Potential of MXenes in Water Desalination: Current Status and Perspectives
Corresponding Author: Ihsanullah Ihsanullah
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 72
Abstract
MXenes, novel 2D transition metal carbides, have emerged as wonderful nanomaterials and a superlative contestant for a host of applications. The tremendous characteristics of MXenes, i.e., high surface area, high metallic conductivity, ease of functionalization, biocompatibility, activated metallic hydroxide sites, and hydrophilicity, make them the best aspirant for applications in energy storage, catalysis, sensors, electronics, and environmental remediation. Due to their exceptional physicochemical properties and multifarious chemical compositions, MXenes have gained considerable attention for applications in water treatment and desalination in recent times. It is vital to understand the current status of MXene applications in desalination in order to define the roadmap for the development of MXene-based materials and endorse their practical applications in the future. This paper critically reviews the recent advancement in the synthesis of MXenes and MXene-based composites for applications in desalination. The desalination potential of MXenes is portrayed in detail with a focus on ion-sieving membranes, capacitive deionization, and solar desalination. The ion removal mechanism and regeneration ability of MXenes are also summarized to get insight into the process. The key challenges and issues associated with the synthesis and applications of MXenes and MXene-based composites in desalination are highlighted. Lastly, research directions are provided to guarantee the synthesis and applications of MXenes in a more effective way. This review may provide an insight into the applications of MXenes for water desalination in the future.
Highlights:
1 A broad overview of MXenes and MXene-based nanomaterials in desalination is presented.
2 Recent advancement in the synthesis of MXenes for applications in desalination is critically evaluated. Salt removal mechanisms and regeneration capability of MXenes are appraised.
3 Current challenges and future prospect of MXenes in desalination are highlighted. Research directions are provided to safeguard the applications of MXenes in future desalination.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- N.R. Hemanth, B. Kandasubramanian, Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.123678
- B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao, T. Habib, M. Radovic, M.J. Green, Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5, 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
- S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X. Feng, Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 130, 15717–15721 (2018). https://doi.org/10.1002/ange.201809662
- J.-C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10, 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x
- O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
- M. Magnuson, M. Mattesini, Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films 621, 108–130 (2017). https://doi.org/10.1016/j.tsf.2016.11.005
- M.W. Barsoum, T. El-Raghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953–1956 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08018.x
- B. Anasori, Y. Gogotsi, 2D metal carbides and nitrides (MXenes), structure, properties and applications (Springer, Berlin, 2019). https://doi.org/10.1007/978-3-030-19026-2
- A. Szuplewska, D. Kulpińska, A. Dybko, M. Chudy, A.M. Jastrzębska, A. Olszyna, Z. Brzózka, Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends Biotechnol. (2019). https://doi.org/10.1016/j.tibtech.2019.09.001
- M.W. Barsoum, The MN+1AXN phases: a new class of solids—thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6
- Y.-J. Zhang, J.-H. Lan, L. Wang, Q.-Y. Wu, C.-Z. Wang, T. Bo, Z.-F. Chai, W.-Q. Shi, Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: a first-principles study. J. Hazard. Mater. 308, 402–410 (2016). https://doi.org/10.1016/j.jhazmat.2016.01.053
- R.M. Ronchi, J.T. Arantes, S.F. Santos, Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram. Int. 45, 18167–18188 (2019). https://doi.org/10.1016/j.ceramint.2019.06.114
- K. Rasool, R.P. Pandey, P.A. Rasheed, S. Buczek, Y. Gogotsi, K.A. Mahmoud, Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater. Today 30, 80–102 (2019). https://doi.org/10.1016/j.mattod.2019.05.017
- K. Hantanasirisakul, M. Alhabeb, A. Lipatov, K. Maleski, B. Anasori et al., Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 31, 2941–2951 (2019). https://doi.org/10.1021/acs.chemmater.9b00401
- M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185–2192 (2013). https://doi.org/10.1002/adfm.201202502
- M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 16, 7841–7849 (2014). https://doi.org/10.1039/C4CP00467A
- X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Interwoven MXene nanosheet/carbon-nanotube composites as Li–S cathode hosts. Adv. Mater. 29, 1603040 (2017). https://doi.org/10.1002/adma.201603040
- M. Naguib, R.A. Adams, Y. Zhao, D. Zemlyanov, A. Varma, J. Nanda, V.G. Pol, Electrochemical performance of MXenes as K-ion battery anodes. Chem. Commun. 53, 6883–6886 (2017). https://doi.org/10.1039/C7CC02026K
- P. Urbankowski, B. Anasori, K. Hantanasirisakul, L. Yang, L. Zhang et al., 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale 9, 17722–17730 (2017). https://doi.org/10.1039/C7NR06721F
- K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
- V.M.H. Ng, H. Huang, K. Zhou, P.S. Lee, W. Que, J.Z. Xu, L.B. Kong, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5, 3039–3068 (2017). https://doi.org/10.1039/C6TA06772G
- X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020). https://doi.org/10.1039/C9NH00571D
- J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
- S. Zhang, S. Liao, F. Qi, R. Liu, T. Xiao et al., Direct deposition of two-dimensional MXene nanosheets on commercially available filter for fast and efficient dye removal. J. Hazard. Mater. 384, 121367 (2019). https://doi.org/10.1016/j.jhazmat.2019.121367
- K. Li, X. Wang, S. Li, P. Urbankowski, J. Li, Y. Xu, Y. Gogotsi, An ultrafast conducting polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 16, 1906851 (2019). https://doi.org/10.1002/smll.201906851
- Q. Zhang, J. Teng, G. Zou, Q. Peng, Q. Du, T. Jiao, J. Xiang, Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 8, 7085–7093 (2016). https://doi.org/10.1039/C5NR09303A
- L. Cheng, X. Li, H. Zhang, Q. Xiang, Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation. J. Phys. Chem. Lett. 10, 3488–3494 (2019). https://doi.org/10.1021/acs.jpclett.9b00736
- P. Zhang, L. Wang, L.-Y. Yuan, J.-H. Lan, Z.-F. Chai, W.-Q. Shi, Sorption of Eu(III) on MXene-derived titanate structures: the effect of nano-confined space. Chem. Eng. J. 370, 1200–1209 (2019). https://doi.org/10.1016/j.cej.2019.03.286
- Z. Guo, J. Zhou, L. Zhu, Z. Sun, MXene: a promising photocatalyst for water splitting. J. Mater. Chem. A 4, 11446–11452 (2016). https://doi.org/10.1039/C6TA04414J
- H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong, M. Dong, Ultrathin Ti3C2Tx (MXene) nanosheets wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett. 11, 31 (2019). https://doi.org/10.1007/s40820-019-0309-6
- C.E. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud, Y. Gogotsi, Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6, 4026–4031 (2015). https://doi.org/10.1021/acs.jpclett.5b01895
- A. Shahzad, K. Rasool, W. Miran, M. Nawaz, J. Jang, K.A. Mahmoud, D.S. Lee, Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 5, 11481–11488 (2017). https://doi.org/10.1021/acssuschemeng.7b02695
- Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, X. Peng, Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl. Mater. Interfaces. 7, 1795–1803 (2015). https://doi.org/10.1021/am5074722
- P. Srimuk, F. Kaasik, B. Krüner, A. Tolosa, S. Fleischmann et al., MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 4, 18265–18271 (2016). https://doi.org/10.1039/C6TA07833H
- M.A. Iqbal, S.I. Ali, F. Amin, A. Tariq, M.Z. Iqbal, S. Rizwan, La- and Mn-codoped Bismuth Ferrite/Ti3C2 MXene composites for efficient photocatalytic degradation of Congo Red dye. ACS Omega 4, 8661–8668 (2019). https://doi.org/10.1021/acsomega.9b00493
- P. Zhang, M. Xiang, H. Liu, C. Yang, S. Deng, Novel two-dimensional magnetic titanium carbide for methylene blue removal over a wide pH range: insight into removal performance and mechanism. ACS Appl. Mater. Interfaces. 11, 24027–24036 (2019). https://doi.org/10.1021/acsami.9b04222
- Q. Huang, Y. Liu, T. Cai, X. Xia, Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite. J. Photochem. Photobiol. A Chem. 375, 201–208 (2019). https://doi.org/10.1016/j.jphotochem.2019.02.026
- I. Persson, J. Halim, H. Lind, T.W. Hansen, J.B. Wagner et al., 2D transition metal carbides (MXenes) for carbon capture. Adv. Mater. 31, 1805472 (2019). https://doi.org/10.1002/adma.201805472
- T. Liu, X. Liu, N. Graham, W. Yu, K. Sun, Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. J. Memb. Sci. 593, 117431 (2020). https://doi.org/10.1016/j.memsci.2019.117431
- B.-M. Jun, S. Kim, J. Heo, C.M. Park, N. Her et al., Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 12, 471–487 (2019). https://doi.org/10.1007/s12274-018-2225-3
- J. Saththasivam, K. Wang, W. Yiming, Z. Liu, K.A. Mahmoud, A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation. RSC Adv. 9, 16296–16304 (2019). https://doi.org/10.1039/C9RA02129A
- X.-J. Zha, X. Zhao, J.-H. Pu, L.-S. Tang, K. Ke et al., Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces. 11, 36589–36597 (2019). https://doi.org/10.1021/acsami.9b10606
- Z. Xie, Y.-P. Peng, L. Yu, C. Xing, M. Qiu, J. Hu, H. Zhang, Solar-inspired water purification based on emerging two-dimensional materials: status and challenges. Sol. RRL (2019). https://doi.org/10.1002/solr.201900400
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- Y. Zhou, F. Wang, H. Wang, Y. Deng, C. Song, Z. Li, Ling, Water permeability in MXene membranes: process matters. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.10.037
- R.P. Pandey, K. Rasool, V.E. Madhavan, B. Aïssa, Y. Gogotsi, K.A. Mahmoud, Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A 6, 3522–3533 (2018). https://doi.org/10.1039/C7TA10888E
- G.R. Berdiyorov, M.E. Madjet, K.A. Mahmoud, Ionic sieving through Ti3C2(OH)2 MXene: first-principles calculations. Appl. Phys. Lett. 108, 113110 (2016). https://doi.org/10.1063/1.4944393
- L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro, H. Wang, A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56, 1825–1829 (2017). https://doi.org/10.1002/anie.201609306
- Y. Sun, S. Li, Y. Zhuang, G. Liu, W. Xing, W. Jing, Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection. J. Memb. Sci. 591, 117350 (2019). https://doi.org/10.1016/j.memsci.2019.117350
- E.Y.M. Ang, T.Y. Ng, J. Yeo, R. Lin, Z. Liu, K.R. Geethalakshmi, Investigations on different two-dimensional materials as slit membranes for enhanced desalination. J. Memb. Sci. (2019). https://doi.org/10.1016/j.memsci.2019.117653
- R. Han, Y. Xie, X. Ma, Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity. Chin. J. Chem. Eng. 27, 877–883 (2019). https://doi.org/10.1016/j.cjche.2018.10.005
- Z. Lu, Y. Wei, J. Deng, L. Ding, Z.-K. Li, H. Wang, Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano 13, 10535–10544 (2019). https://doi.org/10.1021/acsnano.9b04612
- X. Wu, L. Hao, J. Zhang, X. Zhang, J. Wang, J. Liu, Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. J. Memb. Sci. 515, 175–188 (2016). https://doi.org/10.1016/j.memsci.2016.05.048
- C.E. Ren, M. Alhabeb, B.W. Byles, M.-Q. Zhao, B. Anasori, E. Pomerantseva, K.A. Mahmoud, Y. Gogotsi, Voltage-gated ions sieving through 2D MXene Ti3C2Tx membranes. ACS Appl. Nano Mater. 1, 3644–3652 (2018). https://doi.org/10.1021/acsanm.8b00762
- L. Guo, X. Wang, Z.Y. Leong, R. Mo, L. Sun, H.Y. Yang, Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination. FlatChem 8, 17–24 (2018). https://doi.org/10.1016/j.flatc.2018.01.001
- R. Malik, Maxing out water desalination with MXenes. Joule 2, 591–593 (2018). https://doi.org/10.1016/j.joule.2018.04.001
- W. Bao, X. Tang, X. Guo, S. Choi, C. Wang, Y. Gogotsi, G. Wang, Porous cryo-dried MXene for efficient capacitive deionization. Joule 2, 778–787 (2018). https://doi.org/10.1016/j.joule.2018.02.018
- M.E. Suss, V. Presser, Water desalination with energy storage electrode materials. Joule 2, 10–15 (2018). https://doi.org/10.1016/j.joule.2017.12.010
- A. Amiri, Y. Chen, C.B. Teng, M. Naraghi, Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Storage Mater. 25, 731–739 (2020). https://doi.org/10.1016/j.ensm.2019.09.013
- J. Ma, Y. Cheng, L. Wang, X. Dai, F. Yu, Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.123329
- M.D. Levi, M.R. Lukatskaya, S. Sigalov, M. Beidaghi, N. Shpigel et al., Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2015). https://doi.org/10.1002/aenm.201400815
- L. Agartan, K. Hantanasirisakul, S. Buczek, B. Akuzum, K.A. Mahmoud, B. Anasori, Y. Gogotsi, E.C. Kumbur, Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2Tx-MXene membrane capacitive deionization system. Desalination 477, 114267 (2020). https://doi.org/10.1016/j.desal.2019.114267
- P. Srimuk, J. Halim, J. Lee, Q. Tao, J. Rosen, V. Presser, Two-dimensional molybdenum carbide (MXene) with divacancy ordering for brackish and seawater desalination via cation and anion intercalation. ACS Sustain. Chem. Eng. 6, 3739–3747 (2018). https://doi.org/10.1021/acssuschemeng.7b04095
- Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- M.-Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
- R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
- J. Zhao, Y. Yang, C. Yang, Y. Tian, Y. Han, J. Liu, X. Yin, W. Que, A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J. Mater. Chem. A 6, 16196–16204 (2018). https://doi.org/10.1039/C8TA05569F
- Y.Z. Tan, H. Wang, L. Han, M.B. Tanis-Kanbur, M.V. Pranav, J.W. Chew, Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. J. Memb. Sci. 565, 254–265 (2018). https://doi.org/10.1016/j.memsci.2018.08.032
- Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen, X. Quan, Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13, 13196–13207 (2019). https://doi.org/10.1021/acsnano.9b06180
- G. Liu, J. Shen, Q. Liu, G. Liu, J. Xiong, J. Yang, W. Jin, Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Memb. Sci. 548, 548–558 (2018). https://doi.org/10.1016/j.memsci.2017.11.065
- O. Salim, K.A. Mahmoud, K.K. Pant, R.K. Joshi, Introduction to MXenes: synthesis and characteristics. Mater. Today Chem. 14, 100191 (2019). https://doi.org/10.1016/j.mtchem.2019.08.010
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- M. Khazaei, A. Ranjbar, K. Esfarjani, D. Bogdanovski, R. Dronskowski, S. Yunoki, Insights into exfoliation possibility of MAX phases to MXenes. Phys. Chem. Chem. Phys. 20, 8579–8592 (2018). https://doi.org/10.1039/C7CP08645H
- V. Natu, J.L. Hart, M. Sokol, H. Chiang, M.L. Taheri, M.W. Barsoum, Edge capping of 2D-MXene Sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem. Int. Ed. 131, 12655–12660 (2019). https://doi.org/10.1002/ange.201906138
- F. Han, S. Luo, L. Xie, J. Zhu, W. Wei et al., Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS Appl. Mater. Interfaces. 11, 8443–8452 (2019). https://doi.org/10.1021/acsami.8b22339
- X. Yu, X. Cai, H. Cui, S.-W. Lee, X.-F. Yu, B. Liu, Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9, 17859–17864 (2017). https://doi.org/10.1039/C7NR05997C
- M. Khazaei, A. Mishra, N.S. Venkataramanan, A.K. Singh, S. Yunoki, Recent advances in MXenes: from fundamentals to applications. Curr. Opin. Solid State Mater. Sci. 23, 164–178 (2019). https://doi.org/10.1016/j.cossms.2019.01.002
- Y. Zhang, L. Wang, N. Zhang, Z. Zhou, Adsorptive environmental applications of MXene nanomaterials: a review. RSC Adv. 8, 19895–19905 (2018). https://doi.org/10.1039/C8RA03077D
- W. Mu, S. Du, X. Li, Q. Yu, H. Wei, Y. Yang, S. Peng, Removal of radioactive palladium based on novel 2D titanium carbides. Chem. Eng. J. 358, 283–290 (2019). https://doi.org/10.1016/j.cej.2018.10.010
- J. Guo, Q. Peng, H. Fu, G. Zou, Q. Zhang, Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J. Phys. Chem. C 119, 20923–20930 (2015). https://doi.org/10.1021/acs.jpcc.5b05426
- G. Zou, J. Guo, Q. Peng, A. Zhou, Q. Zhang, B. Liu, Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A 4, 489–499 (2016). https://doi.org/10.1039/C5TA07343J
- Y.-J. Zhang, Z.-J. Zhou, J.-H. Lan, C.-C. Ge, Z.-F. Chai, P. Zhang, W.-Q. Shi, Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Appl. Surf. Sci. 426, 572–578 (2017). https://doi.org/10.1016/j.apsusc.2017.07.227
- I. Ihsanullah, MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. Chem. Eng. J. 388, 124340 (2020). https://doi.org/10.1016/j.cej.2020.124340
- L. Fu, Z. Yan, Q. Zhao, H. Yang, Novel 2D Nanosheets with potential applications in heavy metal purification: a review. Adv. Mater. Interfaces 5, 1801094 (2018). https://doi.org/10.1002/admi.201801094
- A. Sinopoli, Z. Othman, K. Rasool, K.A. Mahmoud, Electrocatalytic/photocatalytic properties and aqueous media applications of 2D transition metal carbides (MXenes). Curr. Opin. Solid State Mater. Sci. 23, 100760 (2019). https://doi.org/10.1016/j.cossms.2019.06.004
References
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
N.R. Hemanth, B. Kandasubramanian, Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.123678
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao, T. Habib, M. Radovic, M.J. Green, Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5, 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X. Feng, Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 130, 15717–15721 (2018). https://doi.org/10.1002/ange.201809662
J.-C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10, 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
M. Magnuson, M. Mattesini, Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films 621, 108–130 (2017). https://doi.org/10.1016/j.tsf.2016.11.005
M.W. Barsoum, T. El-Raghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953–1956 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08018.x
B. Anasori, Y. Gogotsi, 2D metal carbides and nitrides (MXenes), structure, properties and applications (Springer, Berlin, 2019). https://doi.org/10.1007/978-3-030-19026-2
A. Szuplewska, D. Kulpińska, A. Dybko, M. Chudy, A.M. Jastrzębska, A. Olszyna, Z. Brzózka, Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends Biotechnol. (2019). https://doi.org/10.1016/j.tibtech.2019.09.001
M.W. Barsoum, The MN+1AXN phases: a new class of solids—thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6
Y.-J. Zhang, J.-H. Lan, L. Wang, Q.-Y. Wu, C.-Z. Wang, T. Bo, Z.-F. Chai, W.-Q. Shi, Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: a first-principles study. J. Hazard. Mater. 308, 402–410 (2016). https://doi.org/10.1016/j.jhazmat.2016.01.053
R.M. Ronchi, J.T. Arantes, S.F. Santos, Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram. Int. 45, 18167–18188 (2019). https://doi.org/10.1016/j.ceramint.2019.06.114
K. Rasool, R.P. Pandey, P.A. Rasheed, S. Buczek, Y. Gogotsi, K.A. Mahmoud, Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater. Today 30, 80–102 (2019). https://doi.org/10.1016/j.mattod.2019.05.017
K. Hantanasirisakul, M. Alhabeb, A. Lipatov, K. Maleski, B. Anasori et al., Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 31, 2941–2951 (2019). https://doi.org/10.1021/acs.chemmater.9b00401
M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185–2192 (2013). https://doi.org/10.1002/adfm.201202502
M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 16, 7841–7849 (2014). https://doi.org/10.1039/C4CP00467A
X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Interwoven MXene nanosheet/carbon-nanotube composites as Li–S cathode hosts. Adv. Mater. 29, 1603040 (2017). https://doi.org/10.1002/adma.201603040
M. Naguib, R.A. Adams, Y. Zhao, D. Zemlyanov, A. Varma, J. Nanda, V.G. Pol, Electrochemical performance of MXenes as K-ion battery anodes. Chem. Commun. 53, 6883–6886 (2017). https://doi.org/10.1039/C7CC02026K
P. Urbankowski, B. Anasori, K. Hantanasirisakul, L. Yang, L. Zhang et al., 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale 9, 17722–17730 (2017). https://doi.org/10.1039/C7NR06721F
K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
V.M.H. Ng, H. Huang, K. Zhou, P.S. Lee, W. Que, J.Z. Xu, L.B. Kong, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5, 3039–3068 (2017). https://doi.org/10.1039/C6TA06772G
X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020). https://doi.org/10.1039/C9NH00571D
J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
S. Zhang, S. Liao, F. Qi, R. Liu, T. Xiao et al., Direct deposition of two-dimensional MXene nanosheets on commercially available filter for fast and efficient dye removal. J. Hazard. Mater. 384, 121367 (2019). https://doi.org/10.1016/j.jhazmat.2019.121367
K. Li, X. Wang, S. Li, P. Urbankowski, J. Li, Y. Xu, Y. Gogotsi, An ultrafast conducting polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 16, 1906851 (2019). https://doi.org/10.1002/smll.201906851
Q. Zhang, J. Teng, G. Zou, Q. Peng, Q. Du, T. Jiao, J. Xiang, Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 8, 7085–7093 (2016). https://doi.org/10.1039/C5NR09303A
L. Cheng, X. Li, H. Zhang, Q. Xiang, Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation. J. Phys. Chem. Lett. 10, 3488–3494 (2019). https://doi.org/10.1021/acs.jpclett.9b00736
P. Zhang, L. Wang, L.-Y. Yuan, J.-H. Lan, Z.-F. Chai, W.-Q. Shi, Sorption of Eu(III) on MXene-derived titanate structures: the effect of nano-confined space. Chem. Eng. J. 370, 1200–1209 (2019). https://doi.org/10.1016/j.cej.2019.03.286
Z. Guo, J. Zhou, L. Zhu, Z. Sun, MXene: a promising photocatalyst for water splitting. J. Mater. Chem. A 4, 11446–11452 (2016). https://doi.org/10.1039/C6TA04414J
H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong, M. Dong, Ultrathin Ti3C2Tx (MXene) nanosheets wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett. 11, 31 (2019). https://doi.org/10.1007/s40820-019-0309-6
C.E. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud, Y. Gogotsi, Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6, 4026–4031 (2015). https://doi.org/10.1021/acs.jpclett.5b01895
A. Shahzad, K. Rasool, W. Miran, M. Nawaz, J. Jang, K.A. Mahmoud, D.S. Lee, Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 5, 11481–11488 (2017). https://doi.org/10.1021/acssuschemeng.7b02695
Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, X. Peng, Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl. Mater. Interfaces. 7, 1795–1803 (2015). https://doi.org/10.1021/am5074722
P. Srimuk, F. Kaasik, B. Krüner, A. Tolosa, S. Fleischmann et al., MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 4, 18265–18271 (2016). https://doi.org/10.1039/C6TA07833H
M.A. Iqbal, S.I. Ali, F. Amin, A. Tariq, M.Z. Iqbal, S. Rizwan, La- and Mn-codoped Bismuth Ferrite/Ti3C2 MXene composites for efficient photocatalytic degradation of Congo Red dye. ACS Omega 4, 8661–8668 (2019). https://doi.org/10.1021/acsomega.9b00493
P. Zhang, M. Xiang, H. Liu, C. Yang, S. Deng, Novel two-dimensional magnetic titanium carbide for methylene blue removal over a wide pH range: insight into removal performance and mechanism. ACS Appl. Mater. Interfaces. 11, 24027–24036 (2019). https://doi.org/10.1021/acsami.9b04222
Q. Huang, Y. Liu, T. Cai, X. Xia, Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite. J. Photochem. Photobiol. A Chem. 375, 201–208 (2019). https://doi.org/10.1016/j.jphotochem.2019.02.026
I. Persson, J. Halim, H. Lind, T.W. Hansen, J.B. Wagner et al., 2D transition metal carbides (MXenes) for carbon capture. Adv. Mater. 31, 1805472 (2019). https://doi.org/10.1002/adma.201805472
T. Liu, X. Liu, N. Graham, W. Yu, K. Sun, Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. J. Memb. Sci. 593, 117431 (2020). https://doi.org/10.1016/j.memsci.2019.117431
B.-M. Jun, S. Kim, J. Heo, C.M. Park, N. Her et al., Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 12, 471–487 (2019). https://doi.org/10.1007/s12274-018-2225-3
J. Saththasivam, K. Wang, W. Yiming, Z. Liu, K.A. Mahmoud, A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation. RSC Adv. 9, 16296–16304 (2019). https://doi.org/10.1039/C9RA02129A
X.-J. Zha, X. Zhao, J.-H. Pu, L.-S. Tang, K. Ke et al., Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces. 11, 36589–36597 (2019). https://doi.org/10.1021/acsami.9b10606
Z. Xie, Y.-P. Peng, L. Yu, C. Xing, M. Qiu, J. Hu, H. Zhang, Solar-inspired water purification based on emerging two-dimensional materials: status and challenges. Sol. RRL (2019). https://doi.org/10.1002/solr.201900400
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
Y. Zhou, F. Wang, H. Wang, Y. Deng, C. Song, Z. Li, Ling, Water permeability in MXene membranes: process matters. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.10.037
R.P. Pandey, K. Rasool, V.E. Madhavan, B. Aïssa, Y. Gogotsi, K.A. Mahmoud, Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A 6, 3522–3533 (2018). https://doi.org/10.1039/C7TA10888E
G.R. Berdiyorov, M.E. Madjet, K.A. Mahmoud, Ionic sieving through Ti3C2(OH)2 MXene: first-principles calculations. Appl. Phys. Lett. 108, 113110 (2016). https://doi.org/10.1063/1.4944393
L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro, H. Wang, A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56, 1825–1829 (2017). https://doi.org/10.1002/anie.201609306
Y. Sun, S. Li, Y. Zhuang, G. Liu, W. Xing, W. Jing, Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection. J. Memb. Sci. 591, 117350 (2019). https://doi.org/10.1016/j.memsci.2019.117350
E.Y.M. Ang, T.Y. Ng, J. Yeo, R. Lin, Z. Liu, K.R. Geethalakshmi, Investigations on different two-dimensional materials as slit membranes for enhanced desalination. J. Memb. Sci. (2019). https://doi.org/10.1016/j.memsci.2019.117653
R. Han, Y. Xie, X. Ma, Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity. Chin. J. Chem. Eng. 27, 877–883 (2019). https://doi.org/10.1016/j.cjche.2018.10.005
Z. Lu, Y. Wei, J. Deng, L. Ding, Z.-K. Li, H. Wang, Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano 13, 10535–10544 (2019). https://doi.org/10.1021/acsnano.9b04612
X. Wu, L. Hao, J. Zhang, X. Zhang, J. Wang, J. Liu, Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. J. Memb. Sci. 515, 175–188 (2016). https://doi.org/10.1016/j.memsci.2016.05.048
C.E. Ren, M. Alhabeb, B.W. Byles, M.-Q. Zhao, B. Anasori, E. Pomerantseva, K.A. Mahmoud, Y. Gogotsi, Voltage-gated ions sieving through 2D MXene Ti3C2Tx membranes. ACS Appl. Nano Mater. 1, 3644–3652 (2018). https://doi.org/10.1021/acsanm.8b00762
L. Guo, X. Wang, Z.Y. Leong, R. Mo, L. Sun, H.Y. Yang, Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination. FlatChem 8, 17–24 (2018). https://doi.org/10.1016/j.flatc.2018.01.001
R. Malik, Maxing out water desalination with MXenes. Joule 2, 591–593 (2018). https://doi.org/10.1016/j.joule.2018.04.001
W. Bao, X. Tang, X. Guo, S. Choi, C. Wang, Y. Gogotsi, G. Wang, Porous cryo-dried MXene for efficient capacitive deionization. Joule 2, 778–787 (2018). https://doi.org/10.1016/j.joule.2018.02.018
M.E. Suss, V. Presser, Water desalination with energy storage electrode materials. Joule 2, 10–15 (2018). https://doi.org/10.1016/j.joule.2017.12.010
A. Amiri, Y. Chen, C.B. Teng, M. Naraghi, Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Storage Mater. 25, 731–739 (2020). https://doi.org/10.1016/j.ensm.2019.09.013
J. Ma, Y. Cheng, L. Wang, X. Dai, F. Yu, Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.123329
M.D. Levi, M.R. Lukatskaya, S. Sigalov, M. Beidaghi, N. Shpigel et al., Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2015). https://doi.org/10.1002/aenm.201400815
L. Agartan, K. Hantanasirisakul, S. Buczek, B. Akuzum, K.A. Mahmoud, B. Anasori, Y. Gogotsi, E.C. Kumbur, Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2Tx-MXene membrane capacitive deionization system. Desalination 477, 114267 (2020). https://doi.org/10.1016/j.desal.2019.114267
P. Srimuk, J. Halim, J. Lee, Q. Tao, J. Rosen, V. Presser, Two-dimensional molybdenum carbide (MXene) with divacancy ordering for brackish and seawater desalination via cation and anion intercalation. ACS Sustain. Chem. Eng. 6, 3739–3747 (2018). https://doi.org/10.1021/acssuschemeng.7b04095
Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
M.-Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
J. Zhao, Y. Yang, C. Yang, Y. Tian, Y. Han, J. Liu, X. Yin, W. Que, A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J. Mater. Chem. A 6, 16196–16204 (2018). https://doi.org/10.1039/C8TA05569F
Y.Z. Tan, H. Wang, L. Han, M.B. Tanis-Kanbur, M.V. Pranav, J.W. Chew, Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. J. Memb. Sci. 565, 254–265 (2018). https://doi.org/10.1016/j.memsci.2018.08.032
Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen, X. Quan, Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13, 13196–13207 (2019). https://doi.org/10.1021/acsnano.9b06180
G. Liu, J. Shen, Q. Liu, G. Liu, J. Xiong, J. Yang, W. Jin, Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Memb. Sci. 548, 548–558 (2018). https://doi.org/10.1016/j.memsci.2017.11.065
O. Salim, K.A. Mahmoud, K.K. Pant, R.K. Joshi, Introduction to MXenes: synthesis and characteristics. Mater. Today Chem. 14, 100191 (2019). https://doi.org/10.1016/j.mtchem.2019.08.010
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
M. Khazaei, A. Ranjbar, K. Esfarjani, D. Bogdanovski, R. Dronskowski, S. Yunoki, Insights into exfoliation possibility of MAX phases to MXenes. Phys. Chem. Chem. Phys. 20, 8579–8592 (2018). https://doi.org/10.1039/C7CP08645H
V. Natu, J.L. Hart, M. Sokol, H. Chiang, M.L. Taheri, M.W. Barsoum, Edge capping of 2D-MXene Sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem. Int. Ed. 131, 12655–12660 (2019). https://doi.org/10.1002/ange.201906138
F. Han, S. Luo, L. Xie, J. Zhu, W. Wei et al., Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS Appl. Mater. Interfaces. 11, 8443–8452 (2019). https://doi.org/10.1021/acsami.8b22339
X. Yu, X. Cai, H. Cui, S.-W. Lee, X.-F. Yu, B. Liu, Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9, 17859–17864 (2017). https://doi.org/10.1039/C7NR05997C
M. Khazaei, A. Mishra, N.S. Venkataramanan, A.K. Singh, S. Yunoki, Recent advances in MXenes: from fundamentals to applications. Curr. Opin. Solid State Mater. Sci. 23, 164–178 (2019). https://doi.org/10.1016/j.cossms.2019.01.002
Y. Zhang, L. Wang, N. Zhang, Z. Zhou, Adsorptive environmental applications of MXene nanomaterials: a review. RSC Adv. 8, 19895–19905 (2018). https://doi.org/10.1039/C8RA03077D
W. Mu, S. Du, X. Li, Q. Yu, H. Wei, Y. Yang, S. Peng, Removal of radioactive palladium based on novel 2D titanium carbides. Chem. Eng. J. 358, 283–290 (2019). https://doi.org/10.1016/j.cej.2018.10.010
J. Guo, Q. Peng, H. Fu, G. Zou, Q. Zhang, Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J. Phys. Chem. C 119, 20923–20930 (2015). https://doi.org/10.1021/acs.jpcc.5b05426
G. Zou, J. Guo, Q. Peng, A. Zhou, Q. Zhang, B. Liu, Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A 4, 489–499 (2016). https://doi.org/10.1039/C5TA07343J
Y.-J. Zhang, Z.-J. Zhou, J.-H. Lan, C.-C. Ge, Z.-F. Chai, P. Zhang, W.-Q. Shi, Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Appl. Surf. Sci. 426, 572–578 (2017). https://doi.org/10.1016/j.apsusc.2017.07.227
I. Ihsanullah, MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. Chem. Eng. J. 388, 124340 (2020). https://doi.org/10.1016/j.cej.2020.124340
L. Fu, Z. Yan, Q. Zhao, H. Yang, Novel 2D Nanosheets with potential applications in heavy metal purification: a review. Adv. Mater. Interfaces 5, 1801094 (2018). https://doi.org/10.1002/admi.201801094
A. Sinopoli, Z. Othman, K. Rasool, K.A. Mahmoud, Electrocatalytic/photocatalytic properties and aqueous media applications of 2D transition metal carbides (MXenes). Curr. Opin. Solid State Mater. Sci. 23, 100760 (2019). https://doi.org/10.1016/j.cossms.2019.06.004