triboelectric nanogenerator based on highly flexible and robust paper electrodes. Adv. Mater. Technol. 3(11), 1800178 (2018). https://doi.org/10.1002/admt.201800178
- C. Wu, X. Wang, L. Lin, H. Guo, Z.L. Wang, Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 10(4), 4652–4659 (2016). https://doi.org/10.1021/acsnano.6b00949
- G. Khandelwal, T. Minocha, S.K. Yadav, A. Chandrasekhar, M.J. Raj et al., All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy 65, 104016 (2019). https://doi.org/10.1016/j.nanoen.2019.104016
- S.A. Ulasevich, A.V. Nenashkina, N.V. Ryzhkov, G. Kiselev, V. Nikolaeva et al., Natural silk film for magnesium protection: Hydrophobic/hydrophilic interaction and self-healing effect. Macromol. Mater. Eng. (2019). https://doi.org/10.1002/mame.201900412
- C. Fredriksson, M. Hedhammar, R. Feinstein, K. Nordling, G. Kratz et al., Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2(4), 1908–1922 (2009). https://doi.org/10.3390/ma2041908
- Y. Zhang, Z. Zhou, Z. Fan, S. Zhang, F. Zheng et al., Self-powered multifunctional transient bioelectronics. Small 14(35), 1802050 (2018). https://doi.org/10.1002/smll.201802050
- Y. Zhang, Z. Zhou, L. Sun, Z. Liu, X. Xia et al., “Genetically engineered” biofunctional triboelectric nanogenerators using recombinant spider silk. Adv. Mater. 30(50), 1805722 (2018). https://doi.org/10.1002/adma.201805722
- C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30(15), 1706790 (2018). https://doi.org/10.1002/adma.201706790
- Y. Zi, S. Niu, J. Wang, W. Zhen, W. Tang et al., Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015). https://doi.org/10.1038/ncomms9376
- Y. Zhao, H. Fan, X. Ren, C. Long, G. Liu et al., Lead-free Bi5−xLaxTi3FeO15 (x = 0, 1) nanofibers toward wool keratin-based biocompatible piezoelectric nanogenerators. J. Mater. Chem. C 4, 7324–7331 (2016). https://doi.org/10.1039/C6TC01828A
- J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li et al., Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 56, 662–692 (2019). https://doi.org/10.1016/j.nanoen.2018.12.010
- T.X. Xiao, T. Jiang, J.X. Zhu, X. Liang, L. Xu et al., Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl. Mater. Interfaces 10(4), 3616–3623 (2018). https://doi.org/10.1021/acsami.7b17239
- S. Jang, H. Kim, J.H. Oh, Simple and rapid fabrication of pencil-on-paper triboelectric nanogenerators with enhanced electrical performance. Nanoscale 9, 13034–13041 (2017). https://doi.org/10.1039/C7NR04610C
- S.-Y. Shin, B. Saravanakumar, A. Ramadoss, S.J. Kim, Fabrication of PDMS-based triboelectric nanogenerator for self-sustained power source application. Int. J. Energy Res. 40(3), 288–297 (2016). https://doi.org/10.1002/er.3376
- Z. Luo, Y. Li, C. Duan, B. Wang, Fabrication of a superhydrophobic mesh based on PDMS/SiO2 nanoparticles/PVDF microparticles/KH-550 by one-step dip-coating method. RSC Adv. 8, 16251–16259 (2018). https://doi.org/10.1039/C8RA03262A
- Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan et al., In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26(33), 5851–5856 (2014). https://doi.org/10.1002/adma.201402064
- Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu et al., In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10(7), 6510–6518 (2016). https://doi.org/10.1021/acsnano.6b02693
- K. Zhao, Y. Wang, L. Han, Y. Wang, X. Luo et al., Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett. 11, 19 (2019). https://doi.org/10.1007/s40820-019-0251-7
- M.P. Soares dos Santos, J. Coutinho, A. Marote, B. Sousa, A. Ramos et al., Capacitive technologies for highly controlled and personalized electrical stimulation by implantable biomedical systems. Sci. Rep. 9, 5001 (2019). https://doi.org/10.1038/s41598-019-41540-3
- L. Valentini, N. Rescignano, D. Puglia, M. Cardinali, J. Kenny, Preparation of alginate/graphene oxide hybrid films and their integration in triboelectric generators. Eur. J. Inorg. Chem. 2015(7), 1192–1197 (2015). https://doi.org/10.1002/ejic.201402610
- C. Wu, T.W. Kim, H.Y. Choi, Reduced graphene-oxide acting as electron-trapping sites in the friction layer for giant triboelectric enhancement. Nano Energy 32, 542–550 (2017). https://doi.org/10.1016/j.nanoen.2016.12.035
References
J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, Parasitic power harvesting in shoes, in Digest of Papers Second International Symposium on Wearable Computers, pp. 132–139 (1998). https://doi.org/10.1109/ISWC.1998.729539
S. Li, Q. Zhong, J. Zhong, X. Cheng, B. Wang et al., Cloth-based power shirt for wearable energy harvesting and clothes ornamentation. ACS Appl. Mater. Interfaces 7(27), 14912–14916 (2015). https://doi.org/10.1021/acsami.5b03680
G.X. Liu, W.J. Li, W.B. Liu, T.Z. Bu, T. Guo et al., Soft tubular triboelectric nanogenerator for biomechanical energy harvesting. Adv. Sustain. Syst. 2(12), 1800081 (2018). https://doi.org/10.1002/adsu.201800081
T.-C. Hou, Y. Yang, H. Zhang, J. Chen, L.-J. Chen et al., Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2(5), 856–862 (2013). https://doi.org/10.1016/j.nanoen.2013.03.001
M.P. Soares dos Santos, J.A.F. Ferreira, J.A.O. Simões, R. Pascoal, J. Torrão et al., Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction. Sci. Rep. 6(1), 18579 (2016). https://doi.org/10.1038/srep18579
M.P. Soares dos Santos, A. Marote, T. Santos, J. Torrão, A. Ramos et al., New cosurface capacitive stimulators for the development of active osseointegrative implantable devices. Sci. Rep. 6(1), 30231 (2016). https://doi.org/10.1038/srep30231
R.L. Harne, M.E. Schoemaker, B.E. Dussault, K.W. Wang, Wave heave energy conversion using modular multistability. Appl. Energy 130, 148–156 (2014). https://doi.org/10.1016/j.apenergy.2014.05.038
X. Wang, Z.L. Wang, Y. Yang, Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic-triboelectric-thermoelectric effects. Nano Energy 26, 164–171 (2016). https://doi.org/10.1016/j.nanoen.2016.05.032
Q. Shen, X. Xie, M. Peng, N. Sun, H. Shao et al., Self-powered vehicle emission testing system based on coupling of triboelectric and chemoresistive effects. Adv. Funct. Mater. 28(10), 1703420 (2018). https://doi.org/10.1002/adfm.201703420
D.A. Engers, M.N. Fricke, A.W. Newman, K.R. Morris, Triboelectric charging and dielectric properties of pharmaceutically relevant mixtures. J. Electrostat. 65(9), 571–581 (2007). https://doi.org/10.1016/j.elstat.2006.12.002
J.V. Wasem, B.L. LaMarche, S.C. Langford, J.T. Dickinson, Triboelectric charging of a perfluoropolyether lubricant. J. Appl. Phys. 93(4), 2202–2207 (2003). https://doi.org/10.1063/1.1536011
M. Sakaguchi, S. Shimada, H. Kashiwabara, Mechanoions produced by mechanical fracture of solid polymer. 6. A generation mechanism of triboelectricity due to the reaction of mechanoradicals with mechanoanions on the friction surface. Macromolecules 23(23), 5038–5040 (1990). https://doi.org/10.1021/ma00225a027
M. Sakaguchi, H. Kashiwabara, A generation mechanism of triboelectricity due to the reaction of mechanoradicals with mechanoions which are produced by mechanical fracture of solid polymer. Colloid Polym. Sci. 270(7), 621–626 (1992). https://doi.org/10.1007/BF00654038
M. Lungu, Electrical separation of plastic materials using the triboelectric effect. Miner. Eng. 17(1), 69–75 (2004). https://doi.org/10.1016/j.mineng.2003.10.010
J.R. Mountain, M.K. Mazumder, R.A. Sims, D.L. Wankum, T. Chasser et al., Triboelectric charging of polymer powders in fluidization and transport processes. IEEE Trans. Ind. Appl. 37(3), 778–784 (2001). https://doi.org/10.1109/28.924759
Y. Yair, Charge generation and separation processes. Space Sci. Rev. 137(1–4), 119–131 (2008). https://doi.org/10.1007/s11214-008-9348-x
D.J. Lacks, A. Levandovsky, Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. J. Electrostat. 65(2), 107–112 (2007). https://doi.org/10.1016/j.elstat.2006.07.010
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
B. Chen, Y. Yang, Z.L. Wang, Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8(10), 1702649 (2018). https://doi.org/10.1002/aenm.201702649
A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, S.J. Kim, Sustainable human-machine interactive triboelectric nanogenerator toward a smart computer mouse. ACS Sustain. Chem. Eng. 7(7), 7177–7182 (2019). https://doi.org/10.1021/acssuschemeng.9b00175
A. Chandrasekhar, G. Khandelwal, N.R. Alluri, V. Vivekananthan, S.J. Kim, Battery-free electronic smart toys: a step toward the commercialization of sustainable triboelectric nanogenerators. ACS Sustain. Chem. Eng. 6(5), 6110–6116 (2018). https://doi.org/10.1021/acssuschemeng.7b04769
A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, S.J. Kim, A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting morse code. Nano Energy 60, 850–856 (2019). https://doi.org/10.1016/j.nanoen.2019.04.004
Z.L. Wang, L. Lin, J. Chen, S. Niu, Y. Zi, Triboelectric Nanogenerators (Springer, Basel, 2017), p. 517. https://doi.org/10.1007/978-3-319-40039-6
L. Li, S. Liu, X. Tao, J. Song, Triboelectric performances of self-powered, ultra-flexible and large-area poly(dimethylsiloxane)/Ag-coated chinlon composites with a sandpaper-assisted surface microstructure. J. Mater. Sci. 54(10), 7823–7833 (2019). https://doi.org/10.1007/s10853-019-03428-5
D. Kim, S.-B. Jeon, J.Y. Kim, M.-L. Seol, S.O. Kim et al., High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy 12, 331–338 (2015). https://doi.org/10.1016/j.nanoen.2015.01.008
A. Šutka, K. Mālnieks, L. Lapčinskis, P. Kaufelde, A. Linarts et al., The role of intermolecular forces in contact electrification on polymer surfaces and triboelectric nanogenerators. Energy Environ. Sci. 12(8), 2417–2421 (2019). https://doi.org/10.1039/C9EE01078E
S.D. Cezan, A.A. Nalbant, M. Buyuktemiz, Y. Dede, H.T. Baytekin et al., Control of triboelectric charges on common polymers by photoexcitation of organic dyes. Nat. Commun. 10, 276 (2019). https://doi.org/10.1038/s41467-018-08037-5
U.G. Musa, S.D. Cezan, B. Baytekin, H.T. Baytekin, The charging events in contact-separation electrification. Sci. Rep. 8, 2472 (2018). https://doi.org/10.1038/s41598-018-20413-1
H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12(12), 6339–6346 (2012). https://doi.org/10.1021/nl303573d
B.K. Yun, J.W. Kim, H.S. Kim, K.W. Jung, Y. Yi et al., Base-treated polydimethylsiloxane surfaces as enhanced triboelectric nanogenerators. Nano Energy 15, 523–529 (2015). https://doi.org/10.1016/j.nanoen.2015.05.018
J. Ruhe, And there was light: prospects for the creation of micro- and nanostructures through maskless photolithography. ACS Nano 11(9), 8537–8541 (2017). https://doi.org/10.1021/acsnano.7b05593
Y.H. Ko, S.H. Lee, J.W. Leem, J.S. Yu, High transparency and triboelectric charge generation properties of nano-patterned PDMS. RSC Adv. 4, 10216–10220 (2014). https://doi.org/10.1039/c3ra47199c
P. Wang, R. Liu, W. Ding, P. Zhang, I. Pan et al., Complementary electromagnetic-triboelectric active sensor for detecting multiple mechanical triggering. Adv. Funct. Mater. 28(11), 1705808 (2018). https://doi.org/10.1002/adfm.201705808
Z.-H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai et al., A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem. Int. Ed. 52(19), 5065–5069 (2013). https://doi.org/10.1002/anie.201300437
G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan et al., Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13(2), 847–853 (2013). https://doi.org/10.1021/nl4001053
L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu et al., Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13(6), 2916–2923 (2013). https://doi.org/10.1021/nl4013002
Q. Jing, G. Zhu, P. Bai, Y. Xie, J. Chen et al., Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 8(4), 3836–3842 (2014). https://doi.org/10.1021/nn500694y
G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou et al., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12(9), 4960–4965 (2012). https://doi.org/10.1021/nl302560k
R. Zhang, M. Hummelgård, J. Örtegren, M. Olsen, H. Andersson et al., Interaction of the human body with triboelectric nanogenerators. Nano Energy 57, 279–292 (2019). https://doi.org/10.1016/j.nanoen.2018.12.059
O. Rubes, Z. Hadas, Design and simulation of bistable piezoceramic cantilever for energy harvesting from slow swinging movement, in IEEE 18th International Power Electronics and Motion Control Conference (PEMC), pp. 663–668 (2018). https://doi.org/10.1109/EPEPEMC.2018.8521846
H.C. Cui, R. Hensleigh, D.S. Yao, D. Maurya, P. Kumar et al., Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 18, 234–241 (2019). https://doi.org/10.1038/s41563-018-0268-1
Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373–4395 (2016). https://doi.org/10.1002/adma.201504366
A. Cadei, A. Dionisi, E. Sardini, M. Serpelloni, Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors. Meas. Sci. Technol. 25, 012003 (2014). https://doi.org/10.1088/09570233/25/1/012003
N.R. Hosseini, J.-S. Lee, Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv. Funct. Mater. 25(35), 5586–5592 (2015). https://doi.org/10.1002/adfm.201502592
W.-K. Zhu, H.-P. Cong, H.-B. Yao, L.-B. Mao, A.M. Asiri, Bioinspired, ultrastrong, highly biocompatible, and bioactive natural polymer/graphene oxide nanocomposite films. Small 11(34), 4298–4302 (2015). https://doi.org/10.1002/smll.201500486
S.Y. Lee, S.T. Tan, K.W. Cheong, K.K. Ming, Y.X. Heng et al., Development of biocompatible natural rubber latex film incorporated with vegetable oil microemulsion as plasticizer: effect of curing conditions. AIP Conf. Proc. 1985, 040004 (2018). https://doi.org/10.1063/1.5047181
Y. Yu, X. Wang, Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech. Lett. 9(3), 514–530 (2016). https://doi.org/10.1016/j.eml.2016.02.019
S. Wang, Y. Zi, Y.S. Zhou, S. Li, F. Fan et al., Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A 4, 3728–3734 (2016). https://doi.org/10.1039/C5TA10239A
S.-H. Shin, Y.H. Kwon, Y.-H. Kim, J.-Y. Jung, M.H. Lee et al., Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 9(4), 4621–4627 (2015). https://doi.org/10.1021/acsnano.5b01340
S. Rajala, T. Siponkoski, E. Sarlin, M. Mettänen, M. Vuoriluoto et al., Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl. Mater. Interfaces 8(24), 15607–15614 (2016). https://doi.org/10.1021/acsami.6b03597
E.-L. Tan, M.G. Potroz, G. Ferracci, J.A. Jackman, H. Jung et al., Light-induced surface modification of natural plant microparticles: toward colloidal science and cellular adhesion applications. Adv. Funct. Mater. 28(18), 1707568 (2018). https://doi.org/10.1002/adfm.201707568
K. Liu, J. Jiang, Z. Zhou, X. Cai, H. Tao et al., Silk: new opportunities for an ancient material in MEMS/NEMS, in IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 558–560 (2016). https://doi.org/10.1109/MEMSYS.2016.7421686
M.-L. Seol, J.-H. Woo, D.-I. Lee, H. Im, J. Hur et al., Nature-replicated nano-in-micro structures for triboelectric energy harvesting. Small 10(19), 3887–3894 (2014). https://doi.org/10.1002/smll.201400863
Z.Q. Fang, H.L. Zhu, Y.B. Yuan, D. Ha, S.Z. Zhu et al., Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14(2), 765–773 (2014). https://doi.org/10.1021/nl404101p
Y.H. Jung, T.-H. Chang, H. Zhang, C. Yao, Q. Zheng et al., High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015). https://doi.org/10.1038/ncomms8170
X. He, H. Guo, X. Yue, J. Gao, Y. Xi et al., Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale 7, 1896–1903 (2015). https://doi.org/10.1039/C4NR05512H
J.H. Lee, R. Hinchet, S.K. Kim, S. Kim, S.-W. Kim, Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 8, 3605–3613 (2015). https://doi.org/10.1039/C5EE02711J
J.-G. Sun, T.-N. Yang, C.-Y. Wang, L.-J. Chen, A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring. Nano Energy 48, 383–390 (2018). https://doi.org/10.1016/j.nanoen.2018.03.071
Y. Chen, Y. Jie, J. Wang, J. Ma, X. Jia et al., Triboelectrification on natural rose petal for harvesting environmental mechanical energy. Nano Energy 50, 441–447 (2018). https://doi.org/10.1016/j.nanoen.2018.05.021
F. Meder, I. Must, A. Sadeghi, A. Mondini, C. Filippeschi et al., Energy conversion at the cuticle of living plants. Adv. Funct. Mater. 28(51), 1806689 (2018). https://doi.org/10.1002/adfm.201806689
Y. Jie, X. Jia, J. Zou, Y. Chen, N. Wang et al., Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy. Adv. Energy Mater. 8(12), 1703133 (2018). https://doi.org/10.1002/aenm.201703133
Y. Feng, I. Zhang, Y. Zheng, D. Wang, F. Zhou et al., Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 55, 260–268 (2019). https://doi.org/10.1016/j.nanoen.2018.10.075
D. Choi, D.W. Kim, D. Yoo, K.J. Cha, M. La et al., Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy 36, 250–259 (2017). https://doi.org/10.1016/j.nanoen.2017.04.026
M. Pohanka, The piezoelectric biosensors: principles and applications a review. Int. J. Electrochem. Sci. 12, 496–506 (2017). https://doi.org/10.20964/2017.01.44
R. Fu, S. Chen, Y. Lin, S. Zhang, J. Jiang et al., Improved piezoelectric properties of electrospun poly(vinylidene fluoride) fibers blended with cellulose nanocrystals. Mater. Lett. 187, 86–88 (2017). https://doi.org/10.1016/j.matlet.2016.10.068
S. Tuukkanen, S. Rajala, Nanocellulose as a piezoelectric material. Piezoelectricity—Organic and Inorganic Materials and Applications. IntechOpen (2018). https://doi.org/10.5772/intechopen.77025
Q. Zheng, H. Zhang, H. Mi, Z. Cai, Z. Ma et al., High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly(dimethylsiloxane) (PDMS) aerogel films. Nano Energy 26, 504–512 (2016). https://doi.org/10.1016/j.nanoen.2016.06.009
M.M. Alam, D. Mandal, Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility. ACS Appl. Mater. Interfaces 8(3), 1555–1558 (2016). https://doi.org/10.1021/acsami.5b08168
J. Peng, H. Zhang, Q. Zheng, C.M. Clemons, R.C. Sabo et al., A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 9(4), 1428–1433 (2017). https://doi.org/10.1039/C6NR07602E
S. Parandeh, M. Kharaziha, F. Karimzadeh, An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy 59, 412–421 (2019). https://doi.org/10.1016/j.nanoen.2019.02.058
P. Cui, K. Parida, M.-F. Lin, J. Xiong, G. Cai et al., Transparent, flexible cellulose nanofibril-phosphorene hybrid paper as triboelectric nanogenerator. Adv. Mater. Interfaces 4(22), 1700651 (2017). https://doi.org/10.1002/admi.201700651
K. Shi, X. Huang, B. Sun, Z. Wu, J. He et al., Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy 57, 450–458 (2019). https://doi.org/10.1016/j.nanoen.2018.12.076
M.-L. Seol, J.-W. Han, D.-I. Moon, K.J. Yoon, C.S. Hwang et al., All-printed triboelectric nanogenerator. Nano Energy 44, 82–88 (2018). https://doi.org/10.1016/j.nanoen.2017.11.067
J.D. Fontana, A.M. Desouza, C.K. Fontana, I.L. Torriani, J.C. Moreschi et al., Acetobacter cellulose pellicle as a temporary skin substitute. Appl. Biochem. Biotechnol. 24(1), 253–264 (1990). https://doi.org/10.1007/bf02920250
G. Zhang, Q. Liao, Z. Zhang, Q. Liang, Y. Zhao et al., Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv. Sci. 3(2), 1500257 (2016). https://doi.org/10.1002/advs.201500257
S. Wan, T. Li, C.J. Chen, W.Q. Kong, S.Z. Zhu et al., Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Adv. Funct. Mater. 28(24), 1707491 (2018). https://doi.org/10.1002/adfm.201707491
H.-J. Kim, E.-C. Yim, J.-H. Kim, S.-J. Kim, J.-Y. Park et al., Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33, 130–137 (2017). https://doi.org/10.1016/j.nanoen.2017.01.035
W.D. Greason, I.M. Oltean, Z. Kucerovsky, A.C. Ieta, Triboelectric charging between polytetrafluoroethylene and metals. IEEE Trans. Ind. Appl. 40(2), 442–450 (2004). https://doi.org/10.1109/tia.2004.824439
R.K. Dwari, K.H. Rao, P. Somasundaran, Characterisation of particle tribo-charging and electron transfer with reference to electrostatic dry coal cleaning. Int. J. Miner. Process. 91(3–4), 100–110 (2009). https://doi.org/10.1016/j.minpro.2009.02.006
P. Bai, G. Zhu, Y.S. Zhou, S.H. Wang, J.S. Ma et al., Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res. 7(7), 990–997 (2014). https://doi.org/10.1007/s12274-014-0461-8
C. Yao, A. Hernandez, Y. Yu, Z. Cai, X. Wang, Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 30, 103–108 (2016). https://doi.org/10.1016/j.nanoen.2016.09.036
Y. Yang, H. Zhang, R. Liu, X. Wen, T.-C. Hou et al., Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 3(12), 1563–1568 (2013). https://doi.org/10.1002/aenm.201300376
K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Mandal, Natural sugar-assisted, chemically reinforced, highly durable piezoorganic nanogenerator with superior power density for self-powered wearable electronics. ACS Appl. Mater. Interfaces 10(50), 44018–44032 (2018). https://doi.org/10.1021/acsami.8b15320
J. Chun, J.W. Kim, W.-S. Jung, C.-Y. Kang, S.-W. Kim et al., Mesoporous pores impregnated with au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 8, 3006–3012 (2015). https://doi.org/10.1039/C5EE01705J
D. Kim, S.-J. Park, S.-B. Jeon, M.-L. Seol, Y.-K. Choi, A triboelectric sponge fabricated from a cube sugar template by 3D soft lithography for superhydrophobicity and elasticity. Adv. Electron. Mater. 2(4), 1500331 (2016). https://doi.org/10.1002/aelm.201500331
D. Park, S.-H. Shin, I.-J. Yoon, J. Nah, Ferroelectric nanoparticle-embedded sponge structure triboelectric generators. Nanotechnology 29(18), 185402 (2018). https://doi.org/10.1088/1361-6528/aaafa3
Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi et al., Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2(3), e1501478 (2016). https://doi.org/10.1126/sciadv.1501478
W. Jiang, H. Li, Z. Liu, Z. Li, J. Tian et al., Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv. Mater. 30(32), e1801895 (2018). https://doi.org/10.1002/adma.201801895
Y. Chi, K. Xia, Z. Zhu, J. Fu, H. Zhang et al., Rice paper-based biodegradable triboelectric nanogenerator. Microelectron. Eng. 216, 111059 (2019). https://doi.org/10.1016/j.mee.2019.111059
W. Yang, R. Cao, X. Zhang, H. Li, C. Li, Air-permeable and washable paper-based triboelectric nanogenerator based on highly flexible and robust paper electrodes. Adv. Mater. Technol. 3(11), 1800178 (2018). https://doi.org/10.1002/admt.201800178
C. Wu, X. Wang, L. Lin, H. Guo, Z.L. Wang, Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 10(4), 4652–4659 (2016). https://doi.org/10.1021/acsnano.6b00949
G. Khandelwal, T. Minocha, S.K. Yadav, A. Chandrasekhar, M.J. Raj et al., All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy 65, 104016 (2019). https://doi.org/10.1016/j.nanoen.2019.104016
S.A. Ulasevich, A.V. Nenashkina, N.V. Ryzhkov, G. Kiselev, V. Nikolaeva et al., Natural silk film for magnesium protection: Hydrophobic/hydrophilic interaction and self-healing effect. Macromol. Mater. Eng. (2019). https://doi.org/10.1002/mame.201900412
C. Fredriksson, M. Hedhammar, R. Feinstein, K. Nordling, G. Kratz et al., Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2(4), 1908–1922 (2009). https://doi.org/10.3390/ma2041908
Y. Zhang, Z. Zhou, Z. Fan, S. Zhang, F. Zheng et al., Self-powered multifunctional transient bioelectronics. Small 14(35), 1802050 (2018). https://doi.org/10.1002/smll.201802050
Y. Zhang, Z. Zhou, L. Sun, Z. Liu, X. Xia et al., “Genetically engineered” biofunctional triboelectric nanogenerators using recombinant spider silk. Adv. Mater. 30(50), 1805722 (2018). https://doi.org/10.1002/adma.201805722
C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30(15), 1706790 (2018). https://doi.org/10.1002/adma.201706790
Y. Zi, S. Niu, J. Wang, W. Zhen, W. Tang et al., Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015). https://doi.org/10.1038/ncomms9376
Y. Zhao, H. Fan, X. Ren, C. Long, G. Liu et al., Lead-free Bi5−xLaxTi3FeO15 (x = 0, 1) nanofibers toward wool keratin-based biocompatible piezoelectric nanogenerators. J. Mater. Chem. C 4, 7324–7331 (2016). https://doi.org/10.1039/C6TC01828A
J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li et al., Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 56, 662–692 (2019). https://doi.org/10.1016/j.nanoen.2018.12.010
T.X. Xiao, T. Jiang, J.X. Zhu, X. Liang, L. Xu et al., Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl. Mater. Interfaces 10(4), 3616–3623 (2018). https://doi.org/10.1021/acsami.7b17239
S. Jang, H. Kim, J.H. Oh, Simple and rapid fabrication of pencil-on-paper triboelectric nanogenerators with enhanced electrical performance. Nanoscale 9, 13034–13041 (2017). https://doi.org/10.1039/C7NR04610C
S.-Y. Shin, B. Saravanakumar, A. Ramadoss, S.J. Kim, Fabrication of PDMS-based triboelectric nanogenerator for self-sustained power source application. Int. J. Energy Res. 40(3), 288–297 (2016). https://doi.org/10.1002/er.3376
Z. Luo, Y. Li, C. Duan, B. Wang, Fabrication of a superhydrophobic mesh based on PDMS/SiO2 nanoparticles/PVDF microparticles/KH-550 by one-step dip-coating method. RSC Adv. 8, 16251–16259 (2018). https://doi.org/10.1039/C8RA03262A
Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan et al., In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 26(33), 5851–5856 (2014). https://doi.org/10.1002/adma.201402064
Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu et al., In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10(7), 6510–6518 (2016). https://doi.org/10.1021/acsnano.6b02693
K. Zhao, Y. Wang, L. Han, Y. Wang, X. Luo et al., Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett. 11, 19 (2019). https://doi.org/10.1007/s40820-019-0251-7
M.P. Soares dos Santos, J. Coutinho, A. Marote, B. Sousa, A. Ramos et al., Capacitive technologies for highly controlled and personalized electrical stimulation by implantable biomedical systems. Sci. Rep. 9, 5001 (2019). https://doi.org/10.1038/s41598-019-41540-3
L. Valentini, N. Rescignano, D. Puglia, M. Cardinali, J. Kenny, Preparation of alginate/graphene oxide hybrid films and their integration in triboelectric generators. Eur. J. Inorg. Chem. 2015(7), 1192–1197 (2015). https://doi.org/10.1002/ejic.201402610
C. Wu, T.W. Kim, H.Y. Choi, Reduced graphene-oxide acting as electron-trapping sites in the friction layer for giant triboelectric enhancement. Nano Energy 32, 542–550 (2017). https://doi.org/10.1016/j.nanoen.2016.12.035