Nanoparticle-Decorated Ultrathin La2O3 Nanosheets as an Efficient Electrocatalysis for Oxygen Evolution Reactions
Corresponding Author: Xudong Wang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 49
Abstract
Electrochemical catalysts for oxygen evolution reaction are a critical component for many renewable energy applications. To improve their catalytic kinetics and mass activity are essential for sustainable industrial applications. Here, we report a rare-earth metal-based oxide electrocatalyst comprised of ultrathin amorphous La2O3 nanosheets hybridized with uniform La2O3 nanoparticles (La2O3@NP-NS). Significantly improved OER performance is observed from the nanosheets with a nanometer-scale thickness. The as-synthesized 2.27-nm La2O3@NP-NS exhibits excellent catalytic kinetics with an overpotential of 310 mV at 10 mA cm−2, a small Tafel slope of 43.1 mV dec−1, and electrochemical impedance of 38 Ω. More importantly, due to the ultrasmall thickness, its mass activity, and turnover frequency reach as high as 6666.7 A g−1 and 5.79 s−1, respectively, at an overpotential of 310 mV. Such a high mass activity is more than three orders of magnitude higher than benchmark OER electrocatalysts, such as IrO2 and RuO2. This work presents a sustainable approach toward the development of highly efficient electrocatalysts with largely reduced mass loading of precious elements.
Highlights:
1 The 2.27-nm-thick hybridized quasi-2D structure of La2O3 crystalline nanoparticles embedded in La2O3 amorphous nanosheets (La2O3@NP-NS) exhibited a low overpotential of 310 mV at 10 mA cm−2.
2 The mass activity of La2O3@NP-NS reached as high as 6666.7 A g−1 at overpotential of 310 mV. Such a high mass activity was more than three orders of magnitude higher than that of benchmark IrO2 (4.4 A g−1) and RuO2 (2.05 A g−1) and five orders of magnitude higher than that of commercial La2O3 (0.048 A g−1).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–302 (2012). https://doi.org/10.1038/nature11475
- M. Dresselhaus, I. Thomas, Alternative energy technologies. Nature 414, 332–337 (2001). https://doi.org/10.1201/b17893
- Y.Y. Wang, C. Xie, Z.Y. Zhang, D.D. Liu, R. Chen et al., In situ exfoliated, n-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction. Adv. Funct. Mater. 28, 1703363 (2018). https://doi.org/10.1002/adfm.201703363
- Y.S. Jin, H.T. Wang, J.J. Li, X. Yue, Y.J. Han et al., Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 28, 3785–3790 (2016). https://doi.org/10.1002/adma.201506314
- M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022
- Y.C. Mao, C. Ning, N. Zhang, Y. Hu, M.Y. Li et al., Enhancing photoelectrochemical performance of TiO2 nanowires through a facile acid treatment method. J. Electrochem. Soc. 165, 799–803 (2018). https://doi.org/10.1149/2.0431813jes
- Y.C. Mao, Y.G. Cheng, J.Q. Wang, H. Yang, M.Y. Li et al., Amorphous NiO electrocatalyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical performance. New J. Chem. 40, 107–112 (2016). https://doi.org/10.1039/c5nj01815c
- X.T. Wang, T. Ouyang, L. Wang, J.H. Zhong, T. Ma et al., Redox-inert Fe3+ in octahedral sites of Co–Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable Zn-air batteries. Angew. Chem. Int. Ed. 58, 13291–13296 (2019). https://doi.org/10.1002/ange.201907595
- T. Ouyang, Y.Q. Ye, C.Y. Wu, K. Xiao, Z.Q. Liu et al., Heterostructures composed of N-doped carbon nanotubes encapsulating Co and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem. Int. Ed. 58, 4923–4928 (2019). https://doi.org/10.1002/anie.201814262
- H. Su, X.T. Wang, J.X. Hu, T. Ouyang, K. Xiao et al., Co-Mn spinel supported self-catalysis induced N-doped carbon nanotubes with high efficiency electron transport channels for zinc-air batteries. J. Mater. Chem. A 7, 22307–22313 (2019). https://doi.org/10.1039/C9TA08064C
- D.H. Guo, R.K. Shibuya, C. Akiba, S. Saji, T. Kondo et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016). https://doi.org/10.1126/science.aad0832
- B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W.D. Lou, X. Wang, A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
- W.R. Cheng, X. Zhao, H. Su, F. Tang, W. Che et al., Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122 (2019). https://doi.org/10.1038/s41560-018-0308-8
- S. Zheng, L. Zheng, Z. Zhu, J. Chen, J. Kang, Z. Huang, D. Yang, MoS2 nanosheet arrays rooted on hollow rGO spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett. 10, 62 (2018). https://doi.org/10.1007/s40820-018-0215-3
- T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53, 7281–7285 (2014). https://doi.org/10.1002/anie.201403946
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci et al., Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 115, 9869–9921 (2015). https://doi.org/10.1021/acs.chemrev.5b00073
- B.W. Zhang, K. Jiang, H.T. Wang, S. Hu, Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst. Nano Lett. 19, 530–537 (2019). https://doi.org/10.1021/acs.nanolett.8b04466
- R.R. Zhang, Y.C. Zhang, L. Pan, G.Q. Shen, N. Mahmood et al., Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution. ACS Catal. 8, 3803–3811 (2018). https://doi.org/10.1021/acscatal.8b01046
- X.N. Li, H. Liu, Z.Z. Chen, Q.M. Wu, Z.Y. Yu et al., Enhancing oxygen evolution efficiency of multiferroic oxides by spintronic and ferroelectric polarization regulation. Nat. Commun. 10, 1409 (2019). https://doi.org/10.1038/s41467-019-09191-0
- Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
- Z.F. Huang, J.J. Song, Y.H. Du, S.B. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019). https://doi.org/10.1038/s41560-019-0355-9
- L. Hu, T.Z. Xiong, R. Liu, Y.W. Hu, Y.C. Mao et al., Co3O4@Cu-based conductive metal–organic framework core-shell nanowire electrocatalysts enable efficient low-overall-potential water splitting. Chem. Eur. J. 25, 6575–6583 (2019). https://doi.org/10.1002/chem.201900045
- L. Hu, Y. Hu, R. Liu, Y. Mao, M.S.J.T. Balogun, Y. Tong, Co-based MOF-derived Co/CoN/Co2P ternary composite embedded in N- and P-doped carbon as bifunctional nanocatalysts for efficient overall water splitting. Int. J. Hydrogen Energy 44, 11402–11410 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.157
- F.X. Wang, L. Hu, R. Liu, H. Yang, T.Z. Xiong et al., Hybrid implanted hybrid hollow nanocube electrocatalyst facilitates efficient hydrogen evolution activity. J. Mater. Chem. A 7, 11150–11159 (2019). https://doi.org/10.1039/c9ta00931k
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). https://doi.org/10.1126/science.1212858
- T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2-Based materials. Chem. Rev. 116, 5987–6041 (2016). https://doi.org/10.1021/acs.chemrev.5b00603
- J.G. Kang, Y.I. Kim, D.W. Cho, Y. Sohn, Synthesis and physicochemical properties of La(OH)3 and La2O3 nanostructures. Mat. Sci. Semicon. Proc. 40, 737–743 (2015). https://doi.org/10.1016/j.mssp.2015.07.050
- A.A. Yadav, A.C. Lokhande, R.B. Pujaria, J.H. Kimb, C.D. Lokhande, The synthesis of multifunctional porous honey comb-like La2O3 thin film for supercapacitor and gas sensor applications. J. Colloid Interface Sci. 484, 51–59 (2016). https://doi.org/10.1016/j.jcis.2016.08.056
- T.A. Shifa, F. Wang, Y. Liu, J. He, Heterostructures based on 2d materials: a versatile platform for efficient catalysis. Adv. Mater. 31(45), 1804828 (2018). https://doi.org/10.1002/adma.201804828
- H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
- P. Tian, Y.H. Yu, X. Yin, X.D. Wang, A wafer-scale 1 nm Ni(OH)2 nanosheet with superior electrocatalytic activity for the oxygen evolution reaction. Nanoscale 10, 5054–5059 (2018). https://doi.org/10.1039/c7nr09042k
- D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian et al., Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016). https://doi.org/10.1038/nnano.2015.340
- M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 44, 181–190 (2018). https://doi.org/10.1016/j.nanoen.2017.12.003
- C. Tang, H.S. Wang, H.F. Wang, Q. Zhang, G.L. Tian et al., Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 27, 4516–4522 (2015). https://doi.org/10.1002/adma.201501901
- Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong et al., MoS2 Nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011). https://doi.org/10.1021/ja201269b
- J. Mujtaba, H.Y. Sun, G.Y. Huang, K. Mølhave, Y.G. Liu et al., Nanoparticle decorated ultrathin porous nanosheets as hierarchical Co3O4 nanostructures for lithium ion battery anode materials. Sci. Rep. 6, 20592 (2016). https://doi.org/10.1038/srep20592
- C.L.M. Charles, J. Suho, C.P. Jonas, F.J. Thomas, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977 (2013). https://doi.org/10.1021/ja407115p
- F. Wang, J.H. Seo, G. Luo, M.B. Starr, Z. Li et al., Nanometre-thick single-crystalline nanosheets grown at the water–air interface. Nat. Commun. 7, 10444 (2016). https://doi.org/10.1038/ncomms10444
- Y. Li, B. Guan, A. Maclennan, Y.F. Hu, D.D. Li et al., Porous waxberry-like MnO2/La2O3 microspheres for high performance asymmetric supercapacitor. Electrochim. Acta 241, 395–405 (2017). https://doi.org/10.1016/j.electacta.2017.04.175
- T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, Electronic polarizability, optical basicity, and interaction parameter of La2O3 and related glasses. J. Appl. Phys. 91, 2942–2950 (2002). https://doi.org/10.1063/1.1436292
- C. Yang, H. Fan, S. Qiu, Y. Xi, Y. Fu, Microstructure and dielectric properties of La2O3 films prepared by ion beam assistant electron-beam evaporation. J. Non-Cryst. Solids 355, 33–37 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.09.029
- M.F. Sunding, K. Hadidi, S. Diplas, O.M. Løvvik, T.E. Norby et al., XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J. Electron. Spectrosc. 184, 399–409 (2011). https://doi.org/10.1016/j.elspec.2011.04.002
- B. Li, H. Metiu, DFT studies of oxygen vacancies on undoped and doped La2O3 surfaces. J. Phys. Chem. C 114, 12234–12244 (2010). https://doi.org/10.1021/jp103604b
- P. Huang, Y. Zhao, J. Zhang, Y. Zhu, Y. Sun, Exploiting shape effects of La2O3 nanocatalysts for oxidative coupling of methane reaction. Nanoscale 5, 10844–10848 (2013). https://doi.org/10.1039/c3nr03617k
- J.H. Kim, K. Shin, K. Kawashima, D.H. Youn, J. Lin et al., Enhanced activity promoted by CeOx on a CoOx electrocatalyst for the oxygen evolution reaction. ACS Catal. 8, 4257–4265 (2018). https://doi.org/10.1021/acscatal.8b00820
- J. Yin, Y.X. Li, F. Lv, Q.H. Fan, Y.Q. Zhao et al., Porous nanowires as efficient bifunctional catalysts for Zn–air batteries. ACS Nano 11, 2275–2283 (2017). https://doi.org/10.1021/acsnano.7b00417
- V. Maruthapandian, O. Mathankumar, V. Saraswathy, B. Subramanian, O. Muralidharan, Study of the oxygen evolution reaction catalytic behavior of CoxNi1–xFe2O4 in alkaline medium. ACS Appl. Mater. Interfaces 9, 13132–13141 (2017). https://doi.org/10.1021/acsami.6b16685
- K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson et al., Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 7, 11981 (2016). https://doi.org/10.1038/ncomms11981
- Z.Q. Liu, H. Cheng, N. Li, T.Y. Ma, Y.Z. Su, ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 28, 3777–3784 (2016). https://doi.org/10.1002/adma.201506197
- Y. Liu, C. Ma, Q. Zhang, W. Wang, P. Pan et al., 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 31, 1900062 (2019). https://doi.org/10.1002/adma.201900062
- P. Li, M.Y. Wang, X.X. Duan, L.R. Zheng, X.P. Cheng et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10, 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
- Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen et al., Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem. Int. Ed. 55, 8670–8674 (2016). https://doi.org/10.1002/anie.201604372
- J. Ren, M. Antonietti, T.P. Fellinger, Efficient water splitting using a simple Ni/N/C paper electrocatalyst. Adv. Energy Mater. 5, 1401660 (2015). https://doi.org/10.1002/aenm.201401660
References
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–302 (2012). https://doi.org/10.1038/nature11475
M. Dresselhaus, I. Thomas, Alternative energy technologies. Nature 414, 332–337 (2001). https://doi.org/10.1201/b17893
Y.Y. Wang, C. Xie, Z.Y. Zhang, D.D. Liu, R. Chen et al., In situ exfoliated, n-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction. Adv. Funct. Mater. 28, 1703363 (2018). https://doi.org/10.1002/adfm.201703363
Y.S. Jin, H.T. Wang, J.J. Li, X. Yue, Y.J. Han et al., Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 28, 3785–3790 (2016). https://doi.org/10.1002/adma.201506314
M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022
Y.C. Mao, C. Ning, N. Zhang, Y. Hu, M.Y. Li et al., Enhancing photoelectrochemical performance of TiO2 nanowires through a facile acid treatment method. J. Electrochem. Soc. 165, 799–803 (2018). https://doi.org/10.1149/2.0431813jes
Y.C. Mao, Y.G. Cheng, J.Q. Wang, H. Yang, M.Y. Li et al., Amorphous NiO electrocatalyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical performance. New J. Chem. 40, 107–112 (2016). https://doi.org/10.1039/c5nj01815c
X.T. Wang, T. Ouyang, L. Wang, J.H. Zhong, T. Ma et al., Redox-inert Fe3+ in octahedral sites of Co–Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable Zn-air batteries. Angew. Chem. Int. Ed. 58, 13291–13296 (2019). https://doi.org/10.1002/ange.201907595
T. Ouyang, Y.Q. Ye, C.Y. Wu, K. Xiao, Z.Q. Liu et al., Heterostructures composed of N-doped carbon nanotubes encapsulating Co and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem. Int. Ed. 58, 4923–4928 (2019). https://doi.org/10.1002/anie.201814262
H. Su, X.T. Wang, J.X. Hu, T. Ouyang, K. Xiao et al., Co-Mn spinel supported self-catalysis induced N-doped carbon nanotubes with high efficiency electron transport channels for zinc-air batteries. J. Mater. Chem. A 7, 22307–22313 (2019). https://doi.org/10.1039/C9TA08064C
D.H. Guo, R.K. Shibuya, C. Akiba, S. Saji, T. Kondo et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016). https://doi.org/10.1126/science.aad0832
B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W.D. Lou, X. Wang, A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
W.R. Cheng, X. Zhao, H. Su, F. Tang, W. Che et al., Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122 (2019). https://doi.org/10.1038/s41560-018-0308-8
S. Zheng, L. Zheng, Z. Zhu, J. Chen, J. Kang, Z. Huang, D. Yang, MoS2 nanosheet arrays rooted on hollow rGO spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett. 10, 62 (2018). https://doi.org/10.1007/s40820-018-0215-3
T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53, 7281–7285 (2014). https://doi.org/10.1002/anie.201403946
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). https://doi.org/10.1021/cr1002326
D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci et al., Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 115, 9869–9921 (2015). https://doi.org/10.1021/acs.chemrev.5b00073
B.W. Zhang, K. Jiang, H.T. Wang, S. Hu, Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst. Nano Lett. 19, 530–537 (2019). https://doi.org/10.1021/acs.nanolett.8b04466
R.R. Zhang, Y.C. Zhang, L. Pan, G.Q. Shen, N. Mahmood et al., Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution. ACS Catal. 8, 3803–3811 (2018). https://doi.org/10.1021/acscatal.8b01046
X.N. Li, H. Liu, Z.Z. Chen, Q.M. Wu, Z.Y. Yu et al., Enhancing oxygen evolution efficiency of multiferroic oxides by spintronic and ferroelectric polarization regulation. Nat. Commun. 10, 1409 (2019). https://doi.org/10.1038/s41467-019-09191-0
Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
Z.F. Huang, J.J. Song, Y.H. Du, S.B. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019). https://doi.org/10.1038/s41560-019-0355-9
L. Hu, T.Z. Xiong, R. Liu, Y.W. Hu, Y.C. Mao et al., Co3O4@Cu-based conductive metal–organic framework core-shell nanowire electrocatalysts enable efficient low-overall-potential water splitting. Chem. Eur. J. 25, 6575–6583 (2019). https://doi.org/10.1002/chem.201900045
L. Hu, Y. Hu, R. Liu, Y. Mao, M.S.J.T. Balogun, Y. Tong, Co-based MOF-derived Co/CoN/Co2P ternary composite embedded in N- and P-doped carbon as bifunctional nanocatalysts for efficient overall water splitting. Int. J. Hydrogen Energy 44, 11402–11410 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.157
F.X. Wang, L. Hu, R. Liu, H. Yang, T.Z. Xiong et al., Hybrid implanted hybrid hollow nanocube electrocatalyst facilitates efficient hydrogen evolution activity. J. Mater. Chem. A 7, 11150–11159 (2019). https://doi.org/10.1039/c9ta00931k
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). https://doi.org/10.1126/science.1212858
T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2-Based materials. Chem. Rev. 116, 5987–6041 (2016). https://doi.org/10.1021/acs.chemrev.5b00603
J.G. Kang, Y.I. Kim, D.W. Cho, Y. Sohn, Synthesis and physicochemical properties of La(OH)3 and La2O3 nanostructures. Mat. Sci. Semicon. Proc. 40, 737–743 (2015). https://doi.org/10.1016/j.mssp.2015.07.050
A.A. Yadav, A.C. Lokhande, R.B. Pujaria, J.H. Kimb, C.D. Lokhande, The synthesis of multifunctional porous honey comb-like La2O3 thin film for supercapacitor and gas sensor applications. J. Colloid Interface Sci. 484, 51–59 (2016). https://doi.org/10.1016/j.jcis.2016.08.056
T.A. Shifa, F. Wang, Y. Liu, J. He, Heterostructures based on 2d materials: a versatile platform for efficient catalysis. Adv. Mater. 31(45), 1804828 (2018). https://doi.org/10.1002/adma.201804828
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
P. Tian, Y.H. Yu, X. Yin, X.D. Wang, A wafer-scale 1 nm Ni(OH)2 nanosheet with superior electrocatalytic activity for the oxygen evolution reaction. Nanoscale 10, 5054–5059 (2018). https://doi.org/10.1039/c7nr09042k
D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian et al., Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016). https://doi.org/10.1038/nnano.2015.340
M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 44, 181–190 (2018). https://doi.org/10.1016/j.nanoen.2017.12.003
C. Tang, H.S. Wang, H.F. Wang, Q. Zhang, G.L. Tian et al., Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 27, 4516–4522 (2015). https://doi.org/10.1002/adma.201501901
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong et al., MoS2 Nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011). https://doi.org/10.1021/ja201269b
J. Mujtaba, H.Y. Sun, G.Y. Huang, K. Mølhave, Y.G. Liu et al., Nanoparticle decorated ultrathin porous nanosheets as hierarchical Co3O4 nanostructures for lithium ion battery anode materials. Sci. Rep. 6, 20592 (2016). https://doi.org/10.1038/srep20592
C.L.M. Charles, J. Suho, C.P. Jonas, F.J. Thomas, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977 (2013). https://doi.org/10.1021/ja407115p
F. Wang, J.H. Seo, G. Luo, M.B. Starr, Z. Li et al., Nanometre-thick single-crystalline nanosheets grown at the water–air interface. Nat. Commun. 7, 10444 (2016). https://doi.org/10.1038/ncomms10444
Y. Li, B. Guan, A. Maclennan, Y.F. Hu, D.D. Li et al., Porous waxberry-like MnO2/La2O3 microspheres for high performance asymmetric supercapacitor. Electrochim. Acta 241, 395–405 (2017). https://doi.org/10.1016/j.electacta.2017.04.175
T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, Electronic polarizability, optical basicity, and interaction parameter of La2O3 and related glasses. J. Appl. Phys. 91, 2942–2950 (2002). https://doi.org/10.1063/1.1436292
C. Yang, H. Fan, S. Qiu, Y. Xi, Y. Fu, Microstructure and dielectric properties of La2O3 films prepared by ion beam assistant electron-beam evaporation. J. Non-Cryst. Solids 355, 33–37 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.09.029
M.F. Sunding, K. Hadidi, S. Diplas, O.M. Løvvik, T.E. Norby et al., XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J. Electron. Spectrosc. 184, 399–409 (2011). https://doi.org/10.1016/j.elspec.2011.04.002
B. Li, H. Metiu, DFT studies of oxygen vacancies on undoped and doped La2O3 surfaces. J. Phys. Chem. C 114, 12234–12244 (2010). https://doi.org/10.1021/jp103604b
P. Huang, Y. Zhao, J. Zhang, Y. Zhu, Y. Sun, Exploiting shape effects of La2O3 nanocatalysts for oxidative coupling of methane reaction. Nanoscale 5, 10844–10848 (2013). https://doi.org/10.1039/c3nr03617k
J.H. Kim, K. Shin, K. Kawashima, D.H. Youn, J. Lin et al., Enhanced activity promoted by CeOx on a CoOx electrocatalyst for the oxygen evolution reaction. ACS Catal. 8, 4257–4265 (2018). https://doi.org/10.1021/acscatal.8b00820
J. Yin, Y.X. Li, F. Lv, Q.H. Fan, Y.Q. Zhao et al., Porous nanowires as efficient bifunctional catalysts for Zn–air batteries. ACS Nano 11, 2275–2283 (2017). https://doi.org/10.1021/acsnano.7b00417
V. Maruthapandian, O. Mathankumar, V. Saraswathy, B. Subramanian, O. Muralidharan, Study of the oxygen evolution reaction catalytic behavior of CoxNi1–xFe2O4 in alkaline medium. ACS Appl. Mater. Interfaces 9, 13132–13141 (2017). https://doi.org/10.1021/acsami.6b16685
K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson et al., Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 7, 11981 (2016). https://doi.org/10.1038/ncomms11981
Z.Q. Liu, H. Cheng, N. Li, T.Y. Ma, Y.Z. Su, ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 28, 3777–3784 (2016). https://doi.org/10.1002/adma.201506197
Y. Liu, C. Ma, Q. Zhang, W. Wang, P. Pan et al., 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 31, 1900062 (2019). https://doi.org/10.1002/adma.201900062
P. Li, M.Y. Wang, X.X. Duan, L.R. Zheng, X.P. Cheng et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10, 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen et al., Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem. Int. Ed. 55, 8670–8674 (2016). https://doi.org/10.1002/anie.201604372
J. Ren, M. Antonietti, T.P. Fellinger, Efficient water splitting using a simple Ni/N/C paper electrocatalyst. Adv. Energy Mater. 5, 1401660 (2015). https://doi.org/10.1002/aenm.201401660