2D Layered Double Hydroxide Nanosheets and Their Derivatives Toward Efficient Oxygen Evolution Reaction
Corresponding Author: Takayoshi Sasaki
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 86
Abstract
Layered double hydroxides (LDHs) have attracted tremendous research interest in widely spreading applications. Most notably, transition-metal-bearing LDHs are expected to serve as highly active electrocatalysts for oxygen evolution reaction (OER) due to their layered structure combined with versatile compositions. Furthermore, reducing the thickness of platelet LDH crystals to nanometer or even molecular scale via cleavage or delamination provides an important clue to enhance the activity. In this review, recent progresses on rational design of LDH nanosheets are reviewed, including direct synthesis via traditional coprecipitation, homogeneous precipitation, and newly developed topochemical oxidation as well as chemical exfoliation of parent LDH crystals. In addition, diverse strategies are introduced to modulate their electrochemical activity by tuning the composition of host metal cations and intercalated counter-anions, and incorporating dopants, cavities, and single atoms. In particular, hybridizing LDHs with conductive components or in situ growing them on conductive substrates to produce freestanding electrodes can further enhance their intrinsic catalytic activity. A brief discussion on future research directions and prospects is also summarized.
Highlights:
1 Synthesis strategies of layered double hydroxides (LDHs) were summarized with classifications of traditional coprecipitation, homogeneous precipitation, and newly developed topochemical oxidation.
2 Diverse approaches of structural modulation and hybridization to enhance the electrocatalytic activity of LDHs were systematically reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.S. Burke, L.J. Enman, A.S. Batchellor, S. Zou, S.W. Boettcher, Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549–7558 (2015). https://doi.org/10.1021/acs.chemmater.5b03148
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). https://doi.org/10.1126/science.1212858
- S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin et al., Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016). https://doi.org/10.1038/nenergy.2016.184
- Y. Meng, X. Zhang, W.-H. Hung, J. He, Y.-S. Tsai et al., Highly active oxygen evolution integrated with efficient CO2 to CO electroreduction. Proc. Natl. Acad. Sci. 116(48), 23915–23922 (2019). https://doi.org/10.1073/pnas.1915319116
- A.R. Zeradjanin, Is a major breakthrough in the oxygen electrocatalysis possible? Curr. Opin. Electrochem. 9, 214–223 (2018). https://doi.org/10.1016/j.coelec.2018.04.006
- L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050
- Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei et al., Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 50, 6479–6482 (2014). https://doi.org/10.1039/C4CC01625D
- M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z.L. Wang, Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022
- X. Lu, G.-P. Hao, X. Sun, S. Kaskel, O.G. Schmidt, Highly dispersed metal and oxide nanoparticles on ultra-polar carbon as efficient cathode materials for Li–O2 batteries. J. Mater. Chem. A 5, 6284–6291 (2017). https://doi.org/10.1039/C7TA00777A
- X. Lu, L. Zheng, M. Zhang, H. Tang, X. Li, S. Liao, Synthesis of core-shell structured Ru@Pd/C catalysts for the electrooxidation of formic acid. Electrochim. Acta 238, 194–201 (2017). https://doi.org/10.1016/j.electacta.2017.03.115
- L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, 2d layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201803358
- F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014). https://doi.org/10.1038/ncomms5477
- N. Han, F. Zhao, Y. Li, Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. J. Mater. Chem. A 3, 16348–16353 (2015). https://doi.org/10.1039/C5TA03394B
- Y. Wang, D. Yan, S. El Hankari, Y. Zou, S. Wang, Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. 5, 1800064 (2018). https://doi.org/10.1002/advs.201800064
- J. Yu, Q. Wang, D. O’Hare, L. Sun, Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 46, 5950–5974 (2017). https://doi.org/10.1039/C7CS00318H
- Y. Liu, N. Wang, J.H. Pan, F. Steinbach, J. Caro, In situ synthesis of MOF membranes on ZnAl–CO3 LDH buffer layer-modified substrates. J. Am. Chem. Soc. 136, 14353–14356 (2014). https://doi.org/10.1021/ja507408s
- R. Ma, J. Liang, X. Liu, T. Sasaki, General insights into structural evolution of layered double hydroxide: underlying aspects in topochemical transformation from brucite to layered double hydroxide. J. Am. Chem. Soc. 134, 19915–19921 (2012). https://doi.org/10.1021/ja310246r
- E.S. Zhitova, S.V. Krivovichev, I.V. Pekov, V.O. Yapaskurt, Crystal chemistry of chlormagaluminite, Mg4Al2(OH)12Cl2(H2O)2, a natural layered double hydroxide. Minerals 9, 221 (2019). https://doi.org/10.3390/min9040221
- Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang, X. Wang, Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 7, 5069–5089 (2019). https://doi.org/10.1039/C8TA11273H
- L. Huang, Y. Zou, D. Chen, S. Wang, Electronic structure regulation on layered double hydroxides for oxygen evolution reaction. Chin. J. Catal. 40, 1822–1840 (2019). https://doi.org/10.1016/S1872-2067(19)63284-5
- Z. Liu, C.-L. Dong, Y.-C. Huang, J. Cen, H. Yang et al., Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 7, 14483–14488 (2019). https://doi.org/10.1039/C9TA03882E
- R. Ma, J. Liang, K. Takada, T. Sasaki, Topochemical synthesis of Co–Fe layered double hydroxides at varied Fe/Co ratios: unique intercalation of triiodide and its profound effect. J. Am. Chem. Soc. 133, 613–620 (2010). https://doi.org/10.1021/ja1087216
- N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/C6CS00328A
- X. Lu, W. Si, X. Sun, B. Liu, L. Zhang, C. Yan, O.G. Schmidt, Pd-functionalized MnOx–GeOy nanomembranes as highly efficient cathode materials for Li–O2 batteries. Nano Energy 19, 428–436 (2016). https://doi.org/10.1016/j.nanoen.2015.10.027
- H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
- X. Lu, Y. Yin, L. Zhang, S. Huang, L. Xi, L. Liu, S. Oswald, O.G. Schmidt, 3d Ag/NiO–Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li–O2 batteries. Energy Storage Mater. 16, 155–162 (2019). https://doi.org/10.1016/j.ensm.2018.05.002
- T.-B. Hur, T.X. Phuoc, M.K. Chyu, New approach to the synthesis of layered double hydroxides and associated ultrathin nanosheets in de-ionized water by laser ablation. J. Appl. Phys. 108, 114312 (2010). https://doi.org/10.1063/1.3518510
- T.X. Phuoc, Y. Soong, M.K. Chyu, Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids. Opt. Lasers Eng. 45, 1099–1106 (2007). https://doi.org/10.1016/j.optlaseng.2007.06.005
- T. Sasaki, C. Liang, W.T. Nichols, Y. Shimizu, N. Koshizaki, Fabrication of oxide base nanostructures using pulsed laser ablation in aqueous solutions. Appl. Phys. A 79, 1489–1492 (2004). https://doi.org/10.1007/s00339-004-2827-3
- P.V. Kazakevich, A.V. Simakin, V.V. Voronov, G.A. Shafeev, Laser induced synthesis of nanoparticles in liquids. Appl. Surf. Sci. 252, 4373–4380 (2006). https://doi.org/10.1016/j.apsusc.2005.06.059
- G. Compagnini, E. Messina, O. Puglisi, R.S. Cataliotti, V. Nicolosi, Spectroscopic evidence of a core–shell structure in the earlier formation stages of Au–Ag nanoparticles by pulsed laser ablation in water. Chem. Phys. Lett. 457, 386–390 (2008). https://doi.org/10.1016/j.cplett.2008.04.051
- B.M. Hunter, J.D. Blakemore, M. Deimund, H.B. Gray, J.R. Winkler, A.M. Müller, Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. J. Am. Chem. Soc. 136, 13118–13121 (2014). https://doi.org/10.1021/ja506087h
- C. Qiao, Y. Zhang, Y. Zhu, C. Cao, X. Bao, J. Xu, One-step synthesis of Zinc–Cobalt layered double hydroxide (Zn–Co-LDH) nanosheets for high-efficiency oxygen evolution reaction. J. Mater. Chem. A 3, 6878–6883 (2015). https://doi.org/10.1039/C4TA06634K
- Y. Yan, Q. Liu, J. Wang, J. Wei, Z. Gao et al., Single-step synthesis of layered double hydroxides ultrathin nanosheets. J. Colloid Interface Sci. 371, 15–19 (2012). https://doi.org/10.1016/j.jcis.2011.12.075
- G. Hu, N. Wang, D. O’Hare, J. Davis, One-step synthesis and AFM imaging of hydrophobic LDH monolayers. Chem. Commun. 3, 287–289 (2006). https://doi.org/10.1039/B514368C
- W.T. Reichle, Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics 22, 135–141 (1986). https://doi.org/10.1016/0167-2738(86)90067-6
- K.T. Ehlsissen, A. Delahaye-Vidal, P. Genin, M. Figlarz, P. Willmann, Preparation and characterization of turbostratic Ni/Al layered double hydroxides for nickel hydroxide electrode applications. J. Mater. Chem. 3, 883–888 (1993). https://doi.org/10.1039/jm9930300883
- R. Xu, H.C. Zeng, Synthesis of nanosize supported hydrotalcite-like compounds CoAlx(OH)2+2x(CO3)y(NO3)x-2y·nH2O on γ-Al2O3. Chem. Mater. 13, 297–303 (2001). https://doi.org/10.1021/cm000526i
- I. Nobuo, M. Taki, K. Yoshiro, K. Kenji, A novel synthetic route to layered double hydroxides using hexamethylenetetramine. Chem. Lett. 33, 1122–1123 (2004). https://doi.org/10.1246/cl.2004.1122
- H. Cai, A.C. Hillier, K.R. Franklin, C.C. Nunn, M.D. Ward, Nanoscale imaging of molecular adsorption. Science 266, 1551–1555 (1994). https://doi.org/10.1126/science.266.5190.1551
- G. Bitsianes, T.L. Joseph, Topochemical aspects of iron ore reduction. JOM 7, 639–645 (1955). https://doi.org/10.1007/BF03377553
- R. Ma, Z. Liu, K. Takada, N. Iyi, Y. Bando, T. Sasaki, Synthesis and exfoliation of Co2+−Fe3+ layered double hydroxides: an innovative topochemical approach. J. Am. Chem. Soc. 129, 5257–5263 (2007). https://doi.org/10.1021/ja0693035
- R. Ma, K. Takada, K. Fukuda, N. Iyi, Y. Bando, T. Sasaki, Topochemical synthesis of monometallic (Co2+–Co3+) layered double hydroxide and its exfoliation into positively charged Co(OH)2 nanosheets. Angew. Chem. Int. Ed. 47, 86–89 (2008). https://doi.org/10.1002/anie.200703941
- J.-H. Lee, D. O’Hare, D.-Y. Jung, Topochemical oxidation of transition metals in layered double hydroxides by anthraquinone-2-sulfonate. Bull. Korean Chem. Soc. 33, 725–727 (2012). https://doi.org/10.5012/bkcs.2012.33.2.725
- J.H. Lee, Y. Du, D. O’Hare, Growth of oriented thin films of intercalated α-cobalt hydroxide on functionalized Au and Si substrates. Chem. Mater. 21, 963–968 (2009). https://doi.org/10.1021/cm802828z
- L. Ma, Q. Wang, S.M. Islam, Y. Liu, S. Ma, M.G. Kanatzidis, Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42– ion. J. Am. Chem. Soc. 138, 2858–2866 (2016). https://doi.org/10.1021/jacs.6b00110
- D.-Y. Wang, F.R. Costa, A. Vyalikh, A. Leuteritz, U. Scheler et al., One-step synthesis of organic LDH and its comparison with regeneration and anion exchange method. Chem. Mater. 21, 4490–4497 (2009). https://doi.org/10.1021/cm901238a
- S. Sene, S. Bégu, C. Gervais, G. Renaudin, A. Mesbah et al., Intercalation of benzoxaborolate anions in layered double hydroxides: toward hybrid formulations for benzoxaborole drugs. Chem. Mater. 27, 1242–1254 (2015). https://doi.org/10.1021/cm504181w
- L. Ma, S.M. Islam, H. Liu, J. Zhao, G. Sun, H. Li, S. Ma, M.G. Kanatzidis, Selective and efficient removal of toxic oxoanions of As(iii), As(v), and Cr(vi) by layered double hydroxide intercalated with MoS42–. Chem. Mater. 29, 3274–3284 (2017). https://doi.org/10.1021/acs.chemmater.7b00618
- L. Lv, K. Xu, C. Wang, H. Wan, Y. Ruan et al., Intercalation of glucose in NiMn-layered double hydroxide nanosheets: an effective path way towards battery-type electrodes with enhanced performance. Electrochim. Acta 216, 35–43 (2016). https://doi.org/10.1016/j.electacta.2016.08.149
- W. Liu, S. Xu, R. Liang, M. Wei, D.G. Evans, X. Duan, In situ synthesis of nitrogen-doped carbon dots in the interlayer region of a layered double hydroxide with tunable quantum yield. J. Mater. Chem. C 5, 3536–3541 (2017). https://doi.org/10.1039/C6TC05463C
- C. Wang, X. Zhang, X. Sun, Y. Ma, Facile fabrication of ethylene glycol intercalated cobalt-nickel layered double hydroxide nanosheets supported on nickel foam as flexible binder-free electrodes for advanced electrochemical energy storage. Electrochim. Acta 191, 329–336 (2016). https://doi.org/10.1016/j.electacta.2015.12.154
- Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128, 4872–4880 (2006). https://doi.org/10.1021/ja0584471
- M. Adachi-Pagano, C. Forano, J.-P. Besse, Delamination of layered double hydroxides by use of surfactants. Chem. Commun. (2000). https://doi.org/10.1039/a908251d
- B.R. Venugopal, C. Shivakumara, M. Rajamathi, Effect of various factors influencing the delamination behavior of surfactant intercalated layered double hydroxides. J. Colloid Interface Sci. 294, 234–239 (2006). https://doi.org/10.1016/j.jcis.2005.06.086
- V.V. Naik, T.N. Ramesh, S. Vasudevan, Neutral nanosheets that gel: exfoliated layered double hydroxides in toluene. J. Phys. Chem. Lett. 2, 1193–1198 (2011). https://doi.org/10.1021/jz2004655
- J. Liang, R. Ma, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Topochemical synthesis, anion exchange, and exfoliation of Co–Ni layered double hydroxides: a route to positively charged Co–Ni hydroxide nanosheets with tunable composition. Chem. Mater. 22, 371–378 (2010). https://doi.org/10.1021/cm902787u
- T. Hibino, W. Jones, New approach to the delamination of layered double hydroxides. J. Mater. Chem. 11, 1321–1323 (2001). https://doi.org/10.1039/b101135i
- T. Hibino, Delamination of layered double hydroxides containing amino acids. Chem. Mater. 16, 5482–5488 (2004). https://doi.org/10.1021/cm048842a
- N. Iyi, T. Sasaki, Decarbonation of MgAl-LDHs (layered double hydroxides) using acetate–buffer/NaCl mixed solution. J. Colloid Interface Sci. 322, 237–245 (2008). https://doi.org/10.1016/j.jcis.2008.02.047
- L. Li, R. Ma, Y. Ebina, N. Iyi, T. Sasaki, Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem. Mater. 17, 4386–4391 (2005). https://doi.org/10.1021/cm0510460
- N. Iyi, S. Ishihara, Y. Kaneko, H. Yamada, Swelling and gel/sol formation of perchlorate-type layered double hydroxides in concentrated aqueous solutions of amino acid-related zwitterionic compounds. Langmuir 29, 2562–2571 (2013). https://doi.org/10.1021/la304964q
- I. Langmuir, Oscillations in ionized gases. Proc. Natl. Acad. Sci. 14, 627–637 (1928). https://doi.org/10.1073/pnas.14.8.627
- J. Shim, A. Oh, D.-H. Kang, S. Oh, S.K. Jang et al., High-performance 2d rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 28, 6985–6992 (2016). https://doi.org/10.1002/adma.201601002
- C. Wang, Y. Zhou, L. He, T.-W. Ng, G. Hong et al., In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition. Nanoscale 5, 600–605 (2013). https://doi.org/10.1039/C2NR32897F
- S.L. Girshick, C.-P. Chiu, Homogeneous nucleation of particles from the vapor phase in thermal plasma synthesis. Plasma Chem. Plasma Process. 9, 355–369 (1989). https://doi.org/10.1007/BF01083672
- M.M. Moshrefi, F. Rashidi, Hydrogen production from methane decomposition in cold plasma reactor with rotating electrodes. Plasma Chem. Plasma Process. 38, 503–515 (2018). https://doi.org/10.1007/s11090-018-9875-5
- L. Mangolini, E. Thimsen, U. Kortshagen, High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005). https://doi.org/10.1021/nl050066y
- P.K. Chu, J.Y. Chen, L.P. Wang, N. Huang, Plasma-surface modification of biomaterials. Mater. Sci. Eng., R 36, 143–206 (2002). https://doi.org/10.1016/S0927-796X(02)00004-9
- L. Tao, C.-Y. Lin, S. Dou, S. Feng, D. Chen et al., Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: insights into the active centers. Nano Energy 41, 417–425 (2017). https://doi.org/10.1016/j.nanoen.2017.09.055
- Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R.S. Rawat, H.J. Fan, Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem. Int. Ed. 55, 8670–8674 (2016). https://doi.org/10.1002/anie.201604372
- K. Wang, M. Xu, Y. Gu, Z. Gu, J. Liu, Q.H. Fan, Low-temperature plasma exfoliated N-doped graphene for symmetrical electrode supercapacitors. Nano Energy 31, 486–494 (2017). https://doi.org/10.1016/j.nanoen.2016.11.007
- W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu et al., Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853–859 (2014). https://doi.org/10.1007/s12274-014-0446-7
- Y. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng, D. Liu, M. Shao, S. Wang, Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 56, 5867–5871 (2017). https://doi.org/10.1002/anie.201701477
- R. Liu, Y. Wang, D. Liu, Y. Zou, S. Wang, Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 29, 1701546 (2017). https://doi.org/10.1002/adma.201701546
- Y. Wang, C. Xie, Z. Zhang, D. Liu, R. Chen, S. Wang, In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction. Adv. Funct. Mater. 28, 1703363 (2018). https://doi.org/10.1002/adfm.201703363
- D. Zhou, S. Wang, Y. Jia, X. Xiong, H. Yang et al., Nife hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem. Int. Ed. 58, 736–740 (2019). https://doi.org/10.1002/anie.201809689
- P. Vialat, C. Mousty, C. Taviot-Gueho, G. Renaudin, H. Martinez, J.-C. Dupin, E. Elkaim, F. Leroux, High-performing monometallic cobalt layered double hydroxide supercapacitor with defined local structure. Adv. Funct. Mater. 24, 4831–4842 (2014). https://doi.org/10.1002/adfm.201400310
- N. Parveen, M.H. Cho, Self-assembled 3d flower-like nickel hydroxide nanostructures and their supercapacitor applications. Sci. Rep. 6, 27318 (2016). https://doi.org/10.1038/srep27318
- R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11, 211–218 (2015). https://doi.org/10.1016/j.nanoen.2014.09.030
- J. Wang, Y. Ni, W. Jiang, H. Li, Y. Liu, S. Lin, Y. Zhou, D. Yan, Self-crosslinking and surface-engineered polymer vesicles. Small 11, 4485–4490 (2015). https://doi.org/10.1002/smll.201500699
- J. Jiang, F. Sun, S. Zhou, W. Hu, H. Zhang et al., Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 9, 2885 (2018). https://doi.org/10.1038/s41467-018-05341-y
- L.-M. Cao, J.-W. Wang, D.-C. Zhong, T.-B. Lu, Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction. J. Mater. Chem. A 6, 3224–3230 (2018). https://doi.org/10.1039/C7TA09734D
- M.K. Bates, Q. Jia, H. Doan, W. Liang, S. Mukerjee, Charge-transfer effects in Ni–Fe and Ni–Fe–Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 6, 155–161 (2016). https://doi.org/10.1021/acscatal.5b01481
- Z. Lu, L. Qian, Y. Tian, Y. Li, X. Sun, X. Duan, Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem. Commun. 52, 908–911 (2016). https://doi.org/10.1039/C5CC08845C
- J.L. Lado, X. Wang, E. Paz, E. Carbó-Argibay, N. Guldris et al., Design and synthesis of highly active Al–Ni–P foam electrode for hydrogen evolution reaction. ACS Catal. 5, 6503–6508 (2015). https://doi.org/10.1021/acscatal.5b01761
- C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A.M. Asiri, X. Sun, Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater. 29, 1602441 (2017). https://doi.org/10.1002/adma.201602441
- P. Zhou, J. He, Y. Zou, Y. Wang, C. Xie, R. Chen, S. Zang, S. Wang, Single-crystalline layered double hydroxides with rich defects and hierarchical structure by mild reduction for enhancing the oxygen evolution reaction. Sci. China Chem. 62, 1365–1370 (2019). https://doi.org/10.1007/s11426-019-9511-x
- Y. Wang, M. Qiao, Y. Li, S. Wang, Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 14, 1800136 (2018). https://doi.org/10.1002/smll.201800136
- A. Mignani, B. Ballarin, M. Giorgetti, E. Scavetta, D. Tonelli et al., Heterostructure of Au nanoparticles—NiAl layered double hydroxide: electrosynthesis, characterization, and electrocatalytic properties. J. Phys. Chem. C 117, 16221–16230 (2013). https://doi.org/10.1021/jp4033782
- L. Xu, Z. Qu, J. Chen, X. Chen, F. Li, W. Yang, Highly dispersed palladium nanoparticles generated in situ on layered double hydroxide nanowalls for ultrasensitive electrochemical detection of hydrazine. Anal. Methods 9, 6629–6635 (2017). https://doi.org/10.1039/C7AY02324C
- W. Zhu, L. Liu, Z. Yue, W. Zhang, X. Yue et al., Au promoted nickel–iron layered double hydroxide nanoarrays: a modular catalyst enabling high-performance oxygen evolution. ACS Appl. Mater. Interfaces 9, 19807–19814 (2017). https://doi.org/10.1021/acsami.7b03033
- X. Gao, X. Long, H. Yu, X. Pan, Z. Yi, Ni nanoparticles decorated NiFe layered double hydroxide as bifunctional electrochemical catalyst. J. Electrochem. Soc. 164, H307 (2017). https://doi.org/10.1149/2.0561706jes
- X. Deng, J. Huang, H. Wan, F. Chen, Y. Lin, X. Xu, R. Ma, T. Sasaki, Recent progress in functionalized layered double hydroxides and their application in efficient electrocatalytic water oxidation. J. Energy Chem. 32, 93–104 (2019). https://doi.org/10.1016/j.jechem.2018.07.007
- B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095
- P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016). https://doi.org/10.1126/science.aaf5251
- J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen et al., Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 140, 3876–3879 (2018). https://doi.org/10.1021/jacs.8b00752
- B. Zhang, C. Zhu, Z. Wu, E. Stavitski, Y.H. Lui et al., Integrating rh species with NiFe-layered double hydroxide for overall water splitting. Nano Lett. 20, 136–144 (2020). https://doi.org/10.1021/acs.nanolett.9b03460
- Z. Wang, S.-M. Xu, Y. Xu, L. Tan, X. Wang, Y. Zhao, H. Duan, Y.-F. Song, Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis. Chem. Sci. 10, 378–384 (2019). https://doi.org/10.1039/C8SC04480E
- R. Valdez, D.B. Grotjahn, D.K. Smith, J.M. Quintana, A. Olivas, Nanosheets of Co-(Ni and Fe) layered double hydroxides for electrocatalytic water oxidation reaction. Int. J. Electrochem. Sci. 10, 909–918 (2015)
- D. Tang, J. Liu, X. Wu, R. Liu, X. Han et al., Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 6, 7918–7925 (2014). https://doi.org/10.1021/am501256x
- S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010). https://doi.org/10.1002/anie.200906623
- H. Li, X. He, Z. Kang, H. Huang, Y. Liu et al., Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49, 4430–4434 (2010). https://doi.org/10.1002/anie.200906154
- Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando et al., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006). https://doi.org/10.1021/ja062677d
- C. Tang, H.-F. Wang, X.-L. Zhu, B.-Q. Li, Q. Zhang, Advances in hybrid electrocatalysts for oxygen evolution reactions: rational integration of NiFe layered double hydroxides and nanocarbon. Part. Part. Syst. Charact. 33, 447 (2016). https://doi.org/10.1002/ppsc.201670024
- S. Wang, D. Yu, L. Dai, Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 133, 5182–5185 (2011). https://doi.org/10.1021/ja1112904
- Z. Xu, X. Fan, H. Li, H. Fu, W.M. Lau, X. Zhao, Edges of graphene and carbon nanotubes with high catalytic performance for the oxygen reduction reaction. PCCP 19, 21003–21011 (2017). https://doi.org/10.1039/C7CP03416D
- M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu et al., An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013). https://doi.org/10.1021/ja4027715
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872
- X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, S. Yang, A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed. 53, 7584–7588 (2014). https://doi.org/10.1002/anie.201402822
- J. Yi, Z. Longzhou, G. Guoping, C. Hua, W. Bei et al., A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29, 1700017 (2017). https://doi.org/10.1002/adma.201700017
- S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem. Int. Ed. 52, 13567–13570 (2013). https://doi.org/10.1002/anie.201306166
- C.H. Choi, M. Kim, H.C. Kwon, S.J. Cho, S. Yun et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922
- C. Tang, H.-S. Wang, H.-F. Wang, Q. Zhang, G.-L. Tian, J.-Q. Nie, F. Wei, Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 27, 4516–4522 (2015). https://doi.org/10.1002/adma.201501901
- J.-H. Zhong, J. Zhang, X. Jin, J.-Y. Liu, Q. Li et al., Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. J. Am. Chem. Soc. 136, 16609–16617 (2014). https://doi.org/10.1021/ja508965w
- D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi et al., NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 8, 1701905 (2017). https://doi.org/10.1002/aenm.201701905
- W. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou, T. Sasaki, A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 9, 1977–1984 (2015). https://doi.org/10.1021/nn5069836
- H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, S. Jin, Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 15, 1421–1427 (2015). https://doi.org/10.1021/nl504872s
- M. Luo, Z. Cai, C. Wang, Y. Bi, L. Qian et al., Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Res. 10, 1732–1739 (2017). https://doi.org/10.1007/s12274-017-1437-2
- Y. Li, M. Zhao, Y. Zhao, L. Song, Z. Zhang, FeNi layered double-hydroxide nanosheets on a 3d carbon network as an efficient electrocatalyst for the oxygen evolution reaction. Part. Part. Syst. Char. 33, 158–166 (2016). https://doi.org/10.1002/ppsc.201500228
- L. Wang, X. Huang, J. Xue, Graphitic mesoporous carbon loaded with iron–nickel hydroxide for superior oxygen evolution reactivity. Chemsuschem 9, 1835–1842 (2016). https://doi.org/10.1002/cssc.201600323
- J. Ping, Y. Wang, Q. Lu, B. Chen, J. Chen et al., Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3d graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv. Mater. 28, 7640–7645 (2016). https://doi.org/10.1002/adma.201601019
- W. Wang, Y. Lu, M. Zhao, R. Luo, Y. Yang et al., Controllable tuning of cobalt nickel-layered double hydroxide arrays as multifunctional electrodes for flexible supercapattery device and oxygen evolution reaction. ACS Nano 13, 12206–12218 (2019). https://doi.org/10.1021/acsnano.9b06910
- K. He, T. Tadesse Tsega, X. Liu, J. Zai, X.-H. Li et al., Utilizing the space-charge region of the FeNi-LDH/CoP p–n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 58, 11903–11909 (2019). https://doi.org/10.1002/anie.201905281
- R. Ma, X. Liu, J. Liang, Y. Bando, T. Sasaki, Molecular-scale heteroassembly of redoxable hydroxide nanosheets and conductive graphene into superlattice composites for high-performance supercapacitors. Adv. Mater. 26, 4173–4178 (2014)
- P. Xiong, B. Sun, N. Sakai, R. Ma, T. Sasaki, S. Wang, J. Zhang, G. Wang, 2d superlattices for efficient energy storage and conversion. Adv. Mater. (2019). https://doi.org/10.1002/adma.201902654
- M.S. Islam, M. Kim, X. Jin, S.M. Oh, N.-S. Lee, H. Kim, S.-J. Hwang, Bifunctional 2d superlattice electrocatalysts of layered double hydroxide–transition metal dichalcogenide active for overall water splitting. ACS Energy Lett. 3, 952–960 (2018). https://doi.org/10.1021/acsenergylett.8b00134
- P. Xiong, X. Zhang, H. Wan, S. Wang, Y. Zhao et al., Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett. 19, 4518–4526 (2019). https://doi.org/10.1021/acs.nanolett.9b01329
- M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with mxene. Nano Energy 44, 181–190 (2018). https://doi.org/10.1016/j.nanoen.2017.12.003
- X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011). https://doi.org/10.1038/nnano.2011.13
- Z. Lu, Q. Yang, W. Zhu, Z. Chang, J. Liu, X. Sun, D.G. Evans, X. Duan, Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res. 5, 369–378 (2012). https://doi.org/10.1007/s12274-012-0217-2
- R. Chen, G. Sun, C. Yang, L. Zhang, J. Miao et al., Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horizons 1, 156–160 (2016). https://doi.org/10.1039/C5NH00082C
- H. Liu, J. Zhou, C. Wu, C. Wang, Y. Zhang et al., Integrated flexible electrode for oxygen evolution reaction: layered double hydroxide coupled with single-walled carbon nanotubes film. ACS Sustain. Chem. Eng. 6, 2911–2915 (2018). https://doi.org/10.1021/acssuschemeng.8b00084
- C. Yu, Z. Liu, X. Han, H. Huang, C. Zhao, J. Yang, J. Qiu, NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon 110, 1–7 (2016). https://doi.org/10.1016/j.carbon.2016.08.020
- L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu et al., Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 10, 1820–1827 (2017). https://doi.org/10.1039/C7EE01571B
- R. Yang, Y. Zhou, Y. Xing, D. Li, D. Jiang, M. Chen, W. Shi, S. Yuan, Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media. Appl. Catal. B 253, 131–139 (2019). https://doi.org/10.1016/j.apcatb.2019.04.054
- L. Zhou, S. Jiang, Y. Liu, M. Shao, M. Wei, X. Duan, Ultrathin CoNiP@layered double hydroxides core–shell nanosheets arrays for largely enhanced overall water splitting. ACS Appl. Energy Mater. 1, 623–631 (2018). https://doi.org/10.1021/acsaem.7b00151
- W. Jin, F. Liu, X. Guo, J. Zhang, L. Zheng et al., Self-supported CoFe LDH/Co0.85Se nanosheet arrays as efficient electrocatalysts for the oxygen evolution reaction. Catal. Sci. Technol. 9, 5736–5744 (2019)
- J. Zhou, L. Yu, Q. Zhu, C. Huang, Y. Yu, Defective and ultrathin nife LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: a 3d core–shell electrocatalyst for efficient water oxidation. J. Mater. Chem. A 7, 18118–18125 (2019). https://doi.org/10.1039/C9TA06347A
- F. Kong, W. Zhang, L. Sun, L. Huo, H. Zhao, Interface electronic coupling in hierarchical FeLDH(FeCo)/Co(OH)2 arrays for efficient electrocatalytic oxygen evolution. Chemsuschem 12, 3592–3601 (2019). https://doi.org/10.1002/cssc.201900943
- T. Zhang, L. Hang, Y. Sun, D. Men, X. Li, L. Wen, X. Lyu, Y. Li, Hierarchical hetero-Ni3Se4@NiFe LDH micro/nanosheets as efficient bifunctional electrocatalysts with superior stability for overall water splitting. Nanoscale Horizons 4, 1132–1138 (2019). https://doi.org/10.1039/C9NH00177H
- J. Liu, J. Wang, B. Zhang, Y. Ruan, L. Lv et al., Hierarchical NiCo2S4@NiFe ldh heterostructures supported on nickel foam for enhanced overall-water-splitting activity. ACS Appl. Mater. Interfaces 9, 15364–15372 (2017). https://doi.org/10.1021/acsami.7b00019
- L. Yang, L. Xie, R. Ge, R. Kong, Z. Liu et al., Core–shell NiFe-LDH@NiFe-Bi nanoarray: in situ electrochemical surface derivation preparation toward efficient water oxidation electrocatalysis in near-neutral media. ACS Appl. Mater. Interfaces 9, 19502–19506 (2017). https://doi.org/10.1021/acsami.7b01637
References
M.S. Burke, L.J. Enman, A.S. Batchellor, S. Zou, S.W. Boettcher, Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549–7558 (2015). https://doi.org/10.1021/acs.chemmater.5b03148
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). https://doi.org/10.1126/science.1212858
S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin et al., Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016). https://doi.org/10.1038/nenergy.2016.184
Y. Meng, X. Zhang, W.-H. Hung, J. He, Y.-S. Tsai et al., Highly active oxygen evolution integrated with efficient CO2 to CO electroreduction. Proc. Natl. Acad. Sci. 116(48), 23915–23922 (2019). https://doi.org/10.1073/pnas.1915319116
A.R. Zeradjanin, Is a major breakthrough in the oxygen electrocatalysis possible? Curr. Opin. Electrochem. 9, 214–223 (2018). https://doi.org/10.1016/j.coelec.2018.04.006
L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050
Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei et al., Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 50, 6479–6482 (2014). https://doi.org/10.1039/C4CC01625D
M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z.L. Wang, Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022
X. Lu, G.-P. Hao, X. Sun, S. Kaskel, O.G. Schmidt, Highly dispersed metal and oxide nanoparticles on ultra-polar carbon as efficient cathode materials for Li–O2 batteries. J. Mater. Chem. A 5, 6284–6291 (2017). https://doi.org/10.1039/C7TA00777A
X. Lu, L. Zheng, M. Zhang, H. Tang, X. Li, S. Liao, Synthesis of core-shell structured Ru@Pd/C catalysts for the electrooxidation of formic acid. Electrochim. Acta 238, 194–201 (2017). https://doi.org/10.1016/j.electacta.2017.03.115
L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, 2d layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201803358
F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014). https://doi.org/10.1038/ncomms5477
N. Han, F. Zhao, Y. Li, Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. J. Mater. Chem. A 3, 16348–16353 (2015). https://doi.org/10.1039/C5TA03394B
Y. Wang, D. Yan, S. El Hankari, Y. Zou, S. Wang, Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. 5, 1800064 (2018). https://doi.org/10.1002/advs.201800064
J. Yu, Q. Wang, D. O’Hare, L. Sun, Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 46, 5950–5974 (2017). https://doi.org/10.1039/C7CS00318H
Y. Liu, N. Wang, J.H. Pan, F. Steinbach, J. Caro, In situ synthesis of MOF membranes on ZnAl–CO3 LDH buffer layer-modified substrates. J. Am. Chem. Soc. 136, 14353–14356 (2014). https://doi.org/10.1021/ja507408s
R. Ma, J. Liang, X. Liu, T. Sasaki, General insights into structural evolution of layered double hydroxide: underlying aspects in topochemical transformation from brucite to layered double hydroxide. J. Am. Chem. Soc. 134, 19915–19921 (2012). https://doi.org/10.1021/ja310246r
E.S. Zhitova, S.V. Krivovichev, I.V. Pekov, V.O. Yapaskurt, Crystal chemistry of chlormagaluminite, Mg4Al2(OH)12Cl2(H2O)2, a natural layered double hydroxide. Minerals 9, 221 (2019). https://doi.org/10.3390/min9040221
Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang, X. Wang, Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 7, 5069–5089 (2019). https://doi.org/10.1039/C8TA11273H
L. Huang, Y. Zou, D. Chen, S. Wang, Electronic structure regulation on layered double hydroxides for oxygen evolution reaction. Chin. J. Catal. 40, 1822–1840 (2019). https://doi.org/10.1016/S1872-2067(19)63284-5
Z. Liu, C.-L. Dong, Y.-C. Huang, J. Cen, H. Yang et al., Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 7, 14483–14488 (2019). https://doi.org/10.1039/C9TA03882E
R. Ma, J. Liang, K. Takada, T. Sasaki, Topochemical synthesis of Co–Fe layered double hydroxides at varied Fe/Co ratios: unique intercalation of triiodide and its profound effect. J. Am. Chem. Soc. 133, 613–620 (2010). https://doi.org/10.1021/ja1087216
N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/C6CS00328A
X. Lu, W. Si, X. Sun, B. Liu, L. Zhang, C. Yan, O.G. Schmidt, Pd-functionalized MnOx–GeOy nanomembranes as highly efficient cathode materials for Li–O2 batteries. Nano Energy 19, 428–436 (2016). https://doi.org/10.1016/j.nanoen.2015.10.027
H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
X. Lu, Y. Yin, L. Zhang, S. Huang, L. Xi, L. Liu, S. Oswald, O.G. Schmidt, 3d Ag/NiO–Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li–O2 batteries. Energy Storage Mater. 16, 155–162 (2019). https://doi.org/10.1016/j.ensm.2018.05.002
T.-B. Hur, T.X. Phuoc, M.K. Chyu, New approach to the synthesis of layered double hydroxides and associated ultrathin nanosheets in de-ionized water by laser ablation. J. Appl. Phys. 108, 114312 (2010). https://doi.org/10.1063/1.3518510
T.X. Phuoc, Y. Soong, M.K. Chyu, Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids. Opt. Lasers Eng. 45, 1099–1106 (2007). https://doi.org/10.1016/j.optlaseng.2007.06.005
T. Sasaki, C. Liang, W.T. Nichols, Y. Shimizu, N. Koshizaki, Fabrication of oxide base nanostructures using pulsed laser ablation in aqueous solutions. Appl. Phys. A 79, 1489–1492 (2004). https://doi.org/10.1007/s00339-004-2827-3
P.V. Kazakevich, A.V. Simakin, V.V. Voronov, G.A. Shafeev, Laser induced synthesis of nanoparticles in liquids. Appl. Surf. Sci. 252, 4373–4380 (2006). https://doi.org/10.1016/j.apsusc.2005.06.059
G. Compagnini, E. Messina, O. Puglisi, R.S. Cataliotti, V. Nicolosi, Spectroscopic evidence of a core–shell structure in the earlier formation stages of Au–Ag nanoparticles by pulsed laser ablation in water. Chem. Phys. Lett. 457, 386–390 (2008). https://doi.org/10.1016/j.cplett.2008.04.051
B.M. Hunter, J.D. Blakemore, M. Deimund, H.B. Gray, J.R. Winkler, A.M. Müller, Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. J. Am. Chem. Soc. 136, 13118–13121 (2014). https://doi.org/10.1021/ja506087h
C. Qiao, Y. Zhang, Y. Zhu, C. Cao, X. Bao, J. Xu, One-step synthesis of Zinc–Cobalt layered double hydroxide (Zn–Co-LDH) nanosheets for high-efficiency oxygen evolution reaction. J. Mater. Chem. A 3, 6878–6883 (2015). https://doi.org/10.1039/C4TA06634K
Y. Yan, Q. Liu, J. Wang, J. Wei, Z. Gao et al., Single-step synthesis of layered double hydroxides ultrathin nanosheets. J. Colloid Interface Sci. 371, 15–19 (2012). https://doi.org/10.1016/j.jcis.2011.12.075
G. Hu, N. Wang, D. O’Hare, J. Davis, One-step synthesis and AFM imaging of hydrophobic LDH monolayers. Chem. Commun. 3, 287–289 (2006). https://doi.org/10.1039/B514368C
W.T. Reichle, Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics 22, 135–141 (1986). https://doi.org/10.1016/0167-2738(86)90067-6
K.T. Ehlsissen, A. Delahaye-Vidal, P. Genin, M. Figlarz, P. Willmann, Preparation and characterization of turbostratic Ni/Al layered double hydroxides for nickel hydroxide electrode applications. J. Mater. Chem. 3, 883–888 (1993). https://doi.org/10.1039/jm9930300883
R. Xu, H.C. Zeng, Synthesis of nanosize supported hydrotalcite-like compounds CoAlx(OH)2+2x(CO3)y(NO3)x-2y·nH2O on γ-Al2O3. Chem. Mater. 13, 297–303 (2001). https://doi.org/10.1021/cm000526i
I. Nobuo, M. Taki, K. Yoshiro, K. Kenji, A novel synthetic route to layered double hydroxides using hexamethylenetetramine. Chem. Lett. 33, 1122–1123 (2004). https://doi.org/10.1246/cl.2004.1122
H. Cai, A.C. Hillier, K.R. Franklin, C.C. Nunn, M.D. Ward, Nanoscale imaging of molecular adsorption. Science 266, 1551–1555 (1994). https://doi.org/10.1126/science.266.5190.1551
G. Bitsianes, T.L. Joseph, Topochemical aspects of iron ore reduction. JOM 7, 639–645 (1955). https://doi.org/10.1007/BF03377553
R. Ma, Z. Liu, K. Takada, N. Iyi, Y. Bando, T. Sasaki, Synthesis and exfoliation of Co2+−Fe3+ layered double hydroxides: an innovative topochemical approach. J. Am. Chem. Soc. 129, 5257–5263 (2007). https://doi.org/10.1021/ja0693035
R. Ma, K. Takada, K. Fukuda, N. Iyi, Y. Bando, T. Sasaki, Topochemical synthesis of monometallic (Co2+–Co3+) layered double hydroxide and its exfoliation into positively charged Co(OH)2 nanosheets. Angew. Chem. Int. Ed. 47, 86–89 (2008). https://doi.org/10.1002/anie.200703941
J.-H. Lee, D. O’Hare, D.-Y. Jung, Topochemical oxidation of transition metals in layered double hydroxides by anthraquinone-2-sulfonate. Bull. Korean Chem. Soc. 33, 725–727 (2012). https://doi.org/10.5012/bkcs.2012.33.2.725
J.H. Lee, Y. Du, D. O’Hare, Growth of oriented thin films of intercalated α-cobalt hydroxide on functionalized Au and Si substrates. Chem. Mater. 21, 963–968 (2009). https://doi.org/10.1021/cm802828z
L. Ma, Q. Wang, S.M. Islam, Y. Liu, S. Ma, M.G. Kanatzidis, Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42– ion. J. Am. Chem. Soc. 138, 2858–2866 (2016). https://doi.org/10.1021/jacs.6b00110
D.-Y. Wang, F.R. Costa, A. Vyalikh, A. Leuteritz, U. Scheler et al., One-step synthesis of organic LDH and its comparison with regeneration and anion exchange method. Chem. Mater. 21, 4490–4497 (2009). https://doi.org/10.1021/cm901238a
S. Sene, S. Bégu, C. Gervais, G. Renaudin, A. Mesbah et al., Intercalation of benzoxaborolate anions in layered double hydroxides: toward hybrid formulations for benzoxaborole drugs. Chem. Mater. 27, 1242–1254 (2015). https://doi.org/10.1021/cm504181w
L. Ma, S.M. Islam, H. Liu, J. Zhao, G. Sun, H. Li, S. Ma, M.G. Kanatzidis, Selective and efficient removal of toxic oxoanions of As(iii), As(v), and Cr(vi) by layered double hydroxide intercalated with MoS42–. Chem. Mater. 29, 3274–3284 (2017). https://doi.org/10.1021/acs.chemmater.7b00618
L. Lv, K. Xu, C. Wang, H. Wan, Y. Ruan et al., Intercalation of glucose in NiMn-layered double hydroxide nanosheets: an effective path way towards battery-type electrodes with enhanced performance. Electrochim. Acta 216, 35–43 (2016). https://doi.org/10.1016/j.electacta.2016.08.149
W. Liu, S. Xu, R. Liang, M. Wei, D.G. Evans, X. Duan, In situ synthesis of nitrogen-doped carbon dots in the interlayer region of a layered double hydroxide with tunable quantum yield. J. Mater. Chem. C 5, 3536–3541 (2017). https://doi.org/10.1039/C6TC05463C
C. Wang, X. Zhang, X. Sun, Y. Ma, Facile fabrication of ethylene glycol intercalated cobalt-nickel layered double hydroxide nanosheets supported on nickel foam as flexible binder-free electrodes for advanced electrochemical energy storage. Electrochim. Acta 191, 329–336 (2016). https://doi.org/10.1016/j.electacta.2015.12.154
Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128, 4872–4880 (2006). https://doi.org/10.1021/ja0584471
M. Adachi-Pagano, C. Forano, J.-P. Besse, Delamination of layered double hydroxides by use of surfactants. Chem. Commun. (2000). https://doi.org/10.1039/a908251d
B.R. Venugopal, C. Shivakumara, M. Rajamathi, Effect of various factors influencing the delamination behavior of surfactant intercalated layered double hydroxides. J. Colloid Interface Sci. 294, 234–239 (2006). https://doi.org/10.1016/j.jcis.2005.06.086
V.V. Naik, T.N. Ramesh, S. Vasudevan, Neutral nanosheets that gel: exfoliated layered double hydroxides in toluene. J. Phys. Chem. Lett. 2, 1193–1198 (2011). https://doi.org/10.1021/jz2004655
J. Liang, R. Ma, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Topochemical synthesis, anion exchange, and exfoliation of Co–Ni layered double hydroxides: a route to positively charged Co–Ni hydroxide nanosheets with tunable composition. Chem. Mater. 22, 371–378 (2010). https://doi.org/10.1021/cm902787u
T. Hibino, W. Jones, New approach to the delamination of layered double hydroxides. J. Mater. Chem. 11, 1321–1323 (2001). https://doi.org/10.1039/b101135i
T. Hibino, Delamination of layered double hydroxides containing amino acids. Chem. Mater. 16, 5482–5488 (2004). https://doi.org/10.1021/cm048842a
N. Iyi, T. Sasaki, Decarbonation of MgAl-LDHs (layered double hydroxides) using acetate–buffer/NaCl mixed solution. J. Colloid Interface Sci. 322, 237–245 (2008). https://doi.org/10.1016/j.jcis.2008.02.047
L. Li, R. Ma, Y. Ebina, N. Iyi, T. Sasaki, Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem. Mater. 17, 4386–4391 (2005). https://doi.org/10.1021/cm0510460
N. Iyi, S. Ishihara, Y. Kaneko, H. Yamada, Swelling and gel/sol formation of perchlorate-type layered double hydroxides in concentrated aqueous solutions of amino acid-related zwitterionic compounds. Langmuir 29, 2562–2571 (2013). https://doi.org/10.1021/la304964q
I. Langmuir, Oscillations in ionized gases. Proc. Natl. Acad. Sci. 14, 627–637 (1928). https://doi.org/10.1073/pnas.14.8.627
J. Shim, A. Oh, D.-H. Kang, S. Oh, S.K. Jang et al., High-performance 2d rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 28, 6985–6992 (2016). https://doi.org/10.1002/adma.201601002
C. Wang, Y. Zhou, L. He, T.-W. Ng, G. Hong et al., In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition. Nanoscale 5, 600–605 (2013). https://doi.org/10.1039/C2NR32897F
S.L. Girshick, C.-P. Chiu, Homogeneous nucleation of particles from the vapor phase in thermal plasma synthesis. Plasma Chem. Plasma Process. 9, 355–369 (1989). https://doi.org/10.1007/BF01083672
M.M. Moshrefi, F. Rashidi, Hydrogen production from methane decomposition in cold plasma reactor with rotating electrodes. Plasma Chem. Plasma Process. 38, 503–515 (2018). https://doi.org/10.1007/s11090-018-9875-5
L. Mangolini, E. Thimsen, U. Kortshagen, High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005). https://doi.org/10.1021/nl050066y
P.K. Chu, J.Y. Chen, L.P. Wang, N. Huang, Plasma-surface modification of biomaterials. Mater. Sci. Eng., R 36, 143–206 (2002). https://doi.org/10.1016/S0927-796X(02)00004-9
L. Tao, C.-Y. Lin, S. Dou, S. Feng, D. Chen et al., Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: insights into the active centers. Nano Energy 41, 417–425 (2017). https://doi.org/10.1016/j.nanoen.2017.09.055
Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R.S. Rawat, H.J. Fan, Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem. Int. Ed. 55, 8670–8674 (2016). https://doi.org/10.1002/anie.201604372
K. Wang, M. Xu, Y. Gu, Z. Gu, J. Liu, Q.H. Fan, Low-temperature plasma exfoliated N-doped graphene for symmetrical electrode supercapacitors. Nano Energy 31, 486–494 (2017). https://doi.org/10.1016/j.nanoen.2016.11.007
W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu et al., Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853–859 (2014). https://doi.org/10.1007/s12274-014-0446-7
Y. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng, D. Liu, M. Shao, S. Wang, Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 56, 5867–5871 (2017). https://doi.org/10.1002/anie.201701477
R. Liu, Y. Wang, D. Liu, Y. Zou, S. Wang, Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 29, 1701546 (2017). https://doi.org/10.1002/adma.201701546
Y. Wang, C. Xie, Z. Zhang, D. Liu, R. Chen, S. Wang, In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction. Adv. Funct. Mater. 28, 1703363 (2018). https://doi.org/10.1002/adfm.201703363
D. Zhou, S. Wang, Y. Jia, X. Xiong, H. Yang et al., Nife hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem. Int. Ed. 58, 736–740 (2019). https://doi.org/10.1002/anie.201809689
P. Vialat, C. Mousty, C. Taviot-Gueho, G. Renaudin, H. Martinez, J.-C. Dupin, E. Elkaim, F. Leroux, High-performing monometallic cobalt layered double hydroxide supercapacitor with defined local structure. Adv. Funct. Mater. 24, 4831–4842 (2014). https://doi.org/10.1002/adfm.201400310
N. Parveen, M.H. Cho, Self-assembled 3d flower-like nickel hydroxide nanostructures and their supercapacitor applications. Sci. Rep. 6, 27318 (2016). https://doi.org/10.1038/srep27318
R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11, 211–218 (2015). https://doi.org/10.1016/j.nanoen.2014.09.030
J. Wang, Y. Ni, W. Jiang, H. Li, Y. Liu, S. Lin, Y. Zhou, D. Yan, Self-crosslinking and surface-engineered polymer vesicles. Small 11, 4485–4490 (2015). https://doi.org/10.1002/smll.201500699
J. Jiang, F. Sun, S. Zhou, W. Hu, H. Zhang et al., Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 9, 2885 (2018). https://doi.org/10.1038/s41467-018-05341-y
L.-M. Cao, J.-W. Wang, D.-C. Zhong, T.-B. Lu, Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction. J. Mater. Chem. A 6, 3224–3230 (2018). https://doi.org/10.1039/C7TA09734D
M.K. Bates, Q. Jia, H. Doan, W. Liang, S. Mukerjee, Charge-transfer effects in Ni–Fe and Ni–Fe–Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 6, 155–161 (2016). https://doi.org/10.1021/acscatal.5b01481
Z. Lu, L. Qian, Y. Tian, Y. Li, X. Sun, X. Duan, Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem. Commun. 52, 908–911 (2016). https://doi.org/10.1039/C5CC08845C
J.L. Lado, X. Wang, E. Paz, E. Carbó-Argibay, N. Guldris et al., Design and synthesis of highly active Al–Ni–P foam electrode for hydrogen evolution reaction. ACS Catal. 5, 6503–6508 (2015). https://doi.org/10.1021/acscatal.5b01761
C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A.M. Asiri, X. Sun, Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater. 29, 1602441 (2017). https://doi.org/10.1002/adma.201602441
P. Zhou, J. He, Y. Zou, Y. Wang, C. Xie, R. Chen, S. Zang, S. Wang, Single-crystalline layered double hydroxides with rich defects and hierarchical structure by mild reduction for enhancing the oxygen evolution reaction. Sci. China Chem. 62, 1365–1370 (2019). https://doi.org/10.1007/s11426-019-9511-x
Y. Wang, M. Qiao, Y. Li, S. Wang, Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 14, 1800136 (2018). https://doi.org/10.1002/smll.201800136
A. Mignani, B. Ballarin, M. Giorgetti, E. Scavetta, D. Tonelli et al., Heterostructure of Au nanoparticles—NiAl layered double hydroxide: electrosynthesis, characterization, and electrocatalytic properties. J. Phys. Chem. C 117, 16221–16230 (2013). https://doi.org/10.1021/jp4033782
L. Xu, Z. Qu, J. Chen, X. Chen, F. Li, W. Yang, Highly dispersed palladium nanoparticles generated in situ on layered double hydroxide nanowalls for ultrasensitive electrochemical detection of hydrazine. Anal. Methods 9, 6629–6635 (2017). https://doi.org/10.1039/C7AY02324C
W. Zhu, L. Liu, Z. Yue, W. Zhang, X. Yue et al., Au promoted nickel–iron layered double hydroxide nanoarrays: a modular catalyst enabling high-performance oxygen evolution. ACS Appl. Mater. Interfaces 9, 19807–19814 (2017). https://doi.org/10.1021/acsami.7b03033
X. Gao, X. Long, H. Yu, X. Pan, Z. Yi, Ni nanoparticles decorated NiFe layered double hydroxide as bifunctional electrochemical catalyst. J. Electrochem. Soc. 164, H307 (2017). https://doi.org/10.1149/2.0561706jes
X. Deng, J. Huang, H. Wan, F. Chen, Y. Lin, X. Xu, R. Ma, T. Sasaki, Recent progress in functionalized layered double hydroxides and their application in efficient electrocatalytic water oxidation. J. Energy Chem. 32, 93–104 (2019). https://doi.org/10.1016/j.jechem.2018.07.007
B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095
P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016). https://doi.org/10.1126/science.aaf5251
J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen et al., Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 140, 3876–3879 (2018). https://doi.org/10.1021/jacs.8b00752
B. Zhang, C. Zhu, Z. Wu, E. Stavitski, Y.H. Lui et al., Integrating rh species with NiFe-layered double hydroxide for overall water splitting. Nano Lett. 20, 136–144 (2020). https://doi.org/10.1021/acs.nanolett.9b03460
Z. Wang, S.-M. Xu, Y. Xu, L. Tan, X. Wang, Y. Zhao, H. Duan, Y.-F. Song, Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis. Chem. Sci. 10, 378–384 (2019). https://doi.org/10.1039/C8SC04480E
R. Valdez, D.B. Grotjahn, D.K. Smith, J.M. Quintana, A. Olivas, Nanosheets of Co-(Ni and Fe) layered double hydroxides for electrocatalytic water oxidation reaction. Int. J. Electrochem. Sci. 10, 909–918 (2015)
D. Tang, J. Liu, X. Wu, R. Liu, X. Han et al., Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 6, 7918–7925 (2014). https://doi.org/10.1021/am501256x
S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010). https://doi.org/10.1002/anie.200906623
H. Li, X. He, Z. Kang, H. Huang, Y. Liu et al., Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49, 4430–4434 (2010). https://doi.org/10.1002/anie.200906154
Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando et al., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006). https://doi.org/10.1021/ja062677d
C. Tang, H.-F. Wang, X.-L. Zhu, B.-Q. Li, Q. Zhang, Advances in hybrid electrocatalysts for oxygen evolution reactions: rational integration of NiFe layered double hydroxides and nanocarbon. Part. Part. Syst. Charact. 33, 447 (2016). https://doi.org/10.1002/ppsc.201670024
S. Wang, D. Yu, L. Dai, Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 133, 5182–5185 (2011). https://doi.org/10.1021/ja1112904
Z. Xu, X. Fan, H. Li, H. Fu, W.M. Lau, X. Zhao, Edges of graphene and carbon nanotubes with high catalytic performance for the oxygen reduction reaction. PCCP 19, 21003–21011 (2017). https://doi.org/10.1039/C7CP03416D
M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu et al., An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013). https://doi.org/10.1021/ja4027715
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872
X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, S. Yang, A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed. 53, 7584–7588 (2014). https://doi.org/10.1002/anie.201402822
J. Yi, Z. Longzhou, G. Guoping, C. Hua, W. Bei et al., A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29, 1700017 (2017). https://doi.org/10.1002/adma.201700017
S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem. Int. Ed. 52, 13567–13570 (2013). https://doi.org/10.1002/anie.201306166
C.H. Choi, M. Kim, H.C. Kwon, S.J. Cho, S. Yun et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922
C. Tang, H.-S. Wang, H.-F. Wang, Q. Zhang, G.-L. Tian, J.-Q. Nie, F. Wei, Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 27, 4516–4522 (2015). https://doi.org/10.1002/adma.201501901
J.-H. Zhong, J. Zhang, X. Jin, J.-Y. Liu, Q. Li et al., Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. J. Am. Chem. Soc. 136, 16609–16617 (2014). https://doi.org/10.1021/ja508965w
D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi et al., NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 8, 1701905 (2017). https://doi.org/10.1002/aenm.201701905
W. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou, T. Sasaki, A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 9, 1977–1984 (2015). https://doi.org/10.1021/nn5069836
H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, S. Jin, Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 15, 1421–1427 (2015). https://doi.org/10.1021/nl504872s
M. Luo, Z. Cai, C. Wang, Y. Bi, L. Qian et al., Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Res. 10, 1732–1739 (2017). https://doi.org/10.1007/s12274-017-1437-2
Y. Li, M. Zhao, Y. Zhao, L. Song, Z. Zhang, FeNi layered double-hydroxide nanosheets on a 3d carbon network as an efficient electrocatalyst for the oxygen evolution reaction. Part. Part. Syst. Char. 33, 158–166 (2016). https://doi.org/10.1002/ppsc.201500228
L. Wang, X. Huang, J. Xue, Graphitic mesoporous carbon loaded with iron–nickel hydroxide for superior oxygen evolution reactivity. Chemsuschem 9, 1835–1842 (2016). https://doi.org/10.1002/cssc.201600323
J. Ping, Y. Wang, Q. Lu, B. Chen, J. Chen et al., Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3d graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv. Mater. 28, 7640–7645 (2016). https://doi.org/10.1002/adma.201601019
W. Wang, Y. Lu, M. Zhao, R. Luo, Y. Yang et al., Controllable tuning of cobalt nickel-layered double hydroxide arrays as multifunctional electrodes for flexible supercapattery device and oxygen evolution reaction. ACS Nano 13, 12206–12218 (2019). https://doi.org/10.1021/acsnano.9b06910
K. He, T. Tadesse Tsega, X. Liu, J. Zai, X.-H. Li et al., Utilizing the space-charge region of the FeNi-LDH/CoP p–n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 58, 11903–11909 (2019). https://doi.org/10.1002/anie.201905281
R. Ma, X. Liu, J. Liang, Y. Bando, T. Sasaki, Molecular-scale heteroassembly of redoxable hydroxide nanosheets and conductive graphene into superlattice composites for high-performance supercapacitors. Adv. Mater. 26, 4173–4178 (2014)
P. Xiong, B. Sun, N. Sakai, R. Ma, T. Sasaki, S. Wang, J. Zhang, G. Wang, 2d superlattices for efficient energy storage and conversion. Adv. Mater. (2019). https://doi.org/10.1002/adma.201902654
M.S. Islam, M. Kim, X. Jin, S.M. Oh, N.-S. Lee, H. Kim, S.-J. Hwang, Bifunctional 2d superlattice electrocatalysts of layered double hydroxide–transition metal dichalcogenide active for overall water splitting. ACS Energy Lett. 3, 952–960 (2018). https://doi.org/10.1021/acsenergylett.8b00134
P. Xiong, X. Zhang, H. Wan, S. Wang, Y. Zhao et al., Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett. 19, 4518–4526 (2019). https://doi.org/10.1021/acs.nanolett.9b01329
M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with mxene. Nano Energy 44, 181–190 (2018). https://doi.org/10.1016/j.nanoen.2017.12.003
X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011). https://doi.org/10.1038/nnano.2011.13
Z. Lu, Q. Yang, W. Zhu, Z. Chang, J. Liu, X. Sun, D.G. Evans, X. Duan, Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res. 5, 369–378 (2012). https://doi.org/10.1007/s12274-012-0217-2
R. Chen, G. Sun, C. Yang, L. Zhang, J. Miao et al., Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horizons 1, 156–160 (2016). https://doi.org/10.1039/C5NH00082C
H. Liu, J. Zhou, C. Wu, C. Wang, Y. Zhang et al., Integrated flexible electrode for oxygen evolution reaction: layered double hydroxide coupled with single-walled carbon nanotubes film. ACS Sustain. Chem. Eng. 6, 2911–2915 (2018). https://doi.org/10.1021/acssuschemeng.8b00084
C. Yu, Z. Liu, X. Han, H. Huang, C. Zhao, J. Yang, J. Qiu, NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon 110, 1–7 (2016). https://doi.org/10.1016/j.carbon.2016.08.020
L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu et al., Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 10, 1820–1827 (2017). https://doi.org/10.1039/C7EE01571B
R. Yang, Y. Zhou, Y. Xing, D. Li, D. Jiang, M. Chen, W. Shi, S. Yuan, Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media. Appl. Catal. B 253, 131–139 (2019). https://doi.org/10.1016/j.apcatb.2019.04.054
L. Zhou, S. Jiang, Y. Liu, M. Shao, M. Wei, X. Duan, Ultrathin CoNiP@layered double hydroxides core–shell nanosheets arrays for largely enhanced overall water splitting. ACS Appl. Energy Mater. 1, 623–631 (2018). https://doi.org/10.1021/acsaem.7b00151
W. Jin, F. Liu, X. Guo, J. Zhang, L. Zheng et al., Self-supported CoFe LDH/Co0.85Se nanosheet arrays as efficient electrocatalysts for the oxygen evolution reaction. Catal. Sci. Technol. 9, 5736–5744 (2019)
J. Zhou, L. Yu, Q. Zhu, C. Huang, Y. Yu, Defective and ultrathin nife LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: a 3d core–shell electrocatalyst for efficient water oxidation. J. Mater. Chem. A 7, 18118–18125 (2019). https://doi.org/10.1039/C9TA06347A
F. Kong, W. Zhang, L. Sun, L. Huo, H. Zhao, Interface electronic coupling in hierarchical FeLDH(FeCo)/Co(OH)2 arrays for efficient electrocatalytic oxygen evolution. Chemsuschem 12, 3592–3601 (2019). https://doi.org/10.1002/cssc.201900943
T. Zhang, L. Hang, Y. Sun, D. Men, X. Li, L. Wen, X. Lyu, Y. Li, Hierarchical hetero-Ni3Se4@NiFe LDH micro/nanosheets as efficient bifunctional electrocatalysts with superior stability for overall water splitting. Nanoscale Horizons 4, 1132–1138 (2019). https://doi.org/10.1039/C9NH00177H
J. Liu, J. Wang, B. Zhang, Y. Ruan, L. Lv et al., Hierarchical NiCo2S4@NiFe ldh heterostructures supported on nickel foam for enhanced overall-water-splitting activity. ACS Appl. Mater. Interfaces 9, 15364–15372 (2017). https://doi.org/10.1021/acsami.7b00019
L. Yang, L. Xie, R. Ge, R. Kong, Z. Liu et al., Core–shell NiFe-LDH@NiFe-Bi nanoarray: in situ electrochemical surface derivation preparation toward efficient water oxidation electrocatalysis in near-neutral media. ACS Appl. Mater. Interfaces 9, 19502–19506 (2017). https://doi.org/10.1021/acsami.7b01637