An Ultra-microporous Carbon Material Boosting Integrated Capacitance for Cellulose-Based Supercapacitors
Corresponding Author: Wei‑Hong Zhong
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 63
Abstract
A breakthrough in advancing power density and stability of carbon-based supercapacitors is trapped by inefficient pore structures of electrode materials. Herein, an ultra-microporous carbon with ultrahigh integrated capacitance fabricated via one-step carbonization/activation of dense bacterial cellulose (BC) precursor followed by nitrogen/sulfur dual doping is reported. The microporous carbon possesses highly concentrated micropores (~ 2 nm) and a considerable amount of sub-micropores (< 1 nm). The unique porous structure provides high specific surface area (1554 m2 g−1) and packing density (1.18 g cm−3). The synergistic effects from the particular porous structure and optimal doping effectively enhance ion storage and ion/electron transport. As a result, the remarkable specific capacitances, including ultrahigh gravimetric and volumetric capacitances (430 F g−1 and 507 F cm−3 at 0.5 A g−1), and excellent cycling and rate stability even at a high current density of 10 A g−1 (327 F g−1 and 385 F cm−3) are realized. Via compositing the porous carbon and BC skeleton, a robust all-solid-state cellulose-based supercapacitor presents super high areal energy density (~ 0.77 mWh cm−2), volumetric energy density (~ 17.8 W L−1), and excellent cyclic stability.
Highlights:
1 An ultra-microporous carbon material simultaneously with high specific surface area (1554 m2 g−1) and packing density (1.18 g cm−3) is designed and fabricated.
2 The resulting carbon material integrates the high gravimetric and volumetric capacitance (430 F g−1 and 507 F cm−3 at 0.5 A g−1) and thereof provides the robust all-solid-state cellulose supercapacitor with high areal and volumetric density.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). https://doi.org/10.1039/C1CS15060J
- L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). https://doi.org/10.1039/b813846j
- M. Wu, W. Ni, J. Hu, J. Ma, Nasicon-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 11(1), 44 (2019). https://doi.org/10.1007/s40820-019-0273-1
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- Y. Xu, Y. Tao, X. Zheng, H. Ma, J. Luo, F. Kang, Q.H. Yang, A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm−3. Adv. Mater. 27(48), 8082–8087 (2015). https://doi.org/10.1002/adma.201504151
- X. Yu, S. Yun, J.S. Yeon, P. Bhattacharya, L. Wang, S.W. Lee, X. Hu, H.S. Park, Pseudocapacitance: emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 8(13), 1870058 (2018). https://doi.org/10.1002/aenm.201870058
- Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017). https://doi.org/10.1016/j.nanoen.2017.04.040
- R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11(6), 5293–5308 (2017). https://doi.org/10.1021/acsnano.7b02796
- J. Liao, W. Ni, C. Wang, J. Ma, Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.123489
- J. Yan, Q. Wang, C. Lin, T. Wei, Z. Fan, Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances. Adv. Energy Mater. 4(13), 1400500 (2014). https://doi.org/10.1002/aenm.201400500
- Z. Li, Q. Yang, K. Fan, W. Xie, W. Qiao, M. Shao, M. Wei, Atom-economical construction of carbon nanotube architectures for flexible supercapacitors with ultrahigh areal and volumetric capacities. J. Mater. Chem. A 6(43), 21287–21294 (2018). https://doi.org/10.1039/c8ta08147f
- D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang et al., Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3(1), 30–36 (2018). https://doi.org/10.1038/s41560-017-0044-5
- X. He, H. Zhang, H. Zhang, X. Li, N. Xiao, J. Qiu, Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. J. Mater. Chem. A 2(46), 19633–19640 (2014). https://doi.org/10.1039/c4ta03323j
- F. Xu, D. Wu, R. Fu, B. Wei, Design and preparation of porous carbons from conjugated polymer precursors. Mater. Today 20(10), 629–656 (2017). https://doi.org/10.1016/j.mattod.2017.04.026
- H. Itoi, H. Nishihara, T. Kogure, T. Kyotani, Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor. J. Am. Chem. Soc. 133(5), 1165–1167 (2011). https://doi.org/10.1021/ja108315p
- H. Jin, J. Li, Y. Yuan, J. Wang, J. Lu, S. Wang, Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Adv. Energy Mater. 8(23), 1801007 (2018). https://doi.org/10.1002/aenm.201801007
- J. Niu, R. Shao, J. Liang, M. Dou, Z. Li, Y. Huang, F. Wang, Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for li-ion batteries and supercapacitors. Nano Energy 36, 322–330 (2017). https://doi.org/10.1016/j.nanoen.2017.04.042
- C. Long, X. Chen, L. Jiang, L. Zhi, Z. Fan, Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 12, 141–151 (2015). https://doi.org/10.1016/j.nanoen.2014.12.014
- Z. Ling, Z. Wang, M. Zhang, C. Yu, G. Wang, Y. Dong, S. Liu, Y. Wang, J. Qiu, Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater. 26(1), 111–119 (2016). https://doi.org/10.1002/adfm.201504004
- W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang, H. Zhang, Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mater. Chem. A 3(10), 5656–5664 (2015). https://doi.org/10.1039/c4ta06620k
- L.F. Chen, Z.H. Huang, H.W. Liang, H.L. Gao, S.H. Yu, Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Funct. Mater. 24(32), 5104–5111 (2014). https://doi.org/10.1002/adfm.201400590
- S.K. Park, S.H. Kwon, S.G. Lee, M.S. Choi, D.H. Suh, P. Nakhanivej, H. Lee, H.S. Park, 105 cyclable pseudocapacitive Na-ion storage of hierarchically structured phosphorus-incorporating nanoporous carbons in organic electrolytes. ACS Energy Lett. 3(3), 724–732 (2018). https://doi.org/10.1021/acsenergylett.8b00068
- Z.Y. Wu, H.W. Liang, L.F. Chen, B.C. Hu, S.H. Yu, Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Acc. Chem. Res. 49(1), 96–105 (2016). https://doi.org/10.1021/acs.accounts.5b00380
- X. Ma, C. Ding, D. Li, M. Wu, Y. Yu, A facile approach to prepare biomass-derived activated carbon hollow fibers from wood waste as high-performance supercapacitor electrodes. Cellulose 25(8), 4743–4755 (2018). https://doi.org/10.1007/s10570-018-1903-3
- X. Xu, J. Zhou, D.H. Nagaraju, L. Jiang, V.R. Marinov et al., Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: catalyst-free synthesis and its application in energy storage devices. Adv. Funct. Mater. 25(21), 3193–3202 (2015). https://doi.org/10.1002/adfm.201500538
- B. Liu, Y. Liu, H. Chen, M. Yang, H. Li, Oxygen and nitrogen co-doped porous carbon nanosheets derived from perilla frutescens for high volumetric performance supercapacitors. J. Power Sources 341, 309–317 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.022
- J. Wang, S. Kaskel, Koh activation of carbon-based materials for energy storage. J. Mater. Chem. 22(45), 23710 (2012). https://doi.org/10.1039/c2jm34066f
- Z. Li, M. Kruk, M. Jaroniec, S.-K. Ryu, Characterization of structural and surface properties of activated carbon fibers. J. Colloid Interface Sci. 204(1), 151–156 (1998). https://doi.org/10.1006/jcis.1998.5515
- E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44(12), 2498–2507 (2006). https://doi.org/10.1016/j.carbon.2006.05.022
- S. Zhang, J. Zhu, Y. Qing, L. Wang, J. Zhao et al., Ultramicroporous carbons puzzled by graphene quantum dots: integrated high gravimetric, volumetric, and areal capacitances for supercapacitors. Adv. Funct. Mater. 28(52), 1805898 (2018). https://doi.org/10.1002/adfm.201805898
- S. Maldonado, S. Morin, K.J. Stevenson, Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44(8), 1429–1437 (2006). https://doi.org/10.1016/j.carbon.2005.11.027
- D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19(3), 438–447 (2009). https://doi.org/10.1002/adfm.200801236
- B. Xu, S. Qi, F. Li, X. Peng, J. Cai, J. Liang, J. Ma, Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.10.009
- Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016). https://doi.org/10.1016/j.nanoen.2015.10.038
- J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6(10), 2839–2855 (2013). https://doi.org/10.1039/c3ee41444b
- Z. Li, L. Zhang, B.S. Amirkhiz, X. Tan, Z. Xu et al., Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2(4), 431–437 (2012). https://doi.org/10.1002/aenm.201100548
- Y. Dong, Y. Feng, J. Deng, P. He, J. Ma, Electrospun Sb2Se3@C nanofibers with excellent lithium storage properties. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.11.039
- Y. Li, K. Ye, K. Cheng, D. Cao, Y. Pan, S. Kong, X. Zhang, G. Wang, Anchoring cuo nanoparticles on nitrogen-doped reduced graphene oxide nanosheets as electrode material for supercapacitors. Electroanal. Chem. 727, 154–162 (2014). https://doi.org/10.1016/j.jelechem.2014.05.009
- S.L. Candelaria, B.B. Garcia, D. Liu, G. Cao, Nitrogen modification of highly porous carbon for improved supercapacitor performance. J. Mater. Chem. 22(19), 9884–9889 (2012). https://doi.org/10.1039/c2jm30923h
- J.H. Conway, S. Torquato, Packing, tiling, and covering with tetrahedra. PNAS 103(28), 10612 (2006). https://doi.org/10.1073/pnas.0601389103
- X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145), 534–537 (2013). https://doi.org/10.1126/science.1239089
- H. Li, Y. Tao, X. Zheng, J. Luo, F. Kang, H.-M. Cheng, Q.-H. Yang, Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 9(10), 3135–3142 (2016). https://doi.org/10.1039/c6ee00941g
- L. Chang, W. Wei, K. Sun, Y.H. Hu, 3D flower-structured graphene from CO2 for supercapacitors with ultrahigh areal capacitance at high current density. J. Mater. Chem. A 3(19), 10183–10187 (2015). https://doi.org/10.1039/c5ta01055a
- L. Jiang, L. Sheng, C. Long, T. Wei, Z. Fan, Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv. Energy Mater. 5(15), 1500771 (2015). https://doi.org/10.1002/aenm.201500771
- Y. Yoon, K. Lee, S. Kwon, S. Seo, H. Yoo et al., Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8(5), 4580–4590 (2014). https://doi.org/10.1021/nn500150j
- S. Murali, N. Quarles, L.L. Zhang, J.R. Potts, Z. Tan, Y. Lu, Y. Zhu, R.S. Ruoff, Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-mego) electrodes. Nano Energy 2(5), 764–768 (2013). https://doi.org/10.1016/j.nanoen.2013.01.007
- L. Jiang, L. Sheng, C. Long, Z. Fan, Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11, 471–480 (2015). https://doi.org/10.1016/j.nanoen.2014.11.007
- J. Zhao, Y. Li, G. Wang, T. Wei, Z. Liu et al., Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. J. Mater. Chem. A 5(44), 23085–23093 (2017). https://doi.org/10.1039/c7ta07010a
- A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba et al., Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4V with high power and energy density. Adv. Mater. 22(35), E235–E241 (2010). https://doi.org/10.1002/adma.200904349
- D.T. Pham, T.H. Lee, D.H. Luong, F. Yao, A. Ghosh et al., Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 9(2), 2018–2027 (2015). https://doi.org/10.1021/nn507079x
- Y. Bu, T. Sun, Y. Cai, L. Du, O. Zhuo et al., Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors. Adv. Mater. 29(24), 1700470 (2017). https://doi.org/10.1002/adma.201700470
- E. Raymundo-Piñero, M. Cadek, F. Béguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19(7), 1032–1039 (2009). https://doi.org/10.1002/adfm.200801057
- J. Xu, Z. Tan, W. Zeng, G. Chen, S. Wu et al., A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 28(26), 5222–5228 (2016). https://doi.org/10.1002/adma.201600586
- C. Ding, X. Yan, S. Ryu, Y. Yu, X. Yang, Camphor wood waste-derived microporous carbons as high-performance electrode materials for supercapacitors. Carbon Lett. 29(3), 213–218 (2019). https://doi.org/10.1007/s42823-019-00013-3
- T. Wang, L.-X. Wang, D.-L. Wu, W. Xia, D.-Z. Jia, Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor. Sci. Rep. 5, 9591 (2015). https://doi.org/10.1038/srep09591
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in tio2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
- Y.-Q. Zhao, M. Lu, P.-Y. Tao, Y.-J. Zhang, X.-T. Gong, Z. Yang, G.-Q. Zhang, H.-L. Li, Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources 307, 391–400 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.020
- M. Liu, J. Qian, Y. Zhao, D. Zhu, L. Gan, L. Chen, Core–shell ultramicroporous@ microporous carbon nanospheres as advanced supercapacitor electrodes. J. Mater. Chem. A 3(21), 11517–11526 (2015). https://doi.org/10.1039/C5TA02224J
- T. Gao, Z. Zhou, J. Yu, J. Zhao, G. Wang, D. Cao, B. Ding, Y. Li, 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv. Energy Mater. 9(8), 1802578 (2019). https://doi.org/10.1002/aenm.201802578
- L. Sheng, J. Chang, L. Jiang, Z. Jiang, Z. Liu, T. Wei, Z. Fan, Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 28(21), 1800597 (2018). https://doi.org/10.1002/adfm.201800597
- Y. Zhu, S. Murali, M.D. Stoller, K. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
- J. Cao, T. Huang, R. Liu, X. Xi, D. Wu, Nitrogen-doped carbon coated stainless steel meshes for flexible supercapacitors. Electrochim. Acta 230, 265–270 (2017). https://doi.org/10.1016/j.electacta.2017.02.001
- J. Wen, S. Li, K. Zhou, Z. Song, B. Li et al., Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes. J. Power Sources 324, 325–333 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.087
- Y. Huang, W.S. Ip, Y.Y. Lau, J. Sun, J. Zeng et al., Weavable, conductive yarn-based nico//zn textile battery with high energy density and rate capability. ACS Nano 11(9), 8953–8961 (2017). https://doi.org/10.1021/acsnano.7b03322
- Z. Qi, J. Ye, W. Chen, J. Biener, E.B. Duoss et al., 3D-printed, superelastic polypyrrole-graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv. Mater. Technol. 3(7), 1800053 (2018). https://doi.org/10.1002/admt.201800053
- P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo et al., On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351(6274), 691–695 (2016). https://doi.org/10.1126/science.aad3345
- D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5(9), 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
- M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
- Q. Niu, K. Gao, Q. Tang, L. Wang, L. Han et al., Large-size graphene-like porous carbon nanosheets with controllable n-doped surface derived from sugarcane bagasse pith/chitosan for high performance supercapacitors. Carbon 123, 290–298 (2017). https://doi.org/10.1016/j.carbon.2017.07.078
- C. Chen, D. Yu, G. Zhao, B. Du, W. Tang, L. Sun, Y. Sun, F. Besenbacher, M. Yu, Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 27, 377–389 (2016). https://doi.org/10.1016/j.nanoen.2016.07.020
- P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang et al., Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15, 9–23 (2015). https://doi.org/10.1016/j.nanoen.2015.02.035
- M. Liu, J. Niu, Z. Zhang, M. Dou, F. Wang, Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 51, 366–372 (2018). https://doi.org/10.1016/j.nanoen.2018.06.037
- F. Xu, Z. Tang, S. Huang, L. Chen, Y. Liang, W. Mai, H. Zhong, R. Fu, D. Wu, Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 6, 7221 (2015). https://doi.org/10.1038/ncomms8221
- J. Pokrzywinski, J.K. Keum, R.E. Ruther, E.C. Self, M. Chi et al., Unrivaled combination of surface area and pore volume in micelle-templated carbon for supercapacitor energy storage. J. Mater. Chem. A 5(26), 13511–13525 (2017). https://doi.org/10.1039/c7ta03655h
- Z.S. Wu, Y.Z. Tan, S. Zheng, S. Wang, K. Parvez et al., Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors. J. Am. Chem. Soc. 139(12), 4506–4512 (2017). https://doi.org/10.1021/jacs.7b00805
- X. Fan, C. Yu, J. Yang, Z. Ling, C. Hu, M. Zhang, J. Qiu, A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv. Energy Mater. 5(7), 1401761 (2015). https://doi.org/10.1002/aenm.201401761
- J. Zhao, H. Lai, Z. Lyu, Y. Jiang, K. Xie et al., Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 27(23), 3541–3545 (2015). https://doi.org/10.1002/adma.201500945
- J. Zhao, Y. Jiang, H. Fan, M. Liu, O. Zhuo et al., Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 29(11), 1604569 (2017). https://doi.org/10.1002/adma.201604569
- M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012). https://doi.org/10.1126/science.1216744
- Y. Liu, B. Zhang, Q. Xu, Y. Hou, S. Seyedin et al., Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 28(21), 1706592 (2018). https://doi.org/10.1002/adfm.201706592
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
References
G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). https://doi.org/10.1039/C1CS15060J
L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). https://doi.org/10.1039/b813846j
M. Wu, W. Ni, J. Hu, J. Ma, Nasicon-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 11(1), 44 (2019). https://doi.org/10.1007/s40820-019-0273-1
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
Y. Xu, Y. Tao, X. Zheng, H. Ma, J. Luo, F. Kang, Q.H. Yang, A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm−3. Adv. Mater. 27(48), 8082–8087 (2015). https://doi.org/10.1002/adma.201504151
X. Yu, S. Yun, J.S. Yeon, P. Bhattacharya, L. Wang, S.W. Lee, X. Hu, H.S. Park, Pseudocapacitance: emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 8(13), 1870058 (2018). https://doi.org/10.1002/aenm.201870058
Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017). https://doi.org/10.1016/j.nanoen.2017.04.040
R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11(6), 5293–5308 (2017). https://doi.org/10.1021/acsnano.7b02796
J. Liao, W. Ni, C. Wang, J. Ma, Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.123489
J. Yan, Q. Wang, C. Lin, T. Wei, Z. Fan, Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances. Adv. Energy Mater. 4(13), 1400500 (2014). https://doi.org/10.1002/aenm.201400500
Z. Li, Q. Yang, K. Fan, W. Xie, W. Qiao, M. Shao, M. Wei, Atom-economical construction of carbon nanotube architectures for flexible supercapacitors with ultrahigh areal and volumetric capacities. J. Mater. Chem. A 6(43), 21287–21294 (2018). https://doi.org/10.1039/c8ta08147f
D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang et al., Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3(1), 30–36 (2018). https://doi.org/10.1038/s41560-017-0044-5
X. He, H. Zhang, H. Zhang, X. Li, N. Xiao, J. Qiu, Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. J. Mater. Chem. A 2(46), 19633–19640 (2014). https://doi.org/10.1039/c4ta03323j
F. Xu, D. Wu, R. Fu, B. Wei, Design and preparation of porous carbons from conjugated polymer precursors. Mater. Today 20(10), 629–656 (2017). https://doi.org/10.1016/j.mattod.2017.04.026
H. Itoi, H. Nishihara, T. Kogure, T. Kyotani, Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor. J. Am. Chem. Soc. 133(5), 1165–1167 (2011). https://doi.org/10.1021/ja108315p
H. Jin, J. Li, Y. Yuan, J. Wang, J. Lu, S. Wang, Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Adv. Energy Mater. 8(23), 1801007 (2018). https://doi.org/10.1002/aenm.201801007
J. Niu, R. Shao, J. Liang, M. Dou, Z. Li, Y. Huang, F. Wang, Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for li-ion batteries and supercapacitors. Nano Energy 36, 322–330 (2017). https://doi.org/10.1016/j.nanoen.2017.04.042
C. Long, X. Chen, L. Jiang, L. Zhi, Z. Fan, Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 12, 141–151 (2015). https://doi.org/10.1016/j.nanoen.2014.12.014
Z. Ling, Z. Wang, M. Zhang, C. Yu, G. Wang, Y. Dong, S. Liu, Y. Wang, J. Qiu, Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater. 26(1), 111–119 (2016). https://doi.org/10.1002/adfm.201504004
W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang, H. Zhang, Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mater. Chem. A 3(10), 5656–5664 (2015). https://doi.org/10.1039/c4ta06620k
L.F. Chen, Z.H. Huang, H.W. Liang, H.L. Gao, S.H. Yu, Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Funct. Mater. 24(32), 5104–5111 (2014). https://doi.org/10.1002/adfm.201400590
S.K. Park, S.H. Kwon, S.G. Lee, M.S. Choi, D.H. Suh, P. Nakhanivej, H. Lee, H.S. Park, 105 cyclable pseudocapacitive Na-ion storage of hierarchically structured phosphorus-incorporating nanoporous carbons in organic electrolytes. ACS Energy Lett. 3(3), 724–732 (2018). https://doi.org/10.1021/acsenergylett.8b00068
Z.Y. Wu, H.W. Liang, L.F. Chen, B.C. Hu, S.H. Yu, Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Acc. Chem. Res. 49(1), 96–105 (2016). https://doi.org/10.1021/acs.accounts.5b00380
X. Ma, C. Ding, D. Li, M. Wu, Y. Yu, A facile approach to prepare biomass-derived activated carbon hollow fibers from wood waste as high-performance supercapacitor electrodes. Cellulose 25(8), 4743–4755 (2018). https://doi.org/10.1007/s10570-018-1903-3
X. Xu, J. Zhou, D.H. Nagaraju, L. Jiang, V.R. Marinov et al., Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: catalyst-free synthesis and its application in energy storage devices. Adv. Funct. Mater. 25(21), 3193–3202 (2015). https://doi.org/10.1002/adfm.201500538
B. Liu, Y. Liu, H. Chen, M. Yang, H. Li, Oxygen and nitrogen co-doped porous carbon nanosheets derived from perilla frutescens for high volumetric performance supercapacitors. J. Power Sources 341, 309–317 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.022
J. Wang, S. Kaskel, Koh activation of carbon-based materials for energy storage. J. Mater. Chem. 22(45), 23710 (2012). https://doi.org/10.1039/c2jm34066f
Z. Li, M. Kruk, M. Jaroniec, S.-K. Ryu, Characterization of structural and surface properties of activated carbon fibers. J. Colloid Interface Sci. 204(1), 151–156 (1998). https://doi.org/10.1006/jcis.1998.5515
E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44(12), 2498–2507 (2006). https://doi.org/10.1016/j.carbon.2006.05.022
S. Zhang, J. Zhu, Y. Qing, L. Wang, J. Zhao et al., Ultramicroporous carbons puzzled by graphene quantum dots: integrated high gravimetric, volumetric, and areal capacitances for supercapacitors. Adv. Funct. Mater. 28(52), 1805898 (2018). https://doi.org/10.1002/adfm.201805898
S. Maldonado, S. Morin, K.J. Stevenson, Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44(8), 1429–1437 (2006). https://doi.org/10.1016/j.carbon.2005.11.027
D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19(3), 438–447 (2009). https://doi.org/10.1002/adfm.200801236
B. Xu, S. Qi, F. Li, X. Peng, J. Cai, J. Liang, J. Ma, Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.10.009
Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016). https://doi.org/10.1016/j.nanoen.2015.10.038
J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6(10), 2839–2855 (2013). https://doi.org/10.1039/c3ee41444b
Z. Li, L. Zhang, B.S. Amirkhiz, X. Tan, Z. Xu et al., Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2(4), 431–437 (2012). https://doi.org/10.1002/aenm.201100548
Y. Dong, Y. Feng, J. Deng, P. He, J. Ma, Electrospun Sb2Se3@C nanofibers with excellent lithium storage properties. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.11.039
Y. Li, K. Ye, K. Cheng, D. Cao, Y. Pan, S. Kong, X. Zhang, G. Wang, Anchoring cuo nanoparticles on nitrogen-doped reduced graphene oxide nanosheets as electrode material for supercapacitors. Electroanal. Chem. 727, 154–162 (2014). https://doi.org/10.1016/j.jelechem.2014.05.009
S.L. Candelaria, B.B. Garcia, D. Liu, G. Cao, Nitrogen modification of highly porous carbon for improved supercapacitor performance. J. Mater. Chem. 22(19), 9884–9889 (2012). https://doi.org/10.1039/c2jm30923h
J.H. Conway, S. Torquato, Packing, tiling, and covering with tetrahedra. PNAS 103(28), 10612 (2006). https://doi.org/10.1073/pnas.0601389103
X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145), 534–537 (2013). https://doi.org/10.1126/science.1239089
H. Li, Y. Tao, X. Zheng, J. Luo, F. Kang, H.-M. Cheng, Q.-H. Yang, Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 9(10), 3135–3142 (2016). https://doi.org/10.1039/c6ee00941g
L. Chang, W. Wei, K. Sun, Y.H. Hu, 3D flower-structured graphene from CO2 for supercapacitors with ultrahigh areal capacitance at high current density. J. Mater. Chem. A 3(19), 10183–10187 (2015). https://doi.org/10.1039/c5ta01055a
L. Jiang, L. Sheng, C. Long, T. Wei, Z. Fan, Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv. Energy Mater. 5(15), 1500771 (2015). https://doi.org/10.1002/aenm.201500771
Y. Yoon, K. Lee, S. Kwon, S. Seo, H. Yoo et al., Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8(5), 4580–4590 (2014). https://doi.org/10.1021/nn500150j
S. Murali, N. Quarles, L.L. Zhang, J.R. Potts, Z. Tan, Y. Lu, Y. Zhu, R.S. Ruoff, Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-mego) electrodes. Nano Energy 2(5), 764–768 (2013). https://doi.org/10.1016/j.nanoen.2013.01.007
L. Jiang, L. Sheng, C. Long, Z. Fan, Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11, 471–480 (2015). https://doi.org/10.1016/j.nanoen.2014.11.007
J. Zhao, Y. Li, G. Wang, T. Wei, Z. Liu et al., Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. J. Mater. Chem. A 5(44), 23085–23093 (2017). https://doi.org/10.1039/c7ta07010a
A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba et al., Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4V with high power and energy density. Adv. Mater. 22(35), E235–E241 (2010). https://doi.org/10.1002/adma.200904349
D.T. Pham, T.H. Lee, D.H. Luong, F. Yao, A. Ghosh et al., Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 9(2), 2018–2027 (2015). https://doi.org/10.1021/nn507079x
Y. Bu, T. Sun, Y. Cai, L. Du, O. Zhuo et al., Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors. Adv. Mater. 29(24), 1700470 (2017). https://doi.org/10.1002/adma.201700470
E. Raymundo-Piñero, M. Cadek, F. Béguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19(7), 1032–1039 (2009). https://doi.org/10.1002/adfm.200801057
J. Xu, Z. Tan, W. Zeng, G. Chen, S. Wu et al., A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 28(26), 5222–5228 (2016). https://doi.org/10.1002/adma.201600586
C. Ding, X. Yan, S. Ryu, Y. Yu, X. Yang, Camphor wood waste-derived microporous carbons as high-performance electrode materials for supercapacitors. Carbon Lett. 29(3), 213–218 (2019). https://doi.org/10.1007/s42823-019-00013-3
T. Wang, L.-X. Wang, D.-L. Wu, W. Xia, D.-Z. Jia, Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor. Sci. Rep. 5, 9591 (2015). https://doi.org/10.1038/srep09591
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in tio2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
Y.-Q. Zhao, M. Lu, P.-Y. Tao, Y.-J. Zhang, X.-T. Gong, Z. Yang, G.-Q. Zhang, H.-L. Li, Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources 307, 391–400 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.020
M. Liu, J. Qian, Y. Zhao, D. Zhu, L. Gan, L. Chen, Core–shell ultramicroporous@ microporous carbon nanospheres as advanced supercapacitor electrodes. J. Mater. Chem. A 3(21), 11517–11526 (2015). https://doi.org/10.1039/C5TA02224J
T. Gao, Z. Zhou, J. Yu, J. Zhao, G. Wang, D. Cao, B. Ding, Y. Li, 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv. Energy Mater. 9(8), 1802578 (2019). https://doi.org/10.1002/aenm.201802578
L. Sheng, J. Chang, L. Jiang, Z. Jiang, Z. Liu, T. Wei, Z. Fan, Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 28(21), 1800597 (2018). https://doi.org/10.1002/adfm.201800597
Y. Zhu, S. Murali, M.D. Stoller, K. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
J. Cao, T. Huang, R. Liu, X. Xi, D. Wu, Nitrogen-doped carbon coated stainless steel meshes for flexible supercapacitors. Electrochim. Acta 230, 265–270 (2017). https://doi.org/10.1016/j.electacta.2017.02.001
J. Wen, S. Li, K. Zhou, Z. Song, B. Li et al., Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes. J. Power Sources 324, 325–333 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.087
Y. Huang, W.S. Ip, Y.Y. Lau, J. Sun, J. Zeng et al., Weavable, conductive yarn-based nico//zn textile battery with high energy density and rate capability. ACS Nano 11(9), 8953–8961 (2017). https://doi.org/10.1021/acsnano.7b03322
Z. Qi, J. Ye, W. Chen, J. Biener, E.B. Duoss et al., 3D-printed, superelastic polypyrrole-graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv. Mater. Technol. 3(7), 1800053 (2018). https://doi.org/10.1002/admt.201800053
P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo et al., On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351(6274), 691–695 (2016). https://doi.org/10.1126/science.aad3345
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5(9), 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
Q. Niu, K. Gao, Q. Tang, L. Wang, L. Han et al., Large-size graphene-like porous carbon nanosheets with controllable n-doped surface derived from sugarcane bagasse pith/chitosan for high performance supercapacitors. Carbon 123, 290–298 (2017). https://doi.org/10.1016/j.carbon.2017.07.078
C. Chen, D. Yu, G. Zhao, B. Du, W. Tang, L. Sun, Y. Sun, F. Besenbacher, M. Yu, Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 27, 377–389 (2016). https://doi.org/10.1016/j.nanoen.2016.07.020
P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang et al., Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15, 9–23 (2015). https://doi.org/10.1016/j.nanoen.2015.02.035
M. Liu, J. Niu, Z. Zhang, M. Dou, F. Wang, Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 51, 366–372 (2018). https://doi.org/10.1016/j.nanoen.2018.06.037
F. Xu, Z. Tang, S. Huang, L. Chen, Y. Liang, W. Mai, H. Zhong, R. Fu, D. Wu, Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 6, 7221 (2015). https://doi.org/10.1038/ncomms8221
J. Pokrzywinski, J.K. Keum, R.E. Ruther, E.C. Self, M. Chi et al., Unrivaled combination of surface area and pore volume in micelle-templated carbon for supercapacitor energy storage. J. Mater. Chem. A 5(26), 13511–13525 (2017). https://doi.org/10.1039/c7ta03655h
Z.S. Wu, Y.Z. Tan, S. Zheng, S. Wang, K. Parvez et al., Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors. J. Am. Chem. Soc. 139(12), 4506–4512 (2017). https://doi.org/10.1021/jacs.7b00805
X. Fan, C. Yu, J. Yang, Z. Ling, C. Hu, M. Zhang, J. Qiu, A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv. Energy Mater. 5(7), 1401761 (2015). https://doi.org/10.1002/aenm.201401761
J. Zhao, H. Lai, Z. Lyu, Y. Jiang, K. Xie et al., Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 27(23), 3541–3545 (2015). https://doi.org/10.1002/adma.201500945
J. Zhao, Y. Jiang, H. Fan, M. Liu, O. Zhuo et al., Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 29(11), 1604569 (2017). https://doi.org/10.1002/adma.201604569
M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012). https://doi.org/10.1126/science.1216744
Y. Liu, B. Zhang, Q. Xu, Y. Hou, S. Seyedin et al., Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 28(21), 1706592 (2018). https://doi.org/10.1002/adfm.201706592
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488