ROS-Responsive Berberine Polymeric Micelles Effectively Suppressed the Inflammation of Rheumatoid Arthritis by Targeting Mitochondria
Corresponding Author: Liang Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 76
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease, which attacks human joint system and causes lifelong inflammatory condition. To date, no cure is available for RA and even the ratio of achieving remission is very low. Hence, to enhance the efficacy of RA treatment, it is essential to develop novel approaches specifically targeting pathological tissues. In this study, we discovered that RA synovial fibroblasts exhibited higher reactive oxygen species (ROS) and mitochondrial superoxide level, which were adopted to develop ROS-responsive nano-medicines in inflammatory microenvironment for enhanced RA treatment. A selenocystamine-based polymer was synthesized as a ROS-responsive carrier nanoplatform, and berberine serves as a tool drug. By assembling, ROS-responsive berberine polymeric micelles were fabricated, which remarkably increased the uptake of berberine in RA fibroblast and improved in vitro and in vivo efficacy ten times higher. Mechanistically, the anti-RA effect of micelles was blocked by the co-treatment of AMPK inhibitor or palmitic acid, indicating that the mechanism of micelles was carried out through targeting mitochondrial, suppressing lipogenesis and finally inhibiting cellular proliferation. Taken together, our ROS-responsive nano-medicines represent an effective way of preferentially releasing prodrug at the inflammatory microenvironment and improving RA therapeutic efficacy.
Article Highlights:
1 Reactive oxygen species (ROS)-responsive nano-medicines represent an effective way of preferentially releasing prodrug at the inflammatory microenvironment and improving rheumatoid arthritis therapeutic efficacy.
2 The combination of ROS-responsive carrier nanoplatform and berberine is a potential agent for treating rheumatoid arthritis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.D. Quan, G.M. Thiele, J. Tian, D. Wang, The development of novel therapies for rheumatoid arthritis. Expert Opin. Ther. Pat. 18(7), 723–738 (2008). https://doi.org/10.1517/13543776.18.7.723
- J.S. Smolen, G. Steiner, Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2(6), 473–488 (2003). https://doi.org/10.1038/nrd1109
- U. Muller-Ladner, T. Pap, R.E. Gay, M. Neidhart, S. Gay, Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 1(2), 102–110 (2005). https://doi.org/10.1038/ncprheum0047
- B. Combe, R. van Vollenhoven, Novel targeted therapies: The future of rheumatoid arthritis? Mavrilumab and tabalumab as examples. Ann. Rheum. Dis. 72(9), 1433–1435 (2013). https://doi.org/10.1136/annrheumdis-2013-203261
- M.B. Calasan, O.F. van den Bosch, M.C. Creemers, M. Custers, A.H. Heurkens, J.M. van Woerkom, N.M. Wulffraat, Prevalence of methotrexate intolerance in rheumatoid arthritis and psoriatic arthritis. Arthritis Res. Ther. 15(6), R217 (2013). https://doi.org/10.1186/ar4413
- L.C. Huber, O. Distler, I. Tarner, R.E. Gay, S. Gay, T. Pap, Synovial fibroblasts: Key players in rheumatoid arthritis. Rheumatology (Oxford) 45(6), 669–675 (2006). https://doi.org/10.1093/rheumatology/kel065
- J. Li, D. Cui, J. Huang, S. He, Z. Yang, Y. Zhang, Y. Luo, K. Pu, Organic semiconducting pro-nanostimulants for near-infrared photoactivatable cancer immunotherapy. Angew. Chem. Int. Ed. 58(36), 12680–12687 (2019). https://doi.org/10.1002/anie.201906288
- Y. Lyu, D. Cui, H. Sun, Y. Miao, H. Duan, K. Pu, Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression. Angew. Chem. Int. Ed. 56(31), 9155–9159 (2017). https://doi.org/10.1002/anie.201705543
- L.K. Prasad, H. O'Mary, Z. Cui, Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine 10(13), 2063–2074 (2015). https://doi.org/10.2217/nnm.15.45
- J. Sudimack, R.J. Lee, Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41(2), 147–162 (2000)
- C. Ehrhardt, C. Kneuer, U. Bakowsky, Selectins-an emerging target for drug delivery. Adv. Drug Deliv. Rev. 56(4), 527–549 (2004). https://doi.org/10.1016/j.addr.2003.10.029
- X. Wang, J. Li, Y. Wang, L. Koenig, A. Gjyrezi et al., A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS Nano 5(8), 6184–6194 (2011). https://doi.org/10.1021/nn200739q
- J.T. Sockolosky, F.C. Szoka, The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. Adv. Drug Deliv. Rev. 91, 109–124 (2015). https://doi.org/10.1016/j.addr.2015.02.005
- C. Schultz, Targeting the extracellular matrix for delivery of bioactive molecules to sites of arthritis. Br. J. Pharmacol. 176(1), 26–37 (2019). https://doi.org/10.1111/bph.14516
- T. McGarry, U. Fearon, Cell metabolism as a potentially targetable pathway in RA. Nat. Rev. Rheumat. 15(2), 70–72 (2019). https://doi.org/10.1038/s41584-018-0148-8
- J. McHugh, Ampk: A therapeutic target in ra? Nat. Rev. Rheumatol. 15(4), 188 (2019). https://doi.org/10.1038/s41584-019-0192-z
- E. Feist, G.R. Burmester, Small molecules targeting JAKs–a new approach in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 52(8), 1352–1357 (2013). https://doi.org/10.1093/rheumatology/kes417
- C.L. Kuo, C.W. Chi, T.Y. Liu, The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 203(2), 127–137 (2004). https://doi.org/10.1016/j.canlet.2003.09.002
- W. Kong, J. Wei, P. Abidi, M. Lin, S. Inaba et al., Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med. 10(12), 1344–1351 (2004). https://doi.org/10.1038/nm1135
- Z. Hu, Q. Jiao, J. Ding, F. Liu, R. Liu et al., Berberine induces dendritic cell apoptosis and has therapeutic potential for rheumatoid arthritis. Arthritis Rheum. 63(4), 949–959 (2011). https://doi.org/10.1002/art.30202
- X.X. Fan, E.L. Leung, Y. Xie, Z.Q. Liu, Y.F. Zheng et al., Suppression of lipogenesis via reactive oxygen species-AMPK signaling for treating malignant and proliferative diseases. Antioxid. Redox Signal. 28(5), 339–357 (2018). https://doi.org/10.1089/ars.2017.7090
- A.A. Vita, N.A. Pullen, The influence of berberine on co-stimulatory molecule expression and T cell activation. J. Immunol. 200(1), 175.11 (2018)
- Y. Wang, R. Branicky, A. Noe, S. Hekimi, Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217(6), 1915–1928 (2018). https://doi.org/10.1083/jcb.201708007
- E.C. Hinchy, A.V. Gruszczyk, R. Willows, N. Navaratnam, A.R. Hall et al., Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J. Biol. Chem. 293(44), 17208–17217 (2018). https://doi.org/10.1074/jbc.RA118.002579
- S. Herzig, R.J. Shaw, Ampk: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19(2), 121–135 (2018). https://doi.org/10.1038/nrm.2017.95
- M. Mellado, L. Martinez-Munoz, G. Cascio, P. Lucas, J.L. Pablos, J.M. Rodriguez-Frade, T cell migration in rheumatoid arthritis. Front. Immunol. 6, 1–12 (2015)
- S.H. Hwang, S.H. Jung, S. Lee, S. Choi, S.A. Yoo et al., Leukocyte-specific protein 1 regulates t-cell migration in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 112(47), E6535–E6543 (2015). https://doi.org/10.1073/pnas.1514152112
- R.A. Ohara, S.M. Rasmussen, W.A. Stinson, H.D. Cui, Y.X. Du et al., Synovial fibroblast CD318 expression mediates T cell adhesion and migration in rheumatoid arthritis. Arthritis Rheumatol. 69, 111 (2017)
- A. Gierut, H. Perlman, R.M. Pope, Innate immunity and rheumatoid arthritis. Rheum. Dis. Clin. North Am. 36(2), 271 (2010). https://doi.org/10.1016/j.rdc.2010.03.004
- D. Deon, S. Ahmed, K. Tai, N. Scaletta, C. Herrero, I.H. Lee, A. Krause, L.B. Ivashkiv, Cross-talk between Il-1 and Il-6 signaling pathways in rheumatoid arthritis synovial fibroblasts. J. Immunol. 167(9), 5395–5403 (2001). https://doi.org/10.4049/jimmunol.167.9.5395
- R.S. Peres, F.Y. Liew, J. Talbot, V. Carregaro, R.D. Oliveira et al., Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 112(8), 2509–2514 (2015). https://doi.org/10.1073/pnas.1424792112
References
L.D. Quan, G.M. Thiele, J. Tian, D. Wang, The development of novel therapies for rheumatoid arthritis. Expert Opin. Ther. Pat. 18(7), 723–738 (2008). https://doi.org/10.1517/13543776.18.7.723
J.S. Smolen, G. Steiner, Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2(6), 473–488 (2003). https://doi.org/10.1038/nrd1109
U. Muller-Ladner, T. Pap, R.E. Gay, M. Neidhart, S. Gay, Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 1(2), 102–110 (2005). https://doi.org/10.1038/ncprheum0047
B. Combe, R. van Vollenhoven, Novel targeted therapies: The future of rheumatoid arthritis? Mavrilumab and tabalumab as examples. Ann. Rheum. Dis. 72(9), 1433–1435 (2013). https://doi.org/10.1136/annrheumdis-2013-203261
M.B. Calasan, O.F. van den Bosch, M.C. Creemers, M. Custers, A.H. Heurkens, J.M. van Woerkom, N.M. Wulffraat, Prevalence of methotrexate intolerance in rheumatoid arthritis and psoriatic arthritis. Arthritis Res. Ther. 15(6), R217 (2013). https://doi.org/10.1186/ar4413
L.C. Huber, O. Distler, I. Tarner, R.E. Gay, S. Gay, T. Pap, Synovial fibroblasts: Key players in rheumatoid arthritis. Rheumatology (Oxford) 45(6), 669–675 (2006). https://doi.org/10.1093/rheumatology/kel065
J. Li, D. Cui, J. Huang, S. He, Z. Yang, Y. Zhang, Y. Luo, K. Pu, Organic semiconducting pro-nanostimulants for near-infrared photoactivatable cancer immunotherapy. Angew. Chem. Int. Ed. 58(36), 12680–12687 (2019). https://doi.org/10.1002/anie.201906288
Y. Lyu, D. Cui, H. Sun, Y. Miao, H. Duan, K. Pu, Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression. Angew. Chem. Int. Ed. 56(31), 9155–9159 (2017). https://doi.org/10.1002/anie.201705543
L.K. Prasad, H. O'Mary, Z. Cui, Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine 10(13), 2063–2074 (2015). https://doi.org/10.2217/nnm.15.45
J. Sudimack, R.J. Lee, Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41(2), 147–162 (2000)
C. Ehrhardt, C. Kneuer, U. Bakowsky, Selectins-an emerging target for drug delivery. Adv. Drug Deliv. Rev. 56(4), 527–549 (2004). https://doi.org/10.1016/j.addr.2003.10.029
X. Wang, J. Li, Y. Wang, L. Koenig, A. Gjyrezi et al., A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS Nano 5(8), 6184–6194 (2011). https://doi.org/10.1021/nn200739q
J.T. Sockolosky, F.C. Szoka, The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. Adv. Drug Deliv. Rev. 91, 109–124 (2015). https://doi.org/10.1016/j.addr.2015.02.005
C. Schultz, Targeting the extracellular matrix for delivery of bioactive molecules to sites of arthritis. Br. J. Pharmacol. 176(1), 26–37 (2019). https://doi.org/10.1111/bph.14516
T. McGarry, U. Fearon, Cell metabolism as a potentially targetable pathway in RA. Nat. Rev. Rheumat. 15(2), 70–72 (2019). https://doi.org/10.1038/s41584-018-0148-8
J. McHugh, Ampk: A therapeutic target in ra? Nat. Rev. Rheumatol. 15(4), 188 (2019). https://doi.org/10.1038/s41584-019-0192-z
E. Feist, G.R. Burmester, Small molecules targeting JAKs–a new approach in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 52(8), 1352–1357 (2013). https://doi.org/10.1093/rheumatology/kes417
C.L. Kuo, C.W. Chi, T.Y. Liu, The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 203(2), 127–137 (2004). https://doi.org/10.1016/j.canlet.2003.09.002
W. Kong, J. Wei, P. Abidi, M. Lin, S. Inaba et al., Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med. 10(12), 1344–1351 (2004). https://doi.org/10.1038/nm1135
Z. Hu, Q. Jiao, J. Ding, F. Liu, R. Liu et al., Berberine induces dendritic cell apoptosis and has therapeutic potential for rheumatoid arthritis. Arthritis Rheum. 63(4), 949–959 (2011). https://doi.org/10.1002/art.30202
X.X. Fan, E.L. Leung, Y. Xie, Z.Q. Liu, Y.F. Zheng et al., Suppression of lipogenesis via reactive oxygen species-AMPK signaling for treating malignant and proliferative diseases. Antioxid. Redox Signal. 28(5), 339–357 (2018). https://doi.org/10.1089/ars.2017.7090
A.A. Vita, N.A. Pullen, The influence of berberine on co-stimulatory molecule expression and T cell activation. J. Immunol. 200(1), 175.11 (2018)
Y. Wang, R. Branicky, A. Noe, S. Hekimi, Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217(6), 1915–1928 (2018). https://doi.org/10.1083/jcb.201708007
E.C. Hinchy, A.V. Gruszczyk, R. Willows, N. Navaratnam, A.R. Hall et al., Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J. Biol. Chem. 293(44), 17208–17217 (2018). https://doi.org/10.1074/jbc.RA118.002579
S. Herzig, R.J. Shaw, Ampk: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19(2), 121–135 (2018). https://doi.org/10.1038/nrm.2017.95
M. Mellado, L. Martinez-Munoz, G. Cascio, P. Lucas, J.L. Pablos, J.M. Rodriguez-Frade, T cell migration in rheumatoid arthritis. Front. Immunol. 6, 1–12 (2015)
S.H. Hwang, S.H. Jung, S. Lee, S. Choi, S.A. Yoo et al., Leukocyte-specific protein 1 regulates t-cell migration in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 112(47), E6535–E6543 (2015). https://doi.org/10.1073/pnas.1514152112
R.A. Ohara, S.M. Rasmussen, W.A. Stinson, H.D. Cui, Y.X. Du et al., Synovial fibroblast CD318 expression mediates T cell adhesion and migration in rheumatoid arthritis. Arthritis Rheumatol. 69, 111 (2017)
A. Gierut, H. Perlman, R.M. Pope, Innate immunity and rheumatoid arthritis. Rheum. Dis. Clin. North Am. 36(2), 271 (2010). https://doi.org/10.1016/j.rdc.2010.03.004
D. Deon, S. Ahmed, K. Tai, N. Scaletta, C. Herrero, I.H. Lee, A. Krause, L.B. Ivashkiv, Cross-talk between Il-1 and Il-6 signaling pathways in rheumatoid arthritis synovial fibroblasts. J. Immunol. 167(9), 5395–5403 (2001). https://doi.org/10.4049/jimmunol.167.9.5395
R.S. Peres, F.Y. Liew, J. Talbot, V. Carregaro, R.D. Oliveira et al., Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 112(8), 2509–2514 (2015). https://doi.org/10.1073/pnas.1424792112