Enhancing Capacitance Performance of Ti3C2Tx MXene as Electrode Materials of Supercapacitor: From Controlled Preparation to Composite Structure Construction
Corresponding Author: Ning Cao
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 77
Abstract
Ti3C2Tx, a novel two-dimensional layer material, is widely used as electrode materials of supercapacitor due to its good metal conductivity, redox reaction active surface, and so on. However, there are many challenges to be addressed which impede Ti3C2Tx obtaining the ideal specific capacitance, such as restacking, re-crushing, and oxidation of titanium. Recently, many advances have been proposed to enhance capacitance performance of Ti3C2Tx. In this review, recent strategies for improving specific capacitance are summarized and compared, for example, film formation, surface modification, and composite method. Furthermore, in order to comprehend the mechanism of those efforts, this review analyzes the energy storage performance in different electrolytes and influencing factors. This review is expected to predict redouble research direction of Ti3C2Tx materials in supercapacitors.
Highlights:
1 The traditional and novel etching methods are summarized and compared, especially fluorine-free method. The methods for accelerating exfoliation of Ti3C2Tx are classified.
2 The energy storage mechanisms of Ti3C2Tx in different electrolytes are compared. Based on energy storage mechanisms, the influencing factors of morphology and surface functional groups are discussed.
3 In response to the problems of the Ti3C2Tx, strategies for improving capacitance from structure modulation to composite structure construction are summarized and compared.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015). https://doi.org/10.1038/NCHEM.2085
- Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280–2301 (2013). https://doi.org/10.1039/c3ee40709h
- N.M. Caffrey, Effect of mixed surface terminations on the structural and electrochemical properties of two-dimensional Ti3C2T2 and V2CT2 MXenes multilayers. Nanoscale 10, 13520–13530 (2018). https://doi.org/10.1039/c8nr03221a
- H. Hu, Z. Bai, B. Niu, M. Wu, T. Hua, Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics. J. Mater. Chem. A 6, 14876–14884 (2018). https://doi.org/10.1039/C8TA04737E
- D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/NNANO.2010.162
- X. Zang, Y. Hou, T. Wang, R. Zhang, F. Kang, H. Zhu, Temperature-resistant and flexible supercapacitors based on 10-inch wafer-scale nanocarbon films. Sci. China-Mater. 62, 947–954 (2019). https://doi.org/10.1007/s40843-018-9399-3
- D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, N.K.A.C. Kodiweera, P.E. Stallworth, S. Greenbaum, T.J. Bandosz, Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance. Carbon 47, 1576–1584 (2009). https://doi.org/10.1016/j.carbon.2009.02.006
- G. Zhao, X. Li, M. Huang, Z. Zhen, Y. Zhong, Q. Chen, X. Zhao, Y. He, R. Hu, T. Yang, R. Zhang, C. Li, J. Kong, J.B. Xu, R.S. Ruoff, H. Zhu, The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 46, 4417–4449 (2017). https://doi.org/10.1039/c7cs00256d
- N. Cao, Y. Zhang, Study of Reduced Graphene Oxide Preparation by Hummers’ Method and Related Characterization. J. Nanomater. 2015, 1–5 (2015). https://doi.org/10.1155/2015/168125
- P. Yan, J. Xu, C. Wu, R. Zhang, J. Jin, Structure and supercapacitive performance of hierarchical porous carbon obtained by catalyzing microporous carbide-derived carbon. Mater. Lett. 139, 340–343 (2015). https://doi.org/10.1016/j.matlet.2014.10.063
- S. Chen, Y. Xiang, M.K. Banks, C. Peng, W. Xu, R. Wu, Polyoxometalate-coupled MXene nanohybrid via poly (ionic liquid) linkers and its electrode for enhanced supercapacitive performance. Nanoscale 10, 20043–20052 (2018). https://doi.org/10.1039/c8nr05760e
- H. Li, F. Musharavati, E. Zalenezhad, X. Chen, K.N. Hui, K.S. Hui, Electrodeposited Ni Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors. Electrochim. Acta 261, 178–187 (2018). https://doi.org/10.1016/j.electacta.2017.12.139
- R. Zhao, M. Wang, D. Zhao, H. Li, C. Wang, L. Yin, Molecular-level heterostructures assembled from titanium carbide MXene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors. ACS Energy Lett. 3, 132–140 (2017). https://doi.org/10.1021/acsenergylett.7b01063
- Y. Wang, H. Dou, J. Wang, B. Ding, Y. Xu, Z. Chang, X. Hao, Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 327, 221–228 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.062
- Y.-T. Weng, H.-A. Pan, N.-L. Wu, G.Z. Chen, Titanium carbide nanocube core induced interfacial growth of crystalline polypyrrole/polyvinyl alcohol lamellar shell for wide-temperature range supercapacitors. J. Power Sources 274, 1118–1125 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.158
- H. Wang, L. Li, C. Zhu, S. Lin, J. Wen, Q. Jin, X. Zhang, In situ polymerized Ti3C2Tx/PDA electrode with superior areal capacitance for supercapacitors. J. Alloy. Compd. 778, 858–865 (2019). https://doi.org/10.1016/j.jallcom.2018.11.172
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: mXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- B. Anasori, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
- M. Naguib, Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction. Accounts Chem. Res. 48, 128–135 (2015). https://doi.org/10.1021/ar500346b
- Y. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Agnese, S. Duan, Y. Gao, G. Chen, X. Wang, 2D MXenes as co-catalysts in photocatalysis: synthetic methods. Nano-Micro Lett. 11, 79 (2019). https://doi.org/10.1007/s40820-019-0309-6
- M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013). https://doi.org/10.1021/ja405735d
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
- H.-W. Wang, M. Naguib, K. Page, D.J. Wesolowski, Y. Gogotsi, Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chem. Mat. 28, 349–359 (2015). https://doi.org/10.1021/acs.chemmater.5b04250
- E. Kayali, A. VahidMohammadi, J. Orangi, M. Beidaghi, Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage. ACS Appl. Mater. Interfaces 10, 25949–25954 (2018). https://doi.org/10.1021/acsami.8b07397
- M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). https://doi.org/10.1126/science.1216744
- L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3, 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
- R.B. Rakhi, B. Ahmed, D. Anjum, H.N. Alshareef, Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl. Mater. Interfaces 8, 18806–18814 (2016). https://doi.org/10.1021/acsami.6b04481
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- M. Guo, C. Liu, Z. Zhang, J. Zhou, Y. Tang, S. Luo, Flexible Ti3C2Tx@Al electrodes with ultrahigh areal capacitance: in situ regulation of interlayer conductivity and spacing. Adv. Funct. Mater. 28, 1803196 (2018). https://doi.org/10.1002/adfm.201803196
- M. Naguib, O. Mashtalir, M.R. Lukatskaya, B. Dyatkin, C. Zhang, V. Presser, Y. Gogotsi, M.W. Barsoum, One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of Mxenes. Chem. Commun. 50, 7420–7423 (2014). https://doi.org/10.1039/c4cc01646g
- A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016). https://doi.org/10.1002/aelm.201600255
- H. Huang, H. Su, H. Zhang, L. Xu, X. Chu et al., Extraordinary areal and volumetric performance of flexible solid-state micro-supercapacitors based on highly conductive freestanding Ti3C2Tx films. Adv. Electron. Mater. 4, 1800179 (2018). https://doi.org/10.1002/aelm.201800179
- H. Wang, J. Zhang, Y. Wu, H. Huang, Q. Jiang, Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance. J. Phys. Chem. Solids 115, 172–179 (2018). https://doi.org/10.1016/j.jpcs.2017.12.039
- X. Jian, M. He, L. Chen, M.-M. Zhang, R. Li, L.-J. Gao, F. Fu, Z.-H. Liang, Three-dimensional carambola-like MXene/polypyrrole composite produced by one-step co-electrodeposition method for electrochemical energy storage. Electrochim. Acta 318, 820–827 (2019). https://doi.org/10.1016/j.electacta.2019.06.045
- L. Yu, Z. Fan, Y. Shao, Z. Tian, J. Sun, Z. Liu, Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9, 1901839 (2019). https://doi.org/10.1002/aenm.201901839
- X. Wu, B. Huang, Q. Wang, Y. Wang, High energy density of two-dimensional MXene/NiCo-LDHs interstratification assembly electrode: understanding the role of interlayer ions and hydration. Chem. Eng. J. 380, 122456 (2020). https://doi.org/10.1016/j.cej.2019.122456
- L. Shen, X. Zhou, X. Zhang, Y. Zhang, Y. Liu, W. Wang, W. Si, X. Dong, Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J. Mater. Chem. A 6, 23513–23520 (2018). https://doi.org/10.1039/c8ta09600g
- S.B. Ambade, R.B. Ambade, W. Eom, S.H. Noh, S.H. Kim, T.H. Han, 2D Ti3C2 MXene/WO3 hybrid architectures for high-rate supercapacitors. Adv. Mater. Interfaces 5, 1801361 (2018). https://doi.org/10.1002/admi.201801361
- X. Wang, Q. Fu, J. Wen, X. Ma, C. Zhu, X. Zhang, D. Qi, 3D Ti3C2Tx aerogels with enhanced surface area for high performance supercapacitors. Nanoscale 10, 20828–20835 (2018). https://doi.org/10.1039/c8nr06014b
- M. Zhu, Y. Huang, Q. Deng, J. Zhou, Z. Pei et al., Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 6, 1600969 (2016). https://doi.org/10.1002/aenm.201600969
- M. Naguib, T. Saito, S. Lai, M.S. Rager, T. Aytug, M. Parans Paranthaman, M.-Q. Zhao, Y. Gogotsi, Ti3C2Tx (MXene)-polyacrylamide nanocomposite films. RSC Adv. 6, 72069–72073 (2016). https://doi.org/10.1039/c6ra10384g
- Y. Ren, J. Zhu, L. Wang, H. Liu, Y. Liu, W. Wu, F. Wang, Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Mater. Lett. 214, 84–87 (2018). https://doi.org/10.1016/j.matlet.2017.11.060
- L. Shi, S. Lin, L. Li, W. Wu, L. Wu, H. Gao, X. Zhang, Ti3C2Tx-foam as free-standing electrode for supercapacitor with improved electrochemical performance. Ceram. Int. 44, 13901–13907 (2018). https://doi.org/10.1016/j.ceramint.2018.04.238
- X.Y. Lang, B.T. Liu, X.M. Shi, Y.Q. Li, Z. Wen, Q. Jiang, Ultrahigh-power pseudocapacitors based on ordered porous heterostructures of electron-correlated oxides. Adv. Sci. 3, 1500319 (2016). https://doi.org/10.1002/advs.201500319
- X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C.E. Ren et al., Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
- C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13, 2078–2085 (2013). https://doi.org/10.1021/nl400378j
- A. Feng, Y. Yu, L. Mi, Y. Yu, L. Song, Comparative study on electrosorptive behavior of NH4HF2-etched Ti3C2 and HF-etched Ti3C2 for capacitive deionization. Ionics 25, 727–735 (2018). https://doi.org/10.1007/s11581-018-2787-9
- Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, J.W. Chew, Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv. Mater. 30, 1704561 (2018). https://doi.org/10.1002/adma.201704561
- M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- M. Boota, Y. Gogotsi, MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 9, 1901839 (2019). https://doi.org/10.1002/aenm.201802917
- Q. Wang, Z. Zhang, Z. Zhang, X. Zhou, G. Ma, Facile synthesis of MXene/MnO2 composite with high specific capacitance. J. Solid State Electrochem. 23, 361–365 (2018). https://doi.org/10.1007/s10008-018-4143-4
- M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi, M.W. Barsoum, Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mat. 28, 3507–3514 (2016). https://doi.org/10.1021/acs.chemmater.6b01275
- W. Feng, Y. Wang, S. Zeng, Y. Tan, H. Zhang, S. Peng, Ultrasonic assisted etching and delaminating of Ti3C2 Mxene. Ceram. Int. 44, 7084–7087 (2018). https://doi.org/10.1016/j.ceramint.2018.01.147
- X. Su, J. Zhang, H. Mu, J. Zhao, Z. Wang, Z. Zhao, C. Han, Z. Ye, Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene. J. Alloy. Compd. 752, 32–39 (2018). https://doi.org/10.1016/j.jallcom.2018.04.152
- Y. Tang, J. Zhu, C. Yang, F. Wang, Enhanced capacitive performance based on diverse layered structure of two-dimensional Ti3C2 MXene with long etching time. J. Electrochem. Soc. 163, A1975–A1982 (2016). https://doi.org/10.1149/2.0921609jes
- S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X. Feng, Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018). https://doi.org/10.1002/ange.201809662
- G. Li, L. Tan, Y. Zhang, B. Wu, L. Li, Highly efficiently delaminated single-layered MXene nanosheets with large lateral size. Langmuir 33, 9000–9006 (2017). https://doi.org/10.1021/acs.langmuir.7b01339
- A. Qian, J.Y. Seo, H. Shi, J.Y. Lee, C.H. Chung, Diverse surface functional groups and electrochemical behavior in dimethyl sulfoxide-delaminated Ti3C2Tx MXene. Chem. Sus. Chem. 11, 3719–3723 (2018). https://doi.org/10.1002/cssc.201801759
- H. Wang, J. Zhang, Y. Wu, H. Huang, Q. Jiang, Achieving high-rate capacitance of multi-layer titanium carbide (MXene) by liquid-phase exfoliation through Li-intercalation. Electrochem. Commun. 81, 48–51 (2017). https://doi.org/10.1016/j.elecom.2017.05.009
- F. Han, S. Luo, L. Xie, J. Zhu, W. Wei et al., Boosting the Yield of MXene 2D Sheets via a Facile Hydrothermal-Assisted Intercalation. ACS Appl. Mater. Interfaces. 11, 8443–8452 (2019). https://doi.org/10.1021/acsami.8b22339
- A. Qian, S.E. Hyeon, J.Y. Seo, C.-H. Chung, Capacitance changes associated with cation-transport in free-standing flexible Ti3C2Tx (T = O, F, OH) MXene film electrodes. Electrochim. Acta 266, 86–93 (2018). https://doi.org/10.1016/j.electacta.2018.02.019
- Y. Ando, Y. Gohda, S. Tsuneyuki, Ab initio molecular dynamics study of the Helmholtz layer formed on solid-liquid interfaces and its capacitance. Chem. Phys. Lett. 556, 9–12 (2013). https://doi.org/10.1016/j.cplett.2012.11.062
- M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015). https://doi.org/10.1038/NNANO.2015.40
- M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- A. Sugahara, Y. Ando, S. Kajiyama, K. Yazawa, K. Gotoh, M. Otani, M. Okubo, A. Yamada, Negative dielectric constant of water confined in nanosheets. Nat. Commun. 10, 850 (2019). https://doi.org/10.1038/s41467-019-08789-8
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin. Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- Q.X. Xia, N.M. Shinde, T. Zhang, J.M. Yun, A. Zhou, R.S. Mane, S. Mathur, K.H. Kim, Seawater electrolyte-mediated high volumetric MXene-based electrochemical symmetric supercapacitors. Dalton Trans. 47, 8676–8682 (2018). https://doi.org/10.1039/C8DT01375F
- M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang, X. Wang, High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10, 11344–11350 (2016). https://doi.org/10.1021/acsnano.6b06597
- C. Zhan, M. Naguib, M. Lukatskaya, P.R.C. Kent, Y. Gogotsi, D.E. Jiang, Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 9, 1223–1228 (2018). https://doi.org/10.1021/acs.jpclett.8b00200
- Y. Dall’Agnese, M.R. Lukatskaya, K.M. Cook, P.-L. Taberna, Y. Gogotsi, P. Simon, High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 48, 118–122 (2014). https://doi.org/10.1016/j.elecom.2014.09.002
- R. Syamsai, P. Kollu, S. Kwan Jeong, A. Nirmala Grace, Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications. Ceram. Int. 43, 13119–13126 (2017). https://doi.org/10.1016/j.ceramint.2017.07.003
- Y. Gao, L. Wang, Z. Li, Y. Zhang, B. Xing, C. Zhang, A. Zhou, Electrochemical performance of Ti3C2 supercapacitors in KOH electrolyte. J. Adv. Ceram. 4, 130–134 (2015). https://doi.org/10.1007/s40145-015-0143-3
- Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9, 2847–2854 (2016). https://doi.org/10.1039/c6ee01717g
- Y. Dall’Agnese, P. Rozier, P.-L. Taberna, Y. Gogotsi, P. Simon, Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 306, 510–515 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.036
- K.R. Seddon, Ionic Liquids for Clean Technology. J. Chem. Tech. Biotechnol. 68, 351–356 (1997). https://doi.org/10.1002/(SICI)1097-4660(199704)68:4%3c351:AID-JCTB613%3e3.0.CO;2-4
- N. Jackel, B. Kruner, K.L. Van Aken, M. Alhabeb, B. Anasori, F. Kaasik, Y. Gogotsi, V. Presser, Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids. ACS Appl. Mater. Interfaces 8, 32089–32093 (2016). https://doi.org/10.1021/acsami.6b11744
- N.C. Osti, M.W. Thompson, K.L. Van Aken, M. Alhabeb, M. Tyagi et al., Humidity exposure enhances microscopic mobility in a room-temperature ionic liquid in MXene. J. Phy. Chem. C 122, 27561–27566 (2018). https://doi.org/10.1021/acs.jpcc.8b09677
- X. Wang, T.S. Mathis, K. Li, Z. Lin, L. Vlcek et al., Influences from solvents on charge storage in titanium carbide Mxenes. Nat. Energy 4, 241–248 (2019). https://doi.org/10.1038/s41560-019-0339-9
- K. Maleski, C.E. Ren, M.Q. Zhao, B. Anasori, Y. Gogotsi, Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interfaces 10, 24491–24498 (2018). https://doi.org/10.1021/acsami.8b04662
- H. Wang, Y. Wu, J. Zhang, G. Li, H. Huang, X. Zhang, Q. Jiang, Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Mater. Lett. 160, 537–540 (2015). https://doi.org/10.1016/j.matlet.2015.08.046
- M. Hu, T. Hu, Z. Li, Y. Yang, R. Cheng, J. Yang, C. Cui, X. Wang, Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx Mxene. ACS Nano 12, 3578–3586 (2018). https://doi.org/10.1021/acsnano.8b00676
- R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mat. 27, 5314–5323 (2015). https://doi.org/10.1021/acs.chemmater.5b01623
- B. Scheibe, V. Kupka, B. Peplinska, M. Jarek, K. Tadyszak, The influence of oxygen concentration during MAX phases (Ti3AlC2) preparation on the alpha-Al2O3 microparticles content and specific surface area of multilayered MXenes (Ti3C2Tx). Materials 12, 253 (2019). https://doi.org/10.3390/ma12030353
- C. Zhao, Q. Wang, H. Zhang, S. Passerini, X. Qian, Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS Appl. Mater. Interfaces 8, 15661–15667 (2016). https://doi.org/10.1021/acsami.6b04767
- J. Li, X. Yuan, C. Lin, Y. Yang, L. Xu, X. Du, J. Xie, J. Lin, J. Sun, Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 7, 1602725 (2017). https://doi.org/10.1002/aenm.201602725
- X. Zhang, Y. Liu, S. Dong, J. Yang, X. Liu, Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance. Electrochim. Acta 294, 233–239 (2019). https://doi.org/10.1016/j.electacta.2018.10.096
- C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017). https://doi.org/10.1002/adma.201702678
- S. Xu, G. Wei, J. Li, Y. Ji, N. Klyui, V. Izotov, W. Han, Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method. Chem. Eng. J. 317, 1026–1036 (2017). https://doi.org/10.1039/C8TA04737E
- M. Hu, Z. Li, H. Zhang, T. Hu, C. Zhang, Z. Wu, X. Wang, Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance. Chem. Commun. 51, 13531–13533 (2015). https://doi.org/10.1039/c5cc04722f
- Y. Tian, C. Yang, W. Que, Y. He, X. Liu, Y. Luo, X. Yin, L.B. Kong, Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors. J. Power Sources 369, 78–86 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.085
- Z. Fan, Y. Wang, Z. Xie, X. Xu, Y. Yuan, Z. Cheng, Y. Liu, A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale 10, 9642–9652 (2018). https://doi.org/10.1039/c8nr01550c
- R. Liu, A. Zhang, J. Tang, J. Tian, W. Huang, J. Cai, C. Barrow, W. Yang, J. Liu, Fabrication of cobaltosic oxide nanoparticle-doped 3D MXene/graphene hybrid porous aerogels for all-solid-state supercapacitors. Chem. Eur. J. 25, 5547–5554 (2019). https://doi.org/10.1002/chem.201806342
- L. Li, M. Zhang, X. Zhang, Z. Zhang, New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. J. Power Sources 364, 234–241 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.029
- Z. Lin, D. Barbara, P.-L. Taberna, K.L. Van Aken, B. Anasori, Y. Gogotsi, P. Simon, Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources 326, 575–579 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.035
- J. Yan, Y. Ma, C. Zhang, X. Li, W. Liu, X. Yao, S. Yao, S. Luo, Polypyrrole-MXene coated textile-based flexible energy storage device. RSC Adv. 8, 39742–39748 (2018). https://doi.org/10.1039/c8ra08403c
- M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016). https://doi.org/10.1002/adma.201504705
- O. Mashtalir, M.R. Lukatskaya, A.I. Kolesnikov, E. Raymundo-Pinero, M. Naguib, M.W. Barsoum, Y. Gogotsi, The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale 8, 9128–9133 (2016). https://doi.org/10.1039/c6nr01462c
- W. Wu, D. Wei, J. Zhu, D. Niu, F. Wang et al., Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials. Ceram. Int. 45, 7328–7337 (2019). https://doi.org/10.1016/j.ceramint.2019.01.016
- T.A. Le, N.Q. Tran, Y. Hong, H. Lee, Intertwined titanium carbide MXene within a 3D tangled polypyrrole nanowires matrix for enhanced supercapacitor performances. Chem. Eur. J. 25, 1037–1043 (2019). https://doi.org/10.1002/chem.201804291
- A. VahidMohammadi, J. Moncada, H. Chen, E. Kayali, J. Orangi, C.A. Carrero, M. Beidaghi, Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 6, 22123–22133 (2018). https://doi.org/10.1039/c8ta05807e
- J. Zhou, J. Yu, L. Shi, Z. Wang, H. Liu, B. Yang, C. Li, C. Zhu, J. Xu, A Conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 14, 1803786 (2018). https://doi.org/10.1002/smll.201803786
- S. Chen, Y. Xiang, W. Xu, C. Peng, A novel MnO2/MXene composite prepared by electrostatic self-assembly and its use as an electrode for enhanced supercapacitive performance. Inorg. Chem. Front. 6, 199–208 (2019). https://doi.org/10.1039/c8qi00957k
- Y. Tang, J. Zhu, C. Yang, F. Wang, Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. J. Alloy. Compd. 685, 194–201 (2016). https://doi.org/10.1016/j.jallcom.2016.05.221
- K. Zhang, G. Ying, L. Liu, F. Ma, L. Su, C. Zhang, D. Wu, X. Wang, Y. Zhou, Three-dimensional porous Ti3C2Tx-NiO composite electrodes with enhanced electrochemical performance for supercapacitors. Materials 12, 188 (2019). https://doi.org/10.3390/ma12010188
- J. Zhu, X. Lu, L. Wang, Synthesis of a MoO3/Ti3C2Tx composite with enhanced capacitive performance for supercapacitors. RSC Adv. 6, 98506–98513 (2016). https://doi.org/10.1039/c6ra15651g
- R. Zou, H. Quan, M. Pan, S. Zhou, D. Chen, X. Luo, Self-assembled MXene(Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochim. Acta 292, 31–38 (2018). https://doi.org/10.1016/j.electacta.2018.09.149
- J. Zhu, C. Yang, F. Wang, M. Cao, Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 163, A785 (2016). https://doi.org/10.1149/2.0981605jes
- W. Zheng, P. Zhang, W. Tian, Y. Wang, Y. Zhang, J. Chen, Z. Sun, Microwave-assisted synthesis of SnO2-Ti3C2 nanocomposite for enhanced supercapacitive performance. Mater. Lett. 209, 122–125 (2017). https://doi.org/10.1016/j.matlet.2017.07.131
- Y. Wang, J. Sun, X. Qian, Y. Zhang, L. Yu, R. Niu, H. Zhao, J. Zhu, 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. J. Power Sources 414, 540–546 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.036
- Q. Fu, X. Wang, N. Zhang, J. Wen, L. Li, H. Gao, X. Zhang, Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor. J. Colloid Interface Sci. 511, 128–134 (2018). https://doi.org/10.1016/j.jcis.2017.09.104
- L. Yang, W. Zheng, P. Zhang, J. Chen, W.B. Tian, Y.M. Zhang, Z.M. Sun, MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. J. Electroanal. Chem. 830, 1–6 (2018). https://doi.org/10.1016/j.jelechem.2018.10.024
- M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
- S. Xu, G. Wei, J. Li, W. Han, Y. Gogotsi, Flexible Mxene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. J. Mater. Chem. A 5, 17442–17451 (2017). https://doi.org/10.1039/c7ta05721k
- Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan, H. Kang, B. Su, Z. Cheng, Y. Liu, Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5, 1800750 (2018). https://doi.org/10.1002/advs.201800750
- A.S. Levitt, M. Alhabeb, C.B. Hatter, A. Sarycheva, G. Dion, Y. Gogotsi, Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 7, 269–277 (2019). https://doi.org/10.1039/c8ta09810g
- C. Yu, Y. Gong, R. Chen, M. Zhang, J. Zhou, J. An, F. Lv, S. Guo, G. Sun, A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube Scaffold and MXene nanosheets. Small 14, 1801203 (2018). https://doi.org/10.1002/smll.201801203
- Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang et al., High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 14, 1802225 (2018). https://doi.org/10.1002/smll.201802225
- L. Yang, W. Zheng, P. Zhang, J. Chen, W. Zhang, W.B. Tian, Z.M. Sun, Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors. Electrochim. Acta 300, 349–356 (2019). https://doi.org/10.1016/j.electacta.2019.01.122
- Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu, L. Dai, L. Wang, Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368–376 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009
- C. Yang, Y. Tang, Y. Tian, Y. Luo, M.F.U. Din, X. Yin, W. Que, Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance. Adv. Energy Mater. 8, 1802087 (2018). https://doi.org/10.1002/aenm.201802087
- G. Kresse, Ab initio molecular dynamics for liquid metals. J. Non-Ctyst. Solids 192&193, 222–229 (1993). https://doi.org/10.1103/PhysRevB.47.558
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Am. Phys. Soc. 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- F.M. Hassan, V. Chabot, J. Li, B.K. Kim, L. Ricardez-Sandoval, A. Yu, Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. J. Mater. Chem. A 1, 2904–2912 (2013). https://doi.org/10.1039/c2ta01064j
- C. Zhang, L. Wang, W. Lei, Y. Wu, C. Li et al., Achieving quick charge/discharge rate of 3.0 Vs−1 by 2D titanium carbide (MXene) via N-doped carbon intercalation. Mater. Lett. 234, 21–25 (2019). https://doi.org/10.1016/j.matlet.2018.08.124
- T. Zhao, J. Zhang, Z. Du, Y. Liu, G. Zhou, J. Wang, Dopamine-derived N-doped carbon decorated titanium carbide composite for enhanced supercapacitive performance. Electrochim. Acta 254, 308–319 (2017). https://doi.org/10.1016/j.electacta.2017.09.144
- Q.X. Xia, N.M. Shinde, J.M. Yun, T. Zhang, R.S. Mane, S. Mathur, K.H. Kim, Bismuth oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim. Acta 271, 351–360 (2018). https://doi.org/10.1016/j.electacta.2018.03.168
References
D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015). https://doi.org/10.1038/NCHEM.2085
Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280–2301 (2013). https://doi.org/10.1039/c3ee40709h
N.M. Caffrey, Effect of mixed surface terminations on the structural and electrochemical properties of two-dimensional Ti3C2T2 and V2CT2 MXenes multilayers. Nanoscale 10, 13520–13530 (2018). https://doi.org/10.1039/c8nr03221a
H. Hu, Z. Bai, B. Niu, M. Wu, T. Hua, Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics. J. Mater. Chem. A 6, 14876–14884 (2018). https://doi.org/10.1039/C8TA04737E
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/NNANO.2010.162
X. Zang, Y. Hou, T. Wang, R. Zhang, F. Kang, H. Zhu, Temperature-resistant and flexible supercapacitors based on 10-inch wafer-scale nanocarbon films. Sci. China-Mater. 62, 947–954 (2019). https://doi.org/10.1007/s40843-018-9399-3
D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, N.K.A.C. Kodiweera, P.E. Stallworth, S. Greenbaum, T.J. Bandosz, Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance. Carbon 47, 1576–1584 (2009). https://doi.org/10.1016/j.carbon.2009.02.006
G. Zhao, X. Li, M. Huang, Z. Zhen, Y. Zhong, Q. Chen, X. Zhao, Y. He, R. Hu, T. Yang, R. Zhang, C. Li, J. Kong, J.B. Xu, R.S. Ruoff, H. Zhu, The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 46, 4417–4449 (2017). https://doi.org/10.1039/c7cs00256d
N. Cao, Y. Zhang, Study of Reduced Graphene Oxide Preparation by Hummers’ Method and Related Characterization. J. Nanomater. 2015, 1–5 (2015). https://doi.org/10.1155/2015/168125
P. Yan, J. Xu, C. Wu, R. Zhang, J. Jin, Structure and supercapacitive performance of hierarchical porous carbon obtained by catalyzing microporous carbide-derived carbon. Mater. Lett. 139, 340–343 (2015). https://doi.org/10.1016/j.matlet.2014.10.063
S. Chen, Y. Xiang, M.K. Banks, C. Peng, W. Xu, R. Wu, Polyoxometalate-coupled MXene nanohybrid via poly (ionic liquid) linkers and its electrode for enhanced supercapacitive performance. Nanoscale 10, 20043–20052 (2018). https://doi.org/10.1039/c8nr05760e
H. Li, F. Musharavati, E. Zalenezhad, X. Chen, K.N. Hui, K.S. Hui, Electrodeposited Ni Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors. Electrochim. Acta 261, 178–187 (2018). https://doi.org/10.1016/j.electacta.2017.12.139
R. Zhao, M. Wang, D. Zhao, H. Li, C. Wang, L. Yin, Molecular-level heterostructures assembled from titanium carbide MXene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors. ACS Energy Lett. 3, 132–140 (2017). https://doi.org/10.1021/acsenergylett.7b01063
Y. Wang, H. Dou, J. Wang, B. Ding, Y. Xu, Z. Chang, X. Hao, Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 327, 221–228 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.062
Y.-T. Weng, H.-A. Pan, N.-L. Wu, G.Z. Chen, Titanium carbide nanocube core induced interfacial growth of crystalline polypyrrole/polyvinyl alcohol lamellar shell for wide-temperature range supercapacitors. J. Power Sources 274, 1118–1125 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.158
H. Wang, L. Li, C. Zhu, S. Lin, J. Wen, Q. Jin, X. Zhang, In situ polymerized Ti3C2Tx/PDA electrode with superior areal capacitance for supercapacitors. J. Alloy. Compd. 778, 858–865 (2019). https://doi.org/10.1016/j.jallcom.2018.11.172
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: mXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
B. Anasori, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
M. Naguib, Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction. Accounts Chem. Res. 48, 128–135 (2015). https://doi.org/10.1021/ar500346b
Y. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Agnese, S. Duan, Y. Gao, G. Chen, X. Wang, 2D MXenes as co-catalysts in photocatalysis: synthetic methods. Nano-Micro Lett. 11, 79 (2019). https://doi.org/10.1007/s40820-019-0309-6
M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013). https://doi.org/10.1021/ja405735d
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
H.-W. Wang, M. Naguib, K. Page, D.J. Wesolowski, Y. Gogotsi, Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chem. Mat. 28, 349–359 (2015). https://doi.org/10.1021/acs.chemmater.5b04250
E. Kayali, A. VahidMohammadi, J. Orangi, M. Beidaghi, Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage. ACS Appl. Mater. Interfaces 10, 25949–25954 (2018). https://doi.org/10.1021/acsami.8b07397
M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). https://doi.org/10.1126/science.1216744
L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3, 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
R.B. Rakhi, B. Ahmed, D. Anjum, H.N. Alshareef, Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl. Mater. Interfaces 8, 18806–18814 (2016). https://doi.org/10.1021/acsami.6b04481
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
M. Guo, C. Liu, Z. Zhang, J. Zhou, Y. Tang, S. Luo, Flexible Ti3C2Tx@Al electrodes with ultrahigh areal capacitance: in situ regulation of interlayer conductivity and spacing. Adv. Funct. Mater. 28, 1803196 (2018). https://doi.org/10.1002/adfm.201803196
M. Naguib, O. Mashtalir, M.R. Lukatskaya, B. Dyatkin, C. Zhang, V. Presser, Y. Gogotsi, M.W. Barsoum, One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of Mxenes. Chem. Commun. 50, 7420–7423 (2014). https://doi.org/10.1039/c4cc01646g
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016). https://doi.org/10.1002/aelm.201600255
H. Huang, H. Su, H. Zhang, L. Xu, X. Chu et al., Extraordinary areal and volumetric performance of flexible solid-state micro-supercapacitors based on highly conductive freestanding Ti3C2Tx films. Adv. Electron. Mater. 4, 1800179 (2018). https://doi.org/10.1002/aelm.201800179
H. Wang, J. Zhang, Y. Wu, H. Huang, Q. Jiang, Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance. J. Phys. Chem. Solids 115, 172–179 (2018). https://doi.org/10.1016/j.jpcs.2017.12.039
X. Jian, M. He, L. Chen, M.-M. Zhang, R. Li, L.-J. Gao, F. Fu, Z.-H. Liang, Three-dimensional carambola-like MXene/polypyrrole composite produced by one-step co-electrodeposition method for electrochemical energy storage. Electrochim. Acta 318, 820–827 (2019). https://doi.org/10.1016/j.electacta.2019.06.045
L. Yu, Z. Fan, Y. Shao, Z. Tian, J. Sun, Z. Liu, Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9, 1901839 (2019). https://doi.org/10.1002/aenm.201901839
X. Wu, B. Huang, Q. Wang, Y. Wang, High energy density of two-dimensional MXene/NiCo-LDHs interstratification assembly electrode: understanding the role of interlayer ions and hydration. Chem. Eng. J. 380, 122456 (2020). https://doi.org/10.1016/j.cej.2019.122456
L. Shen, X. Zhou, X. Zhang, Y. Zhang, Y. Liu, W. Wang, W. Si, X. Dong, Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J. Mater. Chem. A 6, 23513–23520 (2018). https://doi.org/10.1039/c8ta09600g
S.B. Ambade, R.B. Ambade, W. Eom, S.H. Noh, S.H. Kim, T.H. Han, 2D Ti3C2 MXene/WO3 hybrid architectures for high-rate supercapacitors. Adv. Mater. Interfaces 5, 1801361 (2018). https://doi.org/10.1002/admi.201801361
X. Wang, Q. Fu, J. Wen, X. Ma, C. Zhu, X. Zhang, D. Qi, 3D Ti3C2Tx aerogels with enhanced surface area for high performance supercapacitors. Nanoscale 10, 20828–20835 (2018). https://doi.org/10.1039/c8nr06014b
M. Zhu, Y. Huang, Q. Deng, J. Zhou, Z. Pei et al., Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 6, 1600969 (2016). https://doi.org/10.1002/aenm.201600969
M. Naguib, T. Saito, S. Lai, M.S. Rager, T. Aytug, M. Parans Paranthaman, M.-Q. Zhao, Y. Gogotsi, Ti3C2Tx (MXene)-polyacrylamide nanocomposite films. RSC Adv. 6, 72069–72073 (2016). https://doi.org/10.1039/c6ra10384g
Y. Ren, J. Zhu, L. Wang, H. Liu, Y. Liu, W. Wu, F. Wang, Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Mater. Lett. 214, 84–87 (2018). https://doi.org/10.1016/j.matlet.2017.11.060
L. Shi, S. Lin, L. Li, W. Wu, L. Wu, H. Gao, X. Zhang, Ti3C2Tx-foam as free-standing electrode for supercapacitor with improved electrochemical performance. Ceram. Int. 44, 13901–13907 (2018). https://doi.org/10.1016/j.ceramint.2018.04.238
X.Y. Lang, B.T. Liu, X.M. Shi, Y.Q. Li, Z. Wen, Q. Jiang, Ultrahigh-power pseudocapacitors based on ordered porous heterostructures of electron-correlated oxides. Adv. Sci. 3, 1500319 (2016). https://doi.org/10.1002/advs.201500319
X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C.E. Ren et al., Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13, 2078–2085 (2013). https://doi.org/10.1021/nl400378j
A. Feng, Y. Yu, L. Mi, Y. Yu, L. Song, Comparative study on electrosorptive behavior of NH4HF2-etched Ti3C2 and HF-etched Ti3C2 for capacitive deionization. Ionics 25, 727–735 (2018). https://doi.org/10.1007/s11581-018-2787-9
Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, J.W. Chew, Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv. Mater. 30, 1704561 (2018). https://doi.org/10.1002/adma.201704561
M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
M. Boota, Y. Gogotsi, MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 9, 1901839 (2019). https://doi.org/10.1002/aenm.201802917
Q. Wang, Z. Zhang, Z. Zhang, X. Zhou, G. Ma, Facile synthesis of MXene/MnO2 composite with high specific capacitance. J. Solid State Electrochem. 23, 361–365 (2018). https://doi.org/10.1007/s10008-018-4143-4
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi, M.W. Barsoum, Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mat. 28, 3507–3514 (2016). https://doi.org/10.1021/acs.chemmater.6b01275
W. Feng, Y. Wang, S. Zeng, Y. Tan, H. Zhang, S. Peng, Ultrasonic assisted etching and delaminating of Ti3C2 Mxene. Ceram. Int. 44, 7084–7087 (2018). https://doi.org/10.1016/j.ceramint.2018.01.147
X. Su, J. Zhang, H. Mu, J. Zhao, Z. Wang, Z. Zhao, C. Han, Z. Ye, Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene. J. Alloy. Compd. 752, 32–39 (2018). https://doi.org/10.1016/j.jallcom.2018.04.152
Y. Tang, J. Zhu, C. Yang, F. Wang, Enhanced capacitive performance based on diverse layered structure of two-dimensional Ti3C2 MXene with long etching time. J. Electrochem. Soc. 163, A1975–A1982 (2016). https://doi.org/10.1149/2.0921609jes
S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X. Feng, Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018). https://doi.org/10.1002/ange.201809662
G. Li, L. Tan, Y. Zhang, B. Wu, L. Li, Highly efficiently delaminated single-layered MXene nanosheets with large lateral size. Langmuir 33, 9000–9006 (2017). https://doi.org/10.1021/acs.langmuir.7b01339
A. Qian, J.Y. Seo, H. Shi, J.Y. Lee, C.H. Chung, Diverse surface functional groups and electrochemical behavior in dimethyl sulfoxide-delaminated Ti3C2Tx MXene. Chem. Sus. Chem. 11, 3719–3723 (2018). https://doi.org/10.1002/cssc.201801759
H. Wang, J. Zhang, Y. Wu, H. Huang, Q. Jiang, Achieving high-rate capacitance of multi-layer titanium carbide (MXene) by liquid-phase exfoliation through Li-intercalation. Electrochem. Commun. 81, 48–51 (2017). https://doi.org/10.1016/j.elecom.2017.05.009
F. Han, S. Luo, L. Xie, J. Zhu, W. Wei et al., Boosting the Yield of MXene 2D Sheets via a Facile Hydrothermal-Assisted Intercalation. ACS Appl. Mater. Interfaces. 11, 8443–8452 (2019). https://doi.org/10.1021/acsami.8b22339
A. Qian, S.E. Hyeon, J.Y. Seo, C.-H. Chung, Capacitance changes associated with cation-transport in free-standing flexible Ti3C2Tx (T = O, F, OH) MXene film electrodes. Electrochim. Acta 266, 86–93 (2018). https://doi.org/10.1016/j.electacta.2018.02.019
Y. Ando, Y. Gohda, S. Tsuneyuki, Ab initio molecular dynamics study of the Helmholtz layer formed on solid-liquid interfaces and its capacitance. Chem. Phys. Lett. 556, 9–12 (2013). https://doi.org/10.1016/j.cplett.2012.11.062
M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015). https://doi.org/10.1038/NNANO.2015.40
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
A. Sugahara, Y. Ando, S. Kajiyama, K. Yazawa, K. Gotoh, M. Otani, M. Okubo, A. Yamada, Negative dielectric constant of water confined in nanosheets. Nat. Commun. 10, 850 (2019). https://doi.org/10.1038/s41467-019-08789-8
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin. Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
Q.X. Xia, N.M. Shinde, T. Zhang, J.M. Yun, A. Zhou, R.S. Mane, S. Mathur, K.H. Kim, Seawater electrolyte-mediated high volumetric MXene-based electrochemical symmetric supercapacitors. Dalton Trans. 47, 8676–8682 (2018). https://doi.org/10.1039/C8DT01375F
M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang, X. Wang, High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10, 11344–11350 (2016). https://doi.org/10.1021/acsnano.6b06597
C. Zhan, M. Naguib, M. Lukatskaya, P.R.C. Kent, Y. Gogotsi, D.E. Jiang, Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 9, 1223–1228 (2018). https://doi.org/10.1021/acs.jpclett.8b00200
Y. Dall’Agnese, M.R. Lukatskaya, K.M. Cook, P.-L. Taberna, Y. Gogotsi, P. Simon, High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 48, 118–122 (2014). https://doi.org/10.1016/j.elecom.2014.09.002
R. Syamsai, P. Kollu, S. Kwan Jeong, A. Nirmala Grace, Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications. Ceram. Int. 43, 13119–13126 (2017). https://doi.org/10.1016/j.ceramint.2017.07.003
Y. Gao, L. Wang, Z. Li, Y. Zhang, B. Xing, C. Zhang, A. Zhou, Electrochemical performance of Ti3C2 supercapacitors in KOH electrolyte. J. Adv. Ceram. 4, 130–134 (2015). https://doi.org/10.1007/s40145-015-0143-3
Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9, 2847–2854 (2016). https://doi.org/10.1039/c6ee01717g
Y. Dall’Agnese, P. Rozier, P.-L. Taberna, Y. Gogotsi, P. Simon, Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 306, 510–515 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.036
K.R. Seddon, Ionic Liquids for Clean Technology. J. Chem. Tech. Biotechnol. 68, 351–356 (1997). https://doi.org/10.1002/(SICI)1097-4660(199704)68:4%3c351:AID-JCTB613%3e3.0.CO;2-4
N. Jackel, B. Kruner, K.L. Van Aken, M. Alhabeb, B. Anasori, F. Kaasik, Y. Gogotsi, V. Presser, Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids. ACS Appl. Mater. Interfaces 8, 32089–32093 (2016). https://doi.org/10.1021/acsami.6b11744
N.C. Osti, M.W. Thompson, K.L. Van Aken, M. Alhabeb, M. Tyagi et al., Humidity exposure enhances microscopic mobility in a room-temperature ionic liquid in MXene. J. Phy. Chem. C 122, 27561–27566 (2018). https://doi.org/10.1021/acs.jpcc.8b09677
X. Wang, T.S. Mathis, K. Li, Z. Lin, L. Vlcek et al., Influences from solvents on charge storage in titanium carbide Mxenes. Nat. Energy 4, 241–248 (2019). https://doi.org/10.1038/s41560-019-0339-9
K. Maleski, C.E. Ren, M.Q. Zhao, B. Anasori, Y. Gogotsi, Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interfaces 10, 24491–24498 (2018). https://doi.org/10.1021/acsami.8b04662
H. Wang, Y. Wu, J. Zhang, G. Li, H. Huang, X. Zhang, Q. Jiang, Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Mater. Lett. 160, 537–540 (2015). https://doi.org/10.1016/j.matlet.2015.08.046
M. Hu, T. Hu, Z. Li, Y. Yang, R. Cheng, J. Yang, C. Cui, X. Wang, Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx Mxene. ACS Nano 12, 3578–3586 (2018). https://doi.org/10.1021/acsnano.8b00676
R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mat. 27, 5314–5323 (2015). https://doi.org/10.1021/acs.chemmater.5b01623
B. Scheibe, V. Kupka, B. Peplinska, M. Jarek, K. Tadyszak, The influence of oxygen concentration during MAX phases (Ti3AlC2) preparation on the alpha-Al2O3 microparticles content and specific surface area of multilayered MXenes (Ti3C2Tx). Materials 12, 253 (2019). https://doi.org/10.3390/ma12030353
C. Zhao, Q. Wang, H. Zhang, S. Passerini, X. Qian, Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS Appl. Mater. Interfaces 8, 15661–15667 (2016). https://doi.org/10.1021/acsami.6b04767
J. Li, X. Yuan, C. Lin, Y. Yang, L. Xu, X. Du, J. Xie, J. Lin, J. Sun, Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 7, 1602725 (2017). https://doi.org/10.1002/aenm.201602725
X. Zhang, Y. Liu, S. Dong, J. Yang, X. Liu, Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance. Electrochim. Acta 294, 233–239 (2019). https://doi.org/10.1016/j.electacta.2018.10.096
C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017). https://doi.org/10.1002/adma.201702678
S. Xu, G. Wei, J. Li, Y. Ji, N. Klyui, V. Izotov, W. Han, Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method. Chem. Eng. J. 317, 1026–1036 (2017). https://doi.org/10.1039/C8TA04737E
M. Hu, Z. Li, H. Zhang, T. Hu, C. Zhang, Z. Wu, X. Wang, Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance. Chem. Commun. 51, 13531–13533 (2015). https://doi.org/10.1039/c5cc04722f
Y. Tian, C. Yang, W. Que, Y. He, X. Liu, Y. Luo, X. Yin, L.B. Kong, Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors. J. Power Sources 369, 78–86 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.085
Z. Fan, Y. Wang, Z. Xie, X. Xu, Y. Yuan, Z. Cheng, Y. Liu, A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale 10, 9642–9652 (2018). https://doi.org/10.1039/c8nr01550c
R. Liu, A. Zhang, J. Tang, J. Tian, W. Huang, J. Cai, C. Barrow, W. Yang, J. Liu, Fabrication of cobaltosic oxide nanoparticle-doped 3D MXene/graphene hybrid porous aerogels for all-solid-state supercapacitors. Chem. Eur. J. 25, 5547–5554 (2019). https://doi.org/10.1002/chem.201806342
L. Li, M. Zhang, X. Zhang, Z. Zhang, New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. J. Power Sources 364, 234–241 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.029
Z. Lin, D. Barbara, P.-L. Taberna, K.L. Van Aken, B. Anasori, Y. Gogotsi, P. Simon, Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources 326, 575–579 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.035
J. Yan, Y. Ma, C. Zhang, X. Li, W. Liu, X. Yao, S. Yao, S. Luo, Polypyrrole-MXene coated textile-based flexible energy storage device. RSC Adv. 8, 39742–39748 (2018). https://doi.org/10.1039/c8ra08403c
M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016). https://doi.org/10.1002/adma.201504705
O. Mashtalir, M.R. Lukatskaya, A.I. Kolesnikov, E. Raymundo-Pinero, M. Naguib, M.W. Barsoum, Y. Gogotsi, The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale 8, 9128–9133 (2016). https://doi.org/10.1039/c6nr01462c
W. Wu, D. Wei, J. Zhu, D. Niu, F. Wang et al., Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials. Ceram. Int. 45, 7328–7337 (2019). https://doi.org/10.1016/j.ceramint.2019.01.016
T.A. Le, N.Q. Tran, Y. Hong, H. Lee, Intertwined titanium carbide MXene within a 3D tangled polypyrrole nanowires matrix for enhanced supercapacitor performances. Chem. Eur. J. 25, 1037–1043 (2019). https://doi.org/10.1002/chem.201804291
A. VahidMohammadi, J. Moncada, H. Chen, E. Kayali, J. Orangi, C.A. Carrero, M. Beidaghi, Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 6, 22123–22133 (2018). https://doi.org/10.1039/c8ta05807e
J. Zhou, J. Yu, L. Shi, Z. Wang, H. Liu, B. Yang, C. Li, C. Zhu, J. Xu, A Conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 14, 1803786 (2018). https://doi.org/10.1002/smll.201803786
S. Chen, Y. Xiang, W. Xu, C. Peng, A novel MnO2/MXene composite prepared by electrostatic self-assembly and its use as an electrode for enhanced supercapacitive performance. Inorg. Chem. Front. 6, 199–208 (2019). https://doi.org/10.1039/c8qi00957k
Y. Tang, J. Zhu, C. Yang, F. Wang, Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. J. Alloy. Compd. 685, 194–201 (2016). https://doi.org/10.1016/j.jallcom.2016.05.221
K. Zhang, G. Ying, L. Liu, F. Ma, L. Su, C. Zhang, D. Wu, X. Wang, Y. Zhou, Three-dimensional porous Ti3C2Tx-NiO composite electrodes with enhanced electrochemical performance for supercapacitors. Materials 12, 188 (2019). https://doi.org/10.3390/ma12010188
J. Zhu, X. Lu, L. Wang, Synthesis of a MoO3/Ti3C2Tx composite with enhanced capacitive performance for supercapacitors. RSC Adv. 6, 98506–98513 (2016). https://doi.org/10.1039/c6ra15651g
R. Zou, H. Quan, M. Pan, S. Zhou, D. Chen, X. Luo, Self-assembled MXene(Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochim. Acta 292, 31–38 (2018). https://doi.org/10.1016/j.electacta.2018.09.149
J. Zhu, C. Yang, F. Wang, M. Cao, Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 163, A785 (2016). https://doi.org/10.1149/2.0981605jes
W. Zheng, P. Zhang, W. Tian, Y. Wang, Y. Zhang, J. Chen, Z. Sun, Microwave-assisted synthesis of SnO2-Ti3C2 nanocomposite for enhanced supercapacitive performance. Mater. Lett. 209, 122–125 (2017). https://doi.org/10.1016/j.matlet.2017.07.131
Y. Wang, J. Sun, X. Qian, Y. Zhang, L. Yu, R. Niu, H. Zhao, J. Zhu, 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. J. Power Sources 414, 540–546 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.036
Q. Fu, X. Wang, N. Zhang, J. Wen, L. Li, H. Gao, X. Zhang, Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor. J. Colloid Interface Sci. 511, 128–134 (2018). https://doi.org/10.1016/j.jcis.2017.09.104
L. Yang, W. Zheng, P. Zhang, J. Chen, W.B. Tian, Y.M. Zhang, Z.M. Sun, MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. J. Electroanal. Chem. 830, 1–6 (2018). https://doi.org/10.1016/j.jelechem.2018.10.024
M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
S. Xu, G. Wei, J. Li, W. Han, Y. Gogotsi, Flexible Mxene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. J. Mater. Chem. A 5, 17442–17451 (2017). https://doi.org/10.1039/c7ta05721k
Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan, H. Kang, B. Su, Z. Cheng, Y. Liu, Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5, 1800750 (2018). https://doi.org/10.1002/advs.201800750
A.S. Levitt, M. Alhabeb, C.B. Hatter, A. Sarycheva, G. Dion, Y. Gogotsi, Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 7, 269–277 (2019). https://doi.org/10.1039/c8ta09810g
C. Yu, Y. Gong, R. Chen, M. Zhang, J. Zhou, J. An, F. Lv, S. Guo, G. Sun, A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube Scaffold and MXene nanosheets. Small 14, 1801203 (2018). https://doi.org/10.1002/smll.201801203
Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang et al., High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 14, 1802225 (2018). https://doi.org/10.1002/smll.201802225
L. Yang, W. Zheng, P. Zhang, J. Chen, W. Zhang, W.B. Tian, Z.M. Sun, Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors. Electrochim. Acta 300, 349–356 (2019). https://doi.org/10.1016/j.electacta.2019.01.122
Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu, L. Dai, L. Wang, Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368–376 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009
C. Yang, Y. Tang, Y. Tian, Y. Luo, M.F.U. Din, X. Yin, W. Que, Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance. Adv. Energy Mater. 8, 1802087 (2018). https://doi.org/10.1002/aenm.201802087
G. Kresse, Ab initio molecular dynamics for liquid metals. J. Non-Ctyst. Solids 192&193, 222–229 (1993). https://doi.org/10.1103/PhysRevB.47.558
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Am. Phys. Soc. 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
F.M. Hassan, V. Chabot, J. Li, B.K. Kim, L. Ricardez-Sandoval, A. Yu, Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. J. Mater. Chem. A 1, 2904–2912 (2013). https://doi.org/10.1039/c2ta01064j
C. Zhang, L. Wang, W. Lei, Y. Wu, C. Li et al., Achieving quick charge/discharge rate of 3.0 Vs−1 by 2D titanium carbide (MXene) via N-doped carbon intercalation. Mater. Lett. 234, 21–25 (2019). https://doi.org/10.1016/j.matlet.2018.08.124
T. Zhao, J. Zhang, Z. Du, Y. Liu, G. Zhou, J. Wang, Dopamine-derived N-doped carbon decorated titanium carbide composite for enhanced supercapacitive performance. Electrochim. Acta 254, 308–319 (2017). https://doi.org/10.1016/j.electacta.2017.09.144
Q.X. Xia, N.M. Shinde, J.M. Yun, T. Zhang, R.S. Mane, S. Mathur, K.H. Kim, Bismuth oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim. Acta 271, 351–360 (2018). https://doi.org/10.1016/j.electacta.2018.03.168