A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials
Corresponding Author: Theo G. M. van de Ven
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 73
Abstract
As the most abundant biopolymer on the earth, cellulose has recently gained significant attention in the development of antibacterial biomaterials. Biodegradability, renewability, strong mechanical properties, tunable aspect ratio, and low density offer tremendous possibilities for the use of cellulose in various fields. Owing to the high number of reactive groups (i.e., hydroxyl groups) on the cellulose surface, it can be readily functionalized with various functional groups, such as aldehydes, carboxylic acids, and amines, leading to diverse properties. In addition, the ease of surface modification of cellulose expands the range of compounds which can be grafted onto its structure, such as proteins, polymers, metal nanoparticles, and antibiotics. There are many studies in which cellulose nano-/microfibrils and nanocrystals are used as a support for antibacterial agents. However, little is known about the relationship between cellulose chemical surface modification and its antibacterial activity or biocompatibility. In this study, we have summarized various techniques for surface modifications of cellulose nanostructures and its derivatives along with their antibacterial and biocompatibility behavior to develop non-leaching and durable antibacterial materials. Despite the high effectiveness of surface-modified cellulosic antibacterial materials, more studies on their mechanism of action, the relationship between their properties and their effectivity, and more in vivo studies are required.
Highlights:
1 The most common chemical treatments of cellulose to synthesize nanostructured cellulose are highlighted.
2 Various surface modifications of cellulose to develop non-leaching and durable antibacterial materials are discussed.
3 Biocompatibility and antibacterial performance of non-leaching surface-modified cellulosic materials along with their current challenges are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Rinaudo, Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57(3), 397–430 (2008). https://doi.org/10.1002/pi.2378
- M.R. Rostami, M. Yousefi, A. Khezerlou, M.A. Mohammadi, S.M. Jafari, Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocolloids 97(1), 105170 (2019). https://doi.org/10.1016/j.foodhyd.2019.06.015
- T.G. van de Ven, A. Sheikhi, Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale 8(33), 15101–15114 (2016). https://doi.org/10.1039/C6NR01570K
- J.K. Pandey, A.N. Nakagaito, H. Takagi, Fabrication and applications of cellulose nanoparticle-based polymer composites. Polym. Eng. Sci. 53(1), 1–8 (2013). https://doi.org/10.1002/pen.23242
- B.L. Peng, N. Dhar, H. Liu, K. Tam, Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can. J. Chem. Eng. 89(5), 1191–1206 (2011). https://doi.org/10.1002/cjce.20554
- H.M. Azeredo, M.F. Rosa, L.H.C. Mattoso, Nanocellulose in bio-based food packaging applications. Ind. Crops Prod. 97(1), 664–671 (2017). https://doi.org/10.1016/j.indcrop.2016.03.013
- D. Dehnad, Z. Emam-Djomeh, H. Mirzaei, S.-M. Jafari, S. Dadashi, Optimization of physical and mechanical properties for chitosan-nanocellulose biocomposites. Carbohydr. Polym. 105(1), 222–228 (2014). https://doi.org/10.1016/j.carbpol.2014.01.094
- D. Dehnad, H. Mirzaei, Z. Emam-Djomeh, S.-M. Jafari, S. Dadashi, Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydr. Polym. 109(1), 148–154 (2014). https://doi.org/10.1016/j.carbpol.2014.03.063
- S.M. Jafari, I. Bahrami, D. Dehnad, S.A. Shahidi, The influence of nanocellulose coating on saffron quality during storage. Carbohydr. Polym. 181(1), 536–542 (2018). https://doi.org/10.1016/j.carbpol.2017.12.008
- A. Khan, T. Huq, R.A. Khan, B. Riedl, M. Lacroix, Nanocellulose-based composites and bioactive agents for food packaging. Crit. Rev. Food Sci. Nutr. 54(2), 163–174 (2014). https://doi.org/10.1080/10408398.2011.578765
- A.W. Carpenter, C.-F. de Lannoy, M.R. Wiesner, Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol. 49(9), 5277–5287 (2015). https://doi.org/10.1021/es506351r
- H. Voisin, L. Bergström, P. Liu, A. Mathew, Nanocellulose-based materials for water purification. Nanomaterials 7(3), 57 (2017). https://doi.org/10.3390/nano7030057
- P. Rofouie, M. Alizadehgiashi, H. Mundoor, I.I. Smalyukh, E. Kumacheva, Self-assembly of cellulose nanocrystals into semi-spherical photonic cholesteric films. Adv. Func. Mater. 28(45), 1803852 (2018). https://doi.org/10.1002/adfm.201803852
- B. Wilts, A. Dumanli, R. Middleton, P. Vukusic, S. Vignolini, Invited article: chiral optics of helicoidal cellulose nanocrystal films. APL Photonics 2(4), 040801 (2017). https://doi.org/10.1063/1.4978387
- H. Golmohammadi, E. Morales-Narvaez, T. Naghdi, A. Merkoci, Nanocellulose in sensing and biosensing. Chem. Mater. 29(13), 5426–5446 (2017). https://doi.org/10.1021/acs.chemmater.7b01170
- T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham, T. Ben-Shalom, S. Lapidot, O. Shoseyov, Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39(1), 76–88 (2016). https://doi.org/10.1016/j.copbio.2016.01.002
- M. Jorfi, E.J. Foster, Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132(14), 41719–41737 (2015). https://doi.org/10.1002/app.41719
- Y. Xue, Z. Mou, H. Xiao, Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale 9(39), 14758–14781 (2017). https://doi.org/10.1039/C7NR04994C
- M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36(8), 981–1014 (2011). https://doi.org/10.1016/j.progpolymsci.2011.02.001
- M. Tavakolian, M. Okshevsky, T.G.M. van de Ven, N. Tufenkji, Developing antibacterial nanocrystalline cellulose using natural antibacterial agents. ACS Appl. Mater. Interfaces 10(40), 33827–33838 (2018). https://doi.org/10.1021/acsami.8b08770
- F. Fu, L. Li, L. Liu, J. Cai, Y. Zhang, J. Zhou, L. Zhang, Construction of cellulose based zno nanocomposite films with antibacterial properties through one-step coagulation. ACS Appl. Mater. Interfaces 7(4), 2597–2606 (2015). https://doi.org/10.1021/am507639b
- K.A. Rieger, H.J. Cho, H.F. Yeung, W. Fan, J.D. Schiffman, Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS Appl. Mater. Interfaces 8(5), 3032–3040 (2016). https://doi.org/10.1021/acsami.5b10130
- R. Singla, S. Soni, V. Patial, P.M. Kulurkar, A. Kumari, S. Mahesh, Y.S. Padwad, S.K. Yadav, Cytocompatible anti-microbial dressings of s yzygium cumini cellulose nanocrystals decorated with silver nanoparticles accelerate acute and diabetic wound healing. Sci. Rep. 7(1), 10457 (2017). https://doi.org/10.1038/s41598-017-08897-9
- T. Anirudhan, J. Deepa, Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J. Colloid Interface Sci. 490(1), 343–356 (2017). https://doi.org/10.1016/j.jcis.2016.11.042
- S. Saini, N. Belgacem, J. Mendes, G. Elegir, J. Bras, Contact antimicrobial surface obtained by chemical grafting of microfibrillated cellulose in aqueous solution limiting antibiotic release. ACS Appl. Mater. Interfaces 7(32), 18076–18085 (2015). https://doi.org/10.1021/acsami.5b04938
- L. He, H. Liang, L. Lin, B.R. Shah, Y. Li, Y. Chen, B. Li, Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and ph-dependent release of doxorubicin. Colloids Surf. B Biointerfaces 126(1), 288–296 (2015). https://doi.org/10.1016/j.colsurfb.2014.12.024
- W. Li, X. Li, Q. Wang, Y. Pan, T. Wang, H. Wang, R. Song, H. Deng, Antibacterial activity of nanofibrous mats coated with lysozyme-layered silicate composites via electrospraying. Carbohydr. Polym. 99(1), 218–225 (2014). https://doi.org/10.1016/j.carbpol.2013.07.055
- K. Zhu, T. Ye, J. Liu, Z. Peng, S. Xu, J. Lei, H. Deng, B. Li, Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. Int. J. Pharm. 441(1–2), 721–727 (2013). https://doi.org/10.1016/j.ijpharm.2012.10.022
- M. Hoseinnejad, S.M. Jafari, I. Katouzian, Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit. Rev. Microbiol. 44(2), 161–181 (2018). https://doi.org/10.1080/1040841X.2017.1332001
- D. Roy, J.S. Knapp, J.T. Guthrie, S. Perrier, Antibacterial cellulose fiber via raft surface graft polymerization. Biomacromolecules 9(1), 91–99 (2007). https://doi.org/10.1021/bm700849j
- J. Yatvin, J. Gao, J. Locklin, Durable defense: robust and varied attachment of non-leaching poly “-onium” bactericidal coatings to reactive and inert surfaces. Chem. Commun. 50(67), 9433–9442 (2014). https://doi.org/10.1039/C4CC02803A
- S.C. Monteiro, A.B. Boxall, Occurrence and fate of human pharmaceuticals in the environment (Springer, New York, 2010), pp. 53–154
- E.-R. Kenawy, S. Worley, R. Broughton, The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules8(5), 1359–1384 (2007). https://doi.org/10.1021/bm061150q
- F. Siedenbiedel, J.C. Tiller, Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4(1), 46–71 (2012). https://doi.org/10.3390/polym4010046
- S. Saini, Ç.Y. Falco, M.N. Belgacem, J. Bras, Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydr. Polym. 135(1), 239–247 (2016). https://doi.org/10.1021/acsami.5b04938
- J. Li, R. Cha, K. Mou, X. Zhao, K. Long, H. Luo, F. Zhou, X. Jiang, Nanocellulose-based antibacterial materials. Adv. Healthc. Mater. 7(20), 1800334 (2018). https://doi.org/10.1002/adhm.201800334
- L.C. Duchesne, D. Larson, Cellulose and the evolution of plant life. Bioscience 39(4), 238–241 (1989)
- D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011). https://doi.org/10.1002/anie.201001273
- J. Tang, J. Sisler, N. Grishkewich, K.C. Tam, Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 494(1), 397–409 (2017). https://doi.org/10.1016/j.jcis.2017.01.077
- AC. O’sullivan, Cellulose: the structure slowly unravels. Cellulose 4(3), 173–207 (1997). https://doi.org/10.1023/A:1018431705579
- Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010). https://doi.org/10.1021/cr900339w
- R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
- Y. Qing, R. Sabo, J. Zhu, U. Agarwal, Z. Cai, Y. Wu, A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr. Polym. 97(1), 226–234 (2013). https://doi.org/10.1016/j.carbpol.2013.04.086
- H.A. Khalil, A. Bhat, A.I. Yusra, Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87(2), 963–979 (2012). https://doi.org/10.1016/j.carbpol.2011.08.078
- H. Yousefi, M. Faezipour, S. Hedjazi, M.M. Mousavi, Y. Azusa, A.H. Heidari, Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind. Crops Prod. 43(1), 732–737 (2013). https://doi.org/10.1016/j.indcrop.2012.08.030
- A. Sheikhi, J. Hayashi, J. Eichenbaum, M. Gutin, N. Kuntjoro, D. Khorsandi, A. Khademhosseini, Recent advances in nanoengineering cellulose for cargo delivery. J. Controll. Release 294(1), 53–76 (2019). https://doi.org/10.1016/j.jconrel.2018.11.024
- K. Markstedt, A. Mantas, I. Tournier, HC. Martínez Ávila, D. Hagg, P. Gatenholm, 3d bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5), 1489–1496 (2015). https://doi.org/10.1021/acs.biomac.5b00188
- J.G. Torres-Rendon, T. Femmer, L. De Laporte, T. Tigges, K. Rahimi, F. Gremse, S. Zafarnia, W. Lederle, S. Ifuku, M. Wessling, Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Adv. Mater. 27(19), 2989–2995 (2015). https://doi.org/10.1002/adma.201405873
- K. Kümmerer, J. Menz, T. Schubert, W. Thielemans, Biodegradability of organic nanoparticles in the aqueous environment. Chemosphere 82(10), 1387–1392 (2011). https://doi.org/10.1016/j.chemosphere.2010.11.069
- K.M. Conley, L. Godbout, M.T. Whitehead, T.G. van de Ven, Reversing the structural chirality of cellulosic nanomaterials. Cellulose 24(12), 5455–5462 (2017). https://doi.org/10.1007/s10570-017-1533-1
- I. Reiniati, A.N. Hrymak, A. Margaritis, Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Crit. Rev. Biotechnol. 37(4), 510–524 (2017). https://doi.org/10.1080/07388551.2016.1189871
- F. Rol, M.N. Belgacem, A. Gandini, J. Bras, Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 88(1), 241–264 (2018). https://doi.org/10.1016/j.progpolymsci.2018.09.002
- H. Yang, D. Chen, T.G. van de Ven, Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose 22(3), 1743–1752 (2015). https://doi.org/10.1007/s10570-015-0584-4
- H. Yang, M.N. Alam, T.G.M. van de Ven, Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20(4), 1865–1875 (2013). https://doi.org/10.1007/s10570-013-9966-7
- H. Yang, T.G.M. van de Ven, Preparation of hairy cationic nanocrystalline cellulose. Cellulose 23(3), 1791–1801 (2016). https://doi.org/10.1007/s10570-016-0902-5
- M. Tavakolian, J. Lerner, F.M. Tovar, J. Frances, T.G. van de Ven, A. Kakkar, Dendrimer directed assembly of dicarboxylated hairy nanocellulose. J. Colloid Interface Sci. 541(1), 444–453 (2019). https://doi.org/10.1016/j.jcis.2019.01.100
- H. Yang, T.G. van de Ven, A bottom-up route to a chemically end-to-end assembly of nanocellulose fibers. Biomacromolecules 17(6), 2240–2247 (2016). https://doi.org/10.1021/acs.biomac.6b00480
- Z. Hosseinidoust, M.N. Alam, G. Sim, N. Tufenkji, T.G.M. van de Ven, Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale 7(40), 16647–16657 (2015). https://doi.org/10.1039/C5NR02506K
- H. Yang, A. Tejado, N. Alam, M. Antal, T.G. van de Ven, Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28(20), 7834–7842 (2012). https://doi.org/10.1021/la2049663
- K.E. Shopsowitz, H. Qi, W.Y. Hamad, M.J. MacLachlan, Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322), 422 (2010). https://doi.org/10.1038/nature09540
- T. Saito, T. Uematsu, S. Kimura, T. Enomae, A. Isogai, Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19), 8804–8809 (2011). https://doi.org/10.1039/C1SM06050C
- C. Aulin, J. Netrval, L. Wågberg, T. Lindström, Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6(14), 3298–3305 (2010). https://doi.org/10.1039/C001939A
- A. Bodin, S. Concaro, M. Brittberg, P. Gatenholm, Bacterial cellulose as a potential meniscus implant. J. Tissue Eng. Regen. Med. 1(5), 406–408 (2007). https://doi.org/10.1002/term.51
- U.-J. Kim, S. Kuga, M. Wada, T. Okano, T. Kondo, Periodate oxidation of crystalline cellulose. Biomacromolecules 1(3), 488–492 (2000). https://doi.org/10.1021/bm0000337
- U.-J. Kim, M. Wada, S. Kuga, Solubilization of dialdehyde cellulose by hot water. Carbohydr. Polym. 56(1), 7–10 (2004). https://doi.org/10.1016/j.carbpol.2003.10.013
- A. Varma, V. Chavan, P. Rajmohanan, S. Ganapathy, Some observations on the high-resolution solid-state cp-mas 13c-nmr spectra of periodate-oxidised cellulose. Polym. Degrad. Stab. 58(3), 257–260 (1997). https://doi.org/10.1016/S0141-3910(97)00049-9
- W. Kasai, T. Morooka, M. Ek, Mechanical properties of films made from dialcohol cellulose prepared by homogeneous periodate oxidation. Cellulose 21(1), 769–776 (2014). https://doi.org/10.1007/s10570-013-0153-7
- S. Kumari, D. Mankotia, G.S. Chauhan, Crosslinked cellulose dialdehyde for congo red removal from its aqueous solutions. J. Environ. Chem. Eng. 4(1), 1126–1136 (2016). https://doi.org/10.1016/j.jece.2016.01.008
- A. Sheikhi, S. Safari, H. Yang, T.G. van de Ven, Copper removal using electrosterically stabilized nanocrystalline cellulose. ACS Appl. Mater. Interfaces 7(21), 11301–11308 (2015). https://doi.org/10.1021/acsami.5b01619
- M. Tavakolian, H. Wiebe, M.A. Sadeghi, T.G. van de Ven, Dye removal using hairy nanocellulose: experimental and theoretical investigations. ACS Appl. Mater. Interfaces 12(4), 5040–5049 (2019). https://doi.org/10.1021/acsami.9b18679
- R. Dash, A.J. Ragauskas, Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv. 2(8), 3403–3409 (2012). https://doi.org/10.1039/c2ra01071b
- S.V. Kanth, A. Ramaraj, J.R. Rao, B.U. Nair, Stabilization of type i collagen using dialdehyde cellulose. Process Biochem. 44(8), 869–874 (2009). https://doi.org/10.1016/j.procbio.2009.04.008
- U.-J. Kim, Y.R. Lee, T.H. Kang, J.W. Choi, S. Kimura, M. Wada, Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents. Carbohydr. Polym. 163(1), 34–42 (2017). https://doi.org/10.1016/j.carbpol.2017.01.052
- G. Shen, X. Zhang, Y. Shen, S. Zhang, L. Fang, One-step immobilization of antibodies for α-1-fetoprotein immunosensor based on dialdehyde cellulose/ionic liquid composite. Anal. Biochem. 471(1), 38–43 (2015). https://doi.org/10.1016/j.ab.2014.09.020
- J. Li, Y. Wan, L. Li, H. Liang, J. Wang, Preparation and characterization of 2, 3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng. C 29(5), 1635–1642 (2009). https://doi.org/10.1016/j.msec.2009.01.006
- R. Koshani, T.G. van de Ven, A. Madadlou, Characterization of carboxylated cellulose nanocrytals isolated through catalyst-assisted h2o2 oxidation in a one-step procedure. J. Agric. Food Chem. 66(29), 7692–7700 (2018). https://doi.org/10.1021/acs.jafc.8b00080
- Y. Okita, T. Saito, A.J.B. Isogai, Entire surface oxidation of various cellulose microfibrils by tempo-mediated oxidation. Biomacromolecules 11(6), 1696–1700 (2010). https://doi.org/10.1021/bm100214b
- T. Saito, S. Kimura, Y. Nishiyama, A.J.B. Isogai, Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromolecules 8(8), 2485–2491 (2007). https://doi.org/10.1021/bm0703970
- T. Saito, Y. Nishiyama, J.-L. Putaux, M. Vignon, A.J.B. Isogai, Homogeneous suspensions of individualized microfibrils from tempo-catalyzed oxidation of native cellulose. Biomacromolecules 7(6), 1687–1691 (2006). https://doi.org/10.1021/bm060154s
- T. Saito, A. Isogai, Introduction of aldehyde groups on surfaces of native cellulose fibers by tempo-mediated oxidation. Colloids Surf. A Physicochem Eng Aspects 289(1–3), 219–225 (2006). https://doi.org/10.1016/j.colsurfa.2006.04.038
- T. Saito, Y. Okita, T. Nge, J. Sugiyama, A. Isogai, Tempo-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr. Polym. 65(4), 435–440 (2006). https://doi.org/10.1016/j.carbpol.2006.01.034
- S. Montanari, M. Roumani, L. Heux, M.R. Vignon, Topochemistry of carboxylated cellulose nanocrystals resulting from tempo-mediated oxidation. Macromolecules 38(5), 1665–1671 (2005). https://doi.org/10.1021/ma048396c
- Y. Habibi, Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43(5), 1519–1542 (2014). https://doi.org/10.1039/C3CS60204D
- S. Safari, A. Sheikhi, T.G. van de Ven, Electroacoustic characterization of conventional and electrosterically stabilized nanocrystalline celluloses. J. Colloid Interface Sci. 432(1), 151–157 (2014). https://doi.org/10.1016/j.jcis.2014.06.061
- M. Hasani, ED. Cranston, G. Westman, DGJSM. Gray, Cationic surface functionalization of cellulose nanocrystals. Soft Matter4(11), 2238–2244 (2008). https://doi.org/10.1039/B806789A
- S. Eyley, W.J.C.C. Thielemans, Imidazolium grafted cellulose nanocrystals for ion exchange applications. Chem. Commun. (Camb.) 47(14), 4177–4179 (2011). https://doi.org/10.1039/C0CC05359G
- L. Jasmani, S. Eyley, R. Wallbridge, W.J.N. Thielemans, A facile one-pot route to cationic cellulose nanocrystals. Nanoscale 5(21), 10207–10211 (2013). https://doi.org/10.1039/C3NR03456A
- J.A. Sirviö, M. Visanko, O. Laitinen, A. Ämmälä, H. Liimatainen, Amino-modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination. Carbohydr. Polym. 136(1), 581–587 (2016). https://doi.org/10.1016/j.carbpol.2015.09.089
- X.M. Dong, J.-F. Revol, D.G. Gray, Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1), 19–32 (1998). https://doi.org/10.1023/A:1009260511939
- F. Hemmati, S.M. Jafari, M. Kashaninejad, M.B. Motlagh, Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues. Int. J. Biol. Macromol. 120(1), 1216–1224 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.012
- F. Hemmati, S.M. Jafari, R.A. Taheri, Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter. Int. J. Biol. Macromol. 137(1), 374–381 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.241
- M. Roman, W.T. Winter, Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5), 1671–1677 (2004). https://doi.org/10.1021/bm034519+
- T. Abitbol, E. Kloser, D.G. Gray, Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2), 785–794 (2013). https://doi.org/10.1007/s10570-013-9871-0
- S. Dong, A.A. Hirani, K.R. Colacino, Y.W. Lee, M. Roman, Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life 2(03), 1241006 (2012). https://doi.org/10.1142/S1793984412410061
- H. Liimatainen, M. Visanko, J. Sirviö, O. Hormi, J. Niinimäki, Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20(2), 741–749 (2013). https://doi.org/10.1007/s10570-013-9865-y
- E. Feese, H. Sadeghifar, H.S. Gracz, D.S. Argyropoulos, R.A.J.B. Ghiladi, Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules 12(10), 3528–3539 (2011). https://doi.org/10.1021/bm200718s
- SC. Fernandes, P. Sadocco, A. Alonso-Varona, T. Palomares, A. Eceiza, AJ. Silvestre, I. Mondragon, CS. Freire, Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl. Mater. Interfaces 5(8), 3290–3297 (2013). https://doi.org/10.1021/am400338n
- L. Timofeeva, N. Kleshcheva, Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl. Microbiol. Biotechnol. 89(3), 475–492 (2011). https://doi.org/10.1007/s00253-010-2920-9
- K. Hegstad, S. Langsrud, B.T. Lunestad, A.A. Scheie, M. Sunde, S.P. Yazdankhah, Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microbial Drug Resist. 16(2), 91–104 (2010). https://doi.org/10.1089/mdr.2009.0120
- M.C. Jennings, L.E. Ator, T.J. Paniak, K.P. Minbiole, W.M. Wuest, Biofilm-eradicating properties of quaternary ammonium amphiphiles: simple mimics of antimicrobial peptides. ChemBioChem 15(15), 2211–2215 (2014). https://doi.org/10.1002/cbic.201402254
- TJ. Franklin, GA. Snow, Biochemistry of antimicrobial action, 3rd edn. (Springer, London, 2013), pp. 58–78
- M. Li, X. Liu, N. Liu, Z. Guo, P.K. Singh, S. Fu, Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. Colloids Surf. A Physicochem Eng Aspects 554(1), 122–128 (2018). https://doi.org/10.1016/j.colsurfa.2018.06.031
- B. Dizman, M.O. Elasri, L.J. Mathias, Synthesis and antimicrobial activities of new water-soluble bis-quaternary ammonium methacrylate polymers. J. Appl. Polym. Sci. 94(2), 635–642 (2004). https://doi.org/10.1002/app.20872
- C.H. Kim, J.W. Choi, H.J. Chun, K.S. Choi, Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity. Polym. Bull. 38(4), 387–393 (1997). https://doi.org/10.1007/s002890050064
- T. Ikeda, H. Hirayama, H. Yamaguchi, S. Tazuke, M. Watanabe, Polycationic biocides with pendant active groups: molecular weight dependence of antibacterial activity. Antimicrob. Agents Chemother. 30(1), 132–136 (1986). https://doi.org/10.1128/aac.30.1.132
- E.R. Kenawy, Y.A.G. Mahmoud, Biologically active polymers, 6. Macromol. Biosci. 3(2), 107–116 (2003). https://doi.org/10.1002/mabi.200390016
- J. Vasiljević, B. Tomšič, I. Jerman, B. Orel, G. Jakša, B. Simončič, Novel multifunctional water-and oil-repellent, antibacterial, and flame-retardant cellulose fibres created by the sol–gel process. Cellulose 21(4), 2611–2623 (2014). https://doi.org/10.1016/j.carbpol.2013.01.074
- T. Abitbol, H. Marway, E.D. Cranston, Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide. Nord. Pulp Pap. Res. J. 29(1), 46–57 (2014). https://doi.org/10.3183/npprj-2014-29-01-p046-057
- P. Fei, L. Liao, J. Meng, B. Cheng, X. Hu, J. Song, Non-leaching antibacterial cellulose triacetate reverse osmosis membrane via covalent immobilization of quaternary ammonium cations. Carbohydr. Polym. 181(1), 1102–1111 (2018). https://doi.org/10.1016/j.carbpol.2017.11.036
- L. Huang, Z. Ye, R. Berry, Modification of cellulose nanocrystals with quaternary ammonium-containing hyperbranched polyethylene ionomers by ionic assembly. ACS Sustain. Chem. Eng. 4(9), 4937–4950 (2016). https://doi.org/10.1021/acssuschemeng.6b01253
- X. He, L. Cheng, Y. Wang, J. Zhao, W. Zhang, C. Lu, Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of cr (vi) from water. Carbohydr. Polym.Carbohydr. Polym. 111, 683–687 (2014). https://doi.org/10.1016/j.carbpol.2014.05.020
- E. Poverenov, M. Shemesh, A. Gulino, D.A. Cristaldi, V. Zakin, T. Yefremov, R. Granit, Durable contact active antimicrobial materials formed by a one-step covalent modification of polyvinyl alcohol, cellulose and glass surfaces. Colloids Surf. B Biointerfaces 112(1), 356–361 (2013). https://doi.org/10.1016/j.colsurfb.2013.07.032
- R. Jia, W. Tian, H. Bai, J. Zhang, S. Wang, J. Zhang, Sunlight-driven wearable and robust antibacterial coatings with water-soluble cellulose-based photosensitizers. Adv. Healthc. Mater. 8(5), 1801591 (2019). https://doi.org/10.1002/adhm.201801591
- C.G. Otoni, J.S. Figueiredo, L.B. Capeletti, M.B. Cardoso, J.S. Bernardes, W. Loh, Tailoring the antimicrobial response of cationic nanocellulose-based foams through cryo-templating. ACS Appl. Bio Mater. 2(5), 1975–1986 (2019). https://doi.org/10.1021/acsabm.9b00034
- A. Żywicka, K. Fijałkowski, A.F. Junka, J. Grzesiak, M. El Fray, Modification of bacterial cellulose with quaternary ammonium compounds based on fatty acids and amino acids and the effect on antimicrobial activity. Biomacromolecules 19(5), 1528–1538 (2018). https://doi.org/10.1021/acs.biomac.8b00183
- W.Z. Xu, G. Gao, J.F. Kadla, Synthesis of antibacterial cellulose materials using a “clickable” quaternary ammonium compound. Cellulose 20(3), 1187–1199 (2013). https://doi.org/10.1007/s10570-013-9914-6
- A. Kaboorani, B. Riedl, Surface modification of cellulose nanocrystals (cnc) by a cationic surfactant. Ind. Crops Prod. 65(1), 45–55 (2015). https://doi.org/10.1016/j.indcrop.2014.11.027
- R. Vyhnalkova, N. Mansur-Azzam, A. Eisenberg, T.G. van de Ven, Ten million fold reduction of live bacteria by bactericidal filter paper. Adv. Func. Mater. 22(19), 4096–4100 (2012). https://doi.org/10.1002/adfm.201200686
- Y. Pan, X. Huang, X. Shi, Y. Zhan, G. Fan, S. Pan, J. Tian, H. Deng, Y. Du, Antimicrobial application of nanofibrous mats self-assembled with quaternized chitosan and soy protein isolate. Carbohydr. Polym. 133(1), 229–235 (2015). https://doi.org/10.1016/j.carbpol.2015.07.019
- C.Z. Chen, N.C. Beck-Tan, P. Dhurjati, T.K. van Dyk, R.A. LaRossa, S.L. Cooper, Quaternary ammonium functionalized poly (propylene imine) dendrimers as effective antimicrobials: structure-activity studies. Biomacromolecules 1(3), 473–480 (2000). https://doi.org/10.1021/bm0055495
- M.R. Hamblin, Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr. Opin. Microbiol. 33(1), 67–73 (2016). https://doi.org/10.1016/j.mib.2016.06.008
- A. Tavares, C. Carvalho, M.A. Faustino, M.G. Neves, J.P. Tomé, A.C. Tomé, J.A. Cavaleiro, Â. Cunha, N. Gomes, E. Alves, Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar. Drugs 8(1), 91–105 (2010). https://doi.org/10.3390/md8010091
- B. Guo, X. Cai, S. Xu, S.M.A. Fateminia, J. Liu, J. Liang, G. Feng, W. Wu, B. Liu, Decoration of porphyrin with tetraphenylethene: converting a fluorophore with aggregation-caused quenching to aggregation-induced emission enhancement. J. Mater. Chem. B 4(27), 4690–4695 (2016). https://doi.org/10.1039/c6tb01159d
- K. Liu, Y. Liu, Y. Yao, H. Yuan, S. Wang, Z. Wang, X. Zhang, Supramolecular photosensitizers with enhanced antibacterial efficiency. Angew. Chem. Int. Ed. 52(32), 8285–8289 (2013). https://doi.org/10.1002/anie.201303387
- E. Skovsen, J.W. Snyder, J.D. Lambert, P.R. Ogilby, Lifetime and diffusion of singlet oxygen in a cell. J. Phys. Chem. B 109(18), 8570–8573 (2005). https://doi.org/10.1021/jp051163i
- M. Jonoobi, A. Ashori, V. Siracusa, Characterization and properties of polyethersulfone/modified cellulose nanocrystals nanocomposite membranes. Polym. Test. 76(1), 333–339 (2019). https://doi.org/10.1016/j.polymertesting.2019.03.039
- J. Meng, X. Zhang, L. Ni, Z. Tang, Y. Zhang, Y. Zhang, W. Zhang, Antibacterial cellulose membrane via one-step covalent immobilization of ammonium/amine groups. Desalination 359(1), 156–166 (2015). https://doi.org/10.1016/j.desal.2014.12.032
- F. Rafieian, M. Jonoobi, Q. Yu, A novel nanocomposite membrane containing modified cellulose nanocrystals for copper ion removal and dye adsorption from water. Cellulose 26(5), 1–15 (2019). https://doi.org/10.1007/s10570-019-02320-4
- E. Robles, L. Csóka, J. Labidi, Effect of reaction conditions on the surface modification of cellulose nanofibrils with aminopropyl triethoxysilane. Coatings 8(4), 139 (2018). https://doi.org/10.3390/coatings8040139
- E. Robles, I. Urruzola, J. Labidi, L. Serrano, Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites. Ind. Crops Prod. 71(1), 44–53 (2015). https://doi.org/10.1016/j.indcrop.2015.03.075
- M. Hosseinnejad, S.M. Jafari, Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 85(1), 467–475 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.022
- M. Abdelmouleh, S. Boufi, M. Belgacem, A. Duarte, A.B. Salah, A. Gandini, Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int. J. Adhes. Adhes. 24(1), 43–54 (2004). https://doi.org/10.1016/S0143-7496(03)00099-X
- M. Abdelmouleh, S. Boufi, A. Ben Salah, MN. Belgacem, A. Gandini, Interaction of silane coupling agents with cellulose. Langmuir18(8), 3203–3208 (2002). https://doi.org/10.1021/la011657g
- S. Saini, M.N. Belgacem, M.-C.B. Salon, J. Bras, Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane. Cellulose 23(1), 795–810 (2016). https://doi.org/10.1007/s10570-015-0854-1
- T. Ikeda, H. Hirayama, K. Suzuki, H. Yamaguchi, S. Tazuke, Biologically active polycations, 6. Polymeric pyridinium salts with well-defined main chain structure. Die Makromol. Chem. 187(2), 333–340 (1986). https://doi.org/10.1002/macp.1986.021870212
- W. Shao, J. Wu, H. Liu, S. Ye, L. Jiang, X. Liu, Novel bioactive surface functionalization of bacterial cellulose membrane. Carbohydr. Polym. 178(1), 270–276 (2017). https://doi.org/10.1016/j.carbpol.2017.09.045
- S. Saini, M.N. Belgacem, J. Bras, Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity. Mater. Sci. Eng. C 75(1), 760–768 (2017). https://doi.org/10.1016/j.msec.2017.02.062
- B. Demir, I. Cerkez, S. Worley, R. Broughton, T.-S. Huang, N-halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria. ACS Appl. Mater. Interfaces 7(3), 1752–1757 (2015). https://doi.org/10.1021/am507329m
- F. Hui, C. Debiemme-Chouvy, Antimicrobial n-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules 14(3), 585–601 (2013). https://doi.org/10.1021/bm301980q
- R. Li, P. Hu, X. Ren, S. Worley, T. Huang, Antimicrobial n-halamine modified chitosan films. Carbohydr. Polym. 92(1), 534–539 (2013). https://doi.org/10.1016/j.carbpol.2012.08.115
- H.B. Kocer, A. Akdag, X. Ren, R. Broughton, S. Worley, T. Huang, Effect of alkyl derivatization on several properties of n-halamine antimicrobial siloxane coatings. Ind. Eng. Chem. Res. 47(20), 7558–7563 (2008). https://doi.org/10.1021/ie800899u
- A. Dong, S. Lan, J. Huang, T. Wang, T. Zhao, W. Wang, L. Xiao, X. Zheng, F. Liu, G. Gao, Preparation of magnetically separable n-halamine nanocomposites for the improved antibacterial application. J. Colloid Interface Sci. 364(2), 333–340 (2011). https://doi.org/10.1016/j.jcis.2011.08.036
- A. Dong, Y. Sun, S. Lan, Q. Wang, Q. Cai, X. Qi, Y. Zhang, G. Gao, F. Liu, C. Harnoode, Barbituric acid-based magnetic n-halamine nanoparticles as recyclable antibacterial agents. ACS Appl. Mater. Interfaces 5(16), 8125–8133 (2013). https://doi.org/10.1021/am402191j
- S. Liu, G. Sun, Durable and regenerable biocidal polymers: acyclic n-halamine cotton cellulose. Ind. Eng. Chem. Res. 45(19), 6477–6482 (2006). https://doi.org/10.1021/ie060253m
- Y. Sun, G. Sun, Synthesis, characterization, and antibacterial activities of novel n-halamine polymer beads prepared by suspension copolymerization. Macromolecules 35(23), 8909–8912 (2002). https://doi.org/10.1021/ma020691e
- H. Yu, X. Zhang, Y. Zhang, J. Liu, H. Zhang, Development of a hydrophilic pes ultrafiltration membrane containing sio2@ n-halamine nanoparticles with both organic antifouling and antibacterial properties. Desalination 326(1), 69–76 (2013). https://doi.org/10.1016/j.desal.2013.07.018
- Z. Jiang, M. Qiao, X. Ren, P. Zhu, TS. Huang, Preparation of antibacterial cellulose with s-triazine-based quaternarized n-halamine. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.44998
- Y. Liu, J. Li, X. Cheng, X. Ren, T. Huang, Self-assembled antibacterial coating by n-halamine polyelectrolytes on a cellulose substrate. J. Mater. Chem. B 3(7), 1446–1454 (2015). https://doi.org/10.1039/c4tb01699h
- C. Schonauer, E. Tessitore, A. Moraci, G. Barbagallo, V. Albanese, The use of local agents: bone wax, gelatin, collagen, oxidized cellulose (Springer, Berlin, 2005), pp. 89–96
- D. Spangler, S. Rothenburger, K. Nguyen, H. Jampani, S. Weiss, S. Bhende, In vitro antimicrobial activity of oxidized regenerated cellulose against antibiotic-resistant microorganisms. Surg. Infect. 4(3), 255–262 (2003). https://doi.org/10.1089/109629603322419599
- K. Mou, J. Li, Y. Wang, R. Cha, X. Jiang, 2, 3-dialdehyde nanofibrillated cellulose as a potential material for the treatment of mrsa infection. J. Mater. Chem. B 5(38), 7876–7884 (2017). https://doi.org/10.1039/c7tb01857f
- L.A. Schneider, A. Korber, S. Grabbe, J. Dissemond, Influence of ph on wound-healing: a new perspective for wound-therapy? Arch. Dermatol. Res. 298(9), 413–420 (2007). https://doi.org/10.1007/s00403-006-0713-x
- S. Schreml, R.M. Szeimies, S. Karrer, J. Heinlin, M. Landthaler, P. Babilas, The impact of the ph value on skin integrity and cutaneous wound healing. J. Eur. Acad. Dermatol. Venereol. 24(4), 373–378 (2010). https://doi.org/10.1111/j.1468-3083.2009.03413.x
- P.D. Cotter, C. Hill, Surviving the acid test: responses of gram-positive bacteria to low ph. Microbiol. Mol. Biol. Rev. 67(3), 429–453 (2003). https://doi.org/10.1128/mmbr.67.3.429-453.2003
- J. Gorden, P. Small, Acid resistance in enteric bacteria. Infect. Immun. 61(1), 364–367 (1993)
- C.R. Kruse, M. Singh, S. Targosinski, I. Sinha, J.A. Sørensen, E. Eriksson, K. Nuutila, The effect of ph on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo study. Wound Repair Regen. 25(2), 260–269 (2017). https://doi.org/10.1111/wrr.12526
- L. Zhang, H. Ge, M. Xu, J. Cao, Y. Dai, Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose 24(5), 2287–2298 (2017). https://doi.org/10.1007/s10570-017-1255-4
- E. Fröhlich, The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7(1), 5577 (2012). https://doi.org/10.2147/Ijn.S36111
- M.B. Gorbet, M.V. Sefton, Endotoxin: the uninvited guest. Biomaterials 26(34), 6811–6817 (2005). https://doi.org/10.1016/j.biomaterials.2005.04.063
- H.R. Nordli, G. Chinga-Carrasco, A.M. Rokstad, B. Pukstad, Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells. Carbohydr. Polym. 150(1), 65–73 (2016). https://doi.org/10.1016/j.carbpol.2016.04.094
- M. Čolić, D. Mihajlović, A. Mathew, N. Naseri, V. Kokol, Cytocompatibility and immunomodulatory properties of wood based nanofibrillated cellulose. Cellulose 22(1), 763–778 (2015). https://doi.org/10.1007/s10570-014-0524-8
- K. Hua, D.O. Carlsson, E. Ålander, T. Lindström, M. Strømme, A. Mihranyan, N. Ferraz, Translational study between structure and biological response of nanocellulose from wood and green algae. RSC Adv. 4(6), 2892–2903 (2014). https://doi.org/10.1039/c3ra45553j
- J. Liu, F. Cheng, H. Grénman, S. Spoljaric, J. Seppälä, J.E. Eriksson, S. Willför, C. Xu, Development of nanocellulose scaffolds with tunable structures to support 3d cell culture. Carbohydr. Polym. 148(1), 259–271 (2016). https://doi.org/10.1016/j.carbpol.2016.04.064
- R. Koshani, A. Madadlou, A viewpoint on the gastrointestinal fate of cellulose nanocrystals. Trends Food Sci. Technol. 71(1), 268–273 (2018). https://doi.org/10.1016/j.tifs.2017.10.023
- BL. Pelegrini, F. Ré, MM. de Oliveira, T. Fernandes, JH. de Oliveira, AG. Oliveira Junior, EM. Girotto, C. Nakamura, AR. Sampaio, A. Valim, Cellulose nanocrystals as a sustainable raw material: cytotoxicity and applications on healthcare technology. Macromol. Mater. Eng. 304(8), 1900092 (2019). https://doi.org/10.1002/mame.201900092
- W.C. Summers, Bacteriophage therapy. Ann. Rev. Microbiol. 55(1), 437–451 (2001). https://doi.org/10.1146/annurev.micro.55.1.437
- LY. Brovko, H. Anany, MW. Griffiths, Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment (Elsevier, Amsterdam, 2012), pp. 241–288
- V.A. Fischetti, Bacteriophage endolysins: a novel anti-infective to control gram-positive pathogens. Int. J. Med. Microbiol. 300(6), 357–362 (2010). https://doi.org/10.1016/j.ijmm.2010.04.002
- A. Abouhmad, G. Mamo, T. Dishisha, M. Amin, R. Hatti-Kaul, T4 lysozyme fused with cellulose-binding module for antimicrobial cellulosic wound dressing materials. J. Appl. Microbiol. 121(1), 115–125 (2016). https://doi.org/10.1111/jam.13146
- H. Anany, W. Chen, R. Pelton, M. Griffiths, Biocontrol of listeria monocytogenes and escherichia coli o157: H7 in meat by using phages immobilized on modified cellulose membranes. Appl. Environ. Microbiol. 77(18), 6379–6387 (2011). https://doi.org/10.1128/Aem.05493-11
- Z. Hosseinidoust, T.G. Van de Ven, N. Tufenkji, Bacterial capture efficiency and antimicrobial activity of phage-functionalized model surfaces. Langmuir 27(9), 5472–5480 (2011). https://doi.org/10.1021/la200102z
- A. Lone, H. Anany, M. Hakeem, L. Aguis, A.-C. Avdjian, M. Bouget, A. Atashi, L. Brovko, D. Rochefort, M.W. Griffiths, Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. Int. J. Food Microbiol. 217(1), 49–58 (2016). https://doi.org/10.1016/j.ijfoodmicro.2015.10.011
- A. Meyer, M. Greene, C. Kimmelshue, R. Cademartiri, Stabilization of t4 bacteriophage at acidic and basic ph by adsorption on paper. Colloids Surf. B Biointerfaces 160(1), 169–176 (2017). https://doi.org/10.1016/j.colsurfb.2017.09.002
- D.M. Chipman, N. Sharon, Mechanism of lysozyme action. Science 165(3892), 454–465 (1969). https://doi.org/10.1126/science.165.3892.454
- A. Sulakvelidze, Z. Alavidze, J.G. Morris, Bacteriophage therapy. Antimicrob. Agents Chemother. 45(3), 649–659 (2001). https://doi.org/10.1128/AAC.45.3.649-659.2001
- K. Düring, P. Porsch, A. Mahn, O. Brinkmann, W. Gieffers, The non-enzymatic microbicidal activity of lysozymes. FEBS Lett. 449(2–3), 93–100 (1999). https://doi.org/10.1016/S0014-5793(99)00405-6
- A. Abouhmad, T. Dishisha, M.A. Amin, R. Hatti-Kaul, Immobilization to positively charged cellulose nanocrystals enhances the antibacterial activity and stability of hen egg white and t4 lysozyme. Biomacromolecules 18(5), 1600–1608 (2017). https://doi.org/10.1021/acs.biomac.7b00219
- E. Vonasek, P. Lu, Y.-L. Hsieh, N. Nitin, Bacteriophages immobilized on electrospun cellulose microfibers by non-specific adsorption, protein-ligand binding, and electrostatic interactions. Cellulose 24(10), 4581–4589 (2017). https://doi.org/10.1007/s10570-017-1442-3
References
M. Rinaudo, Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57(3), 397–430 (2008). https://doi.org/10.1002/pi.2378
M.R. Rostami, M. Yousefi, A. Khezerlou, M.A. Mohammadi, S.M. Jafari, Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocolloids 97(1), 105170 (2019). https://doi.org/10.1016/j.foodhyd.2019.06.015
T.G. van de Ven, A. Sheikhi, Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale 8(33), 15101–15114 (2016). https://doi.org/10.1039/C6NR01570K
J.K. Pandey, A.N. Nakagaito, H. Takagi, Fabrication and applications of cellulose nanoparticle-based polymer composites. Polym. Eng. Sci. 53(1), 1–8 (2013). https://doi.org/10.1002/pen.23242
B.L. Peng, N. Dhar, H. Liu, K. Tam, Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can. J. Chem. Eng. 89(5), 1191–1206 (2011). https://doi.org/10.1002/cjce.20554
H.M. Azeredo, M.F. Rosa, L.H.C. Mattoso, Nanocellulose in bio-based food packaging applications. Ind. Crops Prod. 97(1), 664–671 (2017). https://doi.org/10.1016/j.indcrop.2016.03.013
D. Dehnad, Z. Emam-Djomeh, H. Mirzaei, S.-M. Jafari, S. Dadashi, Optimization of physical and mechanical properties for chitosan-nanocellulose biocomposites. Carbohydr. Polym. 105(1), 222–228 (2014). https://doi.org/10.1016/j.carbpol.2014.01.094
D. Dehnad, H. Mirzaei, Z. Emam-Djomeh, S.-M. Jafari, S. Dadashi, Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydr. Polym. 109(1), 148–154 (2014). https://doi.org/10.1016/j.carbpol.2014.03.063
S.M. Jafari, I. Bahrami, D. Dehnad, S.A. Shahidi, The influence of nanocellulose coating on saffron quality during storage. Carbohydr. Polym. 181(1), 536–542 (2018). https://doi.org/10.1016/j.carbpol.2017.12.008
A. Khan, T. Huq, R.A. Khan, B. Riedl, M. Lacroix, Nanocellulose-based composites and bioactive agents for food packaging. Crit. Rev. Food Sci. Nutr. 54(2), 163–174 (2014). https://doi.org/10.1080/10408398.2011.578765
A.W. Carpenter, C.-F. de Lannoy, M.R. Wiesner, Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol. 49(9), 5277–5287 (2015). https://doi.org/10.1021/es506351r
H. Voisin, L. Bergström, P. Liu, A. Mathew, Nanocellulose-based materials for water purification. Nanomaterials 7(3), 57 (2017). https://doi.org/10.3390/nano7030057
P. Rofouie, M. Alizadehgiashi, H. Mundoor, I.I. Smalyukh, E. Kumacheva, Self-assembly of cellulose nanocrystals into semi-spherical photonic cholesteric films. Adv. Func. Mater. 28(45), 1803852 (2018). https://doi.org/10.1002/adfm.201803852
B. Wilts, A. Dumanli, R. Middleton, P. Vukusic, S. Vignolini, Invited article: chiral optics of helicoidal cellulose nanocrystal films. APL Photonics 2(4), 040801 (2017). https://doi.org/10.1063/1.4978387
H. Golmohammadi, E. Morales-Narvaez, T. Naghdi, A. Merkoci, Nanocellulose in sensing and biosensing. Chem. Mater. 29(13), 5426–5446 (2017). https://doi.org/10.1021/acs.chemmater.7b01170
T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham, T. Ben-Shalom, S. Lapidot, O. Shoseyov, Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39(1), 76–88 (2016). https://doi.org/10.1016/j.copbio.2016.01.002
M. Jorfi, E.J. Foster, Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132(14), 41719–41737 (2015). https://doi.org/10.1002/app.41719
Y. Xue, Z. Mou, H. Xiao, Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale 9(39), 14758–14781 (2017). https://doi.org/10.1039/C7NR04994C
M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36(8), 981–1014 (2011). https://doi.org/10.1016/j.progpolymsci.2011.02.001
M. Tavakolian, M. Okshevsky, T.G.M. van de Ven, N. Tufenkji, Developing antibacterial nanocrystalline cellulose using natural antibacterial agents. ACS Appl. Mater. Interfaces 10(40), 33827–33838 (2018). https://doi.org/10.1021/acsami.8b08770
F. Fu, L. Li, L. Liu, J. Cai, Y. Zhang, J. Zhou, L. Zhang, Construction of cellulose based zno nanocomposite films with antibacterial properties through one-step coagulation. ACS Appl. Mater. Interfaces 7(4), 2597–2606 (2015). https://doi.org/10.1021/am507639b
K.A. Rieger, H.J. Cho, H.F. Yeung, W. Fan, J.D. Schiffman, Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS Appl. Mater. Interfaces 8(5), 3032–3040 (2016). https://doi.org/10.1021/acsami.5b10130
R. Singla, S. Soni, V. Patial, P.M. Kulurkar, A. Kumari, S. Mahesh, Y.S. Padwad, S.K. Yadav, Cytocompatible anti-microbial dressings of s yzygium cumini cellulose nanocrystals decorated with silver nanoparticles accelerate acute and diabetic wound healing. Sci. Rep. 7(1), 10457 (2017). https://doi.org/10.1038/s41598-017-08897-9
T. Anirudhan, J. Deepa, Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J. Colloid Interface Sci. 490(1), 343–356 (2017). https://doi.org/10.1016/j.jcis.2016.11.042
S. Saini, N. Belgacem, J. Mendes, G. Elegir, J. Bras, Contact antimicrobial surface obtained by chemical grafting of microfibrillated cellulose in aqueous solution limiting antibiotic release. ACS Appl. Mater. Interfaces 7(32), 18076–18085 (2015). https://doi.org/10.1021/acsami.5b04938
L. He, H. Liang, L. Lin, B.R. Shah, Y. Li, Y. Chen, B. Li, Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and ph-dependent release of doxorubicin. Colloids Surf. B Biointerfaces 126(1), 288–296 (2015). https://doi.org/10.1016/j.colsurfb.2014.12.024
W. Li, X. Li, Q. Wang, Y. Pan, T. Wang, H. Wang, R. Song, H. Deng, Antibacterial activity of nanofibrous mats coated with lysozyme-layered silicate composites via electrospraying. Carbohydr. Polym. 99(1), 218–225 (2014). https://doi.org/10.1016/j.carbpol.2013.07.055
K. Zhu, T. Ye, J. Liu, Z. Peng, S. Xu, J. Lei, H. Deng, B. Li, Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. Int. J. Pharm. 441(1–2), 721–727 (2013). https://doi.org/10.1016/j.ijpharm.2012.10.022
M. Hoseinnejad, S.M. Jafari, I. Katouzian, Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit. Rev. Microbiol. 44(2), 161–181 (2018). https://doi.org/10.1080/1040841X.2017.1332001
D. Roy, J.S. Knapp, J.T. Guthrie, S. Perrier, Antibacterial cellulose fiber via raft surface graft polymerization. Biomacromolecules 9(1), 91–99 (2007). https://doi.org/10.1021/bm700849j
J. Yatvin, J. Gao, J. Locklin, Durable defense: robust and varied attachment of non-leaching poly “-onium” bactericidal coatings to reactive and inert surfaces. Chem. Commun. 50(67), 9433–9442 (2014). https://doi.org/10.1039/C4CC02803A
S.C. Monteiro, A.B. Boxall, Occurrence and fate of human pharmaceuticals in the environment (Springer, New York, 2010), pp. 53–154
E.-R. Kenawy, S. Worley, R. Broughton, The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules8(5), 1359–1384 (2007). https://doi.org/10.1021/bm061150q
F. Siedenbiedel, J.C. Tiller, Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4(1), 46–71 (2012). https://doi.org/10.3390/polym4010046
S. Saini, Ç.Y. Falco, M.N. Belgacem, J. Bras, Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydr. Polym. 135(1), 239–247 (2016). https://doi.org/10.1021/acsami.5b04938
J. Li, R. Cha, K. Mou, X. Zhao, K. Long, H. Luo, F. Zhou, X. Jiang, Nanocellulose-based antibacterial materials. Adv. Healthc. Mater. 7(20), 1800334 (2018). https://doi.org/10.1002/adhm.201800334
L.C. Duchesne, D. Larson, Cellulose and the evolution of plant life. Bioscience 39(4), 238–241 (1989)
D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011). https://doi.org/10.1002/anie.201001273
J. Tang, J. Sisler, N. Grishkewich, K.C. Tam, Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 494(1), 397–409 (2017). https://doi.org/10.1016/j.jcis.2017.01.077
AC. O’sullivan, Cellulose: the structure slowly unravels. Cellulose 4(3), 173–207 (1997). https://doi.org/10.1023/A:1018431705579
Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010). https://doi.org/10.1021/cr900339w
R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
Y. Qing, R. Sabo, J. Zhu, U. Agarwal, Z. Cai, Y. Wu, A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr. Polym. 97(1), 226–234 (2013). https://doi.org/10.1016/j.carbpol.2013.04.086
H.A. Khalil, A. Bhat, A.I. Yusra, Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87(2), 963–979 (2012). https://doi.org/10.1016/j.carbpol.2011.08.078
H. Yousefi, M. Faezipour, S. Hedjazi, M.M. Mousavi, Y. Azusa, A.H. Heidari, Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind. Crops Prod. 43(1), 732–737 (2013). https://doi.org/10.1016/j.indcrop.2012.08.030
A. Sheikhi, J. Hayashi, J. Eichenbaum, M. Gutin, N. Kuntjoro, D. Khorsandi, A. Khademhosseini, Recent advances in nanoengineering cellulose for cargo delivery. J. Controll. Release 294(1), 53–76 (2019). https://doi.org/10.1016/j.jconrel.2018.11.024
K. Markstedt, A. Mantas, I. Tournier, HC. Martínez Ávila, D. Hagg, P. Gatenholm, 3d bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5), 1489–1496 (2015). https://doi.org/10.1021/acs.biomac.5b00188
J.G. Torres-Rendon, T. Femmer, L. De Laporte, T. Tigges, K. Rahimi, F. Gremse, S. Zafarnia, W. Lederle, S. Ifuku, M. Wessling, Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Adv. Mater. 27(19), 2989–2995 (2015). https://doi.org/10.1002/adma.201405873
K. Kümmerer, J. Menz, T. Schubert, W. Thielemans, Biodegradability of organic nanoparticles in the aqueous environment. Chemosphere 82(10), 1387–1392 (2011). https://doi.org/10.1016/j.chemosphere.2010.11.069
K.M. Conley, L. Godbout, M.T. Whitehead, T.G. van de Ven, Reversing the structural chirality of cellulosic nanomaterials. Cellulose 24(12), 5455–5462 (2017). https://doi.org/10.1007/s10570-017-1533-1
I. Reiniati, A.N. Hrymak, A. Margaritis, Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Crit. Rev. Biotechnol. 37(4), 510–524 (2017). https://doi.org/10.1080/07388551.2016.1189871
F. Rol, M.N. Belgacem, A. Gandini, J. Bras, Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 88(1), 241–264 (2018). https://doi.org/10.1016/j.progpolymsci.2018.09.002
H. Yang, D. Chen, T.G. van de Ven, Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose 22(3), 1743–1752 (2015). https://doi.org/10.1007/s10570-015-0584-4
H. Yang, M.N. Alam, T.G.M. van de Ven, Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20(4), 1865–1875 (2013). https://doi.org/10.1007/s10570-013-9966-7
H. Yang, T.G.M. van de Ven, Preparation of hairy cationic nanocrystalline cellulose. Cellulose 23(3), 1791–1801 (2016). https://doi.org/10.1007/s10570-016-0902-5
M. Tavakolian, J. Lerner, F.M. Tovar, J. Frances, T.G. van de Ven, A. Kakkar, Dendrimer directed assembly of dicarboxylated hairy nanocellulose. J. Colloid Interface Sci. 541(1), 444–453 (2019). https://doi.org/10.1016/j.jcis.2019.01.100
H. Yang, T.G. van de Ven, A bottom-up route to a chemically end-to-end assembly of nanocellulose fibers. Biomacromolecules 17(6), 2240–2247 (2016). https://doi.org/10.1021/acs.biomac.6b00480
Z. Hosseinidoust, M.N. Alam, G. Sim, N. Tufenkji, T.G.M. van de Ven, Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale 7(40), 16647–16657 (2015). https://doi.org/10.1039/C5NR02506K
H. Yang, A. Tejado, N. Alam, M. Antal, T.G. van de Ven, Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28(20), 7834–7842 (2012). https://doi.org/10.1021/la2049663
K.E. Shopsowitz, H. Qi, W.Y. Hamad, M.J. MacLachlan, Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322), 422 (2010). https://doi.org/10.1038/nature09540
T. Saito, T. Uematsu, S. Kimura, T. Enomae, A. Isogai, Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19), 8804–8809 (2011). https://doi.org/10.1039/C1SM06050C
C. Aulin, J. Netrval, L. Wågberg, T. Lindström, Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6(14), 3298–3305 (2010). https://doi.org/10.1039/C001939A
A. Bodin, S. Concaro, M. Brittberg, P. Gatenholm, Bacterial cellulose as a potential meniscus implant. J. Tissue Eng. Regen. Med. 1(5), 406–408 (2007). https://doi.org/10.1002/term.51
U.-J. Kim, S. Kuga, M. Wada, T. Okano, T. Kondo, Periodate oxidation of crystalline cellulose. Biomacromolecules 1(3), 488–492 (2000). https://doi.org/10.1021/bm0000337
U.-J. Kim, M. Wada, S. Kuga, Solubilization of dialdehyde cellulose by hot water. Carbohydr. Polym. 56(1), 7–10 (2004). https://doi.org/10.1016/j.carbpol.2003.10.013
A. Varma, V. Chavan, P. Rajmohanan, S. Ganapathy, Some observations on the high-resolution solid-state cp-mas 13c-nmr spectra of periodate-oxidised cellulose. Polym. Degrad. Stab. 58(3), 257–260 (1997). https://doi.org/10.1016/S0141-3910(97)00049-9
W. Kasai, T. Morooka, M. Ek, Mechanical properties of films made from dialcohol cellulose prepared by homogeneous periodate oxidation. Cellulose 21(1), 769–776 (2014). https://doi.org/10.1007/s10570-013-0153-7
S. Kumari, D. Mankotia, G.S. Chauhan, Crosslinked cellulose dialdehyde for congo red removal from its aqueous solutions. J. Environ. Chem. Eng. 4(1), 1126–1136 (2016). https://doi.org/10.1016/j.jece.2016.01.008
A. Sheikhi, S. Safari, H. Yang, T.G. van de Ven, Copper removal using electrosterically stabilized nanocrystalline cellulose. ACS Appl. Mater. Interfaces 7(21), 11301–11308 (2015). https://doi.org/10.1021/acsami.5b01619
M. Tavakolian, H. Wiebe, M.A. Sadeghi, T.G. van de Ven, Dye removal using hairy nanocellulose: experimental and theoretical investigations. ACS Appl. Mater. Interfaces 12(4), 5040–5049 (2019). https://doi.org/10.1021/acsami.9b18679
R. Dash, A.J. Ragauskas, Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv. 2(8), 3403–3409 (2012). https://doi.org/10.1039/c2ra01071b
S.V. Kanth, A. Ramaraj, J.R. Rao, B.U. Nair, Stabilization of type i collagen using dialdehyde cellulose. Process Biochem. 44(8), 869–874 (2009). https://doi.org/10.1016/j.procbio.2009.04.008
U.-J. Kim, Y.R. Lee, T.H. Kang, J.W. Choi, S. Kimura, M. Wada, Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents. Carbohydr. Polym. 163(1), 34–42 (2017). https://doi.org/10.1016/j.carbpol.2017.01.052
G. Shen, X. Zhang, Y. Shen, S. Zhang, L. Fang, One-step immobilization of antibodies for α-1-fetoprotein immunosensor based on dialdehyde cellulose/ionic liquid composite. Anal. Biochem. 471(1), 38–43 (2015). https://doi.org/10.1016/j.ab.2014.09.020
J. Li, Y. Wan, L. Li, H. Liang, J. Wang, Preparation and characterization of 2, 3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng. C 29(5), 1635–1642 (2009). https://doi.org/10.1016/j.msec.2009.01.006
R. Koshani, T.G. van de Ven, A. Madadlou, Characterization of carboxylated cellulose nanocrytals isolated through catalyst-assisted h2o2 oxidation in a one-step procedure. J. Agric. Food Chem. 66(29), 7692–7700 (2018). https://doi.org/10.1021/acs.jafc.8b00080
Y. Okita, T. Saito, A.J.B. Isogai, Entire surface oxidation of various cellulose microfibrils by tempo-mediated oxidation. Biomacromolecules 11(6), 1696–1700 (2010). https://doi.org/10.1021/bm100214b
T. Saito, S. Kimura, Y. Nishiyama, A.J.B. Isogai, Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromolecules 8(8), 2485–2491 (2007). https://doi.org/10.1021/bm0703970
T. Saito, Y. Nishiyama, J.-L. Putaux, M. Vignon, A.J.B. Isogai, Homogeneous suspensions of individualized microfibrils from tempo-catalyzed oxidation of native cellulose. Biomacromolecules 7(6), 1687–1691 (2006). https://doi.org/10.1021/bm060154s
T. Saito, A. Isogai, Introduction of aldehyde groups on surfaces of native cellulose fibers by tempo-mediated oxidation. Colloids Surf. A Physicochem Eng Aspects 289(1–3), 219–225 (2006). https://doi.org/10.1016/j.colsurfa.2006.04.038
T. Saito, Y. Okita, T. Nge, J. Sugiyama, A. Isogai, Tempo-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr. Polym. 65(4), 435–440 (2006). https://doi.org/10.1016/j.carbpol.2006.01.034
S. Montanari, M. Roumani, L. Heux, M.R. Vignon, Topochemistry of carboxylated cellulose nanocrystals resulting from tempo-mediated oxidation. Macromolecules 38(5), 1665–1671 (2005). https://doi.org/10.1021/ma048396c
Y. Habibi, Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43(5), 1519–1542 (2014). https://doi.org/10.1039/C3CS60204D
S. Safari, A. Sheikhi, T.G. van de Ven, Electroacoustic characterization of conventional and electrosterically stabilized nanocrystalline celluloses. J. Colloid Interface Sci. 432(1), 151–157 (2014). https://doi.org/10.1016/j.jcis.2014.06.061
M. Hasani, ED. Cranston, G. Westman, DGJSM. Gray, Cationic surface functionalization of cellulose nanocrystals. Soft Matter4(11), 2238–2244 (2008). https://doi.org/10.1039/B806789A
S. Eyley, W.J.C.C. Thielemans, Imidazolium grafted cellulose nanocrystals for ion exchange applications. Chem. Commun. (Camb.) 47(14), 4177–4179 (2011). https://doi.org/10.1039/C0CC05359G
L. Jasmani, S. Eyley, R. Wallbridge, W.J.N. Thielemans, A facile one-pot route to cationic cellulose nanocrystals. Nanoscale 5(21), 10207–10211 (2013). https://doi.org/10.1039/C3NR03456A
J.A. Sirviö, M. Visanko, O. Laitinen, A. Ämmälä, H. Liimatainen, Amino-modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination. Carbohydr. Polym. 136(1), 581–587 (2016). https://doi.org/10.1016/j.carbpol.2015.09.089
X.M. Dong, J.-F. Revol, D.G. Gray, Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1), 19–32 (1998). https://doi.org/10.1023/A:1009260511939
F. Hemmati, S.M. Jafari, M. Kashaninejad, M.B. Motlagh, Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues. Int. J. Biol. Macromol. 120(1), 1216–1224 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.012
F. Hemmati, S.M. Jafari, R.A. Taheri, Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter. Int. J. Biol. Macromol. 137(1), 374–381 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.241
M. Roman, W.T. Winter, Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5), 1671–1677 (2004). https://doi.org/10.1021/bm034519+
T. Abitbol, E. Kloser, D.G. Gray, Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2), 785–794 (2013). https://doi.org/10.1007/s10570-013-9871-0
S. Dong, A.A. Hirani, K.R. Colacino, Y.W. Lee, M. Roman, Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life 2(03), 1241006 (2012). https://doi.org/10.1142/S1793984412410061
H. Liimatainen, M. Visanko, J. Sirviö, O. Hormi, J. Niinimäki, Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20(2), 741–749 (2013). https://doi.org/10.1007/s10570-013-9865-y
E. Feese, H. Sadeghifar, H.S. Gracz, D.S. Argyropoulos, R.A.J.B. Ghiladi, Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules 12(10), 3528–3539 (2011). https://doi.org/10.1021/bm200718s
SC. Fernandes, P. Sadocco, A. Alonso-Varona, T. Palomares, A. Eceiza, AJ. Silvestre, I. Mondragon, CS. Freire, Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl. Mater. Interfaces 5(8), 3290–3297 (2013). https://doi.org/10.1021/am400338n
L. Timofeeva, N. Kleshcheva, Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl. Microbiol. Biotechnol. 89(3), 475–492 (2011). https://doi.org/10.1007/s00253-010-2920-9
K. Hegstad, S. Langsrud, B.T. Lunestad, A.A. Scheie, M. Sunde, S.P. Yazdankhah, Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microbial Drug Resist. 16(2), 91–104 (2010). https://doi.org/10.1089/mdr.2009.0120
M.C. Jennings, L.E. Ator, T.J. Paniak, K.P. Minbiole, W.M. Wuest, Biofilm-eradicating properties of quaternary ammonium amphiphiles: simple mimics of antimicrobial peptides. ChemBioChem 15(15), 2211–2215 (2014). https://doi.org/10.1002/cbic.201402254
TJ. Franklin, GA. Snow, Biochemistry of antimicrobial action, 3rd edn. (Springer, London, 2013), pp. 58–78
M. Li, X. Liu, N. Liu, Z. Guo, P.K. Singh, S. Fu, Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. Colloids Surf. A Physicochem Eng Aspects 554(1), 122–128 (2018). https://doi.org/10.1016/j.colsurfa.2018.06.031
B. Dizman, M.O. Elasri, L.J. Mathias, Synthesis and antimicrobial activities of new water-soluble bis-quaternary ammonium methacrylate polymers. J. Appl. Polym. Sci. 94(2), 635–642 (2004). https://doi.org/10.1002/app.20872
C.H. Kim, J.W. Choi, H.J. Chun, K.S. Choi, Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity. Polym. Bull. 38(4), 387–393 (1997). https://doi.org/10.1007/s002890050064
T. Ikeda, H. Hirayama, H. Yamaguchi, S. Tazuke, M. Watanabe, Polycationic biocides with pendant active groups: molecular weight dependence of antibacterial activity. Antimicrob. Agents Chemother. 30(1), 132–136 (1986). https://doi.org/10.1128/aac.30.1.132
E.R. Kenawy, Y.A.G. Mahmoud, Biologically active polymers, 6. Macromol. Biosci. 3(2), 107–116 (2003). https://doi.org/10.1002/mabi.200390016
J. Vasiljević, B. Tomšič, I. Jerman, B. Orel, G. Jakša, B. Simončič, Novel multifunctional water-and oil-repellent, antibacterial, and flame-retardant cellulose fibres created by the sol–gel process. Cellulose 21(4), 2611–2623 (2014). https://doi.org/10.1016/j.carbpol.2013.01.074
T. Abitbol, H. Marway, E.D. Cranston, Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide. Nord. Pulp Pap. Res. J. 29(1), 46–57 (2014). https://doi.org/10.3183/npprj-2014-29-01-p046-057
P. Fei, L. Liao, J. Meng, B. Cheng, X. Hu, J. Song, Non-leaching antibacterial cellulose triacetate reverse osmosis membrane via covalent immobilization of quaternary ammonium cations. Carbohydr. Polym. 181(1), 1102–1111 (2018). https://doi.org/10.1016/j.carbpol.2017.11.036
L. Huang, Z. Ye, R. Berry, Modification of cellulose nanocrystals with quaternary ammonium-containing hyperbranched polyethylene ionomers by ionic assembly. ACS Sustain. Chem. Eng. 4(9), 4937–4950 (2016). https://doi.org/10.1021/acssuschemeng.6b01253
X. He, L. Cheng, Y. Wang, J. Zhao, W. Zhang, C. Lu, Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of cr (vi) from water. Carbohydr. Polym.Carbohydr. Polym. 111, 683–687 (2014). https://doi.org/10.1016/j.carbpol.2014.05.020
E. Poverenov, M. Shemesh, A. Gulino, D.A. Cristaldi, V. Zakin, T. Yefremov, R. Granit, Durable contact active antimicrobial materials formed by a one-step covalent modification of polyvinyl alcohol, cellulose and glass surfaces. Colloids Surf. B Biointerfaces 112(1), 356–361 (2013). https://doi.org/10.1016/j.colsurfb.2013.07.032
R. Jia, W. Tian, H. Bai, J. Zhang, S. Wang, J. Zhang, Sunlight-driven wearable and robust antibacterial coatings with water-soluble cellulose-based photosensitizers. Adv. Healthc. Mater. 8(5), 1801591 (2019). https://doi.org/10.1002/adhm.201801591
C.G. Otoni, J.S. Figueiredo, L.B. Capeletti, M.B. Cardoso, J.S. Bernardes, W. Loh, Tailoring the antimicrobial response of cationic nanocellulose-based foams through cryo-templating. ACS Appl. Bio Mater. 2(5), 1975–1986 (2019). https://doi.org/10.1021/acsabm.9b00034
A. Żywicka, K. Fijałkowski, A.F. Junka, J. Grzesiak, M. El Fray, Modification of bacterial cellulose with quaternary ammonium compounds based on fatty acids and amino acids and the effect on antimicrobial activity. Biomacromolecules 19(5), 1528–1538 (2018). https://doi.org/10.1021/acs.biomac.8b00183
W.Z. Xu, G. Gao, J.F. Kadla, Synthesis of antibacterial cellulose materials using a “clickable” quaternary ammonium compound. Cellulose 20(3), 1187–1199 (2013). https://doi.org/10.1007/s10570-013-9914-6
A. Kaboorani, B. Riedl, Surface modification of cellulose nanocrystals (cnc) by a cationic surfactant. Ind. Crops Prod. 65(1), 45–55 (2015). https://doi.org/10.1016/j.indcrop.2014.11.027
R. Vyhnalkova, N. Mansur-Azzam, A. Eisenberg, T.G. van de Ven, Ten million fold reduction of live bacteria by bactericidal filter paper. Adv. Func. Mater. 22(19), 4096–4100 (2012). https://doi.org/10.1002/adfm.201200686
Y. Pan, X. Huang, X. Shi, Y. Zhan, G. Fan, S. Pan, J. Tian, H. Deng, Y. Du, Antimicrobial application of nanofibrous mats self-assembled with quaternized chitosan and soy protein isolate. Carbohydr. Polym. 133(1), 229–235 (2015). https://doi.org/10.1016/j.carbpol.2015.07.019
C.Z. Chen, N.C. Beck-Tan, P. Dhurjati, T.K. van Dyk, R.A. LaRossa, S.L. Cooper, Quaternary ammonium functionalized poly (propylene imine) dendrimers as effective antimicrobials: structure-activity studies. Biomacromolecules 1(3), 473–480 (2000). https://doi.org/10.1021/bm0055495
M.R. Hamblin, Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr. Opin. Microbiol. 33(1), 67–73 (2016). https://doi.org/10.1016/j.mib.2016.06.008
A. Tavares, C. Carvalho, M.A. Faustino, M.G. Neves, J.P. Tomé, A.C. Tomé, J.A. Cavaleiro, Â. Cunha, N. Gomes, E. Alves, Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar. Drugs 8(1), 91–105 (2010). https://doi.org/10.3390/md8010091
B. Guo, X. Cai, S. Xu, S.M.A. Fateminia, J. Liu, J. Liang, G. Feng, W. Wu, B. Liu, Decoration of porphyrin with tetraphenylethene: converting a fluorophore with aggregation-caused quenching to aggregation-induced emission enhancement. J. Mater. Chem. B 4(27), 4690–4695 (2016). https://doi.org/10.1039/c6tb01159d
K. Liu, Y. Liu, Y. Yao, H. Yuan, S. Wang, Z. Wang, X. Zhang, Supramolecular photosensitizers with enhanced antibacterial efficiency. Angew. Chem. Int. Ed. 52(32), 8285–8289 (2013). https://doi.org/10.1002/anie.201303387
E. Skovsen, J.W. Snyder, J.D. Lambert, P.R. Ogilby, Lifetime and diffusion of singlet oxygen in a cell. J. Phys. Chem. B 109(18), 8570–8573 (2005). https://doi.org/10.1021/jp051163i
M. Jonoobi, A. Ashori, V. Siracusa, Characterization and properties of polyethersulfone/modified cellulose nanocrystals nanocomposite membranes. Polym. Test. 76(1), 333–339 (2019). https://doi.org/10.1016/j.polymertesting.2019.03.039
J. Meng, X. Zhang, L. Ni, Z. Tang, Y. Zhang, Y. Zhang, W. Zhang, Antibacterial cellulose membrane via one-step covalent immobilization of ammonium/amine groups. Desalination 359(1), 156–166 (2015). https://doi.org/10.1016/j.desal.2014.12.032
F. Rafieian, M. Jonoobi, Q. Yu, A novel nanocomposite membrane containing modified cellulose nanocrystals for copper ion removal and dye adsorption from water. Cellulose 26(5), 1–15 (2019). https://doi.org/10.1007/s10570-019-02320-4
E. Robles, L. Csóka, J. Labidi, Effect of reaction conditions on the surface modification of cellulose nanofibrils with aminopropyl triethoxysilane. Coatings 8(4), 139 (2018). https://doi.org/10.3390/coatings8040139
E. Robles, I. Urruzola, J. Labidi, L. Serrano, Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites. Ind. Crops Prod. 71(1), 44–53 (2015). https://doi.org/10.1016/j.indcrop.2015.03.075
M. Hosseinnejad, S.M. Jafari, Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 85(1), 467–475 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.022
M. Abdelmouleh, S. Boufi, M. Belgacem, A. Duarte, A.B. Salah, A. Gandini, Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int. J. Adhes. Adhes. 24(1), 43–54 (2004). https://doi.org/10.1016/S0143-7496(03)00099-X
M. Abdelmouleh, S. Boufi, A. Ben Salah, MN. Belgacem, A. Gandini, Interaction of silane coupling agents with cellulose. Langmuir18(8), 3203–3208 (2002). https://doi.org/10.1021/la011657g
S. Saini, M.N. Belgacem, M.-C.B. Salon, J. Bras, Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane. Cellulose 23(1), 795–810 (2016). https://doi.org/10.1007/s10570-015-0854-1
T. Ikeda, H. Hirayama, K. Suzuki, H. Yamaguchi, S. Tazuke, Biologically active polycations, 6. Polymeric pyridinium salts with well-defined main chain structure. Die Makromol. Chem. 187(2), 333–340 (1986). https://doi.org/10.1002/macp.1986.021870212
W. Shao, J. Wu, H. Liu, S. Ye, L. Jiang, X. Liu, Novel bioactive surface functionalization of bacterial cellulose membrane. Carbohydr. Polym. 178(1), 270–276 (2017). https://doi.org/10.1016/j.carbpol.2017.09.045
S. Saini, M.N. Belgacem, J. Bras, Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity. Mater. Sci. Eng. C 75(1), 760–768 (2017). https://doi.org/10.1016/j.msec.2017.02.062
B. Demir, I. Cerkez, S. Worley, R. Broughton, T.-S. Huang, N-halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria. ACS Appl. Mater. Interfaces 7(3), 1752–1757 (2015). https://doi.org/10.1021/am507329m
F. Hui, C. Debiemme-Chouvy, Antimicrobial n-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules 14(3), 585–601 (2013). https://doi.org/10.1021/bm301980q
R. Li, P. Hu, X. Ren, S. Worley, T. Huang, Antimicrobial n-halamine modified chitosan films. Carbohydr. Polym. 92(1), 534–539 (2013). https://doi.org/10.1016/j.carbpol.2012.08.115
H.B. Kocer, A. Akdag, X. Ren, R. Broughton, S. Worley, T. Huang, Effect of alkyl derivatization on several properties of n-halamine antimicrobial siloxane coatings. Ind. Eng. Chem. Res. 47(20), 7558–7563 (2008). https://doi.org/10.1021/ie800899u
A. Dong, S. Lan, J. Huang, T. Wang, T. Zhao, W. Wang, L. Xiao, X. Zheng, F. Liu, G. Gao, Preparation of magnetically separable n-halamine nanocomposites for the improved antibacterial application. J. Colloid Interface Sci. 364(2), 333–340 (2011). https://doi.org/10.1016/j.jcis.2011.08.036
A. Dong, Y. Sun, S. Lan, Q. Wang, Q. Cai, X. Qi, Y. Zhang, G. Gao, F. Liu, C. Harnoode, Barbituric acid-based magnetic n-halamine nanoparticles as recyclable antibacterial agents. ACS Appl. Mater. Interfaces 5(16), 8125–8133 (2013). https://doi.org/10.1021/am402191j
S. Liu, G. Sun, Durable and regenerable biocidal polymers: acyclic n-halamine cotton cellulose. Ind. Eng. Chem. Res. 45(19), 6477–6482 (2006). https://doi.org/10.1021/ie060253m
Y. Sun, G. Sun, Synthesis, characterization, and antibacterial activities of novel n-halamine polymer beads prepared by suspension copolymerization. Macromolecules 35(23), 8909–8912 (2002). https://doi.org/10.1021/ma020691e
H. Yu, X. Zhang, Y. Zhang, J. Liu, H. Zhang, Development of a hydrophilic pes ultrafiltration membrane containing sio2@ n-halamine nanoparticles with both organic antifouling and antibacterial properties. Desalination 326(1), 69–76 (2013). https://doi.org/10.1016/j.desal.2013.07.018
Z. Jiang, M. Qiao, X. Ren, P. Zhu, TS. Huang, Preparation of antibacterial cellulose with s-triazine-based quaternarized n-halamine. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.44998
Y. Liu, J. Li, X. Cheng, X. Ren, T. Huang, Self-assembled antibacterial coating by n-halamine polyelectrolytes on a cellulose substrate. J. Mater. Chem. B 3(7), 1446–1454 (2015). https://doi.org/10.1039/c4tb01699h
C. Schonauer, E. Tessitore, A. Moraci, G. Barbagallo, V. Albanese, The use of local agents: bone wax, gelatin, collagen, oxidized cellulose (Springer, Berlin, 2005), pp. 89–96
D. Spangler, S. Rothenburger, K. Nguyen, H. Jampani, S. Weiss, S. Bhende, In vitro antimicrobial activity of oxidized regenerated cellulose against antibiotic-resistant microorganisms. Surg. Infect. 4(3), 255–262 (2003). https://doi.org/10.1089/109629603322419599
K. Mou, J. Li, Y. Wang, R. Cha, X. Jiang, 2, 3-dialdehyde nanofibrillated cellulose as a potential material for the treatment of mrsa infection. J. Mater. Chem. B 5(38), 7876–7884 (2017). https://doi.org/10.1039/c7tb01857f
L.A. Schneider, A. Korber, S. Grabbe, J. Dissemond, Influence of ph on wound-healing: a new perspective for wound-therapy? Arch. Dermatol. Res. 298(9), 413–420 (2007). https://doi.org/10.1007/s00403-006-0713-x
S. Schreml, R.M. Szeimies, S. Karrer, J. Heinlin, M. Landthaler, P. Babilas, The impact of the ph value on skin integrity and cutaneous wound healing. J. Eur. Acad. Dermatol. Venereol. 24(4), 373–378 (2010). https://doi.org/10.1111/j.1468-3083.2009.03413.x
P.D. Cotter, C. Hill, Surviving the acid test: responses of gram-positive bacteria to low ph. Microbiol. Mol. Biol. Rev. 67(3), 429–453 (2003). https://doi.org/10.1128/mmbr.67.3.429-453.2003
J. Gorden, P. Small, Acid resistance in enteric bacteria. Infect. Immun. 61(1), 364–367 (1993)
C.R. Kruse, M. Singh, S. Targosinski, I. Sinha, J.A. Sørensen, E. Eriksson, K. Nuutila, The effect of ph on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo study. Wound Repair Regen. 25(2), 260–269 (2017). https://doi.org/10.1111/wrr.12526
L. Zhang, H. Ge, M. Xu, J. Cao, Y. Dai, Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose 24(5), 2287–2298 (2017). https://doi.org/10.1007/s10570-017-1255-4
E. Fröhlich, The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7(1), 5577 (2012). https://doi.org/10.2147/Ijn.S36111
M.B. Gorbet, M.V. Sefton, Endotoxin: the uninvited guest. Biomaterials 26(34), 6811–6817 (2005). https://doi.org/10.1016/j.biomaterials.2005.04.063
H.R. Nordli, G. Chinga-Carrasco, A.M. Rokstad, B. Pukstad, Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells. Carbohydr. Polym. 150(1), 65–73 (2016). https://doi.org/10.1016/j.carbpol.2016.04.094
M. Čolić, D. Mihajlović, A. Mathew, N. Naseri, V. Kokol, Cytocompatibility and immunomodulatory properties of wood based nanofibrillated cellulose. Cellulose 22(1), 763–778 (2015). https://doi.org/10.1007/s10570-014-0524-8
K. Hua, D.O. Carlsson, E. Ålander, T. Lindström, M. Strømme, A. Mihranyan, N. Ferraz, Translational study between structure and biological response of nanocellulose from wood and green algae. RSC Adv. 4(6), 2892–2903 (2014). https://doi.org/10.1039/c3ra45553j
J. Liu, F. Cheng, H. Grénman, S. Spoljaric, J. Seppälä, J.E. Eriksson, S. Willför, C. Xu, Development of nanocellulose scaffolds with tunable structures to support 3d cell culture. Carbohydr. Polym. 148(1), 259–271 (2016). https://doi.org/10.1016/j.carbpol.2016.04.064
R. Koshani, A. Madadlou, A viewpoint on the gastrointestinal fate of cellulose nanocrystals. Trends Food Sci. Technol. 71(1), 268–273 (2018). https://doi.org/10.1016/j.tifs.2017.10.023
BL. Pelegrini, F. Ré, MM. de Oliveira, T. Fernandes, JH. de Oliveira, AG. Oliveira Junior, EM. Girotto, C. Nakamura, AR. Sampaio, A. Valim, Cellulose nanocrystals as a sustainable raw material: cytotoxicity and applications on healthcare technology. Macromol. Mater. Eng. 304(8), 1900092 (2019). https://doi.org/10.1002/mame.201900092
W.C. Summers, Bacteriophage therapy. Ann. Rev. Microbiol. 55(1), 437–451 (2001). https://doi.org/10.1146/annurev.micro.55.1.437
LY. Brovko, H. Anany, MW. Griffiths, Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment (Elsevier, Amsterdam, 2012), pp. 241–288
V.A. Fischetti, Bacteriophage endolysins: a novel anti-infective to control gram-positive pathogens. Int. J. Med. Microbiol. 300(6), 357–362 (2010). https://doi.org/10.1016/j.ijmm.2010.04.002
A. Abouhmad, G. Mamo, T. Dishisha, M. Amin, R. Hatti-Kaul, T4 lysozyme fused with cellulose-binding module for antimicrobial cellulosic wound dressing materials. J. Appl. Microbiol. 121(1), 115–125 (2016). https://doi.org/10.1111/jam.13146
H. Anany, W. Chen, R. Pelton, M. Griffiths, Biocontrol of listeria monocytogenes and escherichia coli o157: H7 in meat by using phages immobilized on modified cellulose membranes. Appl. Environ. Microbiol. 77(18), 6379–6387 (2011). https://doi.org/10.1128/Aem.05493-11
Z. Hosseinidoust, T.G. Van de Ven, N. Tufenkji, Bacterial capture efficiency and antimicrobial activity of phage-functionalized model surfaces. Langmuir 27(9), 5472–5480 (2011). https://doi.org/10.1021/la200102z
A. Lone, H. Anany, M. Hakeem, L. Aguis, A.-C. Avdjian, M. Bouget, A. Atashi, L. Brovko, D. Rochefort, M.W. Griffiths, Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. Int. J. Food Microbiol. 217(1), 49–58 (2016). https://doi.org/10.1016/j.ijfoodmicro.2015.10.011
A. Meyer, M. Greene, C. Kimmelshue, R. Cademartiri, Stabilization of t4 bacteriophage at acidic and basic ph by adsorption on paper. Colloids Surf. B Biointerfaces 160(1), 169–176 (2017). https://doi.org/10.1016/j.colsurfb.2017.09.002
D.M. Chipman, N. Sharon, Mechanism of lysozyme action. Science 165(3892), 454–465 (1969). https://doi.org/10.1126/science.165.3892.454
A. Sulakvelidze, Z. Alavidze, J.G. Morris, Bacteriophage therapy. Antimicrob. Agents Chemother. 45(3), 649–659 (2001). https://doi.org/10.1128/AAC.45.3.649-659.2001
K. Düring, P. Porsch, A. Mahn, O. Brinkmann, W. Gieffers, The non-enzymatic microbicidal activity of lysozymes. FEBS Lett. 449(2–3), 93–100 (1999). https://doi.org/10.1016/S0014-5793(99)00405-6
A. Abouhmad, T. Dishisha, M.A. Amin, R. Hatti-Kaul, Immobilization to positively charged cellulose nanocrystals enhances the antibacterial activity and stability of hen egg white and t4 lysozyme. Biomacromolecules 18(5), 1600–1608 (2017). https://doi.org/10.1021/acs.biomac.7b00219
E. Vonasek, P. Lu, Y.-L. Hsieh, N. Nitin, Bacteriophages immobilized on electrospun cellulose microfibers by non-specific adsorption, protein-ligand binding, and electrostatic interactions. Cellulose 24(10), 4581–4589 (2017). https://doi.org/10.1007/s10570-017-1442-3