Nanoscale All-Oxide-Heterostructured Bio-inspired Optoresponsive Nociceptor
Corresponding Author: Serge Zhuiykov
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 83
Abstract
Retina nociceptor, as a key sensory receptor, not only enables the transport of warning signals to the human central nervous system upon its exposure to noxious stimuli, but also triggers the motor response that minimizes potential sensitization. In this study, the capability of two-dimensional all-oxide-heterostructured artificial nociceptor as a single device with tunable properties was confirmed. Newly designed nociceptors utilize ultra-thin sub-stoichiometric TiO2–Ga2O3 heterostructures, where the thermally annealed Ga2O3 films play the role of charge transfer controlling component. It is discovered that the phase transformation in Ga2O3 is accompanied by substantial jump in conductivity, induced by thermally assisted internal redox reaction of Ga2O3 nanostructure during annealing. It is also experimentally confirmed that the charge transfer in all-oxide heterostructures can be tuned and controlled by the heterointerfaces manipulation. Results demonstrate that the engineering of heterointerfaces of two-dimensional (2D) films enables the fabrication of either high-sensitive TiO2–Ga2O3 (Ar) or high-threshold TiO2–Ga2O3 (N2) nociceptors. The hypersensitive nociceptor mimics the functionalities of corneal nociceptors of human eye, whereas the delayed reaction of nociceptor is similar to high-threshold nociceptive characteristics of human sensory system. The long-term stability of 2D nociceptors demonstrates the capability of heterointerfaces engineering for effective control of charge transfer at 2D heterostructured devices.
Highlights:
1 Artificial optoelectronic nociceptor based on two-dimensional heterostructured all-oxide nanostructures was designed.
2 Two-dimensional heterointerfaces were functionalized, and their engineering toward fabrication of artificial nociceptors was confirmed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Karbalaei Akbari, S. Zhuiykov, A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities. Nat. Commun. 10, 3873 (2019). https://doi.org/10.1038/s41467-019-11823-4
- Y. Van de Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3
- C.D. Gilbert, W. Li, Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013). https://doi.org/10.1038/nrn3476
- D. Holmes, The pain drain. Nature 535, S2–S3 (2016). https://doi.org/10.1038/535S2a
- D. Holmes, Reconstructing the retina. Nature 561, S2–S3 (2018). https://doi.org/10.1038/d41586-018-06111-y
- J.H. Yoon, Z. Wang, K.M. Kim, H. Wu, V. Ravichandran, Q. Xia, C.S. Hwang, J.J. Yang, An artificial nociceptor based on a diffusive memristor. Nat. Commun. 9, 417 (2018). https://doi.org/10.1038/s41467-017-02572-3
- M. Kumar, H.S. Kim, J.A. Kim, A highly transparent artificial optical nociceptor. Adv. Mater. 31, 1900021 (2019). https://doi.org/10.1002/adma.201900021
- M.S. Gold, G.F. Gebhart, Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248–1257 (2010). https://doi.org/10.1038/nm.2235
- Y. Kim, Y.J. Kwon, E.K. Dae, Nociceptive memristor. Adv. Mater. 30, 1704320 (2018). https://doi.org/10.1002/adma.201704320
- L. Nagarajan, R.A. De Souza, D. Samuelis, I. Valov, A. Börger et al., A chemically driven insulator–metal transition in non-stoichiometric and amorphous gallium oxide. Nat. Mater. 7, 391–398 (2008). https://doi.org/10.1038/nmat2164
- C. Kranert, C. Sturm, R. Schmidt-Grund, M. Grundmann, Raman tensor elements of β-Ga2O3. Sci. Rep. 6, 35964 (2016). https://doi.org/10.1038/srep35964
- Z.Y. Al Balushi, K. Wang, R.K. Ghosh, R.A. Vilá, S.M. Eichfeld et al., Two dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15, 1166–1171 (2016). https://doi.org/10.1038/nmat4742
- J. Kim, T. Sekiya, N. Miyokawa, Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor. NPG Asia Mater. 9, e359 (2017). https://doi.org/10.1038/am.2017.20
- M. Martin, R. Dronskowski, J. Janek, K.-D. Becker, D. Roehrens et al., Thermodynamic, structure and kinetic in the system Ga–O–N. Prog. Solid State Chem. 37, 132–152 (2009). https://doi.org/10.1016/j.progsolidstchem.2009.11.005
- M. Karbalaei Akbari, Z. Hai, Z. Wei, R.K. Ramachandran, C. Detavernier et al., Sonochemical functionalization of the low dimensional surface oxide of Galinstan for heterostructured optoelectronic applications. J. Mater. Chem. C 7, 5584–5595 (2019). https://doi.org/10.1039/c9tc01079c
- T.S. Ngo, D.D. Le, J.-H. Song, S.-K. Hong, Growth and characterization of gallium oxide films grown with nitrogen by plasma-assisted molecular-beam epitaxy. Thin Solid Films 682, 93–98 (2019). https://doi.org/10.1016/j.tsf.2019.05.029
- Y. Zhang, J. Yan, Q. Li, C. Qu, L. Zhang, T. Li, Structural and optical properties of N-doped ß-Ga2O3 films deposited by RF magnetron sputtering. Phys. B 406, 3079–3082 (2011). https://doi.org/10.1016/j.physb.2011.05.011
- D. Song, L. Li, B. Li, A. Shen, Band gap engineering of N-alloyed Ga2O3 thin films. AIP Adv. 6, 065016 (2016). https://doi.org/10.1063/1.4954720
- J.P. Perdew, J.A. Chevary, S.H. Vosko, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 48, 4978 (1993). https://doi.org/10.1103/PhysRevB.46.6671
- Y.P. Song, H.Z. Zhang, C. Lin, Y.W. Zhu, G.H. Li, F.H. Yang, D.P. Yu, Luminescence emission originating from nitrogen doping of β-Ga2O3 nanowires. Phys. Rev. B 69, 075304 (2004). https://doi.org/10.1103/PhysRevB.69.075304
- T.C. Chang, K.C. Chang, T.M. Tsai, Resistive random access memory. Mater. Today 19, 254–264 (2016). https://doi.org/10.1016/j.mattod.2015.11.009
- K.M. Kim, J. Zhang, C. Graves, J.J. Yang, B.J. Choi, C.S. Hwang, Z. Li, R.S. Williams, Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application. Nano Lett. 16, 6724–6732 (2016). https://doi.org/10.1021/acs.nanolett.6b01781
- D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010). https://doi.org/10.1038/nnano.2009.456
- D. Lee, J.W. Park, N.K. Cho, J. Lee, Y.S. Kim, Verification of charge transfer in metal-insulator-oxide semiconductor diodes via defect engineering of insulator. Sci. Rep. 9, 10323 (2019). https://doi.org/10.1038/s41598-019-46752-1
- M. Kumar, S. Abbas, J. Kim, All oxide highly transparent synapse for neuromorphic computing. ACS Appl. Mater. Interface 10, 34370–34376 (2018). https://doi.org/10.1021/acsami.8b10870
- S. Choi, S. Jang, J.H. Moon, J.C. Kim, H.Y. Jeong, P. Jang, K.J. Lee, G. Wang, A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems. NPG Asia Mater. 10, 1097–1106 (2018). https://doi.org/10.1038/s41427-018-0101-y
- M. Kumar, S.K. Hazra, T. Som, Role of metallic like conductivity in unusual temperature-dependent transport in n-ZnO: Al/p-Si heterojunction diode. J. Phys. D-Appl. Phys. 48, 455301 (2015). https://doi.org/10.1088/0022-3727/48/45/455301
- S.R. Zhang, L. Zhou, J.Y. Mao, Y. Ren, J.Q. Yang et al., Artificial synapse emulated by charge trapping-based resistive switching device. Adv. Mater. Technol. 4, 1800342 (2019). https://doi.org/10.1002/admt.201800342
- F.P.G. Arquer, X. Gong, R.P. Sabatini, M. Liu, G.H. Kim et al., Field-emission from quantum-dot-in-perovskite solids. Nat. Commun. 8, 14757 (2017). https://doi.org/10.1038/ncomms14757
- E. Chikoidze, C. Sartel, H. Mohamed, I. Madaci, T. Tchelidze et al., Enhancing the intrinsic p-type conductivity of the ultra-wide bandgap Ga2O3 semiconductor. J. Mater. Chem. C 7, 10231–10239 (2019). https://doi.org/10.1039/C9TC02910A
- D. Valentin, G. Pacchoni, Reduced and n-type doped TiO2: nature of Ti3+ species. J. Phys. Chem. C 113, 20543–20552 (2009). https://doi.org/10.1021/jp9061797
- J.H. Yoon, S.J. Song, I.H. Yoo, J.Y. Seok, K.J. Yoon, D.E. Kwon, T.H. Park, C.S. Hwang, Highly uniform, electroforming-free, and self-rectifying resistive memory in the Pt/Ta2O5/HfO2-x/TiN Structure. Adv. Funct. Mater. 24, 5086 (2014). https://doi.org/10.1002/adfm.201400064
- J.H. Yoon, K.M. Kim, S.J. Song, J.Y. Seok, K.J. Yoon et al., Pt/Ta2O5/HfO2−x/Ti resistive switching memory competing with multilevel NAND flash. Adv. Mater. 27, 3811 (2015). https://doi.org/10.1002/adma.201501167
- S. Kumar, N. Davila, Z. Wang, X. Huang, J.P. Strachan et al., Spatially uniform resistance switching of low current, high endurance titanium–niobium-oxide memristors. Nanoscale 9, 1793–1798 (2017). https://doi.org/10.1039/C6NR07671H
- A. Wedig, M. Luebben, D.Y. Cho, M. Moors, K. Skaja et al., Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat. Nanotechnol. 11, 67–74 (2016). https://doi.org/10.1038/NNANO.2015.221
- Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou, L. Zhou, X. Chen, S.T. Han, Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30, 1802883 (2018). https://doi.org/10.1002/adma.201802883
- X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5
- J. Sandkühler, Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 89, 707–758 (2009). https://doi.org/10.1152/physrev.00025.2008
- Y. Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017). https://doi.org/10.1038/nmat4856
- P. Zheng, B. Sun, Y. Chen, H. Elshekh, T. Yu et al., Photo-induced negative differential resistance in a resistive switching memory device based on BiFeO3/ZnO heterojunctions. Appl. Mater. Today 14, 21–28 (2019). https://doi.org/10.1016/j.apmt.2018.11.007
- S. Pandey, C. Biswas, T. Ghosh, Transition from direct to Fowler–Nordheim tunnelling in chemically reduced graphene oxide film. Nanoscale 6, 3410–3417 (2014). https://doi.org/10.1039/C3NR05675A
References
M. Karbalaei Akbari, S. Zhuiykov, A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities. Nat. Commun. 10, 3873 (2019). https://doi.org/10.1038/s41467-019-11823-4
Y. Van de Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3
C.D. Gilbert, W. Li, Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013). https://doi.org/10.1038/nrn3476
D. Holmes, The pain drain. Nature 535, S2–S3 (2016). https://doi.org/10.1038/535S2a
D. Holmes, Reconstructing the retina. Nature 561, S2–S3 (2018). https://doi.org/10.1038/d41586-018-06111-y
J.H. Yoon, Z. Wang, K.M. Kim, H. Wu, V. Ravichandran, Q. Xia, C.S. Hwang, J.J. Yang, An artificial nociceptor based on a diffusive memristor. Nat. Commun. 9, 417 (2018). https://doi.org/10.1038/s41467-017-02572-3
M. Kumar, H.S. Kim, J.A. Kim, A highly transparent artificial optical nociceptor. Adv. Mater. 31, 1900021 (2019). https://doi.org/10.1002/adma.201900021
M.S. Gold, G.F. Gebhart, Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248–1257 (2010). https://doi.org/10.1038/nm.2235
Y. Kim, Y.J. Kwon, E.K. Dae, Nociceptive memristor. Adv. Mater. 30, 1704320 (2018). https://doi.org/10.1002/adma.201704320
L. Nagarajan, R.A. De Souza, D. Samuelis, I. Valov, A. Börger et al., A chemically driven insulator–metal transition in non-stoichiometric and amorphous gallium oxide. Nat. Mater. 7, 391–398 (2008). https://doi.org/10.1038/nmat2164
C. Kranert, C. Sturm, R. Schmidt-Grund, M. Grundmann, Raman tensor elements of β-Ga2O3. Sci. Rep. 6, 35964 (2016). https://doi.org/10.1038/srep35964
Z.Y. Al Balushi, K. Wang, R.K. Ghosh, R.A. Vilá, S.M. Eichfeld et al., Two dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15, 1166–1171 (2016). https://doi.org/10.1038/nmat4742
J. Kim, T. Sekiya, N. Miyokawa, Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor. NPG Asia Mater. 9, e359 (2017). https://doi.org/10.1038/am.2017.20
M. Martin, R. Dronskowski, J. Janek, K.-D. Becker, D. Roehrens et al., Thermodynamic, structure and kinetic in the system Ga–O–N. Prog. Solid State Chem. 37, 132–152 (2009). https://doi.org/10.1016/j.progsolidstchem.2009.11.005
M. Karbalaei Akbari, Z. Hai, Z. Wei, R.K. Ramachandran, C. Detavernier et al., Sonochemical functionalization of the low dimensional surface oxide of Galinstan for heterostructured optoelectronic applications. J. Mater. Chem. C 7, 5584–5595 (2019). https://doi.org/10.1039/c9tc01079c
T.S. Ngo, D.D. Le, J.-H. Song, S.-K. Hong, Growth and characterization of gallium oxide films grown with nitrogen by plasma-assisted molecular-beam epitaxy. Thin Solid Films 682, 93–98 (2019). https://doi.org/10.1016/j.tsf.2019.05.029
Y. Zhang, J. Yan, Q. Li, C. Qu, L. Zhang, T. Li, Structural and optical properties of N-doped ß-Ga2O3 films deposited by RF magnetron sputtering. Phys. B 406, 3079–3082 (2011). https://doi.org/10.1016/j.physb.2011.05.011
D. Song, L. Li, B. Li, A. Shen, Band gap engineering of N-alloyed Ga2O3 thin films. AIP Adv. 6, 065016 (2016). https://doi.org/10.1063/1.4954720
J.P. Perdew, J.A. Chevary, S.H. Vosko, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 48, 4978 (1993). https://doi.org/10.1103/PhysRevB.46.6671
Y.P. Song, H.Z. Zhang, C. Lin, Y.W. Zhu, G.H. Li, F.H. Yang, D.P. Yu, Luminescence emission originating from nitrogen doping of β-Ga2O3 nanowires. Phys. Rev. B 69, 075304 (2004). https://doi.org/10.1103/PhysRevB.69.075304
T.C. Chang, K.C. Chang, T.M. Tsai, Resistive random access memory. Mater. Today 19, 254–264 (2016). https://doi.org/10.1016/j.mattod.2015.11.009
K.M. Kim, J. Zhang, C. Graves, J.J. Yang, B.J. Choi, C.S. Hwang, Z. Li, R.S. Williams, Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application. Nano Lett. 16, 6724–6732 (2016). https://doi.org/10.1021/acs.nanolett.6b01781
D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010). https://doi.org/10.1038/nnano.2009.456
D. Lee, J.W. Park, N.K. Cho, J. Lee, Y.S. Kim, Verification of charge transfer in metal-insulator-oxide semiconductor diodes via defect engineering of insulator. Sci. Rep. 9, 10323 (2019). https://doi.org/10.1038/s41598-019-46752-1
M. Kumar, S. Abbas, J. Kim, All oxide highly transparent synapse for neuromorphic computing. ACS Appl. Mater. Interface 10, 34370–34376 (2018). https://doi.org/10.1021/acsami.8b10870
S. Choi, S. Jang, J.H. Moon, J.C. Kim, H.Y. Jeong, P. Jang, K.J. Lee, G. Wang, A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems. NPG Asia Mater. 10, 1097–1106 (2018). https://doi.org/10.1038/s41427-018-0101-y
M. Kumar, S.K. Hazra, T. Som, Role of metallic like conductivity in unusual temperature-dependent transport in n-ZnO: Al/p-Si heterojunction diode. J. Phys. D-Appl. Phys. 48, 455301 (2015). https://doi.org/10.1088/0022-3727/48/45/455301
S.R. Zhang, L. Zhou, J.Y. Mao, Y. Ren, J.Q. Yang et al., Artificial synapse emulated by charge trapping-based resistive switching device. Adv. Mater. Technol. 4, 1800342 (2019). https://doi.org/10.1002/admt.201800342
F.P.G. Arquer, X. Gong, R.P. Sabatini, M. Liu, G.H. Kim et al., Field-emission from quantum-dot-in-perovskite solids. Nat. Commun. 8, 14757 (2017). https://doi.org/10.1038/ncomms14757
E. Chikoidze, C. Sartel, H. Mohamed, I. Madaci, T. Tchelidze et al., Enhancing the intrinsic p-type conductivity of the ultra-wide bandgap Ga2O3 semiconductor. J. Mater. Chem. C 7, 10231–10239 (2019). https://doi.org/10.1039/C9TC02910A
D. Valentin, G. Pacchoni, Reduced and n-type doped TiO2: nature of Ti3+ species. J. Phys. Chem. C 113, 20543–20552 (2009). https://doi.org/10.1021/jp9061797
J.H. Yoon, S.J. Song, I.H. Yoo, J.Y. Seok, K.J. Yoon, D.E. Kwon, T.H. Park, C.S. Hwang, Highly uniform, electroforming-free, and self-rectifying resistive memory in the Pt/Ta2O5/HfO2-x/TiN Structure. Adv. Funct. Mater. 24, 5086 (2014). https://doi.org/10.1002/adfm.201400064
J.H. Yoon, K.M. Kim, S.J. Song, J.Y. Seok, K.J. Yoon et al., Pt/Ta2O5/HfO2−x/Ti resistive switching memory competing with multilevel NAND flash. Adv. Mater. 27, 3811 (2015). https://doi.org/10.1002/adma.201501167
S. Kumar, N. Davila, Z. Wang, X. Huang, J.P. Strachan et al., Spatially uniform resistance switching of low current, high endurance titanium–niobium-oxide memristors. Nanoscale 9, 1793–1798 (2017). https://doi.org/10.1039/C6NR07671H
A. Wedig, M. Luebben, D.Y. Cho, M. Moors, K. Skaja et al., Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat. Nanotechnol. 11, 67–74 (2016). https://doi.org/10.1038/NNANO.2015.221
Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou, L. Zhou, X. Chen, S.T. Han, Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30, 1802883 (2018). https://doi.org/10.1002/adma.201802883
X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5
J. Sandkühler, Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 89, 707–758 (2009). https://doi.org/10.1152/physrev.00025.2008
Y. Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017). https://doi.org/10.1038/nmat4856
P. Zheng, B. Sun, Y. Chen, H. Elshekh, T. Yu et al., Photo-induced negative differential resistance in a resistive switching memory device based on BiFeO3/ZnO heterojunctions. Appl. Mater. Today 14, 21–28 (2019). https://doi.org/10.1016/j.apmt.2018.11.007
S. Pandey, C. Biswas, T. Ghosh, Transition from direct to Fowler–Nordheim tunnelling in chemically reduced graphene oxide film. Nanoscale 6, 3410–3417 (2014). https://doi.org/10.1039/C3NR05675A