Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries
Corresponding Author: Ananthakumar Ramadoss
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 85
Abstract
Electrochemical energy storage devices (EESs) play a crucial role for the construction of sustainable energy storage system from the point of generation to the end user due to the intermittent nature of renewable sources. Additionally, to meet the demand for next-generation electronic applications, optimizing the energy and power densities of EESs with long cycle life is the crucial factor. Great efforts have been devoted towards the search for new materials, to augment the overall performance of the EESs. Although there are a lot of ongoing researches in this field, the performance does not meet up to the level of commercialization. A further understanding of the charge storage mechanism and development of new electrode materials are highly required. The present review explains the overview of recent progress in supercapattery devices with reference to their various aspects. The different charge storage mechanisms and the multiple factors involved in the performance of the supercapattery are described in detail. Moreover, recent advancements in this supercapattery research and its electrochemical performances are reviewed. Finally, the challenges and possible future developments in this field are summarized.
Highlights:
1 This article reviewed the recent progress on material challenges, charge storage mechanism, and electrochemical performance evaluation of supercapatteries.
2 Supercapatteries bridge the gap between supercapacitors (low energy density) and batteries (low power density).
3 The importance of the design and configuration of the supercapatteries are briefly reviewed and the future direction in this field also outlined at the end.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Quartey, S.K. Adzimah, Generation of electrical power by a wind turbine for charging moving electric cars. J. Energy Technol. Policy 4, 19 (2014)
- S.Y. Goh, S.L. Kok, Electrical energy harvesting from thermal energy with converged infrared light. IOP Conf. Ser. Mater. Sci. Eng. 210, 012039 (2017)
- K. Padmanathan, U. Govindarajan, V.K. Ramachandaramurthy, B. Jeevarathinam, Integrating solar photovoltaic energy conversion systems into industrial and commercial electrical energy utilization—a survey. J. Ind. Inf. Integr. 10, 39–54 (2018). https://doi.org/10.1016/j.jii.2018.01.003
- X. Wang, Y. Han, J. Zhang, Z. Li, T. Li, X. Zhao, Y. Wu, The design of a direct charge nuclear battery with high energy conversion efficiency. Appl. Radiat. Isot. 148, 147–151 (2019). https://doi.org/10.1016/j.apradiso.2019.03.040
- Y. He, L. Wang, D. Jia, CoAl/PAN interconnected carbon nanofibers with excellent energy storage performance and electrical conductivity. Electrochim. Acta 194, 239–245 (2016). https://doi.org/10.1016/j.electacta.2016.01.191
- D. Vera, F. Jurado, J. Carpio, S. Kamel, Biomass gasification coupled to an EFGT–ORC combined system to maximize the electrical energy generation: a case applied to the olive oil industry. Energy 144, 41–53 (2018). https://doi.org/10.1016/j.energy.2017.11.152
- S.S. Akadiri, A.A. Alola, G.O. Williams, M.U. Etokakpan, The role of electricity consumption, globalization and economic growth in carbon dioxide emissions and its implications for environmental sustainability targets. Sci. Total Environ. 708, 134653 (2020). https://doi.org/10.1016/j.scitotenv.2019.134653
- S. Asongu, O.M. Agboola, A. Alola, F.V. Bekun, The criticality of growth, urbanization, electricity and fossil fuel consumption to environment sustainability in Africa. Sci. Total Environ. 712, 136376 (2020). https://doi.org/10.1016/j.scitotenv.2019.136376
- B. Lin, Y. Wang, Inconsistency of economic growth and electricity consumption in china: a panel var approach. J. Clean. Prod. 229, 144–156 (2019). https://doi.org/10.1016/j.jclepro.2019.04.396
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
- D.R. Rolison, L.F. Nazar, Electrochemical energy storage to power the 21st century. MRS Bull. 36(7), 486–493 (2011). https://doi.org/10.1557/mrs.2011.136
- G.Z. Chen, Supercapacitor and supercapattery as emerging electrochemical energy stores. Int. Mater. Rev. 62(4), 173–202 (2017). https://doi.org/10.1080/09506608.2016.1240914
- B. Akinwolemiwa, C. Peng, G.Z. Chen, Redox electrolytes in supercapacitors. J. Electrochem. Soc. 162(5), A5054 (2015). https://doi.org/10.1149/2.0111505jes
- D. Hu, C. Peng, G.Z. Chen, Electrodeposition of nonconducting polymers: roles of carbon nanotubes in the process and products. ACS Nano 4(7), 4274–4282 (2010). https://doi.org/10.1021/nn100849d
- L. Li, Z. Wang, L. Chen, Z. Wang, Consumer preferences for battery electric vehicles: a choice experimental survey in china. Transp. Res. D Trans. Environ. 78, 102185 (2020). https://doi.org/10.1016/j.trd.2019.11.014
- Y. Wang, H.Y.H. Kwok, W. Pan, Y. Zhang, H. Zhang, X. Lu, D.Y.C. Leung, Printing Al-air batteries on paper for powering disposable printed electronics. J. Power Sources 450, 227685 (2020). https://doi.org/10.1016/j.jpowsour.2019.227685
- S. Xiong, J. Ji, X. Ma, Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Manag 102, 579–586 (2020). https://doi.org/10.1016/j.wasman.2019.11.013
- F. Wang, D. Cheng, W. Wang, Y. Wang, M. Zhao, S. Yang, X. Lu, X. Song, In situ sodium chloride template synthesis of cobalt oxide hollow octahedra for lithium-ion batteries. RSC Adv. 5(30), 23326–23330 (2015). https://doi.org/10.1039/C4RA15551C
- Z. Ji, N. Li, M. Xie, X. Shen, W. Dai, K. Liu, K. Xu, G. Zhu, High-performance hybrid supercapacitor realized by nitrogen-doped carbon dots modified cobalt sulfide and reduced graphene oxide. Electrochim. Acta 334, 135632 (2020). https://doi.org/10.1016/j.electacta.2020.135632
- C. Ji, F. Liu, L. Xu, S. Yang, Urchin-like NiCO2O4 hollow microspheres and FeSe2 micro-snowflakes for flexible solid-state asymmetric supercapacitors. J. Mater. Chem. A 5(11), 5568–5576 (2017). https://doi.org/10.1039/C6TA11001K
- C. Ji, J. Bi, S. Wang, X. Zhang, S. Yang, Ni nanoparticle doped porous VN nanoflakes assembled into hierarchical hollow microspheres with a structural inheritance from the Ni1−xVxO2 cathode material for high performance asymmetric supercapacitors. J. Mater. Chem. A 4(6), 2158–2168 (2016). https://doi.org/10.1039/C5TA10406H
- D. Potphode, C.S. Sharma, Pseudocapacitance induced candle soot derived carbon for high energy density electrochemical supercapacitors: non-aqueous approach. J. Energy Storage 27, 101114 (2020). https://doi.org/10.1016/j.est.2019.101114
- H. Kim, M. Ramalingam, V. Balakumar, X. Zhang, W. Gao, Y.-A. Son, P.D. Bradford, Chemically interconnected ternary AgNP/polypyrrole/functionalized buckypaper composites as high-energy-density supercapacitor electrodes. Chem. Phys. Lett. 739, 136957 (2019). https://doi.org/10.1016/j.cplett.2019.136957
- G. Zhu, X. Jing, D. Chen, W. He, Novel composite separator for high power density lithium-ion battery. Int. J. Hydrogen Energy 45(4), 2917–2924 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.125
- H.R. Jiang, J. Sun, L. Wei, M.C. Wu, W. Shyy, T.S. Zhao, A high power density and long cycle life vanadium redox flow battery. Energy Storage Mater. 24, 529–540 (2020). https://doi.org/10.1016/j.ensm.2019.07.005
- J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). https://doi.org/10.1126/science.1158736
- Z.S. Iro, B. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 11, 10628–10643 (2016). https://doi.org/10.20964/2016.12.50
- Z. Wang, J. Cheng, J. Zhou, J. Zhang, H. Huang, J. Yang, Y. Li, B. Wang, All-climate aqueous fiber-shaped supercapacitors with record areal energy density and high safety. Nano Energy 50, 106–117 (2018). https://doi.org/10.1016/j.nanoen.2018.05.029
- Y. Jin, K. Liu, J. Lang, X. Jiang, Z. Zheng et al., High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries. Joule 4, 262–274 (2019). https://doi.org/10.1016/j.joule.2019.09.003
- M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7(1), 12647 (2016). https://doi.org/10.1038/ncomms12647
- H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29(46), 1702093 (2017). https://doi.org/10.1002/adma.201702093
- M. Assefi, S. Maroufi, M. Mayyas, V. Sahajwalla, Recycling of Ni–Cd batteries by selective isolation and hydrothermal synthesis of porous NiO nanocuboid. J. Environ. Chem. Eng. 6(4), 4671–4675 (2018). https://doi.org/10.1016/j.jece.2018.07.021
- A.A.L. Marins, S.G. Banhos, E.J.B. Muri, R.V. Rodrigues, P.C.M. Cruz, M.B.J.G. Freitas, Synthesis by coprecipitation with oxalic acid of rare earth and nickel oxides from the anode of spent Ni–Mh batteries and its electrochemical properties. Mater. Chem. Phys. 242, 122440 (2020). https://doi.org/10.1016/j.matchemphys.2019.122440
- Z. Wu, Y. Liu, C. Deng, H. Zhao, R. Zhao, H. Chen, The critical role of boric acid as electrolyte additive on the electrochemical performance of lead-acid battery. J. Energy Storage 27, 101076 (2020). https://doi.org/10.1016/j.est.2019.101076
- W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4(7), 1600539 (2017). https://doi.org/10.1002/advs.201600539
- Z. Chen, J. Wen, C. Yan, L. Rice, H. Sohn et al., High-performance supercapacitors based on hierarchically porous graphite particles. Adv. Energy Mater. 1(4), 551–556 (2011). https://doi.org/10.1002/aenm.201100114
- Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–4850 (2011). https://doi.org/10.1002/adma.201100984
- F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ. Sci. 6(5), 1623–1632 (2013). https://doi.org/10.1039/C3EE40509E
- A.J. Stevenson, D.G. Gromadskyi, D. Hu, J. Chae, L. Guan, L. Yu, G.Z. Chen, Supercapatteries with hybrids of redox active polymers and nanostructured carbons, in Nanocarbons for Advanced Energy Storage, vol. 1, ed. by X. Feng (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015), pp. 179–210
- B. Akinwolemiwa, G.Z. Chen, Fundamental consideration for electrochemical engineering of supercapattery. J. Braz. Chem. Soc. 29, 960–972 (2018). https://doi.org/10.21577/0103-5053.20180010
- B.E. Conway, Similarities and Differences Between Supercapacitors and Batteries for Storing Electrical Energy (Springer, Boston, 1999), pp. 11–31
- D. Linden, T. Reddy, Handbook of Batteries, 3rd edn. (McGraw-Hill, New York, 2011), pp. 1.0–43.20
- L. Yu, G.Z. Chen, Redox electrode materials for supercapatteries. J. Power Sources 326, 604–612 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.095
- S. Zhang, N. Pan, Supercapacitors performance evaluation. Adv. Energy Mater. 5(6), 1401401 (2014). https://doi.org/10.1002/aenm.201401401
- T. Brousse, D. Bélanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162(5), 5185 (2015). https://doi.org/10.1149/2.0201505jes
- L. Guan, L. Yu, G.Z. Chen, Capacitive and non-capacitive faradaic charge storage. Electrochim. Acta 206, 464–478 (2016). https://doi.org/10.1016/j.electacta.2016.01.213
- B.E. Conway, Electrochemical Capacitors Based on Pseudocapacitance (Springer, Boston, 1999), pp. 221–257
- B.E. Conway, The Double Layer at Capacitor Electrode Interfaces: Its Structure and Capacitance (Springer, Boston, 1999), pp. 105–124
- C. Peng, Y. Li, F. Yao, H. Fu, R. Zhou, Y. Feng, W. Feng, Ultrahigh-energy-density fluorinated calcinated macadamia nut shell cathodes for lithium/fluorinated carbon batteries. Carbon 153, 783 (2019). https://doi.org/10.1016/j.Carbon2019.07.065
- H. Shi, X. Zhao, Z.-S. Wu, Y. Dong, P. Lu et al., Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries. Nano Energy 60, 743–751 (2019). https://doi.org/10.1016/j.nanoen.2019.04.006
- M. Guo, J. Balamurugan, T.D. Thanh, N.H. Kim, J.H. Lee, Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors. J. Mater. Chem. A 4(44), 17560–17571 (2016). https://doi.org/10.1039/C6TA07400F
- L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
- M. Sethi, H. Bantawal, U.S. Shenoy, D.K. Bhat, Eco-friendly synthesis of porous graphene and its utilization as high performance supercapacitor electrode material. J. Alloys Compd. 799, 256–266 (2019). https://doi.org/10.1016/j.jallcom.2019.05.302
- H.S. Kim, M.A. Abbas, M.S. Kang, H. Kyung, J.H. Bang, W.C. Yoo, Study of the structure-properties relations of carbon spheres affecting electrochemical performances of edlcs. Electrochim. Acta 304, 210–220 (2019). https://doi.org/10.1016/j.electacta.2019.02.121
- C.-W. Liew, S. Ramesh, A.K. Arof, Enhanced capacitance of EDLCs (electrical double layer capacitors) based on ionic liquid-added polymer electrolytes. Energy 109, 546–556 (2016). https://doi.org/10.1016/j.energy.2016.05.019
- Y. Xiao, Y. Liu, F. Liu, P. Han, G. Qin, Wearable pseudocapacitor based on porous MnO2 composite. J. Alloys Compd. 813, 152089 (2020). https://doi.org/10.1016/j.jallcom.2019.152089
- C.-Q. Yi, J.-P. Zou, H.-Z. Yang, X. Leng, Recent advances in pseudocapacitor electrode materials: transition metal oxides and nitrides. T. Nonferrous Metals Soc. 28(10), 1980–2001 (2018). https://doi.org/10.1016/S1003-6326(18)64843-5
- S. Iqbal, H. Khatoon, P.A. Hussain, S. Ahmad, Recent development of carbon based materials for energy storage devices. Mater. Sci. Energy Technol. 2(3), 417–428 (2019). https://doi.org/10.1016/j.mset.2019.04.006
- Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/C5CS00580A
- J. Varghese, H. Wang, L. Pilon, Simulating electric double layer capacitance of mesoporous electrodes with cylindrical pores. J. Electrochem. Soc. 158(10), A1106 (2011). https://doi.org/10.1149/1.3622342
- Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028
- V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014). https://doi.org/10.1039/C3EE44164D
- A. Djire, P. Pande, A. Deb, J.B. Siegel, O.T. Ajenifujah et al., Unveiling the pseudocapacitive charge storage mechanisms of nanostructured vanadium nitrides using in situ analyses. Nano Energy 60, 72–81 (2019). https://doi.org/10.1016/j.nanoen.2019.03.003
- J.H. Chae, K.C. Ng, G.Z. Chen, Nanostructured materials for the construction of asymmetrical supercapacitors. Proc. Inst. Mech. Eng. Part A J. Power Energy 224(4), 479–503 (2010). https://doi.org/10.1243/09576509JPE861
- M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater. 14(4), 1610–1613 (2002). https://doi.org/10.1021/cm010744r
- C. Klumpner, G. Asher, G.Z. Chen, Selecting the power electronic interface for a supercapattery based energy storage system, in 2009 IEEE Bucharest Power Tech (2009), pp. 1–7. https://doi.org/10.1109/PTC.2009.5281965
- G.Z. Chen, Perception of supercapacitor and supercapattery. ECS meeting abstracts. Boston, MA, October 9–14, 2011, MA2011-02(11) (2011), p. 559
- B.G. Choi, S.-J. Chang, H.-W. Kang, C.P. Park, H.J. Kim et al., High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 4(16), 4983–4988 (2012). https://doi.org/10.1039/C2NR30991B
- F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che, X. Zhang, Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. J. Power Sources 203, 250–256 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.001
- Z. Lin, Y. Liu, Y. Yao, O.J. Hildreth, Z. Li et al., Superior capacitance of functionalized graphene. J. Phys. Chem. C 115(14), 7120–7125 (2011). https://doi.org/10.1021/jp2007073
- F. Du, X. Zuo, Q. Yang, G. Li, Z. Ding, M. Wu, Y. Ma, S. Jin, K. Zhu, Facile hydrothermal reduction synthesis of porous Co3O4 nanosheets@rGO nanocomposite and applied as a supercapacitor electrode with enhanced specific capacitance and excellent cycle stability. Electrochim. Acta 222, 976–982 (2016). https://doi.org/10.1016/j.electacta.2016.11.065
- B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci. 4(8), 2826–2830 (2011). https://doi.org/10.1039/C1EE01198G
- A. Mery, F. Ghamouss, C. Autret, D. Farhat, F. Tran-Van, Aqueous ultracapacitors using amorphous MnO2 and reduced graphene oxide. J. Power Sources 305, 37–45 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.046
- Y. Cheng, H. Zhang, S. Lu, C.V. Varanasi, J. Liu, Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale 5(3), 1067–1073 (2013). https://doi.org/10.1039/C2NR33136E
- S. Cho, B. Patil, S. Yu, S. Ahn, J. Hwang, C. Park, K. Do, H. Ahn, Flexible, swiss roll, fiber-shaped, asymmetric supercapacitor using MnO2 and Fe2O3 on carbon fibers. Electrochim. Acta 269, 499–508 (2018). https://doi.org/10.1016/j.electacta.2018.03.020
- X. Bai, Q. Liu, J. Liu, Z. Gao, H. Zhang et al., All-solid state asymmetric supercapacitor based on NiCoAl layered double hydroxide nanopetals on robust 3D graphene and modified mesoporous carbon. Chem. Eng. J. 328, 873–883 (2017). https://doi.org/10.1016/j.cej.2017.07.118
- Q. Tang, W. Wang, G. Wang, The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. J. Mater. Chem. A 3(12), 6662–6670 (2015). https://doi.org/10.1039/C5TA00328H
- H. Wang, H. Yi, X. Chen, X. Wang, Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. J. Mater. Chem. A 2(9), 3223–3230 (2014). https://doi.org/10.1039/C3TA15046A
- V. Khomenko, E. Raymundo-Piñero, F. Béguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J. Power Sources 153(1), 183–190 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.210
- F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, Y. Wu, Electrode materials for aqueous asymmetric supercapacitors. RSC Adv. 3(32), 13059–13084 (2013). https://doi.org/10.1039/C3RA23466E
- J. Chang, M. Jin, F. Yao, H.K. Tae, T.L. Viet et al., Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv. Funct. Mater. 23(40), 5074–5083 (2013). https://doi.org/10.1002/adfm201301851
- J.H. Chae, G.Z. Chen, 1.9 V aqueous carbon–carbon supercapacitors with unequal electrode capacitances. Electrochim. Acta 86, 248–254 (2012). https://doi.org/10.1016/j.electacta.2012.07.033
- Z. Dai, C. Peng, J.H. Chae, K.C. Ng, G.Z. Chen, Cell voltage versus electrode potential range in aqueous supercapacitors. Sci. Rep. 5(1), 9854 (2015). https://doi.org/10.1038/srep09854
- N. Jäckel, D. Weingarth, M. Zeiger, M. Aslan, I. Grobelsek, V. Presser, Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes. J. Power Sources 272, 1122–1133 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.090
- B.E. Wilson, S. He, K. Buffington, S. Rudisill, W.H. Smyrl, A. Stein, Utilizing ionic liquids for controlled N-doping in hard-templated, mesoporous carbon electrodes for high-performance electrochemical double-layer capacitors. J. Power Sources 298, 193–202 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.057
- S. Tan, Y.J. Ji, Z.R. Zhang, Y. Yang, Recent progress in research on high-voltage electrolytes for lithium-ion batteries. ChemPhysChem 15(10), 1956–1969 (2014). https://doi.org/10.1002/cphc.201402175
- A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019). https://doi.org/10.1039/C8CS00581H
- J. Li, Y. Wang, W. Xu, Y. Wang, B. Zhang et al., Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 57, 379–387 (2019). https://doi.org/10.1016/j.nanoen.2018.12.061
- J.H. Kim, H.J. Choi, H.-K. Kim, S.-H. Lee, Y.-H. Lee, A hybrid supercapacitor fabricated with an activated carbon as cathode and an urchin-like TiO2 as anode. Int. J. Hydrogen Energy 41(31), 13549–13556 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.018
- X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang et al., Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater. 25(36), 5091–5097 (2013). https://doi.org/10.1002/adma.201301465
- Y. Gogotsi, What nano can do for energy storage. ACS Nano 8(6), 5369–5371 (2014). https://doi.org/10.1021/nn503164x
- L. Li, S. Peng, H.B. Wu, L. Yu, S. Madhavi, X. Lou, A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv. Energy Mater. 5(17), 1500753 (2015). https://doi.org/10.1002/aenm.201500753
- L. Yu, G.Z. Chen, High energy supercapattery with an ionic liquid solution of LiClO4. Faraday Discuss. 190, 231–240 (2016). https://doi.org/10.1039/C5FD00232J
- S.L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao et al., Nanostructured carbon for energy storage and conversion. Nano Energy 1(2), 195–220 (2012). https://doi.org/10.1016/j.nanoen.2011.11.006
- G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). https://doi.org/10.1039/C1CS15060J
- F. Wang, Z. Chang, M. Li, Y. Wu, Nanocarbon-based materials for asymmetric supercapacitors, in Nanocarbons for Advanced Energy Storage, 1st edn., ed. by X. Feng (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015), pp. 379–415
- H. Wang, H.S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010). https://doi.org/10.1021/ja102267j
- X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem. Eur. J. 17(39), 10898–10905 (2011). https://doi.org/10.1002/chem.201100727
- Z. Bo, Z. Wen, H. Kim, G. Lu, K. Yu, J. Chen, One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50(12), 4379 (2012). https://doi.org/10.1016/j.Carbon2012.05.014
- A.P. Singh, N.K. Tiwari, P.B. Karandikar, A. Dubey, Effect of electrode shape on the parameters of supercapacitor. 2015 ICIC (2015), p. 669
- L. Sui, S. Tang, Y. Chen, Z. Dai, H. Huangfu et al., An asymmetric supercapacitor with good electrochemical performances based on Ni(OH)2/AC/CNT and ac. Electrochim. Acta 182, 1159–1165 (2015). https://doi.org/10.1016/j.electacta.2015.09.111
- A. Roy, A. Ray, S. Saha, M. Ghosh, T. Das, B. Satpati, M. Nandi, S. Das, NiO–CNT composite for high performance supercapacitor electrode and oxygen evolution reaction. Electrochim. Acta 283, 327–337 (2018). https://doi.org/10.1016/j.electacta.2018.06.154
- A. Shanmugavani, R.K. Selvan, Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim. Acta 188, 852–862 (2016). https://doi.org/10.1016/j.electacta.2015.12.077
- M. Jing, H. Hou, Y. Yang, Y. Zhu, Z. Wu, X. Ji, Electrochemically alternating voltage tuned Co2MnO4/Co hydroxide chloride for an asymmetric supercapacitor. Electrochim. Acta 165, 198–205 (2015). https://doi.org/10.1016/j.electacta.2015.03.032
- J. Yang, L. Lian, H. Ruan, F. Xie, M. Wei, Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application. Electrochim. Acta 136, 189–194 (2014). https://doi.org/10.1016/j.electacta.2014.05.074
- S. Yang, K. Cheng, K. Ye, Y. Li, J. Qu, J. Yin, G. Wang, D. Cao, A novel asymmetric supercapacitor with buds-like Co(OH)2 used as cathode materials and activated carbon as anode materials. J. Electroanal. Chem. 741, 93–99 (2015). https://doi.org/10.1016/j.jelechem.2015.01.011
- Y. Tang, Y. Liu, S. Yu, Y. Zhao, S. Mu, F. Gao, Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochim. Acta 123, 158–166 (2014). https://doi.org/10.1016/j.electacta.2013.12.187
- D. Liu, W. Zhang, W. Huang, Effect of removing silica in rice husk for the preparation of activated carbon for supercapacitor applications. Chin. Chem. Lett. 30(6), 1315–1319 (2019). https://doi.org/10.1016/j.cclet.2019.02.031
- L. Zeng, X. Lou, J. Zhang, C. Wu, J. Liu, C. Jia, Carbonaceous mudstone and lignin-derived activated carbon and its application for supercapacitor electrode. Surf. Coat. Technol. 357, 580–586 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.041
- S. Surendran, S. Shanmugapriya, S. Shanmugam, L. Vasylechko, R.K. Selvan, Interweaved nickel phosphide sponge as an electrode for flexible supercapattery and water splitting applications. ACS Appl. Energy Mater. 1(1), 78–92 (2018). https://doi.org/10.1021/acsaem.7b00006
- L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv. Energy Mater. 1(3), 356–361 (2011). https://doi.org/10.1002/aenm.201100019
- P. Schlee, S. Herou, R. Jervis, P.R. Shearing, D.J.L. Brett et al., Free-standing supercapacitors from kraft lignin nanofibers with remarkable volumetric energy density. Chem. Sci. 10(10), 2980–2988 (2019). https://doi.org/10.1039/C8SC04936J
- D.C. Martínez-Casillas, I. Mascorro-Gutiérrez, C.E. Arreola-Ramos, H.I. Villafán-Vidales, C.A. Arancibia-Bulnes et al., A sustainable approach to produce activated carbons from pecan nutshell waste for environmentally friendly supercapacitors. Carbon 148, 403 (2019). https://doi.org/10.1016/j.Carbon2019.04.017
- W. Wang, J. Qi, Y. Sui, Y. He, Q. Meng, F. Wei, Y. Jin, An asymmetric supercapacitor based on activated porous carbon derived from walnut shells and NiCo2O4 nanoneedle arrays electrodes. J. Nanosci. Nanotechnol. 18(8), 5600 (2018). https://doi.org/10.1166/jnn.2018.15410
- H. Pan, J. Li, Y. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5(3), 654 (2010). https://doi.org/10.1007/s11671-009-9508-2
- T. Chen, L. Dai, Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16(7), 272–280 (2013). https://doi.org/10.1016/j.mattod.2013.07.002
- N. Liu, Z. Pan, X. Ding, J. Yang, G. Xu et al., In-situ growth of vertically aligned nickel cobalt sulfide nanowires on carbon nanotube fibers for high capacitance all-solid-state asymmetric fiber-supercapacitors. J. Energy Chem. 41, 209–215 (2020). https://doi.org/10.1016/j.jechem.2019.05.008
- S.W. Lee, B.M. Gallant, Y. Lee, N. Yoshida, D.Y. Kim et al., Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries. Energy Environ. Sci. 5(1), 5437–5444 (2012). https://doi.org/10.1039/C1EE02409D
- Z. Niu, P. Luan, Q. Shao, H. Dong, J. Li et al., A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ. Sci. 5(9), 8726–8733 (2012). https://doi.org/10.1039/C2EE22042C
- P.K. Adusei, S. Gbordzoe, S.N. Kanakaraj, Y.-Y. Hsieh, N.T. Alvarez et al., Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers. J. Energy Chem. 40, 120–131 (2020). https://doi.org/10.1016/j.jechem.2019.03.005
- M.V.K. Azhagan, M.V. Vaishampayan, M.V. Shelke, Synthesis and electrochemistry of pseudocapacitive multilayer fullerenes and MnO2 nanocomposites. J. Mater. Chem. A 2(7), 2152–2159 (2014). https://doi.org/10.1039/C3TA14076H
- R. Borgohain, J.P. Selegue, Y.T. Cheng, Ternary composites of delaminated- MnO2/PDDA/functionalized-CNOs for high-capacity supercapacitor electrodes. J. Mater. Chem. A 2(47), 20367–20373 (2014). https://doi.org/10.1039/C4TA04439H
- Y. Wang, S.F. Yu, C.Y. Sun, T.J. Zhu, H.Y. Yang, MnO2/onion-like carbon nanocomposites for pseudocapacitors. J. Mater. Chem. 22(34), 17584–17588 (2012). https://doi.org/10.1039/C2JM33558A
- K. Ozoemena, K. Makgopa, C. Jafta, V. Presser, M. Zeiger, P. Ejikeme, K. Raju, High-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. J. Mater. Chem. A 3(7), 3480–3490 (2015). https://doi.org/10.1039/C4TA06715K
- O. Mykhailiv, M. Imierska, M. Petelczyc, L. Echegoyen, M.E. Plonska-Brzezinska, Chemical versus electrochemical synthesis of carbon nano-onion/polypyrrole composites for supercapacitor electrodes. Chem. Eur. J. 21(15), 5783–5793 (2015). https://doi.org/10.1002/chem.201406126
- M.E. Plonska-Brzezinska, J. Mazurczyk, B. Palys, J. Breczko, A. Lapinski et al., Preparation and characterization of composites that contain small carbon nano-onions and conducting polyaniline. Chem. Eur. J. 18(9), 2600–2608 (2012). https://doi.org/10.1002/chem.201102175
- H. Jin, S. Wu, T. Li, Y. Bai, X. Wang et al., Synthesis of porous carbon nano-onions derived from rice husk for high-performance supercapacitors. Appl. Surf. Sci. 488, 593–599 (2019). https://doi.org/10.1016/j.apsusc.2019.05.308
- L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20(29), 5983–5992 (2010). https://doi.org/10.1039/C000417K
- Y.B. Tan, J.-M. Lee, Graphene for supercapacitor applications. J. Mater. Chem. A 1(47), 14814–14843 (2013). https://doi.org/10.1039/C3TA12193C
- W. Yang, M. Ni, X. Ren, Y. Tian, N. Li, Y. Su, X. Zhang, Graphene in supercapacitor applications. Curr. Opin. Colloid Interface Sci. 20(5), 416–428 (2015). https://doi.org/10.1016/j.cocis.2015.10.009
- A.K. Singh, D. Sarkar, K. Karmakar, K. Mandal, G.G. Khan, High-performance supercapacitor electrode based on cobalt oxide–manganese dioxide–nickel oxide ternary 1D hybrid nanotubes. ACS Appl. Mater. Interfaces. 8(32), 20786–20792 (2016). https://doi.org/10.1021/acsami.6b05933
- L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu et al., Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci. Rep. 3, 1408 (2013). https://doi.org/10.1038/srep01408
- S. Shivakumara, N. Munichandraiah, Asymmetric supercapacitor based on nanostructured porous manganese oxide and reduced graphene oxide in aqueous neutral electrolyte. Solid State Commun. 260, 34–39 (2017). https://doi.org/10.1016/j.ssc.2017.05.015
- H. Yi, H. Wang, Y. Jing, T. Peng, Y. Wang et al., Advanced asymmetric supercapacitors based on CNT@Ni(OH)2 core-shell composites and 3D graphene networks. J. Mater. Chem. A 3(38), 19545–19555 (2015). https://doi.org/10.1039/C5TA06174A
- S. Li, X. Wang, L. Hou, X. Zhang, Y. Zhou, Y. Yang, Z. Hu, Graphene hydrogels functionalized non-covalently by fused heteroaromatic molecule for asymmetric supercapacitor with ultra-long cycle life. Electrochim. Acta 317, 437–448 (2019). https://doi.org/10.1016/j.electacta.2019.06.022
- Y. Gu, L.-Q. Fan, J.-L. Huang, C.-L. Geng, J.-M. Lin et al., N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J. Power Sources 425, 60–68 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.123
- M.S. Javed, H.U. Shah, N. Shaheen, R. Lin, M. Qiu et al., High energy density hybrid supercapacitor based on 3D mesoporous cuboidal Mn2O3 and MOF-derived porous carbon polyhedrons. Electrochim. Acta 282, 1–9 (2018). https://doi.org/10.1016/j.electacta.2018.06.009
- X. Li, H. Wu, A.M. Elshahawy, L. Wang, S.J. Pennycook et al., Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 28(20), 1800036 (2018). https://doi.org/10.1002/adfm.201800036
- X. Wei, H. Peng, Y. Li, Y. Yang, S. Xiao, L. Peng, Y. Zhang, P. Xiao, In situ growth of zeolitic imidazolate framework-67-derived nanoporous carbon@K0.5Mn2O4 for high-performance 2.4 V aqueous asymmetric supercapacitors. Chemsuschem 11(18), 3167–3174 (2018). https://doi.org/10.1002/cssc.201801439
- C. Qu, Z. Liang, Y. Jiao, B. Zhao, B. Zhu et al., “One-for-all” strategy in fast energy storage: production of pillared MOF nanorod-templated positive/negative electrodes for the application of high-performance hybrid supercapacitor. Small 14(23), 1800285 (2018). https://doi.org/10.1002/smll.201800285
- S. Nagamuthu, K.-S. Ryu, MOF-derived microstructural interconnected network porous Mn2O3/C as negative electrode material for asymmetric supercapacitor device. CrystEngComm 21(9), 1442–1451 (2019). https://doi.org/10.1039/C8CE01683F
- C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6(12), 2690–2695 (2006). https://doi.org/10.1021/nl061576a
- T.N.J.I. Edison, R. Atchudan, Y.R. Lee, Facile synthesis of carbon encapsulated RuO2 nanorods for supercapacitor and electrocatalytic hydrogen evolution reaction. Inter. J. Hydrog. Energy 44(4), 2323–2329 (2019). https://doi.org/10.1016/j.ijhydene.2018.02.018
- X. Li, H. He, Hydrous RuO2 nanoparticles coated on Co(OH)2 nanoflakes as advanced electrode material of supercapacitors. Appl. Surf. Sci. 470, 306–317 (2019). https://doi.org/10.1016/j.apsusc.2018.11.142
- H.Y. Lee, J.B. Goodenough, Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144(1), 220–223 (1999). https://doi.org/10.1006/jssc.1998.8128
- M. Huang, R. Mi, H. Liu, F. Li, X.L. Zhao, W. Zhang, S.X. He, Y.X. Zhang, Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. J. Power Sources 269, 760–767 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.031
- L.H. Chen, L. Li, W.J. Qian, C.K. Dong, MnO2/multiwall carbon nanotube/Ni-foam hybrid electrode for electrochemical capacitor. IOP Conf. Ser. Mater. Sci. Eng. 292, 012018 (2018). https://doi.org/10.1088/1757899X/292/1/012018
- X. Zhang, D. Zhao, Y. Zhao, P. Tang, Y. Shen, C. Xu, H. Li, Y. Xiao, High performance asymmetric supercapacitor based on MnO2 electrode in ionic liquid electrolyte. J. Mater. Chem. A 1(11), 3706–3712 (2013). https://doi.org/10.1039/C3TA00981E
- A. Xia, W. Yu, J. Yi, G. Tan, H. Ren, C. Liu, Synthesis of porous δ- MnO2 nanosheets and their supercapacitor performance. J. Electroanal. Chem. 839, 25–31 (2019). https://doi.org/10.1016/j.jelechem.2019.02.059
- Q. Wang, Y. Ma, X. Liang, D. Zhang, M. Miao, Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem. Eng. J. 371, 145–153 (2019). https://doi.org/10.1016/j.cej.2019.04.021
- M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16(16), 3184–3190 (2004). https://doi.org/10.1021/cm049649j
- X. Qi, W. Zheng, X. Li, G. He, Multishelled NiO hollow microspheres for high-performance supercapacitors with ultrahigh energy density and robust cycle life. Sci. Rep. 6, 33241 (2016). https://doi.org/10.1038/srep33241
- Y. Yang, L. Li, G. Ruan, H. Fei, C. Xiang et al., Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors. ACS Nano 8(9), 9622–9628 (2014). https://doi.org/10.1021/nn5040197
- R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloys Compd. 734, 89–111 (2018). https://doi.org/10.1016/j.jallcom.2017.10.262
- J.-W. Lang, L.-B. Kong, W.-J. Wu, M. Liu, Y.-C. Luo, L. Kang, A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J. Solid State Electrochem. 13(2), 333 (2008). https://doi.org/10.1007/s10008-008-0560-0
- W. Sun, L. Xiao, X. Wu, Facile synthesis of NiO nanocubes for photocatalysts and supercapacitor electrodes. J. Alloys Compd. 772, 465–471 (2019). https://doi.org/10.1016/j.jallcom.2018.09.185
- J. Ji, L. Zhang, H. Ji, Y. Li, X. Bai, X. Fan, F. Zhang, R. Ruoff, Nanoporous Ni(OH) thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237–6243 (2013). https://doi.org/10.1021/nn4021955
- J. Lin, Y. Yan, H. Wang, X. Zheng, Z. Jiang et al., Hierarchical Fe2O3 and NiO nanotube arrays as advanced anode and cathode electrodes for high-performance asymmetric supercapacitors. J. Alloys Compd. 794, 255–260 (2019). https://doi.org/10.1016/j.jallcom.2019.04.273
- V.D. Nithya, N.S. Arul, Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J. Power Sources 327, 297–318 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.033
- Y. Li, Q. Li, L. Cao, X. Cui, Y. Yang, P. Xiao, Y. Zhang, The impact of morphologies and electrolyte solutions on the supercapacitive behavior for Fe2O3 and the charge storage mechanism. Electrochim. Acta 178, 171–178 (2015). https://doi.org/10.1016/j.electacta.2015.08.013
- G. Binitha, M.S. Soumya, A.A. Madhavan, P. Praveen, A. Balakrishnan et al., Electrospun α-Fe2O3 nanostructures for supercapacitor applications. J. Mater. Chem. A 1(38), 11698–11704 (2013). https://doi.org/10.1039/C3TA12352A
- Z. Yang, L. Tang, J. Ye, D. Shi, S. Liu, M. Chen, Hierarchical nanostructured α-Fe2O3/polyaniline anodes for high performance supercapacitors. Electrochim. Acta 269, 21–29 (2018). https://doi.org/10.1016/j.electacta.2018.02.144
- R. Pai, V. Kalra, High performance aqueous asymmetric supercapacitor based on iron oxide anode and cobalt oxide cathode. J. Mater. Res. 33(9), 1199–1210 (2018). https://doi.org/10.1557/jmr.2018.13
- P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li et al., Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14(2), 731–736 (2014). https://doi.org/10.1021/nl404008e
- X.-F. Lu, X.-Y. Chen, W. Zhou, Y.-X. Tong, G.-R. Li, α-Fe2O3@PANI core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 7(27), 14843–14850 (2015). https://doi.org/10.1021/acsami.5b03126
- S. Yang, X. Song, P. Zhang, L. Gao, Heating-rate-induced porous α-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors. ACS Appl. Mater. Interfaces. 7(1), 75–79 (2015). https://doi.org/10.1021/am507910f
- Y. Ye, H. Zhang, Y. Chen, P. Deng, Z. Huang et al., Core–shell structure carbon coated ferric oxide (Fe2O3@C) nanoparticles for supercapacitors with superior electrochemical performance. J. Alloys Compd. 639, 422–427 (2015). https://doi.org/10.1016/j.jallcom.2015.03.113
- N. Maheswari, G. Muralidharan, Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices. Appl. Surf. Sci. 416, 461–469 (2017). https://doi.org/10.1016/j.apsusc.2017.04.094
- M. Yu, X. Cheng, Y. Zeng, Z. Wang, Y. Tong, X. Lu, S. Yang, Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew. Chem. Int. Ed. 55(23), 6762–6766 (2016). https://doi.org/10.1002/anie.201602631
- H. Ma, J. He, D.-B. Xiong, J. Wu, Q. Li, V. Dravid, Y. Zhao, Nickel cobalt hydroxide @reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability. ACS Appl. Mater. Interfaces. 8(3), 1992–2000 (2016). https://doi.org/10.1021/acsami.5b10280
- Z. Ma, G. Shao, Y. Fan, M. Feng, D. Shen, H. Wang, Fabrication of high-performance all-solid-state asymmetric supercapacitors based on stable α-MnO2@NiCo2O4 core–shell heterostructure and 3D-nanocage N-doped porous Carbon ACS Sustain. Chem. Eng. 5(6), 4856–4868 (2017). https://doi.org/10.1021/acssuschemeng.7b00279
- J. Zhao, C. Li, Q. Zhang, J. Zhang, X. Wang et al., Hierarchical ferric–cobalt–nickel ternary oxide nanowire arrays supported on graphene fibers as high-performance electrodes for flexible asymmetric supercapacitors. Nano Res. 11(4), 1775–1786 (2018). https://doi.org/10.1007/s12274-017-1795-9
- J. S. Sanchez, A. Pendashteh, J. Palma, M. Anderson, R. Marcilla, Porous NiCoMn ternary metal oxide/graphene nanocomposites for high performance hybrid energy storage devices. Electrochim. Acta 279, 44–56 (2018). https://doi.org/10.1016/j.electacta.2018.05.072
- C. Wu, J. Cai, Y. Zhu, K. Zhang, Hybrid reduced graphene oxide nanosheet supported Mn–Ni–Co ternary oxides for aqueous asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 9(22), 19114–19123 (2017). https://doi.org/10.1021/acsami.7b03709
- J. Luo, J. Wang, S. Liu, W. Wu, T. Jia, Z. Yang, S. Mu, Y. Huang, Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. Carbon 146, 1–8 (2019). https://doi.org/10.1016/j.Carbon2019.01.078
- R.S. Babu, R. Vinodh, A.L.F. de Barros, L.M. Samyn, K. Prasanna et al., Asymmetric supercapacitor based on carbon nanofibers as the anode and two-dimensional copper cobalt oxide nanosheets as the cathode. Chem. Eng. J. 366, 390–403 (2019). https://doi.org/10.1016/j.cej.2019.02.108
- X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan et al., Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27(32), 4695–4701 (2015). https://doi.org/10.1002/adma.201501310
- K.M. Choi, H.M. Jeong, J.H. Park, Y.-B. Zhang, J. K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8(7), 7451–7457 (2014). https://doi.org/10.1021/nn5027092
- O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer et al., Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134(36), 15016–15021 (2012). https://doi.org/10.1021/ja3055639
- K.M. Choi, H.J. Jeon, J.K. Kang, O.M. Yaghi, Heterogeneity within order in crystals of a porous metal–organic framework. J. Am. Chem. Soc. 133(31), 11920–11923 (2011). https://doi.org/10.1021/ja204818q
- J. Fan, W.-Y. Sun, T.-A. Okamura, W.-X. Tang, N. Ueyama, Novel metal − organic frameworks with specific topology from new tripodal ligands: 1,3,5-tris(1-imidazolyl)benzene and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene. Inorg. Chem. 42(10), 3168–3175 (2003). https://doi.org/10.1021/ic0206847
- P. Du, Y. Dong, C. Liu, W. Wei, D. Liu, P. Liu, Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J. Colloid Interface Sci. 518, 57–68 (2018). https://doi.org/10.1016/j.jcis.2018.02.010
- J. Wang, Q. Zhong, Y. Xiong, D. Cheng, Y. Zeng, Y. Bu, Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors. Appl. Surf. Sci. 483, 1158–1165 (2019). https://doi.org/10.1016/j.apsusc.2019.03.340
- X.-X. Meng, J.-Y. Li, B.-L. Yang, Z.-X. Li, MOF-derived NiO nanoparticles prilled by controllable explosion of perchlorate ion: excellent performances and practical applications in supercapacitors. Appl. Surf. Sci. 507, 145077 (2020). https://doi.org/10.1016/j.apsusc.2019.145077
- F. Saleki, A. Mohammadi, S.E. Moosavifard, A. Hafizi, M.R. Rahimpour, MOF assistance synthesis of nanoporous double-shelled CuCo2O4 hollow spheres for hybrid supercapacitors. J. Colloid Interface Sci. 556, 83–91 (2019). https://doi.org/10.1016/j.jcis.2019.08.044
- P. Liang, Q. Wang, J. Kang, W. Tian, H. Sun, S. Wang, Dual-metal zeolitic imidazolate frameworks and their derived nanoporous carbons for multiple environmental and electrochemical applications. Chem. Eng. J. 351, 641–649 (2018). https://doi.org/10.1016/j.cej.2018.06.140
- C. Ye, Q. Qin, J. Liu, W. Mao, J. Yan, Y. Wang, J. Cui, Q. Zhang, L. Yang, Y. Wu, Coordination derived stable Ni–Co MOFs for foldable all-solid-state supercapacitors with high specific energy. J. Mater. Chem. A 7(9), 4998–5008 (2019). https://doi.org/10.1039/C8TA11948A
- Y. Liu, Y. Wang, H. Wang, P. Zhao, H. Hou, L. Guo, Acetylene black enhancing the electrochemical performance of NiCo-MOF nanosheets for supercapacitor electrodes. Appl. Surf. Sci. 492, 455–463 (2019). https://doi.org/10.1016/j.apsusc.2019.06.238
- J. Yang, P. Li, L. Wang, X. Guo, J. Guo, S. Liu, In-situ synthesis of Ni-MOF@CNT on graphene/Ni foam substrate as a novel self-supporting hybrid structure for all-solid-state supercapacitors with a high energy density. J. Electroanal. Chem. 848, 113301 (2019). https://doi.org/10.1016/j.jelechem.2019.113301
- Y. Liu, Y. Wang, Y. Chen, C. Wang, L. Guo, NiCo-MOF nanosheets wrapping polypyrrole nanotubes for high-performance supercapacitors. Appl. Surf. Sci. 507, 145089 (2020). https://doi.org/10.1016/j.apsusc.2019.145089
- M.M. Vadiyar, X. Liu, Z. Ye, Highly porous silver dendrites on carbon nanotube wrapped copper cobaltite nano-flowers for boosting energy density and cycle stability of asymmetric supercapattery. J. Power Sources 415, 154–164 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.053
- S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- H. Tang, Q. Hu, M. Zheng, Y. Chi, X. Qin, H. Pang, Q. Xu, MXene–2D layered electrode materials for energy storage. Prog. Nat. Sci. Mater. 28(2), 133–147 (2018). https://doi.org/10.1016/j.pnsc.2018.03.003
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- R. Zou, H. Quan, M. Pan, S. Zhou, D. Chen, X. Luo, Self-assembled MXene(Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochim. Acta 292, 31–38 (2018). https://doi.org/10.1016/j.electacta.2018.09.149
- F. Malchik, N. Shpigel, M.D. Levi, T.S. Mathis, A. Mor, Y. Gogotsi, D. Aurbach, Superfast high-energy storage hybrid device composed of MXene and chevrel-phase electrodes operated in saturated LiCl electrolyte solution. J. Mater. Chem. A 7(34), 19761–19773 (2019). https://doi.org/10.1039/C9TA08066J
- J. Li, X. Yuan, C. Lin, Y. Yang, L. Xu et al., Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 7(15), 1602725 (2017). https://doi.org/10.1002/aenm.201602725
- X. He, T. Bi, X. Zheng, W. Zhu, J. Jiang, Nickel cobalt sulfide nanoparticles grown on titanium carbide MXenes for high-performance supercapacitor. Electrochim. Acta 332, 135514 (2020). https://doi.org/10.1016/j.electacta.2019.135514
- J. Fu, L. Li, J.M. Yun, D. Lee, B.K. Ryu, K.H. Kim, Two-dimensional titanium carbide (MXene)-wrapped sisal-like NiCo2S4 as positive electrode for high-performance hybrid pouch-type asymmetric supercapacitor. Chem. Eng. J. 375, 121939 (2019). https://doi.org/10.1016/j.cej.2019.121939
- H. Li, X. Chen, E. Zalnezhad, K.N. Hui, K.S. Hui, M.J. Ko, 3D hierarchical transition-metal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors. J. Ind. Eng. Chem. 82, 309–316 (2020). https://doi.org/10.1016/j.jiec.2019.10.028
- Y. Wang, J. Sun, X. Qian, Y. Zhang, L. Yu, R. Niu, H. Zhao, J. Zhu, 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. J. Power Sources 414, 540–546 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.036
- G. Mishra, B. Dash, S. Pandey, Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 153, 172–186 (2018). https://doi.org/10.1016/j.clay.2017.12.021
- Z. Li, H. Duan, M. Shao, J. Li, D. O’Hare, M. Wei, Z.L. Wang, Ordered-vacancy-induced cation intercalation into layered double hydroxides: a general approach for high-performance supercapacitors. Chem 4(9), 2168–2179 (2018). https://doi.org/10.1016/j.chempr.2018.06.007
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- Y. Xia, T.S. Mathis, M-Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557(7705), 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
- C. Lu, A. Li, T. Zhai, C. Niu, H. Duan, L. Guo, W. Zhou, Interface design based on Ti3C2 MXene atomic layers of advanced battery-type material for supercapacitors. Energy Storage Mater. (2019). https://doi.org/10.1016/j.ensm.2019.11.021
- H. Niu, X. Yang, Q. Wang, X. Jing, K. Cheng et al., Electrostatic self-assembly of MXene and edge-rich coal layered double hydroxide on molecular-scale with superhigh volumetric performances. J. Energy Chem. 46, 105–113 (2020). https://doi.org/10.1016/j.jechem.2019.10.023
- M. Wei, Q. Huang, Y. Zhou, Z. Peng, W. Chu, Ultrathin nanosheets of cobalt-nickel hydroxides hetero-structure via electrodeposition and precursor adjustment with excellent performance for supercapacitor. J. Energy Chem. 27(2), 591–599 (2018). https://doi.org/10.1016/j.jechem.2017.10.022
- M. Wei, J. Li, W. Chu, N. Wang, Phase control of 2D binary hydroxides nanosheets via controlling-release strategy for enhanced oxygen evolution reaction and supercapacitor performances. J. Energy Chem. 38, 26–33 (2019). https://doi.org/10.1016/j.jechem.2019.01.003
- R. Ma, X. Liu, J. Liang, Y. Bando, T. Sasaki, Molecular-scale heteroassembly of redoxable hydroxide nanosheets and conductive graphene into superlattice composites for high-performance supercapacitors. Adv. Mater. 26(24), 4173–4178 (2014). https://doi.org/10.1002/adma.201400054
- J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014). https://doi.org/10.1002/aenm.201300816
- T. Li, W. Zhang, L. Zhi, H. Yu, L. Dang et al., High-energy asymmetric electrochemical capacitors based on oxides functionalized hollow carbon fibers electrodes. Nano Energy 30, 9–17 (2016). https://doi.org/10.1016/j.nanoen.2016.09.023
- M. Jana, S. Saha, P. Samanta, N.C. Murmu, N.H. Kim, T. Kuila, J.H. Lee, Growth of Ni–Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (silar) method for high performance asymmetric supercapacitor electrodes. J. Mater. Chem. A 4(6), 2188–2197 (2016). https://doi.org/10.1039/C5TA10297A
- J. Balamurugan, C. Li, S.G. Peera, N.H. Kim, J.H. Lee, High-energy asymmetric supercapacitors based on free-standing hierarchical Co–Mo–S nanosheets with enhanced cycling stability. Nanoscale 9(36), 13747–13759 (2017). https://doi.org/10.1039/C7NR03763E
- N.M. Shinde, Q.X. Xia, J.M. Yun, P.V. Shinde, S.M. Shaikh et al., Ultra-rapid chemical synthesis of mesoporous Bi2O3 micro-sponge-balls for supercapattery applications. Electrochim. Acta 296, 308–316 (2019). https://doi.org/10.1016/j.electacta.2018.11.044
- K.V. Sankar, S. Shanmugapriya, S. Surendran, S.C. Jun, R.K. Selvan, Facile hydrothermal synthesis of carbon-coated cobalt ferrite spherical nanoparticles as a potential negative electrode for flexible supercapattery. J. Colloid Interface Sci. 513, 480–488 (2018). https://doi.org/10.1016/j.jcis.2017.11.054
- S. Shahabuddin, A. Numan, M.M. Shahid, R. Khanam, R. Saidur, A.K. Pandey, S. Ramesh, Polyaniline–SrTiO3 nanocube based binary nanocomposite as highly stable electrode material for high performance supercapaterry. Ceram. Int. 45(9), 11428–11437 (2019). https://doi.org/10.1016/j.ceramint.2019.03.009
- J. Iqbal, A. Numan, S. Rafique, R. Jafer, S. Mohamad, K. Ramesh, S. Ramesh, High performance supercapattery incorporating ternary nanocomposite of multiwalled carbon nanotubes decorated with Co3O4 nanograins and silver nanoparticles as electrode material. Electrochim. Acta 278, 72–82 (2018). https://doi.org/10.1016/j.electacta.2018.05.040
- B.C. Kim, R. Manikandan, K.H. Yu, M.-S. Park, D.-W. Kim et al., Efficient supercapattery behavior of mesoporous hydrous and anhydrous cobalt molybdate nanostructures. J. Alloys Compd. 789, 256–265 (2019). https://doi.org/10.1016/j.jallcom.2019.03.033
- S. Raj, S.K. Srivastava, P. Kar, P. Roy, In situ growth of Co3O4 nanoflakes on reduced graphene oxide-wrapped Ni-foam as high performance asymmetric supercapacitor. Electrochim. Acta 302, 327–337 (2019). https://doi.org/10.1016/j.electacta.2019.02.010
- K.V. Sankar, Y. Seo, S.C. Lee, S. Liu, A. Kundu, C. Ray, S.C. Jun, Cobalt carbonate hydroxides as advanced battery-type materials for supercapatteries: influence of morphology on performance. Electrochim. Acta 259, 1037–1044 (2018). https://doi.org/10.1016/j.electacta.2017.11.009
- B. Saravanakumar, X. Wang, W. Zhang, L. Xing, W. Li, Holey two-dimensional manganese cobalt oxide nanosheets as a high-performance electrode for supercapattery. Chem. Eng. J. 373, 547–555 (2019). https://doi.org/10.1016/j.cej.2019.05.080
- K.O. Oyedotun, M.J. Madito, D.Y. Momodu, A.A. Mirghni, T.M. Masikhwa, N. Manyala, Synthesis of ternary NiCo–MnO2 nanocomposite and its application as a novel high energy supercapattery device. Chem. Eng. J. 335, 416–433 (2018). https://doi.org/10.1016/j.cej.2017.10.169
- J.J. William, I.M. Babu, G. Muralidharan, Spongy structured α-Ni(OH)2: facile and rapid synthesis for supercapattery applications. Mater. Lett. 238, 35–37 (2019). https://doi.org/10.1016/j.matlet.2018.11.136
- I. Heng, F.W. Low, C.W. Lai, J.C. Juan, N. Amin, S.K. Tiong, High performance supercapattery with rGO/TiO2 nanocomposites anode and activated carbon cathode. J. Alloys Compd. 796, 13–24 (2019). https://doi.org/10.1016/j.jallcom.2019.04.347
- X. Peng, H. Chai, Y. Cao, Y. Wang, H. Dong, D. Jia, W. Zhou, Facile synthesis of cost-effective Ni3(PO4)2·8H2O microstructures as a supercapattery electrode material. Mater. Today Energy 7, 129–135 (2018). https://doi.org/10.1016/j.mtener.2017.12.004
- F.S. Omar, A. Numan, S. Bashir, N. Duraisamy, R. Vikneswaran et al., Enhancing rate capability of amorphous nickel phosphate supercapattery electrode via composition with crystalline silver phosphate. Electrochim. Acta 273, 216–228 (2018). https://doi.org/10.1016/j.electacta.2018.03.136
- H. Shao, N. Padmanathan, D. McNulty, C. O’Dwyer, K.M. Razeeb, Cobalt phosphate-based supercapattery as alternative power source for implantable medical devices. ACS Appl. Energy Mater. 2(1), 569–578 (2019). https://doi.org/10.1021/acsaem.8b01612
- H. Shao, N. Padmanathan, D. McNulty, C. O′Dwyer, K.M. Razeeb, Supercapattery based on binder-free Co3(PO4)2·8H2O multilayer nano/microflakes on nickel foam. ACS Appl. Mater. Interfaces. 8(42), 28592–28598 (2016). https://doi.org/10.1021/acsami.6b08354
- S. Surendran, S. Shanmugapriya, A. Sivanantham, S. Shanmugam, R.K. Selvan, Electrospun carbon nanofibers encapsulated with NiCoP: a multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Adv. Energy Mater. 8(20), 1800555 (2018). https://doi.org/10.1002/aenm.201800555
- J. Lin, Z. Zhong, H. Wang, X. Zheng, Y. Wang et al., Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type electrode for high-performance supercapattery. J. Power Sources 407, 6–13 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.046
- J. Lin, Y. Yan, X. Zheng, Z. Zhong, Y. Wang et al., Designing and constructing core-shell NiCo2S4@Ni3S2 on Ni foam by facile one-step strategy as advanced battery-type electrodes for supercapattery. J. Colloid Interface Sci. 536, 456–462 (2019). https://doi.org/10.1016/j.jcis.2018.10.072
- V.D. Nithya, K. Pandi, Y.S. Lee, R.K. Selvan, Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor. Electrochim. Acta 167, 97–104 (2015). https://doi.org/10.1016/j.electacta.2015.03.107
- C. Lai, Y. Sun, B. Lin, Synthesis of sandwich-like porous nanostructure of Co3O4–rGO for flexible all-solid-state high-performance asymmetric supercapacitors. Mater. Today Energy 13, 342–352 (2019). https://doi.org/10.1016/j.mtener.2019.06.008
- H. Zhang, M.U. Tahir, X. Yan, X. Liu, X. Su, L. Zhang, Ni-Al layered double hydroxide with regulated interlayer spacing as electrode for aqueous asymmetric supercapacitor. Chem. Eng. J. 368, 905–913 (2019). https://doi.org/10.1016/j.cej.2019.03.041
- X. Han, Q. Chen, H. Zhang, Y. Ni, L. Zhang, Template synthesis of NiCo2S4/Co9S8 hollow spheres for high-performance asymmetric supercapacitors. Chem. Eng. J. 368, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.02.138
- M. Selvakumar, S. Pitchumani, Hybrid supercapacitor based on poly(aniline-Co-M-anilicacid) and activated carbon in non-aqueous electrolyte. Korean J. Chem. Eng. 27(3), 977–982 (2010). https://doi.org/10.1007/s11814-010-0120-z
- A. Laforgue, P. Simon, J.F. Fauvarque, J.F. Sarrau, P. Lailler, Hybrid supercapacitors based on activated carbons and conducting polymers. J. Electrochem. Soc. 148(10), A1130 (2001). https://doi.org/10.1149/1.1400742
- J. Shen, C. Yang, X. Li, G. Wang, High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Interfaces 5(17), 8467–8476 (2013). https://doi.org/10.1021/am4028235
- C. Guan, J. Liu, Y. Wang, L. Mao, Z. Fan, Z. Shen, H. Zhang, J. Wang, Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9(5), 5198–5207 (2015). https://doi.org/10.1021/acsnano.5b00582
- J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Template-grown graphene/porous Fe2O3 nanocomposite: a high-performance anode material for pseudocapacitors. Nano Energy 15, 719–728 (2015). https://doi.org/10.1016/j.nanoen.2015.05.021
- J. Zhang, H. Zhang, Y. Zhang, J. Zhang, H. He, X. Zhang, J.-J. Shim, S. Zhang , Unveiling of the energy storage mechanisms of multi-modified (Nb2O5@C)/rGO nanoarrays as anode for high voltage supercapacitors with formulated ionic liquid electrolytes. Electrochim. Acta 313, 532–543 (2019). https://doi.org/10.1016/j.electacta.2019.04.160
- S. Fleischmann, M. Widmaier, A. Schreiber, H. Shim, F.M. Stiemke et al., High voltage asymmetric hybrid supercapacitors using lithium- and sodium-containing ionic liquids. Energy Storage Mater. 16, 391 (2019). https://doi.org/10.1016/j.ensm.2018.06.011
- G.A.D.S. Junior, V.D.S. Fortunato, G.G. Silva, P.F.R. Ortega, R.L. Lavall, High-performance Li-ion hybrid supercapacitor based on LiMn2O4 in ionic liquid electrolyte. Electrochim. Acta 325, 134900 (2019). https://doi.org/10.1016/j.electacta.2019.134900
- K. Kongsawatvoragul, S. Kalasina, P. Kidkhunthod, M. Sawangphruk, Charge storage mechanisms of cobalt hydroxide thin film in ionic liquid and koh electrolytes for asymmetric supercapacitors with graphene aerogel. Electrochim. Acta 324, 134854 (2019). https://doi.org/10.1016/j.electacta.2019.134854
- H.-K. Kim, D. Mhamane, M.-S. Kim, H.-K. Roh, V. Aravindan et al., TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. J. Power Sources 327, 171–177 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.053
- G. Ma, K. Li, Y. Li, B. Gao, T. Ding et al., High-performance hybrid supercapacitor based on graphene-wrapped mesoporous t-Nb2O5 nanospheres anode and mesoporous carbon-coated graphene cathode. ChemElectroChem 3(9), 1360–1368 (2016). https://doi.org/10.1002/celc.201600181
- H. Song, J. Fu, K. Ding, C. Huang, K. Wu et al., Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors. J. Power Sources 328, 599–606 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.052
- J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao et al., Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7(7), 6237–6243 (2013). https://doi.org/10.1021/nn4021955
- H. Wang, K. Zhang, Y. Song, J. Qiu, J. Wu, L. Yan, MnCo2S4 nanoparticles anchored to N- and S-codoped 3D graphene as a prominent electrode for asymmetric supercapacitors. Carbon 146, 420–429 (2019). https://doi.org/10.1016/j.Carbon2019.02.035
- S. Surendran, S. Shanmugapriya, P. Zhu, C. Yan, R.H. Vignesh, Y.S. Lee, X. Zhang, R.K. Selvan, Hydrothermally synthesised nicop nanostructures and electrospun N-doped carbon nanofiber as multifunctional potential electrode for hybrid water electrolyser and supercapatteries. Electrochim. Acta 296, 1083–1094 (2019). https://doi.org/10.1016/j.electacta.2018.11.078
- Y. Luo, C. Yang, Y. Tian, Y. Tang, X. Yin, W. Que, A long cycle life asymmetric supercapacitor based on advanced nickel-sulfide/titanium carbide (MXene) nanohybrid and MXene electrodes. J. Power Sources 450, 227694 (2020). https://doi.org/10.1016/j.jpowsour.2019.227694
References
G. Quartey, S.K. Adzimah, Generation of electrical power by a wind turbine for charging moving electric cars. J. Energy Technol. Policy 4, 19 (2014)
S.Y. Goh, S.L. Kok, Electrical energy harvesting from thermal energy with converged infrared light. IOP Conf. Ser. Mater. Sci. Eng. 210, 012039 (2017)
K. Padmanathan, U. Govindarajan, V.K. Ramachandaramurthy, B. Jeevarathinam, Integrating solar photovoltaic energy conversion systems into industrial and commercial electrical energy utilization—a survey. J. Ind. Inf. Integr. 10, 39–54 (2018). https://doi.org/10.1016/j.jii.2018.01.003
X. Wang, Y. Han, J. Zhang, Z. Li, T. Li, X. Zhao, Y. Wu, The design of a direct charge nuclear battery with high energy conversion efficiency. Appl. Radiat. Isot. 148, 147–151 (2019). https://doi.org/10.1016/j.apradiso.2019.03.040
Y. He, L. Wang, D. Jia, CoAl/PAN interconnected carbon nanofibers with excellent energy storage performance and electrical conductivity. Electrochim. Acta 194, 239–245 (2016). https://doi.org/10.1016/j.electacta.2016.01.191
D. Vera, F. Jurado, J. Carpio, S. Kamel, Biomass gasification coupled to an EFGT–ORC combined system to maximize the electrical energy generation: a case applied to the olive oil industry. Energy 144, 41–53 (2018). https://doi.org/10.1016/j.energy.2017.11.152
S.S. Akadiri, A.A. Alola, G.O. Williams, M.U. Etokakpan, The role of electricity consumption, globalization and economic growth in carbon dioxide emissions and its implications for environmental sustainability targets. Sci. Total Environ. 708, 134653 (2020). https://doi.org/10.1016/j.scitotenv.2019.134653
S. Asongu, O.M. Agboola, A. Alola, F.V. Bekun, The criticality of growth, urbanization, electricity and fossil fuel consumption to environment sustainability in Africa. Sci. Total Environ. 712, 136376 (2020). https://doi.org/10.1016/j.scitotenv.2019.136376
B. Lin, Y. Wang, Inconsistency of economic growth and electricity consumption in china: a panel var approach. J. Clean. Prod. 229, 144–156 (2019). https://doi.org/10.1016/j.jclepro.2019.04.396
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
D.R. Rolison, L.F. Nazar, Electrochemical energy storage to power the 21st century. MRS Bull. 36(7), 486–493 (2011). https://doi.org/10.1557/mrs.2011.136
G.Z. Chen, Supercapacitor and supercapattery as emerging electrochemical energy stores. Int. Mater. Rev. 62(4), 173–202 (2017). https://doi.org/10.1080/09506608.2016.1240914
B. Akinwolemiwa, C. Peng, G.Z. Chen, Redox electrolytes in supercapacitors. J. Electrochem. Soc. 162(5), A5054 (2015). https://doi.org/10.1149/2.0111505jes
D. Hu, C. Peng, G.Z. Chen, Electrodeposition of nonconducting polymers: roles of carbon nanotubes in the process and products. ACS Nano 4(7), 4274–4282 (2010). https://doi.org/10.1021/nn100849d
L. Li, Z. Wang, L. Chen, Z. Wang, Consumer preferences for battery electric vehicles: a choice experimental survey in china. Transp. Res. D Trans. Environ. 78, 102185 (2020). https://doi.org/10.1016/j.trd.2019.11.014
Y. Wang, H.Y.H. Kwok, W. Pan, Y. Zhang, H. Zhang, X. Lu, D.Y.C. Leung, Printing Al-air batteries on paper for powering disposable printed electronics. J. Power Sources 450, 227685 (2020). https://doi.org/10.1016/j.jpowsour.2019.227685
S. Xiong, J. Ji, X. Ma, Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Manag 102, 579–586 (2020). https://doi.org/10.1016/j.wasman.2019.11.013
F. Wang, D. Cheng, W. Wang, Y. Wang, M. Zhao, S. Yang, X. Lu, X. Song, In situ sodium chloride template synthesis of cobalt oxide hollow octahedra for lithium-ion batteries. RSC Adv. 5(30), 23326–23330 (2015). https://doi.org/10.1039/C4RA15551C
Z. Ji, N. Li, M. Xie, X. Shen, W. Dai, K. Liu, K. Xu, G. Zhu, High-performance hybrid supercapacitor realized by nitrogen-doped carbon dots modified cobalt sulfide and reduced graphene oxide. Electrochim. Acta 334, 135632 (2020). https://doi.org/10.1016/j.electacta.2020.135632
C. Ji, F. Liu, L. Xu, S. Yang, Urchin-like NiCO2O4 hollow microspheres and FeSe2 micro-snowflakes for flexible solid-state asymmetric supercapacitors. J. Mater. Chem. A 5(11), 5568–5576 (2017). https://doi.org/10.1039/C6TA11001K
C. Ji, J. Bi, S. Wang, X. Zhang, S. Yang, Ni nanoparticle doped porous VN nanoflakes assembled into hierarchical hollow microspheres with a structural inheritance from the Ni1−xVxO2 cathode material for high performance asymmetric supercapacitors. J. Mater. Chem. A 4(6), 2158–2168 (2016). https://doi.org/10.1039/C5TA10406H
D. Potphode, C.S. Sharma, Pseudocapacitance induced candle soot derived carbon for high energy density electrochemical supercapacitors: non-aqueous approach. J. Energy Storage 27, 101114 (2020). https://doi.org/10.1016/j.est.2019.101114
H. Kim, M. Ramalingam, V. Balakumar, X. Zhang, W. Gao, Y.-A. Son, P.D. Bradford, Chemically interconnected ternary AgNP/polypyrrole/functionalized buckypaper composites as high-energy-density supercapacitor electrodes. Chem. Phys. Lett. 739, 136957 (2019). https://doi.org/10.1016/j.cplett.2019.136957
G. Zhu, X. Jing, D. Chen, W. He, Novel composite separator for high power density lithium-ion battery. Int. J. Hydrogen Energy 45(4), 2917–2924 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.125
H.R. Jiang, J. Sun, L. Wei, M.C. Wu, W. Shyy, T.S. Zhao, A high power density and long cycle life vanadium redox flow battery. Energy Storage Mater. 24, 529–540 (2020). https://doi.org/10.1016/j.ensm.2019.07.005
J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). https://doi.org/10.1126/science.1158736
Z.S. Iro, B. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 11, 10628–10643 (2016). https://doi.org/10.20964/2016.12.50
Z. Wang, J. Cheng, J. Zhou, J. Zhang, H. Huang, J. Yang, Y. Li, B. Wang, All-climate aqueous fiber-shaped supercapacitors with record areal energy density and high safety. Nano Energy 50, 106–117 (2018). https://doi.org/10.1016/j.nanoen.2018.05.029
Y. Jin, K. Liu, J. Lang, X. Jiang, Z. Zheng et al., High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries. Joule 4, 262–274 (2019). https://doi.org/10.1016/j.joule.2019.09.003
M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7(1), 12647 (2016). https://doi.org/10.1038/ncomms12647
H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29(46), 1702093 (2017). https://doi.org/10.1002/adma.201702093
M. Assefi, S. Maroufi, M. Mayyas, V. Sahajwalla, Recycling of Ni–Cd batteries by selective isolation and hydrothermal synthesis of porous NiO nanocuboid. J. Environ. Chem. Eng. 6(4), 4671–4675 (2018). https://doi.org/10.1016/j.jece.2018.07.021
A.A.L. Marins, S.G. Banhos, E.J.B. Muri, R.V. Rodrigues, P.C.M. Cruz, M.B.J.G. Freitas, Synthesis by coprecipitation with oxalic acid of rare earth and nickel oxides from the anode of spent Ni–Mh batteries and its electrochemical properties. Mater. Chem. Phys. 242, 122440 (2020). https://doi.org/10.1016/j.matchemphys.2019.122440
Z. Wu, Y. Liu, C. Deng, H. Zhao, R. Zhao, H. Chen, The critical role of boric acid as electrolyte additive on the electrochemical performance of lead-acid battery. J. Energy Storage 27, 101076 (2020). https://doi.org/10.1016/j.est.2019.101076
W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4(7), 1600539 (2017). https://doi.org/10.1002/advs.201600539
Z. Chen, J. Wen, C. Yan, L. Rice, H. Sohn et al., High-performance supercapacitors based on hierarchically porous graphite particles. Adv. Energy Mater. 1(4), 551–556 (2011). https://doi.org/10.1002/aenm.201100114
Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–4850 (2011). https://doi.org/10.1002/adma.201100984
F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ. Sci. 6(5), 1623–1632 (2013). https://doi.org/10.1039/C3EE40509E
A.J. Stevenson, D.G. Gromadskyi, D. Hu, J. Chae, L. Guan, L. Yu, G.Z. Chen, Supercapatteries with hybrids of redox active polymers and nanostructured carbons, in Nanocarbons for Advanced Energy Storage, vol. 1, ed. by X. Feng (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015), pp. 179–210
B. Akinwolemiwa, G.Z. Chen, Fundamental consideration for electrochemical engineering of supercapattery. J. Braz. Chem. Soc. 29, 960–972 (2018). https://doi.org/10.21577/0103-5053.20180010
B.E. Conway, Similarities and Differences Between Supercapacitors and Batteries for Storing Electrical Energy (Springer, Boston, 1999), pp. 11–31
D. Linden, T. Reddy, Handbook of Batteries, 3rd edn. (McGraw-Hill, New York, 2011), pp. 1.0–43.20
L. Yu, G.Z. Chen, Redox electrode materials for supercapatteries. J. Power Sources 326, 604–612 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.095
S. Zhang, N. Pan, Supercapacitors performance evaluation. Adv. Energy Mater. 5(6), 1401401 (2014). https://doi.org/10.1002/aenm.201401401
T. Brousse, D. Bélanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162(5), 5185 (2015). https://doi.org/10.1149/2.0201505jes
L. Guan, L. Yu, G.Z. Chen, Capacitive and non-capacitive faradaic charge storage. Electrochim. Acta 206, 464–478 (2016). https://doi.org/10.1016/j.electacta.2016.01.213
B.E. Conway, Electrochemical Capacitors Based on Pseudocapacitance (Springer, Boston, 1999), pp. 221–257
B.E. Conway, The Double Layer at Capacitor Electrode Interfaces: Its Structure and Capacitance (Springer, Boston, 1999), pp. 105–124
C. Peng, Y. Li, F. Yao, H. Fu, R. Zhou, Y. Feng, W. Feng, Ultrahigh-energy-density fluorinated calcinated macadamia nut shell cathodes for lithium/fluorinated carbon batteries. Carbon 153, 783 (2019). https://doi.org/10.1016/j.Carbon2019.07.065
H. Shi, X. Zhao, Z.-S. Wu, Y. Dong, P. Lu et al., Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries. Nano Energy 60, 743–751 (2019). https://doi.org/10.1016/j.nanoen.2019.04.006
M. Guo, J. Balamurugan, T.D. Thanh, N.H. Kim, J.H. Lee, Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors. J. Mater. Chem. A 4(44), 17560–17571 (2016). https://doi.org/10.1039/C6TA07400F
L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
M. Sethi, H. Bantawal, U.S. Shenoy, D.K. Bhat, Eco-friendly synthesis of porous graphene and its utilization as high performance supercapacitor electrode material. J. Alloys Compd. 799, 256–266 (2019). https://doi.org/10.1016/j.jallcom.2019.05.302
H.S. Kim, M.A. Abbas, M.S. Kang, H. Kyung, J.H. Bang, W.C. Yoo, Study of the structure-properties relations of carbon spheres affecting electrochemical performances of edlcs. Electrochim. Acta 304, 210–220 (2019). https://doi.org/10.1016/j.electacta.2019.02.121
C.-W. Liew, S. Ramesh, A.K. Arof, Enhanced capacitance of EDLCs (electrical double layer capacitors) based on ionic liquid-added polymer electrolytes. Energy 109, 546–556 (2016). https://doi.org/10.1016/j.energy.2016.05.019
Y. Xiao, Y. Liu, F. Liu, P. Han, G. Qin, Wearable pseudocapacitor based on porous MnO2 composite. J. Alloys Compd. 813, 152089 (2020). https://doi.org/10.1016/j.jallcom.2019.152089
C.-Q. Yi, J.-P. Zou, H.-Z. Yang, X. Leng, Recent advances in pseudocapacitor electrode materials: transition metal oxides and nitrides. T. Nonferrous Metals Soc. 28(10), 1980–2001 (2018). https://doi.org/10.1016/S1003-6326(18)64843-5
S. Iqbal, H. Khatoon, P.A. Hussain, S. Ahmad, Recent development of carbon based materials for energy storage devices. Mater. Sci. Energy Technol. 2(3), 417–428 (2019). https://doi.org/10.1016/j.mset.2019.04.006
Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/C5CS00580A
J. Varghese, H. Wang, L. Pilon, Simulating electric double layer capacitance of mesoporous electrodes with cylindrical pores. J. Electrochem. Soc. 158(10), A1106 (2011). https://doi.org/10.1149/1.3622342
Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028
V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014). https://doi.org/10.1039/C3EE44164D
A. Djire, P. Pande, A. Deb, J.B. Siegel, O.T. Ajenifujah et al., Unveiling the pseudocapacitive charge storage mechanisms of nanostructured vanadium nitrides using in situ analyses. Nano Energy 60, 72–81 (2019). https://doi.org/10.1016/j.nanoen.2019.03.003
J.H. Chae, K.C. Ng, G.Z. Chen, Nanostructured materials for the construction of asymmetrical supercapacitors. Proc. Inst. Mech. Eng. Part A J. Power Energy 224(4), 479–503 (2010). https://doi.org/10.1243/09576509JPE861
M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater. 14(4), 1610–1613 (2002). https://doi.org/10.1021/cm010744r
C. Klumpner, G. Asher, G.Z. Chen, Selecting the power electronic interface for a supercapattery based energy storage system, in 2009 IEEE Bucharest Power Tech (2009), pp. 1–7. https://doi.org/10.1109/PTC.2009.5281965
G.Z. Chen, Perception of supercapacitor and supercapattery. ECS meeting abstracts. Boston, MA, October 9–14, 2011, MA2011-02(11) (2011), p. 559
B.G. Choi, S.-J. Chang, H.-W. Kang, C.P. Park, H.J. Kim et al., High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 4(16), 4983–4988 (2012). https://doi.org/10.1039/C2NR30991B
F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che, X. Zhang, Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. J. Power Sources 203, 250–256 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.001
Z. Lin, Y. Liu, Y. Yao, O.J. Hildreth, Z. Li et al., Superior capacitance of functionalized graphene. J. Phys. Chem. C 115(14), 7120–7125 (2011). https://doi.org/10.1021/jp2007073
F. Du, X. Zuo, Q. Yang, G. Li, Z. Ding, M. Wu, Y. Ma, S. Jin, K. Zhu, Facile hydrothermal reduction synthesis of porous Co3O4 nanosheets@rGO nanocomposite and applied as a supercapacitor electrode with enhanced specific capacitance and excellent cycle stability. Electrochim. Acta 222, 976–982 (2016). https://doi.org/10.1016/j.electacta.2016.11.065
B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci. 4(8), 2826–2830 (2011). https://doi.org/10.1039/C1EE01198G
A. Mery, F. Ghamouss, C. Autret, D. Farhat, F. Tran-Van, Aqueous ultracapacitors using amorphous MnO2 and reduced graphene oxide. J. Power Sources 305, 37–45 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.046
Y. Cheng, H. Zhang, S. Lu, C.V. Varanasi, J. Liu, Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale 5(3), 1067–1073 (2013). https://doi.org/10.1039/C2NR33136E
S. Cho, B. Patil, S. Yu, S. Ahn, J. Hwang, C. Park, K. Do, H. Ahn, Flexible, swiss roll, fiber-shaped, asymmetric supercapacitor using MnO2 and Fe2O3 on carbon fibers. Electrochim. Acta 269, 499–508 (2018). https://doi.org/10.1016/j.electacta.2018.03.020
X. Bai, Q. Liu, J. Liu, Z. Gao, H. Zhang et al., All-solid state asymmetric supercapacitor based on NiCoAl layered double hydroxide nanopetals on robust 3D graphene and modified mesoporous carbon. Chem. Eng. J. 328, 873–883 (2017). https://doi.org/10.1016/j.cej.2017.07.118
Q. Tang, W. Wang, G. Wang, The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. J. Mater. Chem. A 3(12), 6662–6670 (2015). https://doi.org/10.1039/C5TA00328H
H. Wang, H. Yi, X. Chen, X. Wang, Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. J. Mater. Chem. A 2(9), 3223–3230 (2014). https://doi.org/10.1039/C3TA15046A
V. Khomenko, E. Raymundo-Piñero, F. Béguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J. Power Sources 153(1), 183–190 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.210
F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, Y. Wu, Electrode materials for aqueous asymmetric supercapacitors. RSC Adv. 3(32), 13059–13084 (2013). https://doi.org/10.1039/C3RA23466E
J. Chang, M. Jin, F. Yao, H.K. Tae, T.L. Viet et al., Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv. Funct. Mater. 23(40), 5074–5083 (2013). https://doi.org/10.1002/adfm201301851
J.H. Chae, G.Z. Chen, 1.9 V aqueous carbon–carbon supercapacitors with unequal electrode capacitances. Electrochim. Acta 86, 248–254 (2012). https://doi.org/10.1016/j.electacta.2012.07.033
Z. Dai, C. Peng, J.H. Chae, K.C. Ng, G.Z. Chen, Cell voltage versus electrode potential range in aqueous supercapacitors. Sci. Rep. 5(1), 9854 (2015). https://doi.org/10.1038/srep09854
N. Jäckel, D. Weingarth, M. Zeiger, M. Aslan, I. Grobelsek, V. Presser, Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes. J. Power Sources 272, 1122–1133 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.090
B.E. Wilson, S. He, K. Buffington, S. Rudisill, W.H. Smyrl, A. Stein, Utilizing ionic liquids for controlled N-doping in hard-templated, mesoporous carbon electrodes for high-performance electrochemical double-layer capacitors. J. Power Sources 298, 193–202 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.057
S. Tan, Y.J. Ji, Z.R. Zhang, Y. Yang, Recent progress in research on high-voltage electrolytes for lithium-ion batteries. ChemPhysChem 15(10), 1956–1969 (2014). https://doi.org/10.1002/cphc.201402175
A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019). https://doi.org/10.1039/C8CS00581H
J. Li, Y. Wang, W. Xu, Y. Wang, B. Zhang et al., Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 57, 379–387 (2019). https://doi.org/10.1016/j.nanoen.2018.12.061
J.H. Kim, H.J. Choi, H.-K. Kim, S.-H. Lee, Y.-H. Lee, A hybrid supercapacitor fabricated with an activated carbon as cathode and an urchin-like TiO2 as anode. Int. J. Hydrogen Energy 41(31), 13549–13556 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.018
X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang et al., Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater. 25(36), 5091–5097 (2013). https://doi.org/10.1002/adma.201301465
Y. Gogotsi, What nano can do for energy storage. ACS Nano 8(6), 5369–5371 (2014). https://doi.org/10.1021/nn503164x
L. Li, S. Peng, H.B. Wu, L. Yu, S. Madhavi, X. Lou, A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv. Energy Mater. 5(17), 1500753 (2015). https://doi.org/10.1002/aenm.201500753
L. Yu, G.Z. Chen, High energy supercapattery with an ionic liquid solution of LiClO4. Faraday Discuss. 190, 231–240 (2016). https://doi.org/10.1039/C5FD00232J
S.L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao et al., Nanostructured carbon for energy storage and conversion. Nano Energy 1(2), 195–220 (2012). https://doi.org/10.1016/j.nanoen.2011.11.006
G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). https://doi.org/10.1039/C1CS15060J
F. Wang, Z. Chang, M. Li, Y. Wu, Nanocarbon-based materials for asymmetric supercapacitors, in Nanocarbons for Advanced Energy Storage, 1st edn., ed. by X. Feng (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015), pp. 379–415
H. Wang, H.S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010). https://doi.org/10.1021/ja102267j
X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem. Eur. J. 17(39), 10898–10905 (2011). https://doi.org/10.1002/chem.201100727
Z. Bo, Z. Wen, H. Kim, G. Lu, K. Yu, J. Chen, One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50(12), 4379 (2012). https://doi.org/10.1016/j.Carbon2012.05.014
A.P. Singh, N.K. Tiwari, P.B. Karandikar, A. Dubey, Effect of electrode shape on the parameters of supercapacitor. 2015 ICIC (2015), p. 669
L. Sui, S. Tang, Y. Chen, Z. Dai, H. Huangfu et al., An asymmetric supercapacitor with good electrochemical performances based on Ni(OH)2/AC/CNT and ac. Electrochim. Acta 182, 1159–1165 (2015). https://doi.org/10.1016/j.electacta.2015.09.111
A. Roy, A. Ray, S. Saha, M. Ghosh, T. Das, B. Satpati, M. Nandi, S. Das, NiO–CNT composite for high performance supercapacitor electrode and oxygen evolution reaction. Electrochim. Acta 283, 327–337 (2018). https://doi.org/10.1016/j.electacta.2018.06.154
A. Shanmugavani, R.K. Selvan, Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim. Acta 188, 852–862 (2016). https://doi.org/10.1016/j.electacta.2015.12.077
M. Jing, H. Hou, Y. Yang, Y. Zhu, Z. Wu, X. Ji, Electrochemically alternating voltage tuned Co2MnO4/Co hydroxide chloride for an asymmetric supercapacitor. Electrochim. Acta 165, 198–205 (2015). https://doi.org/10.1016/j.electacta.2015.03.032
J. Yang, L. Lian, H. Ruan, F. Xie, M. Wei, Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application. Electrochim. Acta 136, 189–194 (2014). https://doi.org/10.1016/j.electacta.2014.05.074
S. Yang, K. Cheng, K. Ye, Y. Li, J. Qu, J. Yin, G. Wang, D. Cao, A novel asymmetric supercapacitor with buds-like Co(OH)2 used as cathode materials and activated carbon as anode materials. J. Electroanal. Chem. 741, 93–99 (2015). https://doi.org/10.1016/j.jelechem.2015.01.011
Y. Tang, Y. Liu, S. Yu, Y. Zhao, S. Mu, F. Gao, Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochim. Acta 123, 158–166 (2014). https://doi.org/10.1016/j.electacta.2013.12.187
D. Liu, W. Zhang, W. Huang, Effect of removing silica in rice husk for the preparation of activated carbon for supercapacitor applications. Chin. Chem. Lett. 30(6), 1315–1319 (2019). https://doi.org/10.1016/j.cclet.2019.02.031
L. Zeng, X. Lou, J. Zhang, C. Wu, J. Liu, C. Jia, Carbonaceous mudstone and lignin-derived activated carbon and its application for supercapacitor electrode. Surf. Coat. Technol. 357, 580–586 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.041
S. Surendran, S. Shanmugapriya, S. Shanmugam, L. Vasylechko, R.K. Selvan, Interweaved nickel phosphide sponge as an electrode for flexible supercapattery and water splitting applications. ACS Appl. Energy Mater. 1(1), 78–92 (2018). https://doi.org/10.1021/acsaem.7b00006
L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv. Energy Mater. 1(3), 356–361 (2011). https://doi.org/10.1002/aenm.201100019
P. Schlee, S. Herou, R. Jervis, P.R. Shearing, D.J.L. Brett et al., Free-standing supercapacitors from kraft lignin nanofibers with remarkable volumetric energy density. Chem. Sci. 10(10), 2980–2988 (2019). https://doi.org/10.1039/C8SC04936J
D.C. Martínez-Casillas, I. Mascorro-Gutiérrez, C.E. Arreola-Ramos, H.I. Villafán-Vidales, C.A. Arancibia-Bulnes et al., A sustainable approach to produce activated carbons from pecan nutshell waste for environmentally friendly supercapacitors. Carbon 148, 403 (2019). https://doi.org/10.1016/j.Carbon2019.04.017
W. Wang, J. Qi, Y. Sui, Y. He, Q. Meng, F. Wei, Y. Jin, An asymmetric supercapacitor based on activated porous carbon derived from walnut shells and NiCo2O4 nanoneedle arrays electrodes. J. Nanosci. Nanotechnol. 18(8), 5600 (2018). https://doi.org/10.1166/jnn.2018.15410
H. Pan, J. Li, Y. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5(3), 654 (2010). https://doi.org/10.1007/s11671-009-9508-2
T. Chen, L. Dai, Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16(7), 272–280 (2013). https://doi.org/10.1016/j.mattod.2013.07.002
N. Liu, Z. Pan, X. Ding, J. Yang, G. Xu et al., In-situ growth of vertically aligned nickel cobalt sulfide nanowires on carbon nanotube fibers for high capacitance all-solid-state asymmetric fiber-supercapacitors. J. Energy Chem. 41, 209–215 (2020). https://doi.org/10.1016/j.jechem.2019.05.008
S.W. Lee, B.M. Gallant, Y. Lee, N. Yoshida, D.Y. Kim et al., Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries. Energy Environ. Sci. 5(1), 5437–5444 (2012). https://doi.org/10.1039/C1EE02409D
Z. Niu, P. Luan, Q. Shao, H. Dong, J. Li et al., A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ. Sci. 5(9), 8726–8733 (2012). https://doi.org/10.1039/C2EE22042C
P.K. Adusei, S. Gbordzoe, S.N. Kanakaraj, Y.-Y. Hsieh, N.T. Alvarez et al., Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers. J. Energy Chem. 40, 120–131 (2020). https://doi.org/10.1016/j.jechem.2019.03.005
M.V.K. Azhagan, M.V. Vaishampayan, M.V. Shelke, Synthesis and electrochemistry of pseudocapacitive multilayer fullerenes and MnO2 nanocomposites. J. Mater. Chem. A 2(7), 2152–2159 (2014). https://doi.org/10.1039/C3TA14076H
R. Borgohain, J.P. Selegue, Y.T. Cheng, Ternary composites of delaminated- MnO2/PDDA/functionalized-CNOs for high-capacity supercapacitor electrodes. J. Mater. Chem. A 2(47), 20367–20373 (2014). https://doi.org/10.1039/C4TA04439H
Y. Wang, S.F. Yu, C.Y. Sun, T.J. Zhu, H.Y. Yang, MnO2/onion-like carbon nanocomposites for pseudocapacitors. J. Mater. Chem. 22(34), 17584–17588 (2012). https://doi.org/10.1039/C2JM33558A
K. Ozoemena, K. Makgopa, C. Jafta, V. Presser, M. Zeiger, P. Ejikeme, K. Raju, High-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. J. Mater. Chem. A 3(7), 3480–3490 (2015). https://doi.org/10.1039/C4TA06715K
O. Mykhailiv, M. Imierska, M. Petelczyc, L. Echegoyen, M.E. Plonska-Brzezinska, Chemical versus electrochemical synthesis of carbon nano-onion/polypyrrole composites for supercapacitor electrodes. Chem. Eur. J. 21(15), 5783–5793 (2015). https://doi.org/10.1002/chem.201406126
M.E. Plonska-Brzezinska, J. Mazurczyk, B. Palys, J. Breczko, A. Lapinski et al., Preparation and characterization of composites that contain small carbon nano-onions and conducting polyaniline. Chem. Eur. J. 18(9), 2600–2608 (2012). https://doi.org/10.1002/chem.201102175
H. Jin, S. Wu, T. Li, Y. Bai, X. Wang et al., Synthesis of porous carbon nano-onions derived from rice husk for high-performance supercapacitors. Appl. Surf. Sci. 488, 593–599 (2019). https://doi.org/10.1016/j.apsusc.2019.05.308
L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20(29), 5983–5992 (2010). https://doi.org/10.1039/C000417K
Y.B. Tan, J.-M. Lee, Graphene for supercapacitor applications. J. Mater. Chem. A 1(47), 14814–14843 (2013). https://doi.org/10.1039/C3TA12193C
W. Yang, M. Ni, X. Ren, Y. Tian, N. Li, Y. Su, X. Zhang, Graphene in supercapacitor applications. Curr. Opin. Colloid Interface Sci. 20(5), 416–428 (2015). https://doi.org/10.1016/j.cocis.2015.10.009
A.K. Singh, D. Sarkar, K. Karmakar, K. Mandal, G.G. Khan, High-performance supercapacitor electrode based on cobalt oxide–manganese dioxide–nickel oxide ternary 1D hybrid nanotubes. ACS Appl. Mater. Interfaces. 8(32), 20786–20792 (2016). https://doi.org/10.1021/acsami.6b05933
L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu et al., Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci. Rep. 3, 1408 (2013). https://doi.org/10.1038/srep01408
S. Shivakumara, N. Munichandraiah, Asymmetric supercapacitor based on nanostructured porous manganese oxide and reduced graphene oxide in aqueous neutral electrolyte. Solid State Commun. 260, 34–39 (2017). https://doi.org/10.1016/j.ssc.2017.05.015
H. Yi, H. Wang, Y. Jing, T. Peng, Y. Wang et al., Advanced asymmetric supercapacitors based on CNT@Ni(OH)2 core-shell composites and 3D graphene networks. J. Mater. Chem. A 3(38), 19545–19555 (2015). https://doi.org/10.1039/C5TA06174A
S. Li, X. Wang, L. Hou, X. Zhang, Y. Zhou, Y. Yang, Z. Hu, Graphene hydrogels functionalized non-covalently by fused heteroaromatic molecule for asymmetric supercapacitor with ultra-long cycle life. Electrochim. Acta 317, 437–448 (2019). https://doi.org/10.1016/j.electacta.2019.06.022
Y. Gu, L.-Q. Fan, J.-L. Huang, C.-L. Geng, J.-M. Lin et al., N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J. Power Sources 425, 60–68 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.123
M.S. Javed, H.U. Shah, N. Shaheen, R. Lin, M. Qiu et al., High energy density hybrid supercapacitor based on 3D mesoporous cuboidal Mn2O3 and MOF-derived porous carbon polyhedrons. Electrochim. Acta 282, 1–9 (2018). https://doi.org/10.1016/j.electacta.2018.06.009
X. Li, H. Wu, A.M. Elshahawy, L. Wang, S.J. Pennycook et al., Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 28(20), 1800036 (2018). https://doi.org/10.1002/adfm.201800036
X. Wei, H. Peng, Y. Li, Y. Yang, S. Xiao, L. Peng, Y. Zhang, P. Xiao, In situ growth of zeolitic imidazolate framework-67-derived nanoporous carbon@K0.5Mn2O4 for high-performance 2.4 V aqueous asymmetric supercapacitors. Chemsuschem 11(18), 3167–3174 (2018). https://doi.org/10.1002/cssc.201801439
C. Qu, Z. Liang, Y. Jiao, B. Zhao, B. Zhu et al., “One-for-all” strategy in fast energy storage: production of pillared MOF nanorod-templated positive/negative electrodes for the application of high-performance hybrid supercapacitor. Small 14(23), 1800285 (2018). https://doi.org/10.1002/smll.201800285
S. Nagamuthu, K.-S. Ryu, MOF-derived microstructural interconnected network porous Mn2O3/C as negative electrode material for asymmetric supercapacitor device. CrystEngComm 21(9), 1442–1451 (2019). https://doi.org/10.1039/C8CE01683F
C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6(12), 2690–2695 (2006). https://doi.org/10.1021/nl061576a
T.N.J.I. Edison, R. Atchudan, Y.R. Lee, Facile synthesis of carbon encapsulated RuO2 nanorods for supercapacitor and electrocatalytic hydrogen evolution reaction. Inter. J. Hydrog. Energy 44(4), 2323–2329 (2019). https://doi.org/10.1016/j.ijhydene.2018.02.018
X. Li, H. He, Hydrous RuO2 nanoparticles coated on Co(OH)2 nanoflakes as advanced electrode material of supercapacitors. Appl. Surf. Sci. 470, 306–317 (2019). https://doi.org/10.1016/j.apsusc.2018.11.142
H.Y. Lee, J.B. Goodenough, Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144(1), 220–223 (1999). https://doi.org/10.1006/jssc.1998.8128
M. Huang, R. Mi, H. Liu, F. Li, X.L. Zhao, W. Zhang, S.X. He, Y.X. Zhang, Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. J. Power Sources 269, 760–767 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.031
L.H. Chen, L. Li, W.J. Qian, C.K. Dong, MnO2/multiwall carbon nanotube/Ni-foam hybrid electrode for electrochemical capacitor. IOP Conf. Ser. Mater. Sci. Eng. 292, 012018 (2018). https://doi.org/10.1088/1757899X/292/1/012018
X. Zhang, D. Zhao, Y. Zhao, P. Tang, Y. Shen, C. Xu, H. Li, Y. Xiao, High performance asymmetric supercapacitor based on MnO2 electrode in ionic liquid electrolyte. J. Mater. Chem. A 1(11), 3706–3712 (2013). https://doi.org/10.1039/C3TA00981E
A. Xia, W. Yu, J. Yi, G. Tan, H. Ren, C. Liu, Synthesis of porous δ- MnO2 nanosheets and their supercapacitor performance. J. Electroanal. Chem. 839, 25–31 (2019). https://doi.org/10.1016/j.jelechem.2019.02.059
Q. Wang, Y. Ma, X. Liang, D. Zhang, M. Miao, Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem. Eng. J. 371, 145–153 (2019). https://doi.org/10.1016/j.cej.2019.04.021
M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16(16), 3184–3190 (2004). https://doi.org/10.1021/cm049649j
X. Qi, W. Zheng, X. Li, G. He, Multishelled NiO hollow microspheres for high-performance supercapacitors with ultrahigh energy density and robust cycle life. Sci. Rep. 6, 33241 (2016). https://doi.org/10.1038/srep33241
Y. Yang, L. Li, G. Ruan, H. Fei, C. Xiang et al., Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors. ACS Nano 8(9), 9622–9628 (2014). https://doi.org/10.1021/nn5040197
R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloys Compd. 734, 89–111 (2018). https://doi.org/10.1016/j.jallcom.2017.10.262
J.-W. Lang, L.-B. Kong, W.-J. Wu, M. Liu, Y.-C. Luo, L. Kang, A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J. Solid State Electrochem. 13(2), 333 (2008). https://doi.org/10.1007/s10008-008-0560-0
W. Sun, L. Xiao, X. Wu, Facile synthesis of NiO nanocubes for photocatalysts and supercapacitor electrodes. J. Alloys Compd. 772, 465–471 (2019). https://doi.org/10.1016/j.jallcom.2018.09.185
J. Ji, L. Zhang, H. Ji, Y. Li, X. Bai, X. Fan, F. Zhang, R. Ruoff, Nanoporous Ni(OH) thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237–6243 (2013). https://doi.org/10.1021/nn4021955
J. Lin, Y. Yan, H. Wang, X. Zheng, Z. Jiang et al., Hierarchical Fe2O3 and NiO nanotube arrays as advanced anode and cathode electrodes for high-performance asymmetric supercapacitors. J. Alloys Compd. 794, 255–260 (2019). https://doi.org/10.1016/j.jallcom.2019.04.273
V.D. Nithya, N.S. Arul, Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J. Power Sources 327, 297–318 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.033
Y. Li, Q. Li, L. Cao, X. Cui, Y. Yang, P. Xiao, Y. Zhang, The impact of morphologies and electrolyte solutions on the supercapacitive behavior for Fe2O3 and the charge storage mechanism. Electrochim. Acta 178, 171–178 (2015). https://doi.org/10.1016/j.electacta.2015.08.013
G. Binitha, M.S. Soumya, A.A. Madhavan, P. Praveen, A. Balakrishnan et al., Electrospun α-Fe2O3 nanostructures for supercapacitor applications. J. Mater. Chem. A 1(38), 11698–11704 (2013). https://doi.org/10.1039/C3TA12352A
Z. Yang, L. Tang, J. Ye, D. Shi, S. Liu, M. Chen, Hierarchical nanostructured α-Fe2O3/polyaniline anodes for high performance supercapacitors. Electrochim. Acta 269, 21–29 (2018). https://doi.org/10.1016/j.electacta.2018.02.144
R. Pai, V. Kalra, High performance aqueous asymmetric supercapacitor based on iron oxide anode and cobalt oxide cathode. J. Mater. Res. 33(9), 1199–1210 (2018). https://doi.org/10.1557/jmr.2018.13
P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li et al., Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14(2), 731–736 (2014). https://doi.org/10.1021/nl404008e
X.-F. Lu, X.-Y. Chen, W. Zhou, Y.-X. Tong, G.-R. Li, α-Fe2O3@PANI core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 7(27), 14843–14850 (2015). https://doi.org/10.1021/acsami.5b03126
S. Yang, X. Song, P. Zhang, L. Gao, Heating-rate-induced porous α-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors. ACS Appl. Mater. Interfaces. 7(1), 75–79 (2015). https://doi.org/10.1021/am507910f
Y. Ye, H. Zhang, Y. Chen, P. Deng, Z. Huang et al., Core–shell structure carbon coated ferric oxide (Fe2O3@C) nanoparticles for supercapacitors with superior electrochemical performance. J. Alloys Compd. 639, 422–427 (2015). https://doi.org/10.1016/j.jallcom.2015.03.113
N. Maheswari, G. Muralidharan, Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices. Appl. Surf. Sci. 416, 461–469 (2017). https://doi.org/10.1016/j.apsusc.2017.04.094
M. Yu, X. Cheng, Y. Zeng, Z. Wang, Y. Tong, X. Lu, S. Yang, Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew. Chem. Int. Ed. 55(23), 6762–6766 (2016). https://doi.org/10.1002/anie.201602631
H. Ma, J. He, D.-B. Xiong, J. Wu, Q. Li, V. Dravid, Y. Zhao, Nickel cobalt hydroxide @reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability. ACS Appl. Mater. Interfaces. 8(3), 1992–2000 (2016). https://doi.org/10.1021/acsami.5b10280
Z. Ma, G. Shao, Y. Fan, M. Feng, D. Shen, H. Wang, Fabrication of high-performance all-solid-state asymmetric supercapacitors based on stable α-MnO2@NiCo2O4 core–shell heterostructure and 3D-nanocage N-doped porous Carbon ACS Sustain. Chem. Eng. 5(6), 4856–4868 (2017). https://doi.org/10.1021/acssuschemeng.7b00279
J. Zhao, C. Li, Q. Zhang, J. Zhang, X. Wang et al., Hierarchical ferric–cobalt–nickel ternary oxide nanowire arrays supported on graphene fibers as high-performance electrodes for flexible asymmetric supercapacitors. Nano Res. 11(4), 1775–1786 (2018). https://doi.org/10.1007/s12274-017-1795-9
J. S. Sanchez, A. Pendashteh, J. Palma, M. Anderson, R. Marcilla, Porous NiCoMn ternary metal oxide/graphene nanocomposites for high performance hybrid energy storage devices. Electrochim. Acta 279, 44–56 (2018). https://doi.org/10.1016/j.electacta.2018.05.072
C. Wu, J. Cai, Y. Zhu, K. Zhang, Hybrid reduced graphene oxide nanosheet supported Mn–Ni–Co ternary oxides for aqueous asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 9(22), 19114–19123 (2017). https://doi.org/10.1021/acsami.7b03709
J. Luo, J. Wang, S. Liu, W. Wu, T. Jia, Z. Yang, S. Mu, Y. Huang, Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. Carbon 146, 1–8 (2019). https://doi.org/10.1016/j.Carbon2019.01.078
R.S. Babu, R. Vinodh, A.L.F. de Barros, L.M. Samyn, K. Prasanna et al., Asymmetric supercapacitor based on carbon nanofibers as the anode and two-dimensional copper cobalt oxide nanosheets as the cathode. Chem. Eng. J. 366, 390–403 (2019). https://doi.org/10.1016/j.cej.2019.02.108
X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan et al., Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27(32), 4695–4701 (2015). https://doi.org/10.1002/adma.201501310
K.M. Choi, H.M. Jeong, J.H. Park, Y.-B. Zhang, J. K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8(7), 7451–7457 (2014). https://doi.org/10.1021/nn5027092
O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer et al., Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134(36), 15016–15021 (2012). https://doi.org/10.1021/ja3055639
K.M. Choi, H.J. Jeon, J.K. Kang, O.M. Yaghi, Heterogeneity within order in crystals of a porous metal–organic framework. J. Am. Chem. Soc. 133(31), 11920–11923 (2011). https://doi.org/10.1021/ja204818q
J. Fan, W.-Y. Sun, T.-A. Okamura, W.-X. Tang, N. Ueyama, Novel metal − organic frameworks with specific topology from new tripodal ligands: 1,3,5-tris(1-imidazolyl)benzene and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene. Inorg. Chem. 42(10), 3168–3175 (2003). https://doi.org/10.1021/ic0206847
P. Du, Y. Dong, C. Liu, W. Wei, D. Liu, P. Liu, Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J. Colloid Interface Sci. 518, 57–68 (2018). https://doi.org/10.1016/j.jcis.2018.02.010
J. Wang, Q. Zhong, Y. Xiong, D. Cheng, Y. Zeng, Y. Bu, Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors. Appl. Surf. Sci. 483, 1158–1165 (2019). https://doi.org/10.1016/j.apsusc.2019.03.340
X.-X. Meng, J.-Y. Li, B.-L. Yang, Z.-X. Li, MOF-derived NiO nanoparticles prilled by controllable explosion of perchlorate ion: excellent performances and practical applications in supercapacitors. Appl. Surf. Sci. 507, 145077 (2020). https://doi.org/10.1016/j.apsusc.2019.145077
F. Saleki, A. Mohammadi, S.E. Moosavifard, A. Hafizi, M.R. Rahimpour, MOF assistance synthesis of nanoporous double-shelled CuCo2O4 hollow spheres for hybrid supercapacitors. J. Colloid Interface Sci. 556, 83–91 (2019). https://doi.org/10.1016/j.jcis.2019.08.044
P. Liang, Q. Wang, J. Kang, W. Tian, H. Sun, S. Wang, Dual-metal zeolitic imidazolate frameworks and their derived nanoporous carbons for multiple environmental and electrochemical applications. Chem. Eng. J. 351, 641–649 (2018). https://doi.org/10.1016/j.cej.2018.06.140
C. Ye, Q. Qin, J. Liu, W. Mao, J. Yan, Y. Wang, J. Cui, Q. Zhang, L. Yang, Y. Wu, Coordination derived stable Ni–Co MOFs for foldable all-solid-state supercapacitors with high specific energy. J. Mater. Chem. A 7(9), 4998–5008 (2019). https://doi.org/10.1039/C8TA11948A
Y. Liu, Y. Wang, H. Wang, P. Zhao, H. Hou, L. Guo, Acetylene black enhancing the electrochemical performance of NiCo-MOF nanosheets for supercapacitor electrodes. Appl. Surf. Sci. 492, 455–463 (2019). https://doi.org/10.1016/j.apsusc.2019.06.238
J. Yang, P. Li, L. Wang, X. Guo, J. Guo, S. Liu, In-situ synthesis of Ni-MOF@CNT on graphene/Ni foam substrate as a novel self-supporting hybrid structure for all-solid-state supercapacitors with a high energy density. J. Electroanal. Chem. 848, 113301 (2019). https://doi.org/10.1016/j.jelechem.2019.113301
Y. Liu, Y. Wang, Y. Chen, C. Wang, L. Guo, NiCo-MOF nanosheets wrapping polypyrrole nanotubes for high-performance supercapacitors. Appl. Surf. Sci. 507, 145089 (2020). https://doi.org/10.1016/j.apsusc.2019.145089
M.M. Vadiyar, X. Liu, Z. Ye, Highly porous silver dendrites on carbon nanotube wrapped copper cobaltite nano-flowers for boosting energy density and cycle stability of asymmetric supercapattery. J. Power Sources 415, 154–164 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.053
S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
H. Tang, Q. Hu, M. Zheng, Y. Chi, X. Qin, H. Pang, Q. Xu, MXene–2D layered electrode materials for energy storage. Prog. Nat. Sci. Mater. 28(2), 133–147 (2018). https://doi.org/10.1016/j.pnsc.2018.03.003
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
R. Zou, H. Quan, M. Pan, S. Zhou, D. Chen, X. Luo, Self-assembled MXene(Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochim. Acta 292, 31–38 (2018). https://doi.org/10.1016/j.electacta.2018.09.149
F. Malchik, N. Shpigel, M.D. Levi, T.S. Mathis, A. Mor, Y. Gogotsi, D. Aurbach, Superfast high-energy storage hybrid device composed of MXene and chevrel-phase electrodes operated in saturated LiCl electrolyte solution. J. Mater. Chem. A 7(34), 19761–19773 (2019). https://doi.org/10.1039/C9TA08066J
J. Li, X. Yuan, C. Lin, Y. Yang, L. Xu et al., Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 7(15), 1602725 (2017). https://doi.org/10.1002/aenm.201602725
X. He, T. Bi, X. Zheng, W. Zhu, J. Jiang, Nickel cobalt sulfide nanoparticles grown on titanium carbide MXenes for high-performance supercapacitor. Electrochim. Acta 332, 135514 (2020). https://doi.org/10.1016/j.electacta.2019.135514
J. Fu, L. Li, J.M. Yun, D. Lee, B.K. Ryu, K.H. Kim, Two-dimensional titanium carbide (MXene)-wrapped sisal-like NiCo2S4 as positive electrode for high-performance hybrid pouch-type asymmetric supercapacitor. Chem. Eng. J. 375, 121939 (2019). https://doi.org/10.1016/j.cej.2019.121939
H. Li, X. Chen, E. Zalnezhad, K.N. Hui, K.S. Hui, M.J. Ko, 3D hierarchical transition-metal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors. J. Ind. Eng. Chem. 82, 309–316 (2020). https://doi.org/10.1016/j.jiec.2019.10.028
Y. Wang, J. Sun, X. Qian, Y. Zhang, L. Yu, R. Niu, H. Zhao, J. Zhu, 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. J. Power Sources 414, 540–546 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.036
G. Mishra, B. Dash, S. Pandey, Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 153, 172–186 (2018). https://doi.org/10.1016/j.clay.2017.12.021
Z. Li, H. Duan, M. Shao, J. Li, D. O’Hare, M. Wei, Z.L. Wang, Ordered-vacancy-induced cation intercalation into layered double hydroxides: a general approach for high-performance supercapacitors. Chem 4(9), 2168–2179 (2018). https://doi.org/10.1016/j.chempr.2018.06.007
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
Y. Xia, T.S. Mathis, M-Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557(7705), 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
C. Lu, A. Li, T. Zhai, C. Niu, H. Duan, L. Guo, W. Zhou, Interface design based on Ti3C2 MXene atomic layers of advanced battery-type material for supercapacitors. Energy Storage Mater. (2019). https://doi.org/10.1016/j.ensm.2019.11.021
H. Niu, X. Yang, Q. Wang, X. Jing, K. Cheng et al., Electrostatic self-assembly of MXene and edge-rich coal layered double hydroxide on molecular-scale with superhigh volumetric performances. J. Energy Chem. 46, 105–113 (2020). https://doi.org/10.1016/j.jechem.2019.10.023
M. Wei, Q. Huang, Y. Zhou, Z. Peng, W. Chu, Ultrathin nanosheets of cobalt-nickel hydroxides hetero-structure via electrodeposition and precursor adjustment with excellent performance for supercapacitor. J. Energy Chem. 27(2), 591–599 (2018). https://doi.org/10.1016/j.jechem.2017.10.022
M. Wei, J. Li, W. Chu, N. Wang, Phase control of 2D binary hydroxides nanosheets via controlling-release strategy for enhanced oxygen evolution reaction and supercapacitor performances. J. Energy Chem. 38, 26–33 (2019). https://doi.org/10.1016/j.jechem.2019.01.003
R. Ma, X. Liu, J. Liang, Y. Bando, T. Sasaki, Molecular-scale heteroassembly of redoxable hydroxide nanosheets and conductive graphene into superlattice composites for high-performance supercapacitors. Adv. Mater. 26(24), 4173–4178 (2014). https://doi.org/10.1002/adma.201400054
J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014). https://doi.org/10.1002/aenm.201300816
T. Li, W. Zhang, L. Zhi, H. Yu, L. Dang et al., High-energy asymmetric electrochemical capacitors based on oxides functionalized hollow carbon fibers electrodes. Nano Energy 30, 9–17 (2016). https://doi.org/10.1016/j.nanoen.2016.09.023
M. Jana, S. Saha, P. Samanta, N.C. Murmu, N.H. Kim, T. Kuila, J.H. Lee, Growth of Ni–Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (silar) method for high performance asymmetric supercapacitor electrodes. J. Mater. Chem. A 4(6), 2188–2197 (2016). https://doi.org/10.1039/C5TA10297A
J. Balamurugan, C. Li, S.G. Peera, N.H. Kim, J.H. Lee, High-energy asymmetric supercapacitors based on free-standing hierarchical Co–Mo–S nanosheets with enhanced cycling stability. Nanoscale 9(36), 13747–13759 (2017). https://doi.org/10.1039/C7NR03763E
N.M. Shinde, Q.X. Xia, J.M. Yun, P.V. Shinde, S.M. Shaikh et al., Ultra-rapid chemical synthesis of mesoporous Bi2O3 micro-sponge-balls for supercapattery applications. Electrochim. Acta 296, 308–316 (2019). https://doi.org/10.1016/j.electacta.2018.11.044
K.V. Sankar, S. Shanmugapriya, S. Surendran, S.C. Jun, R.K. Selvan, Facile hydrothermal synthesis of carbon-coated cobalt ferrite spherical nanoparticles as a potential negative electrode for flexible supercapattery. J. Colloid Interface Sci. 513, 480–488 (2018). https://doi.org/10.1016/j.jcis.2017.11.054
S. Shahabuddin, A. Numan, M.M. Shahid, R. Khanam, R. Saidur, A.K. Pandey, S. Ramesh, Polyaniline–SrTiO3 nanocube based binary nanocomposite as highly stable electrode material for high performance supercapaterry. Ceram. Int. 45(9), 11428–11437 (2019). https://doi.org/10.1016/j.ceramint.2019.03.009
J. Iqbal, A. Numan, S. Rafique, R. Jafer, S. Mohamad, K. Ramesh, S. Ramesh, High performance supercapattery incorporating ternary nanocomposite of multiwalled carbon nanotubes decorated with Co3O4 nanograins and silver nanoparticles as electrode material. Electrochim. Acta 278, 72–82 (2018). https://doi.org/10.1016/j.electacta.2018.05.040
B.C. Kim, R. Manikandan, K.H. Yu, M.-S. Park, D.-W. Kim et al., Efficient supercapattery behavior of mesoporous hydrous and anhydrous cobalt molybdate nanostructures. J. Alloys Compd. 789, 256–265 (2019). https://doi.org/10.1016/j.jallcom.2019.03.033
S. Raj, S.K. Srivastava, P. Kar, P. Roy, In situ growth of Co3O4 nanoflakes on reduced graphene oxide-wrapped Ni-foam as high performance asymmetric supercapacitor. Electrochim. Acta 302, 327–337 (2019). https://doi.org/10.1016/j.electacta.2019.02.010
K.V. Sankar, Y. Seo, S.C. Lee, S. Liu, A. Kundu, C. Ray, S.C. Jun, Cobalt carbonate hydroxides as advanced battery-type materials for supercapatteries: influence of morphology on performance. Electrochim. Acta 259, 1037–1044 (2018). https://doi.org/10.1016/j.electacta.2017.11.009
B. Saravanakumar, X. Wang, W. Zhang, L. Xing, W. Li, Holey two-dimensional manganese cobalt oxide nanosheets as a high-performance electrode for supercapattery. Chem. Eng. J. 373, 547–555 (2019). https://doi.org/10.1016/j.cej.2019.05.080
K.O. Oyedotun, M.J. Madito, D.Y. Momodu, A.A. Mirghni, T.M. Masikhwa, N. Manyala, Synthesis of ternary NiCo–MnO2 nanocomposite and its application as a novel high energy supercapattery device. Chem. Eng. J. 335, 416–433 (2018). https://doi.org/10.1016/j.cej.2017.10.169
J.J. William, I.M. Babu, G. Muralidharan, Spongy structured α-Ni(OH)2: facile and rapid synthesis for supercapattery applications. Mater. Lett. 238, 35–37 (2019). https://doi.org/10.1016/j.matlet.2018.11.136
I. Heng, F.W. Low, C.W. Lai, J.C. Juan, N. Amin, S.K. Tiong, High performance supercapattery with rGO/TiO2 nanocomposites anode and activated carbon cathode. J. Alloys Compd. 796, 13–24 (2019). https://doi.org/10.1016/j.jallcom.2019.04.347
X. Peng, H. Chai, Y. Cao, Y. Wang, H. Dong, D. Jia, W. Zhou, Facile synthesis of cost-effective Ni3(PO4)2·8H2O microstructures as a supercapattery electrode material. Mater. Today Energy 7, 129–135 (2018). https://doi.org/10.1016/j.mtener.2017.12.004
F.S. Omar, A. Numan, S. Bashir, N. Duraisamy, R. Vikneswaran et al., Enhancing rate capability of amorphous nickel phosphate supercapattery electrode via composition with crystalline silver phosphate. Electrochim. Acta 273, 216–228 (2018). https://doi.org/10.1016/j.electacta.2018.03.136
H. Shao, N. Padmanathan, D. McNulty, C. O’Dwyer, K.M. Razeeb, Cobalt phosphate-based supercapattery as alternative power source for implantable medical devices. ACS Appl. Energy Mater. 2(1), 569–578 (2019). https://doi.org/10.1021/acsaem.8b01612
H. Shao, N. Padmanathan, D. McNulty, C. O′Dwyer, K.M. Razeeb, Supercapattery based on binder-free Co3(PO4)2·8H2O multilayer nano/microflakes on nickel foam. ACS Appl. Mater. Interfaces. 8(42), 28592–28598 (2016). https://doi.org/10.1021/acsami.6b08354
S. Surendran, S. Shanmugapriya, A. Sivanantham, S. Shanmugam, R.K. Selvan, Electrospun carbon nanofibers encapsulated with NiCoP: a multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Adv. Energy Mater. 8(20), 1800555 (2018). https://doi.org/10.1002/aenm.201800555
J. Lin, Z. Zhong, H. Wang, X. Zheng, Y. Wang et al., Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type electrode for high-performance supercapattery. J. Power Sources 407, 6–13 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.046
J. Lin, Y. Yan, X. Zheng, Z. Zhong, Y. Wang et al., Designing and constructing core-shell NiCo2S4@Ni3S2 on Ni foam by facile one-step strategy as advanced battery-type electrodes for supercapattery. J. Colloid Interface Sci. 536, 456–462 (2019). https://doi.org/10.1016/j.jcis.2018.10.072
V.D. Nithya, K. Pandi, Y.S. Lee, R.K. Selvan, Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor. Electrochim. Acta 167, 97–104 (2015). https://doi.org/10.1016/j.electacta.2015.03.107
C. Lai, Y. Sun, B. Lin, Synthesis of sandwich-like porous nanostructure of Co3O4–rGO for flexible all-solid-state high-performance asymmetric supercapacitors. Mater. Today Energy 13, 342–352 (2019). https://doi.org/10.1016/j.mtener.2019.06.008
H. Zhang, M.U. Tahir, X. Yan, X. Liu, X. Su, L. Zhang, Ni-Al layered double hydroxide with regulated interlayer spacing as electrode for aqueous asymmetric supercapacitor. Chem. Eng. J. 368, 905–913 (2019). https://doi.org/10.1016/j.cej.2019.03.041
X. Han, Q. Chen, H. Zhang, Y. Ni, L. Zhang, Template synthesis of NiCo2S4/Co9S8 hollow spheres for high-performance asymmetric supercapacitors. Chem. Eng. J. 368, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.02.138
M. Selvakumar, S. Pitchumani, Hybrid supercapacitor based on poly(aniline-Co-M-anilicacid) and activated carbon in non-aqueous electrolyte. Korean J. Chem. Eng. 27(3), 977–982 (2010). https://doi.org/10.1007/s11814-010-0120-z
A. Laforgue, P. Simon, J.F. Fauvarque, J.F. Sarrau, P. Lailler, Hybrid supercapacitors based on activated carbons and conducting polymers. J. Electrochem. Soc. 148(10), A1130 (2001). https://doi.org/10.1149/1.1400742
J. Shen, C. Yang, X. Li, G. Wang, High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Interfaces 5(17), 8467–8476 (2013). https://doi.org/10.1021/am4028235
C. Guan, J. Liu, Y. Wang, L. Mao, Z. Fan, Z. Shen, H. Zhang, J. Wang, Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9(5), 5198–5207 (2015). https://doi.org/10.1021/acsnano.5b00582
J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Template-grown graphene/porous Fe2O3 nanocomposite: a high-performance anode material for pseudocapacitors. Nano Energy 15, 719–728 (2015). https://doi.org/10.1016/j.nanoen.2015.05.021
J. Zhang, H. Zhang, Y. Zhang, J. Zhang, H. He, X. Zhang, J.-J. Shim, S. Zhang , Unveiling of the energy storage mechanisms of multi-modified (Nb2O5@C)/rGO nanoarrays as anode for high voltage supercapacitors with formulated ionic liquid electrolytes. Electrochim. Acta 313, 532–543 (2019). https://doi.org/10.1016/j.electacta.2019.04.160
S. Fleischmann, M. Widmaier, A. Schreiber, H. Shim, F.M. Stiemke et al., High voltage asymmetric hybrid supercapacitors using lithium- and sodium-containing ionic liquids. Energy Storage Mater. 16, 391 (2019). https://doi.org/10.1016/j.ensm.2018.06.011
G.A.D.S. Junior, V.D.S. Fortunato, G.G. Silva, P.F.R. Ortega, R.L. Lavall, High-performance Li-ion hybrid supercapacitor based on LiMn2O4 in ionic liquid electrolyte. Electrochim. Acta 325, 134900 (2019). https://doi.org/10.1016/j.electacta.2019.134900
K. Kongsawatvoragul, S. Kalasina, P. Kidkhunthod, M. Sawangphruk, Charge storage mechanisms of cobalt hydroxide thin film in ionic liquid and koh electrolytes for asymmetric supercapacitors with graphene aerogel. Electrochim. Acta 324, 134854 (2019). https://doi.org/10.1016/j.electacta.2019.134854
H.-K. Kim, D. Mhamane, M.-S. Kim, H.-K. Roh, V. Aravindan et al., TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. J. Power Sources 327, 171–177 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.053
G. Ma, K. Li, Y. Li, B. Gao, T. Ding et al., High-performance hybrid supercapacitor based on graphene-wrapped mesoporous t-Nb2O5 nanospheres anode and mesoporous carbon-coated graphene cathode. ChemElectroChem 3(9), 1360–1368 (2016). https://doi.org/10.1002/celc.201600181
H. Song, J. Fu, K. Ding, C. Huang, K. Wu et al., Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors. J. Power Sources 328, 599–606 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.052
J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao et al., Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7(7), 6237–6243 (2013). https://doi.org/10.1021/nn4021955
H. Wang, K. Zhang, Y. Song, J. Qiu, J. Wu, L. Yan, MnCo2S4 nanoparticles anchored to N- and S-codoped 3D graphene as a prominent electrode for asymmetric supercapacitors. Carbon 146, 420–429 (2019). https://doi.org/10.1016/j.Carbon2019.02.035
S. Surendran, S. Shanmugapriya, P. Zhu, C. Yan, R.H. Vignesh, Y.S. Lee, X. Zhang, R.K. Selvan, Hydrothermally synthesised nicop nanostructures and electrospun N-doped carbon nanofiber as multifunctional potential electrode for hybrid water electrolyser and supercapatteries. Electrochim. Acta 296, 1083–1094 (2019). https://doi.org/10.1016/j.electacta.2018.11.078
Y. Luo, C. Yang, Y. Tian, Y. Tang, X. Yin, W. Que, A long cycle life asymmetric supercapacitor based on advanced nickel-sulfide/titanium carbide (MXene) nanohybrid and MXene electrodes. J. Power Sources 450, 227694 (2020). https://doi.org/10.1016/j.jpowsour.2019.227694