NiSe2/Ni(OH)2 Heterojunction Composite through Epitaxial-like Strategy as High-Rate Battery-Type Electrode Material
Corresponding Author: Dao Feng Sun
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 61
Abstract
Constructing heterojunction is a promising way to improve the charge transfer efficiency and can thus promote the electrochemical properties. Herein, a facile and effective epitaxial-like growth strategy is applied to NiSe2 nano-octahedra to fabricate the NiSe2-(100)/Ni(OH)2-(110) heterojunction. The heterojunction composite and Ni(OH)2 (performing high electrochemical activity) is ideal high-rate battery-type supercapacitor electrode. The NiSe2/Ni(OH)2 electrode exhibits a high specific capacity of 909 C g−1 at 1 A g−1 and 597 C g−1 at 20 A g−1. The assembled asymmetric supercapacitor composed of the NiSe2/Ni(OH)2 cathode and p-phenylenediamine-functional reduced graphene oxide anode achieves an ultrahigh specific capacity of 303 C g−1 at 1 A g−1 and a superior energy density of 76.1 Wh kg−1 at 906 W kg−1, as well as an outstanding cycling stability of 82% retention for 8000 cycles at 10 A g−1. To the best of our knowledge, this is the first example of NiSe2/Ni(OH)2 heterojunction exhibiting such remarkable supercapacitor performance. This work not only provides a promising candidate for next-generation energy storage device but also offers a possible universal strategy to fabricate metal selenides/metal hydroxides heterojunctions.
Highlights:
1 A facile and effective epitaxial-like growth strategy is applied to fabricate the NiSe2/Ni(OH)2 heterojunction composite.
2 The assembled asymmetric supercapacitor based on the heterojunction composite surpasses most of the reported results. It is the first time that the powdered electrode materials can have such large capacity, high rate, and extreme long cycle life.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
- D.P. Dubal, N.R. Chodankar, D.H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018). https://doi.org/10.1039/c7cs00505a
- Y. Song, H. Chen, X. Chen, H. Wu, H. Guo, X. Cheng, B. Meng, H. Zhang, All-in-one piezoresistive-sensing patch integrated with micro-supercapacitor. Nano Energy 53, 189–197 (2018). https://doi.org/10.1016/j.nanoen.2018.08.041
- W. Guo, C. Yu, S. Li, Z. Wang, J. Yu, H. Huang, J. Qiu, Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives. Nano Energy 57, 459–472 (2019). https://doi.org/10.1016/j.nanoen.2018.12.015
- Y. Cao, M. Li, J. Lu, J. Liu, K. Amine, Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200–207 (2019). https://doi.org/10.1038/s41565-019-0371-8
- A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y. Sun, S. Myung, Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3, 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
- C. Yang, M. Sun, L. Zhang, P. Liu, P. Wang, H. Lu, ZnFe2O4@carbon core-shell nanoparticles encapsulated in reduced graphene oxide for high-performance Li-ion hybrid supercapacitors. ACS Appl. Mater. Interfaces 11, 14713–14721 (2019). https://doi.org/10.1021/acsami.8b20305
- R. Wang, Y. Han, Z. Wang, J. Jiang, Y. Tong, X. Lu, Nickel@nickel oxide core-shell electrode with significantly boosted reactivity for ultrahigh-energy and stable aqueous Ni–Zn battery. Adv. Funct. Mater. 28, 1802157 (2018). https://doi.org/10.1002/adfm.201802157
- H. Banda, S. Périé, B. Daffos, P. Taberna, L. Dubois et al., Sparsely pillared graphene materials for high-performance supercapacitors: improving ion transport and storage capacity. ACS Nano 13, 1443–1453 (2019). https://doi.org/10.1021/acsnano.8b07102
- S. Zhu, L. Li, J. Liu, H. Wang, T. Wang et al., Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 12, 1033–1042 (2018). https://doi.org/10.1021/acsnano.7b03431
- M. Yao, X. Ji, T. Chou, S. Cheng, L. Yang et al., Simple and cost-effective approach to dramatically enhance the durability and capability of a layered δ-MnO2 based electrode for pseudocapacitors: a practical electrochemical test and mechanistic revealing. ACS Appl. Energy Mater. 2, 2743–2750 (2019). https://doi.org/10.1021/acsaem.9b00075
- C. Feng, J. Zhang, Y. He, C. Zhong, W. Hu, L. Liu, Y. Deng, Sub-3 nm Co3O4 nanofilms with enhanced supercapacitor properties. ACS Nano 9, 1730–1739 (2015). https://doi.org/10.1021/nn506548d
- V.D. Nithya, N.S. Arul, Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J. Power Sources 327, 297–318 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.033
- P. Sivakumar, M. Jana, M.G. Jung, A. Gedanken, H.S. Park, Hexagonal plate-like Ni–Co–Mn hydroxide nanostructures to achieve high energy density of hybrid supercapacitors. J. Mater. Chem. A 7, 11362–11369 (2019). https://doi.org/10.1039/C9TA02583A
- B. Zhao, D. Chen, X. Xiong, B. Song, R. Hu et al., A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. Energy Storage Mater. 7, 32–39 (2017). https://doi.org/10.1016/j.ensm.2016.11.010
- P. Ge, S. Li, H. Shuai, W. Xu, Y. Tian et al., Engineering 1D chain-like architecture with conducting polymer towards ultra-fast and high-capacity energy storage by reinforced pseudo-capacitance. Nano Energy 54, 26–38 (2018). https://doi.org/10.1016/j.nanoen.2018.09.062
- G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/c1cs15060j
- Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
- X. Wu, L. Meng, Q. Wang, W. Zhang, Y. Wang, Wide potential window and high capacitance for flexible asymmetric supercapacitor based on Cu2Se nanobrush and hydrangea-like NiCo2O4 microspheres. Chem. Eng. J. 354, 346–350 (2018). https://doi.org/10.1016/j.cej.2018.08.045
- R. Sahoo, D.T. Pham, T.H. Lee, T.H.T. Luu, J. Seok, Y.H. Lee, Redox-driven route for widening voltage window in asymmetric supercapacitor. ACS Nano 12, 8494–8505 (2018). https://doi.org/10.1021/acsnano.8b04040
- Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016). https://doi.org/10.1039/c5cs00580a
- G. Nagaraju, S.C. Sekhar, B. Ramulu, J.S. Yu, An integrated approach toward renewable energy storage using rechargeable Ag@Ni0.67Co0.33S-based hybrid supercapacitors. Small 15, 1805418 (2019). https://doi.org/10.1002/smll.201805418
- F. Liu, L. Zeng, Y. Chen, R. Zhang, R. Yang et al., Ni-Co-N hybrid porous nanosheets on graphene paper for flexible and editable asymmetric all-solid-state supercapacitors. Nano Energy 61, 18–26 (2019). https://doi.org/10.1016/j.nanoen.2019.04.003
- Y. Huang, Y. Zeng, M. Yu, P. Liu, Y. Tong, F. Cheng, X. Lu, Recent smart methods for achieving high-energy asymmetric supercapacitors. Small Methods 2, 1700230 (2018). https://doi.org/10.1002/smtd.201700230
- Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng et al., Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201809004
- R.R. Salunkhe, B.P. Bastakoti, C.T. Hsu, N. Suzuki, J.H. Kim, S.X. Dou, C.C. Hu, Y. Yamauchi, Direct growth of cobalt hydroxide rods on nickel foam and its application for energy storage. Chem. Eur. J. 20(11), 3084–3088 (2014). https://doi.org/10.1002/chem.201303652
- J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao et al., Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy 57, 22–33 (2019). https://doi.org/10.1016/j.nanoen.2018.12.011
- X. Shi, J. Key, S. Ji, V. Linkov, F. Liu, H. Wang, H. Gai, R. Wang, Ni(OH)2 nanoflakes supported on 3D Ni3Se2 nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery. Small (2018). https://doi.org/10.1002/smll.201802861
- C. Young, R.R. Salunkhe, J. Tang, C. Hu, M. Shahabuddin et al., Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys. Chem. Chem. Phys. 18(42), 29308–29315 (2016). https://doi.org/10.1039/C6CP05555A
- Q. Zhou, T. Fan, Y. Li, D. Chen, S. Liu, X. Li, Hollow-structure NiCo hydroxide/carbon nanotube composite for High-Performance supercapacitors. J. Power Sources 426, 111–115 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.035
- B. Dong, W. Li, X. Huang, Z. Ali, T. Zhang, Z. Yang, Y. Hou, Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol. Nano Energy 55, 37–41 (2019). https://doi.org/10.1016/j.nanoen.2018.10.050
- X. Li, H. Wu, A.M. Elshahawy, L. Wang, S.J. Pennycook, C. Guan, J. Wang, Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 28, 1800036 (2018). https://doi.org/10.1002/adfm.201800036
- B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem. Eng. J. 355, 881–890 (2019). https://doi.org/10.1016/j.cej.2018.08.185
- S. Min, C. Zhao, Z. Zhang, G. Chen, X. Qian, Z. Guo, Synthesis of Ni(OH)2/rGO pseudocomposite on nickel foam for supercapacitors with superior performance. J. Mater. Chem. A 3, 3641–3650 (2015). https://doi.org/10.1039/C5TA06174A
- J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao et al., Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237–6243 (2013). https://doi.org/10.1021/nn4021955
- J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei et al., Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 22, 2632–2641 (2012). https://doi.org/10.1002/adfm.201102839
- W. Wei, J. Wu, S. Cui, Y. Zhao, W. Chen, L. Mi, α-Ni(OH)2/NiS1.97 heterojunction composites with excellent ion and electron transport properties for advanced supercapacitors. Nanoscale 11, 6243–6253 (2019). https://doi.org/10.1039/C9NR00962K
- Z. Ma, F. Jing, Y. Fan, L. Hou, L. Su, L. Fan, G. Shao, High- stability MnOx nanowires@C@MnOx nanosheet core-shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism. Small (2019). https://doi.org/10.1002/smll.201900862
- S. Wang, W. Li, L. Xin, M. Wu, Y. Long, H. Huang, X. Lou, Facile synthesis of truncated cube-like NiSe2 single crystals for high-performance asymmetric supercapacitors. Chem. Eng. J. 330, 1334–1341 (2017). https://doi.org/10.1016/j.cej.2017.08.078
- X. Lu, L. Li, B. Song, K. Moon, N. Hu, G. Liao, T. Shi, C. Wong, Mechanistic investigation of the graphene functionalization using p-phenylenediamine and its application for supercapacitors. Nano Energy 17, 160–170 (2015). https://doi.org/10.1016/j.nanoen.2015.08.011
- B. Xu, K.M. Poduska, Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals. Phys. Chem. Chem. Phys. 16, 17634–17639 (2014). https://doi.org/10.1039/C4CP01772B
- S. Gadipelli, W. Travis, W. Zhou, Z. Guo, A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy Environ. Sci. 7, 2232–2238 (2014). https://doi.org/10.1039/C4EE01009D
- H.T. Kwon, H. Jeong, A.S. Lee, H.S. An, J.S. Lee, Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J. Am. Chem. Soc. 137, 12304–12311 (2015). https://doi.org/10.1021/jacs.5b06730
- T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren et al., NiFe (Oxy) hydroxides derived from nife disulfides as an efficient oxygen evolution catalyst for rechargeable Zn-air batteries: the effect of surface S residues. Adv. Mater. 30, 1800757 (2018). https://doi.org/10.1002/adma.201800757
- X. Xu, F. Song, X. Hu, A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 7, 12324 (2016). https://doi.org/10.1038/ncomms12324
- X. Li, H. Wu, C. Guan, A.M. Elshahawy, Y. Dong, S.J. Pennycook, J. Wang, (Ni, Co)Se2/NiCo-LDH core/shell structural electrode with the cactus-like (Ni, Co)Se2 core for asymmetric supercapacitors. Small (2018). https://doi.org/10.1002/smll.201803895
- D. Cao, W. Kang, S. Wang, Y. Wang, K. Sun et al., In situ N-doped carbon modified (Co0.5Ni0.5)9S8 solid-solution hollow spheres as high-capacity anodes for sodium-ion batteries. J. Mater. Chem. A 7, 8268–8276 (2019). https://doi.org/10.1039/C9TA00709A
- H. Wu, Q. Yu, C. Lao, M. Qin, W.A. Wang et al., Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage. Energy Storage Mater. 18, 43–50 (2019). https://doi.org/10.1016/j.ensm.2018.09.025
- T. Yang, Y. Liu, D. Yang, B. Deng, Z. Huang et al., Bimetallic metal-organic frameworks derived Ni–Co–Se@C hierarchical bundle-like nanostructures with high-rate pseudocapacitive lithium ion storage. Energy Storage Mater. 17, 374–384 (2019). https://doi.org/10.1016/j.ensm.2018.05.024
- A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edn. (Wiley, New yolk, 2001), pp. 45–86.
- S. Zhang, Z. Yang, K. Gong, B. Xu, H. Mei et al., Temperature controlled diffusion of hydroxide ions in 1D channels of Ni-MOF-74 for its complete conformal hydrolysis to hierarchical Ni(OH)2 supercapacitor electrodes. Nanoscale 11, 9598–9607 (2019). https://doi.org/10.1039/C9NR02555C
- Y. Xue, T. Chen, S. Song, P. Kim, J. Bae, DNA-directed fabrication of NiCo2O4 nanoparticles on carbon nanotubes as electrodes for high-performance battery-like electrochemical capacitive energy storage device. Nano Energy 56, 751–758 (2019). https://doi.org/10.1016/j.nanoen.2018.11.003
- W. He, G. Zhao, P. Sun, P. Hou, L. Zhu et al., Construction of Longan-like hybrid structures by anchoring nickel hydroxide on yolk-shell polypyrrole for asymmetric supercapacitors. Nano Energy 56, 207–215 (2019). https://doi.org/10.1016/j.nanoen.2018.11.048
- V.K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.S. Nardekar, S. Kim, Nanostructured ternary metal chalcogenide-based binder-free electrodes for high energy density asymmetric supercapacitors. Nano Energy 57, 307–316 (2019). https://doi.org/10.1016/j.nanoen.2018.12.031
- T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi, D. Wang, W. Zheng, Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 8, 1702294 (2018). https://doi.org/10.1002/aenm.201702294
- W. He, C. Wang, H. Li, X. Deng, X. Xu, T. Zhai, Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv. Energy Mater. 7, 1700983 (2017). https://doi.org/10.1002/aenm.201700983
- E. Cho, C. Chang-Jian, K. Lee, J. Huang, B. Ho, R. Liu, Y. Hsiao, Ternary composite based on homogeneous Ni(OH)2 on graphene with Ag nanoparticles as nanospacers for efficient supercapacitor. Chem. Eng. J. 334, 2058–2067 (2018). https://doi.org/10.1016/j.cej.2017.11.175
References
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
D.P. Dubal, N.R. Chodankar, D.H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018). https://doi.org/10.1039/c7cs00505a
Y. Song, H. Chen, X. Chen, H. Wu, H. Guo, X. Cheng, B. Meng, H. Zhang, All-in-one piezoresistive-sensing patch integrated with micro-supercapacitor. Nano Energy 53, 189–197 (2018). https://doi.org/10.1016/j.nanoen.2018.08.041
W. Guo, C. Yu, S. Li, Z. Wang, J. Yu, H. Huang, J. Qiu, Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives. Nano Energy 57, 459–472 (2019). https://doi.org/10.1016/j.nanoen.2018.12.015
Y. Cao, M. Li, J. Lu, J. Liu, K. Amine, Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200–207 (2019). https://doi.org/10.1038/s41565-019-0371-8
A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y. Sun, S. Myung, Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3, 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
C. Yang, M. Sun, L. Zhang, P. Liu, P. Wang, H. Lu, ZnFe2O4@carbon core-shell nanoparticles encapsulated in reduced graphene oxide for high-performance Li-ion hybrid supercapacitors. ACS Appl. Mater. Interfaces 11, 14713–14721 (2019). https://doi.org/10.1021/acsami.8b20305
R. Wang, Y. Han, Z. Wang, J. Jiang, Y. Tong, X. Lu, Nickel@nickel oxide core-shell electrode with significantly boosted reactivity for ultrahigh-energy and stable aqueous Ni–Zn battery. Adv. Funct. Mater. 28, 1802157 (2018). https://doi.org/10.1002/adfm.201802157
H. Banda, S. Périé, B. Daffos, P. Taberna, L. Dubois et al., Sparsely pillared graphene materials for high-performance supercapacitors: improving ion transport and storage capacity. ACS Nano 13, 1443–1453 (2019). https://doi.org/10.1021/acsnano.8b07102
S. Zhu, L. Li, J. Liu, H. Wang, T. Wang et al., Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 12, 1033–1042 (2018). https://doi.org/10.1021/acsnano.7b03431
M. Yao, X. Ji, T. Chou, S. Cheng, L. Yang et al., Simple and cost-effective approach to dramatically enhance the durability and capability of a layered δ-MnO2 based electrode for pseudocapacitors: a practical electrochemical test and mechanistic revealing. ACS Appl. Energy Mater. 2, 2743–2750 (2019). https://doi.org/10.1021/acsaem.9b00075
C. Feng, J. Zhang, Y. He, C. Zhong, W. Hu, L. Liu, Y. Deng, Sub-3 nm Co3O4 nanofilms with enhanced supercapacitor properties. ACS Nano 9, 1730–1739 (2015). https://doi.org/10.1021/nn506548d
V.D. Nithya, N.S. Arul, Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J. Power Sources 327, 297–318 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.033
P. Sivakumar, M. Jana, M.G. Jung, A. Gedanken, H.S. Park, Hexagonal plate-like Ni–Co–Mn hydroxide nanostructures to achieve high energy density of hybrid supercapacitors. J. Mater. Chem. A 7, 11362–11369 (2019). https://doi.org/10.1039/C9TA02583A
B. Zhao, D. Chen, X. Xiong, B. Song, R. Hu et al., A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. Energy Storage Mater. 7, 32–39 (2017). https://doi.org/10.1016/j.ensm.2016.11.010
P. Ge, S. Li, H. Shuai, W. Xu, Y. Tian et al., Engineering 1D chain-like architecture with conducting polymer towards ultra-fast and high-capacity energy storage by reinforced pseudo-capacitance. Nano Energy 54, 26–38 (2018). https://doi.org/10.1016/j.nanoen.2018.09.062
G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/c1cs15060j
Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
X. Wu, L. Meng, Q. Wang, W. Zhang, Y. Wang, Wide potential window and high capacitance for flexible asymmetric supercapacitor based on Cu2Se nanobrush and hydrangea-like NiCo2O4 microspheres. Chem. Eng. J. 354, 346–350 (2018). https://doi.org/10.1016/j.cej.2018.08.045
R. Sahoo, D.T. Pham, T.H. Lee, T.H.T. Luu, J. Seok, Y.H. Lee, Redox-driven route for widening voltage window in asymmetric supercapacitor. ACS Nano 12, 8494–8505 (2018). https://doi.org/10.1021/acsnano.8b04040
Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016). https://doi.org/10.1039/c5cs00580a
G. Nagaraju, S.C. Sekhar, B. Ramulu, J.S. Yu, An integrated approach toward renewable energy storage using rechargeable Ag@Ni0.67Co0.33S-based hybrid supercapacitors. Small 15, 1805418 (2019). https://doi.org/10.1002/smll.201805418
F. Liu, L. Zeng, Y. Chen, R. Zhang, R. Yang et al., Ni-Co-N hybrid porous nanosheets on graphene paper for flexible and editable asymmetric all-solid-state supercapacitors. Nano Energy 61, 18–26 (2019). https://doi.org/10.1016/j.nanoen.2019.04.003
Y. Huang, Y. Zeng, M. Yu, P. Liu, Y. Tong, F. Cheng, X. Lu, Recent smart methods for achieving high-energy asymmetric supercapacitors. Small Methods 2, 1700230 (2018). https://doi.org/10.1002/smtd.201700230
Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng et al., Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201809004
R.R. Salunkhe, B.P. Bastakoti, C.T. Hsu, N. Suzuki, J.H. Kim, S.X. Dou, C.C. Hu, Y. Yamauchi, Direct growth of cobalt hydroxide rods on nickel foam and its application for energy storage. Chem. Eur. J. 20(11), 3084–3088 (2014). https://doi.org/10.1002/chem.201303652
J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao et al., Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy 57, 22–33 (2019). https://doi.org/10.1016/j.nanoen.2018.12.011
X. Shi, J. Key, S. Ji, V. Linkov, F. Liu, H. Wang, H. Gai, R. Wang, Ni(OH)2 nanoflakes supported on 3D Ni3Se2 nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery. Small (2018). https://doi.org/10.1002/smll.201802861
C. Young, R.R. Salunkhe, J. Tang, C. Hu, M. Shahabuddin et al., Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys. Chem. Chem. Phys. 18(42), 29308–29315 (2016). https://doi.org/10.1039/C6CP05555A
Q. Zhou, T. Fan, Y. Li, D. Chen, S. Liu, X. Li, Hollow-structure NiCo hydroxide/carbon nanotube composite for High-Performance supercapacitors. J. Power Sources 426, 111–115 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.035
B. Dong, W. Li, X. Huang, Z. Ali, T. Zhang, Z. Yang, Y. Hou, Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol. Nano Energy 55, 37–41 (2019). https://doi.org/10.1016/j.nanoen.2018.10.050
X. Li, H. Wu, A.M. Elshahawy, L. Wang, S.J. Pennycook, C. Guan, J. Wang, Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 28, 1800036 (2018). https://doi.org/10.1002/adfm.201800036
B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem. Eng. J. 355, 881–890 (2019). https://doi.org/10.1016/j.cej.2018.08.185
S. Min, C. Zhao, Z. Zhang, G. Chen, X. Qian, Z. Guo, Synthesis of Ni(OH)2/rGO pseudocomposite on nickel foam for supercapacitors with superior performance. J. Mater. Chem. A 3, 3641–3650 (2015). https://doi.org/10.1039/C5TA06174A
J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao et al., Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237–6243 (2013). https://doi.org/10.1021/nn4021955
J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei et al., Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 22, 2632–2641 (2012). https://doi.org/10.1002/adfm.201102839
W. Wei, J. Wu, S. Cui, Y. Zhao, W. Chen, L. Mi, α-Ni(OH)2/NiS1.97 heterojunction composites with excellent ion and electron transport properties for advanced supercapacitors. Nanoscale 11, 6243–6253 (2019). https://doi.org/10.1039/C9NR00962K
Z. Ma, F. Jing, Y. Fan, L. Hou, L. Su, L. Fan, G. Shao, High- stability MnOx nanowires@C@MnOx nanosheet core-shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism. Small (2019). https://doi.org/10.1002/smll.201900862
S. Wang, W. Li, L. Xin, M. Wu, Y. Long, H. Huang, X. Lou, Facile synthesis of truncated cube-like NiSe2 single crystals for high-performance asymmetric supercapacitors. Chem. Eng. J. 330, 1334–1341 (2017). https://doi.org/10.1016/j.cej.2017.08.078
X. Lu, L. Li, B. Song, K. Moon, N. Hu, G. Liao, T. Shi, C. Wong, Mechanistic investigation of the graphene functionalization using p-phenylenediamine and its application for supercapacitors. Nano Energy 17, 160–170 (2015). https://doi.org/10.1016/j.nanoen.2015.08.011
B. Xu, K.M. Poduska, Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals. Phys. Chem. Chem. Phys. 16, 17634–17639 (2014). https://doi.org/10.1039/C4CP01772B
S. Gadipelli, W. Travis, W. Zhou, Z. Guo, A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy Environ. Sci. 7, 2232–2238 (2014). https://doi.org/10.1039/C4EE01009D
H.T. Kwon, H. Jeong, A.S. Lee, H.S. An, J.S. Lee, Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J. Am. Chem. Soc. 137, 12304–12311 (2015). https://doi.org/10.1021/jacs.5b06730
T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren et al., NiFe (Oxy) hydroxides derived from nife disulfides as an efficient oxygen evolution catalyst for rechargeable Zn-air batteries: the effect of surface S residues. Adv. Mater. 30, 1800757 (2018). https://doi.org/10.1002/adma.201800757
X. Xu, F. Song, X. Hu, A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 7, 12324 (2016). https://doi.org/10.1038/ncomms12324
X. Li, H. Wu, C. Guan, A.M. Elshahawy, Y. Dong, S.J. Pennycook, J. Wang, (Ni, Co)Se2/NiCo-LDH core/shell structural electrode with the cactus-like (Ni, Co)Se2 core for asymmetric supercapacitors. Small (2018). https://doi.org/10.1002/smll.201803895
D. Cao, W. Kang, S. Wang, Y. Wang, K. Sun et al., In situ N-doped carbon modified (Co0.5Ni0.5)9S8 solid-solution hollow spheres as high-capacity anodes for sodium-ion batteries. J. Mater. Chem. A 7, 8268–8276 (2019). https://doi.org/10.1039/C9TA00709A
H. Wu, Q. Yu, C. Lao, M. Qin, W.A. Wang et al., Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage. Energy Storage Mater. 18, 43–50 (2019). https://doi.org/10.1016/j.ensm.2018.09.025
T. Yang, Y. Liu, D. Yang, B. Deng, Z. Huang et al., Bimetallic metal-organic frameworks derived Ni–Co–Se@C hierarchical bundle-like nanostructures with high-rate pseudocapacitive lithium ion storage. Energy Storage Mater. 17, 374–384 (2019). https://doi.org/10.1016/j.ensm.2018.05.024
A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edn. (Wiley, New yolk, 2001), pp. 45–86.
S. Zhang, Z. Yang, K. Gong, B. Xu, H. Mei et al., Temperature controlled diffusion of hydroxide ions in 1D channels of Ni-MOF-74 for its complete conformal hydrolysis to hierarchical Ni(OH)2 supercapacitor electrodes. Nanoscale 11, 9598–9607 (2019). https://doi.org/10.1039/C9NR02555C
Y. Xue, T. Chen, S. Song, P. Kim, J. Bae, DNA-directed fabrication of NiCo2O4 nanoparticles on carbon nanotubes as electrodes for high-performance battery-like electrochemical capacitive energy storage device. Nano Energy 56, 751–758 (2019). https://doi.org/10.1016/j.nanoen.2018.11.003
W. He, G. Zhao, P. Sun, P. Hou, L. Zhu et al., Construction of Longan-like hybrid structures by anchoring nickel hydroxide on yolk-shell polypyrrole for asymmetric supercapacitors. Nano Energy 56, 207–215 (2019). https://doi.org/10.1016/j.nanoen.2018.11.048
V.K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.S. Nardekar, S. Kim, Nanostructured ternary metal chalcogenide-based binder-free electrodes for high energy density asymmetric supercapacitors. Nano Energy 57, 307–316 (2019). https://doi.org/10.1016/j.nanoen.2018.12.031
T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi, D. Wang, W. Zheng, Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 8, 1702294 (2018). https://doi.org/10.1002/aenm.201702294
W. He, C. Wang, H. Li, X. Deng, X. Xu, T. Zhai, Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv. Energy Mater. 7, 1700983 (2017). https://doi.org/10.1002/aenm.201700983
E. Cho, C. Chang-Jian, K. Lee, J. Huang, B. Ho, R. Liu, Y. Hsiao, Ternary composite based on homogeneous Ni(OH)2 on graphene with Ag nanoparticles as nanospacers for efficient supercapacitor. Chem. Eng. J. 334, 2058–2067 (2018). https://doi.org/10.1016/j.cej.2017.11.175