Artificial Nanoscale Erythrocytes from Clinically Relevant Compounds for Enhancing Cancer Immunotherapy
Corresponding Author: Jeong Hoon Byeon
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 90
Abstract
Because of enhanced efficacy and lower side effects, cancer immunotherapies have recently been extensively investigated in clinical trials to overcome the limitations of conventional cancer monotherapies. Although engineering attempts have been made to build nanosystems even including stimulus nanomaterials for the efficient delivery of antigens, adjuvants, or anticancer drugs to improve immunogenic cancer cell death, this requires huge R&D efforts and investment for clinically relevant findings to be approved for translation of the nanosystems. To this end, in this study, an air–liquid two-phase electrospray was developed for stable bubble pressing under a balance between mechanical and electrical parameters of the spray to continuously produce biomimetic nanosystems consisting of only clinically relevant compounds [paclitaxel-loaded fake blood cell Eudragit particle (Eu-FBCP/PTX)] to provide a conceptual leap for the timely development of translatable chemo-immunotherapeutic nanosystems. This was pursued as the efficacy of systems for delivering anticancer agents that has been mainly influenced by nanosystem shape because of its relevance to transporting behavior to organs, blood circulation, and cell–membrane interactions. The resulting Eu-FBCP/PTX nanosystems exhibiting phagocytic and micropinocytic uptake behaviors can confer better efficacy in chemo-immunotherapeutics in the absence and presence of anti-PD-L1 antibodies than similar sized PTX-loaded spherical Eu particles (Eu-s/PTX).
Article Highlights:
1 A two-phase coaxial electrospray was designed to produce paclitaxel-loaded fake blood cell Eudragit particles (Eu-FBCP/PTX).
2 The chemo-immunotherapeutic efficacy was further enhanced after combining with anti-programmed death-ligand 1 antibodies (Eu-FBCP/PTX + aPL).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.H. Fang, A.V. Kroll, L. Zhang, Nanoparticle-based manipulation of antigen-presenting cells for cancer immunotherapy. Small 11, 5483–5496 (2015). https://doi.org/10.1002/smll.201501284
- F. Fontana, P. Figueiredo, T. Bauleth-Ramos, A. Correia, H.A. Santos, Immunostimulation and immunosuppression: nanotechnology on the brink. Small Methods 2, 1700347 (2018). https://doi.org/10.1002/smtd.201700347
- T. Mishchenko, E. Mitroshina, I. Balalaeva, O. Krysko, M. Vedunova, D.V. Krysko, An emerging role for nanomaterials in increasing immunogenicity of cancer cell death. BBA Rev. Cancer 1871, 99–108 (2019). https://doi.org/10.1016/j.bbcan.2018.11.004
- C.-T. Cheng, G. Castro, C.-H. Liu, P. Lau, Advanced nanotechnology: an arsenal to enhance immunotherapy in fighting cancer. Clin. Chim. Acta 292, 12–19 (2019). https://doi.org/10.1016/j.cca.2019.01.027
- X. Hu, T. Wu, Y. Bao, Z. Zhang, Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. J. Control. Release 256, 26–45 (2017). https://doi.org/10.1016/j.jconrel.2017.04.026
- Z. Gu, Q. Wang, Y. Shi, Y. Huang, J. Zhang, X. Zhang, G. Lin, Nanotechnology-mediated immunochemotherapy combined with docetaxel and PD-L1 antibody increase therapeutic effects and decrease systemic toxicity. J. Control. Release 286, 369–380 (2018). https://doi.org/10.1016/j.jconrel.2018.08.011
- S.D. Jo, G.-H. Nam, G. Kwak, Y. Yang, I.C. Kwon, Harnessing designed nanoparticles: current strategies and future perspectives in cancer immunotherapy. Nano Today 17, 23–37 (2017). https://doi.org/10.1016/j.nantod.2017.10.008
- L. Luo, R. Shu, A. Wu, Nanomaterial-based cancer immunotherapy. J. Mater. Chem. B 5, 5517–5531 (2017). https://doi.org/10.1039/C7TB01137G
- W. Ou, J.H. Byeon, R.K. Thapa, S.K. Ku, C.S. Yong, J.O. Kim, Plug-and-play nanorization of coarse black phosphorus for targeted chemo-photoimmunotherapy of colorectal cancer. ACS Nano 12, 10061–10074 (2018). https://doi.org/10.1021/acsnano.8b04658
- Z. Wang, W. Liu, J. Shi, N. Chen, C. Fan, Nanoscale delivery systems for cancer immunotherapy. Mater. Horiz. 5, 344–362 (2018). https://doi.org/10.1039/C7MH00991G
- Z. Chen, Z. Wang, Z. Gu, Bioinspired and biomimetic nanomedicines. Acc. Chem. Res. 52, 1255–1264 (2019). https://doi.org/10.1021/acs.accounts.9b00079
- Z. Wang, B. Guo, E. Middha, Z. Huang, Q. Hu, Z. Fu, B. Liu, Microfluidics-prepared uniform conjugated polymer nanoparticles for photo-triggered immune microenvironment modulation and cancer therapy. ACS Appl. Mater. Interfaces 11, 11167–11176 (2019). https://doi.org/10.1021/acsami.8b22579
- R. Mahjub, S. Jatana, S.E. Lee, Z. Qin, G. Pauli, M. Soleimani, S. Madadi, S.-D. Li, Recent advances in applying nanotechnologies for cancer immunotherapy. J. Control. Release 288, 239–263 (2018). https://doi.org/10.1016/j.jconrel.2018.09.010
- Q. Chen, L. Xu, C. Liang, C. Wang, R. Peng, Z. Liu, Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016). https://doi.org/10.1038/ncomms13193
- Q. Chen, L. Xu, J. Chen, Z. Yang, C. Liang, Y. Yang, Z. Liu, Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy. Biomaterials 148, 69–80 (2017). https://doi.org/10.1016/j.biomaterials.2017.09.021
- Y. Zhang, L. Wu, Z. Li, W. Zhang, F. Luo, Y. Chu, G. Chen, Glycocalyx-mimicking nanoparticles improve anti-PD-L1 cancer immunotherapy through reversion of tumor-associated macrophages. Biomacromolecules 19, 2098–2108 (2018). https://doi.org/10.1021/acs.biomac.8b00305
- S. Sau, H.O. Alsaab, K. Bhise, R. Alzhrani, G. Nabil, A.K. Iyer, Multifunctional nanoparticles for cancer immunotherapy: a goundbreaking approach for reprogramming malfunctioned tumor environment. J. Control. Release 274, 24–34 (2018). https://doi.org/10.1016/j.jconrel.2018.01.028
- E.A. Scott, N.B. Karabin, P. Augsornworawat, Overcoming immune dysregulation with immunoengineered nanobiomaterials. Annu. Rev. Biomed. Eng. 19, 57–84 (2017). https://doi.org/10.1146/annurev-bioeng-071516-044603
- P.L. Mage, A.T. Csordas, T. Brown, D. Klinger, M. Eisenstein, S. Mitragotri, C. Hawker, H.T. Soh, Shape-based separation of synthetic microparticles. Nat. Mater. 18, 82–89 (2019). https://doi.org/10.1038/s41563-018-0244-9
- X. Hu, J. Hu, J. Tian, Z. Ge, G. Zhang, K. Luo, S. Liu, Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 135, 17617–17629 (2013). https://doi.org/10.1021/ja409686x
- T.J. Merkel, S.W. Jones, K.P. Herlihy, F.R. Kersey, A.R. Shields et al., Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl. Acad. Sci. USA 108, 586–591 (2011). https://doi.org/10.1073/pnas.1010013108
- K.C. Meyer, E.N. Coker, D.S. Bolintineanu, B. Kaehr, Mechanically encoded cellular shapes for synthesis of anisotropic mesoporous particles. J. Am. Chem. Soc. 136, 13138–13141 (2014). https://doi.org/10.1021/ja506718z
- V. Kozlovskaya, J.F. Alexander, Y. Wang, T. Kuncewicz, X. Liu, B. Godin, E. Kharlampieva, Internalization of red blood cell-mimicking hydrogel capsules with pH-triggered shape reponses. ACS Nano 8, 5725–5737 (2014). https://doi.org/10.1021/nn500512x
- C. Xu, S. Hu, X. Chen, Artificial cells: from basic science to applications. Mater. Today 19, 516–532 (2016). https://doi.org/10.1016/j.mattod.2016.02.020
- C.H. Park, N.-O. Chung, J. Lee, Monodisperse red blood cell-like particles via consolidation of charged droplets. J. Colloid Interface Sci. 361, 423–428 (2011). https://doi.org/10.1016/j.jcis.2011.06.003
- U. Farook, E. Stride, M.J. Edirisinghe, Preparation of suspensions of phospholipid-coated microbubbles by coaxial electrohydrodynamic atomization. J. R. Soc. Interface 6, 271–277 (2009). https://doi.org/10.1098/rsif.2008.0225
- S.C. Balmert, S.R. Little, Biomimetic delivery with micro- and nanoparticles. Adv. Mater. 24, 3757–3778 (2012). https://doi.org/10.1002/adma.201200224
- R.W. Jenkins, D.A. Barbie, K.T. Flaherty, Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9–16 (2018). https://doi.org/10.1038/bjc.2017.434
- P. Schmid, S. Adams, H.S. Rugo, A. Schneeweiss, C.H. Barrios et al., Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018). https://doi.org/10.1056/NEJMoa1809615
- L. Paz-Ares, A. Luft, D. Vicente, A. Tafreshi, M. Gümüş et al., Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379, 2040–2051 (2018). https://doi.org/10.1056/NEJMoa1810865
- L. Galluzzi, A. Buqué, O. Kepp, L. Zitvogel, G. Kroemer, Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015). https://doi.org/10.1016/j.ccell.2015.10.012
- G. Kroemer, L. Galluzzi, O. Kepp, L. Zitvogel, Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013). https://doi.org/10.1146/annurev-immunol-032712-100008
- L. Galluzzi, A. Buqué, O. Kepp, L. Zitvogel, G. Kroemer, Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2016). https://doi.org/10.1038/nri.2016.107
- D.V. Krysko, A.D. Garg, A. Kaczmarek, O. Krysko, P. Agostinis, P. Vandenabeele, Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012). https://doi.org/10.1038/nrc3380
- X. Duan, C. Chan, W. Han, N. Guo, R.R. Weichselbaum, W. Lin, Immunostimulatory nanomedicines synergize with checkpoint blockade immunotherapy to eradicate colorectal tumors. Nat. Commun. 10, 1899 (2019). https://doi.org/10.1038/s41467-019-09221-x
- S. Goldman, Generalizations of the Young-Laplace equation for the pressure of a mechanically stable gas bubble in a soft elastic material. J. Chem. Phys. 131, 184502 (2009). https://doi.org/10.1063/1.3259973
- F.J. Higuera, Stationary viscosity-dominated electrified capillary jets. J. Fluid Mech. 558, 143–152 (2006). https://doi.org/10.1017/S0022112006000024
- U. Farook, E. Stride, M.J. Edirisinghe, R. Moaleji, Microbubbling by co-axial electrohydrodynamic atomization. Med. Biol. Eng. Comput. 45, 781–789 (2007). https://doi.org/10.1007/s11517-007-0210-1
- V.S. Dave, R.M. Fahmy, S.W. Hoag, Investigation of the physical–mechanical properties of Eudragit® RS PO/RL PO and their mixtures with common pharmaceutical excipients. Drug Dev. Ind. Pharm. 39, 1113–1125 (2013). https://doi.org/10.3109/03639045.2012.714786
- P. Decuzzi, R. Pasqualini, W. Arap, M. Ferrari, Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res. 26, 235–243 (2008). https://doi.org/10.1007/s11095-008-9697-x
- S. Behzadi, V. Serpooshan, W. Tao, M.A. Hamaly, M.Y. Alkawareek et al., Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017). https://doi.org/10.1039/C6CS00636A
- H. Herd, N. Daum, A.T. Jones, H. Huwer, H. Ghandehari, C.-M. Lehr, Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 7, 1961–1973 (2013). https://doi.org/10.1021/nn304439f
- L.W. Zhang, N.A. Monteiro-Riviere, Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci. 110, 138–155 (2009). https://doi.org/10.1093/toxsci/kfp087
- R. Toy, P.M. Peiris, K.B. Ghaghada, E. Karathanasis, Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 9, 121–134 (2014). https://doi.org/10.2217/nnm.13.191
- J.A. Roman, I. Reucroft, R.A. Martin, A. Hurtado, H.-Q. Mao, Local release of paclitaxel from aligned, electrospun microfibers promotes axonal extension. Adv. Healthc. Mater. 5, 2628–2635 (2016). https://doi.org/10.1002/adhm.201600415
- J. Han, L.A. Goldstein, W. Hou, C.J. Froelich, S.C. Watkins, H. Rabinowich, Deregulation of mitochondrial membrane potential by mitochondrial insertion of granzyme B and direct Hax-1 cleavage. J. Biol. Chem. 285, 22461–22472 (2010). https://doi.org/10.1074/jbc.M109.086587
- J. Du, Y. Wang, R. Hunter, Y. Wei, R. Blumenthal et al., Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl. Acad. Sci. USA 106, 3543–3548 (2009). https://doi.org/10.1073/pnas.0812671106
- C. Garrido, L. Galluzzi, M. Brunet, P.E. Puig, C. Didelot, G. Kroemer, Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 13, 1423–1433 (2006). https://doi.org/10.1038/sj.cdd.4401950
- S. Fulda, K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798–4811 (2006). https://doi.org/10.1038/sj.onc.1209608
- E.G.E. de Vries, J.A. Gietema, S. de Jong, Tumor necrosis factor-related apoptosis-inducing ligand pathway and its therapeutic implications. Clin. Cancer Res. 12, 2390–2393 (2006). https://doi.org/10.1158/1078-0432.CCR-06-0352
- M. Obeid, A. Tesniere, F. Ghiringhelli, G.M. Fimia, L. Apetoh et al., Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2006). https://doi.org/10.1038/nm1523
- W. Ou, L. Jiang, R.K. Thapa, Z.C. Soe, K. Poudel et al., Combination of NIR therapy and regulatory T cell modulation using layer-by-layer hybrid nanoparticles for effective cancer photoimmunotherapy. Theranostics 8, 4574–4590 (2018). https://doi.org/10.7150/thno.26758
- P. Kadiyala, D. Li, F.M. Nuñez, D. Altshuler, R. Doherty et al., High-density lipoprotein-mimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano 13, 1365–1384 (2019). https://doi.org/10.1021/acsnano.8b06842
- J. Lu, X. Liu, Y.-P. Liao, F. Salazar, B. Sun et al., Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 8, 1811 (2017). https://doi.org/10.1038/s41467-017-01651-9
- J.A. Villadangos, P. Schnorrer, Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol. 7, 543–555 (2007). https://doi.org/10.1038/nri2103
References
R.H. Fang, A.V. Kroll, L. Zhang, Nanoparticle-based manipulation of antigen-presenting cells for cancer immunotherapy. Small 11, 5483–5496 (2015). https://doi.org/10.1002/smll.201501284
F. Fontana, P. Figueiredo, T. Bauleth-Ramos, A. Correia, H.A. Santos, Immunostimulation and immunosuppression: nanotechnology on the brink. Small Methods 2, 1700347 (2018). https://doi.org/10.1002/smtd.201700347
T. Mishchenko, E. Mitroshina, I. Balalaeva, O. Krysko, M. Vedunova, D.V. Krysko, An emerging role for nanomaterials in increasing immunogenicity of cancer cell death. BBA Rev. Cancer 1871, 99–108 (2019). https://doi.org/10.1016/j.bbcan.2018.11.004
C.-T. Cheng, G. Castro, C.-H. Liu, P. Lau, Advanced nanotechnology: an arsenal to enhance immunotherapy in fighting cancer. Clin. Chim. Acta 292, 12–19 (2019). https://doi.org/10.1016/j.cca.2019.01.027
X. Hu, T. Wu, Y. Bao, Z. Zhang, Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. J. Control. Release 256, 26–45 (2017). https://doi.org/10.1016/j.jconrel.2017.04.026
Z. Gu, Q. Wang, Y. Shi, Y. Huang, J. Zhang, X. Zhang, G. Lin, Nanotechnology-mediated immunochemotherapy combined with docetaxel and PD-L1 antibody increase therapeutic effects and decrease systemic toxicity. J. Control. Release 286, 369–380 (2018). https://doi.org/10.1016/j.jconrel.2018.08.011
S.D. Jo, G.-H. Nam, G. Kwak, Y. Yang, I.C. Kwon, Harnessing designed nanoparticles: current strategies and future perspectives in cancer immunotherapy. Nano Today 17, 23–37 (2017). https://doi.org/10.1016/j.nantod.2017.10.008
L. Luo, R. Shu, A. Wu, Nanomaterial-based cancer immunotherapy. J. Mater. Chem. B 5, 5517–5531 (2017). https://doi.org/10.1039/C7TB01137G
W. Ou, J.H. Byeon, R.K. Thapa, S.K. Ku, C.S. Yong, J.O. Kim, Plug-and-play nanorization of coarse black phosphorus for targeted chemo-photoimmunotherapy of colorectal cancer. ACS Nano 12, 10061–10074 (2018). https://doi.org/10.1021/acsnano.8b04658
Z. Wang, W. Liu, J. Shi, N. Chen, C. Fan, Nanoscale delivery systems for cancer immunotherapy. Mater. Horiz. 5, 344–362 (2018). https://doi.org/10.1039/C7MH00991G
Z. Chen, Z. Wang, Z. Gu, Bioinspired and biomimetic nanomedicines. Acc. Chem. Res. 52, 1255–1264 (2019). https://doi.org/10.1021/acs.accounts.9b00079
Z. Wang, B. Guo, E. Middha, Z. Huang, Q. Hu, Z. Fu, B. Liu, Microfluidics-prepared uniform conjugated polymer nanoparticles for photo-triggered immune microenvironment modulation and cancer therapy. ACS Appl. Mater. Interfaces 11, 11167–11176 (2019). https://doi.org/10.1021/acsami.8b22579
R. Mahjub, S. Jatana, S.E. Lee, Z. Qin, G. Pauli, M. Soleimani, S. Madadi, S.-D. Li, Recent advances in applying nanotechnologies for cancer immunotherapy. J. Control. Release 288, 239–263 (2018). https://doi.org/10.1016/j.jconrel.2018.09.010
Q. Chen, L. Xu, C. Liang, C. Wang, R. Peng, Z. Liu, Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016). https://doi.org/10.1038/ncomms13193
Q. Chen, L. Xu, J. Chen, Z. Yang, C. Liang, Y. Yang, Z. Liu, Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy. Biomaterials 148, 69–80 (2017). https://doi.org/10.1016/j.biomaterials.2017.09.021
Y. Zhang, L. Wu, Z. Li, W. Zhang, F. Luo, Y. Chu, G. Chen, Glycocalyx-mimicking nanoparticles improve anti-PD-L1 cancer immunotherapy through reversion of tumor-associated macrophages. Biomacromolecules 19, 2098–2108 (2018). https://doi.org/10.1021/acs.biomac.8b00305
S. Sau, H.O. Alsaab, K. Bhise, R. Alzhrani, G. Nabil, A.K. Iyer, Multifunctional nanoparticles for cancer immunotherapy: a goundbreaking approach for reprogramming malfunctioned tumor environment. J. Control. Release 274, 24–34 (2018). https://doi.org/10.1016/j.jconrel.2018.01.028
E.A. Scott, N.B. Karabin, P. Augsornworawat, Overcoming immune dysregulation with immunoengineered nanobiomaterials. Annu. Rev. Biomed. Eng. 19, 57–84 (2017). https://doi.org/10.1146/annurev-bioeng-071516-044603
P.L. Mage, A.T. Csordas, T. Brown, D. Klinger, M. Eisenstein, S. Mitragotri, C. Hawker, H.T. Soh, Shape-based separation of synthetic microparticles. Nat. Mater. 18, 82–89 (2019). https://doi.org/10.1038/s41563-018-0244-9
X. Hu, J. Hu, J. Tian, Z. Ge, G. Zhang, K. Luo, S. Liu, Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 135, 17617–17629 (2013). https://doi.org/10.1021/ja409686x
T.J. Merkel, S.W. Jones, K.P. Herlihy, F.R. Kersey, A.R. Shields et al., Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl. Acad. Sci. USA 108, 586–591 (2011). https://doi.org/10.1073/pnas.1010013108
K.C. Meyer, E.N. Coker, D.S. Bolintineanu, B. Kaehr, Mechanically encoded cellular shapes for synthesis of anisotropic mesoporous particles. J. Am. Chem. Soc. 136, 13138–13141 (2014). https://doi.org/10.1021/ja506718z
V. Kozlovskaya, J.F. Alexander, Y. Wang, T. Kuncewicz, X. Liu, B. Godin, E. Kharlampieva, Internalization of red blood cell-mimicking hydrogel capsules with pH-triggered shape reponses. ACS Nano 8, 5725–5737 (2014). https://doi.org/10.1021/nn500512x
C. Xu, S. Hu, X. Chen, Artificial cells: from basic science to applications. Mater. Today 19, 516–532 (2016). https://doi.org/10.1016/j.mattod.2016.02.020
C.H. Park, N.-O. Chung, J. Lee, Monodisperse red blood cell-like particles via consolidation of charged droplets. J. Colloid Interface Sci. 361, 423–428 (2011). https://doi.org/10.1016/j.jcis.2011.06.003
U. Farook, E. Stride, M.J. Edirisinghe, Preparation of suspensions of phospholipid-coated microbubbles by coaxial electrohydrodynamic atomization. J. R. Soc. Interface 6, 271–277 (2009). https://doi.org/10.1098/rsif.2008.0225
S.C. Balmert, S.R. Little, Biomimetic delivery with micro- and nanoparticles. Adv. Mater. 24, 3757–3778 (2012). https://doi.org/10.1002/adma.201200224
R.W. Jenkins, D.A. Barbie, K.T. Flaherty, Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9–16 (2018). https://doi.org/10.1038/bjc.2017.434
P. Schmid, S. Adams, H.S. Rugo, A. Schneeweiss, C.H. Barrios et al., Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018). https://doi.org/10.1056/NEJMoa1809615
L. Paz-Ares, A. Luft, D. Vicente, A. Tafreshi, M. Gümüş et al., Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379, 2040–2051 (2018). https://doi.org/10.1056/NEJMoa1810865
L. Galluzzi, A. Buqué, O. Kepp, L. Zitvogel, G. Kroemer, Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015). https://doi.org/10.1016/j.ccell.2015.10.012
G. Kroemer, L. Galluzzi, O. Kepp, L. Zitvogel, Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013). https://doi.org/10.1146/annurev-immunol-032712-100008
L. Galluzzi, A. Buqué, O. Kepp, L. Zitvogel, G. Kroemer, Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2016). https://doi.org/10.1038/nri.2016.107
D.V. Krysko, A.D. Garg, A. Kaczmarek, O. Krysko, P. Agostinis, P. Vandenabeele, Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012). https://doi.org/10.1038/nrc3380
X. Duan, C. Chan, W. Han, N. Guo, R.R. Weichselbaum, W. Lin, Immunostimulatory nanomedicines synergize with checkpoint blockade immunotherapy to eradicate colorectal tumors. Nat. Commun. 10, 1899 (2019). https://doi.org/10.1038/s41467-019-09221-x
S. Goldman, Generalizations of the Young-Laplace equation for the pressure of a mechanically stable gas bubble in a soft elastic material. J. Chem. Phys. 131, 184502 (2009). https://doi.org/10.1063/1.3259973
F.J. Higuera, Stationary viscosity-dominated electrified capillary jets. J. Fluid Mech. 558, 143–152 (2006). https://doi.org/10.1017/S0022112006000024
U. Farook, E. Stride, M.J. Edirisinghe, R. Moaleji, Microbubbling by co-axial electrohydrodynamic atomization. Med. Biol. Eng. Comput. 45, 781–789 (2007). https://doi.org/10.1007/s11517-007-0210-1
V.S. Dave, R.M. Fahmy, S.W. Hoag, Investigation of the physical–mechanical properties of Eudragit® RS PO/RL PO and their mixtures with common pharmaceutical excipients. Drug Dev. Ind. Pharm. 39, 1113–1125 (2013). https://doi.org/10.3109/03639045.2012.714786
P. Decuzzi, R. Pasqualini, W. Arap, M. Ferrari, Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res. 26, 235–243 (2008). https://doi.org/10.1007/s11095-008-9697-x
S. Behzadi, V. Serpooshan, W. Tao, M.A. Hamaly, M.Y. Alkawareek et al., Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017). https://doi.org/10.1039/C6CS00636A
H. Herd, N. Daum, A.T. Jones, H. Huwer, H. Ghandehari, C.-M. Lehr, Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 7, 1961–1973 (2013). https://doi.org/10.1021/nn304439f
L.W. Zhang, N.A. Monteiro-Riviere, Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci. 110, 138–155 (2009). https://doi.org/10.1093/toxsci/kfp087
R. Toy, P.M. Peiris, K.B. Ghaghada, E. Karathanasis, Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 9, 121–134 (2014). https://doi.org/10.2217/nnm.13.191
J.A. Roman, I. Reucroft, R.A. Martin, A. Hurtado, H.-Q. Mao, Local release of paclitaxel from aligned, electrospun microfibers promotes axonal extension. Adv. Healthc. Mater. 5, 2628–2635 (2016). https://doi.org/10.1002/adhm.201600415
J. Han, L.A. Goldstein, W. Hou, C.J. Froelich, S.C. Watkins, H. Rabinowich, Deregulation of mitochondrial membrane potential by mitochondrial insertion of granzyme B and direct Hax-1 cleavage. J. Biol. Chem. 285, 22461–22472 (2010). https://doi.org/10.1074/jbc.M109.086587
J. Du, Y. Wang, R. Hunter, Y. Wei, R. Blumenthal et al., Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl. Acad. Sci. USA 106, 3543–3548 (2009). https://doi.org/10.1073/pnas.0812671106
C. Garrido, L. Galluzzi, M. Brunet, P.E. Puig, C. Didelot, G. Kroemer, Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 13, 1423–1433 (2006). https://doi.org/10.1038/sj.cdd.4401950
S. Fulda, K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798–4811 (2006). https://doi.org/10.1038/sj.onc.1209608
E.G.E. de Vries, J.A. Gietema, S. de Jong, Tumor necrosis factor-related apoptosis-inducing ligand pathway and its therapeutic implications. Clin. Cancer Res. 12, 2390–2393 (2006). https://doi.org/10.1158/1078-0432.CCR-06-0352
M. Obeid, A. Tesniere, F. Ghiringhelli, G.M. Fimia, L. Apetoh et al., Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2006). https://doi.org/10.1038/nm1523
W. Ou, L. Jiang, R.K. Thapa, Z.C. Soe, K. Poudel et al., Combination of NIR therapy and regulatory T cell modulation using layer-by-layer hybrid nanoparticles for effective cancer photoimmunotherapy. Theranostics 8, 4574–4590 (2018). https://doi.org/10.7150/thno.26758
P. Kadiyala, D. Li, F.M. Nuñez, D. Altshuler, R. Doherty et al., High-density lipoprotein-mimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano 13, 1365–1384 (2019). https://doi.org/10.1021/acsnano.8b06842
J. Lu, X. Liu, Y.-P. Liao, F. Salazar, B. Sun et al., Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 8, 1811 (2017). https://doi.org/10.1038/s41467-017-01651-9
J.A. Villadangos, P. Schnorrer, Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol. 7, 543–555 (2007). https://doi.org/10.1038/nri2103