Bioinspired Multiscale Wrinkling Patterns on Curved Substrates: An Overview
Corresponding Author: Wenjian Wu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 101
Abstract
The surface wrinkling of biological tissues is ubiquitous in nature. Accumulating evidence suggests that the mechanical force plays a significant role in shaping the biological morphologies. Controlled wrinkling has been demonstrated to be able to spontaneously form rich multiscale patterns, on either planar or curved surfaces. The surface wrinkling on planar substrates has been investigated thoroughly during the past decades. However, most wrinkling morphologies in nature are based on the curved biological surfaces and the research of controllable patterning on curved substrates still remains weak. The study of wrinkling on curved substrates is critical for understanding the biological growth, developing three-dimensional (3D) or four-dimensional (4D) fabrication techniques, and creating novel topographic patterns. In this review, fundamental wrinkling mechanics and recent advances in both fabrications and applications of the wrinkling patterns on curved substrates are summarized. The mechanics behind the wrinkles is compared between the planar and the curved cases. Beyond the film thickness, modulus ratio, and mismatch strain, the substrate curvature is one more significant parameter controlling the surface wrinkling. Curved substrates can be both solid and hollow with various 3D geometries across multiple length scales. Up to date, the wrinkling morphologies on solid/hollow core–shell spheres and cylinders have been simulated and selectively produced. Emerging applications of the curved topographic patterns have been found in smart wetting surfaces, cell culture interfaces, healthcare materials, and actuators, which may accelerate the development of artificial organs, stimuli-responsive devices, and micro/nano fabrications with higher dimensions.
Highlights:
1 An overview of the formation mechanisms, fabrication methods, and applications of bioinspired wrinkling patterns on curved substrates is provided.
2 The effect of substrate curvature is described in detail to clarify the difference of wrinkling patterns between planar and curved substrates.
3 Opportunities and challenges of the surface wrinkling in the biofabrication, three-dimensional micro/nano fabrication, and four-dimensional printing are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.T. Eisenhoffer, P.D. Loftus, M. Yoshigi, H. Otsuna, C.-B. Chien, P.A. Morcos, J. Rosenblatt, Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484(7395), 546–549 (2012). https://doi.org/10.1038/nature10999
- L. Wang, C.E. Castro, M.C. Boyce, Growth strain-induced wrinkled membrane morphology of white blood cells. Soft Matter 7(24), 11319–11324 (2011). https://doi.org/10.1039/C1SM06637D
- M.B. Hallett, C.J. von Ruhland, S. Dewitt, Chemotaxis and the cell surface-area problem. Nat. Rev. Mol. Cell Biol. 9, 662 (2008). https://doi.org/10.1038/nrm2419-c1
- M. Trejo, C. Douarche, V. Bailleux, C. Poulard, S. Mariot, C. Regeard, E. Raspaud, Elasticity and wrinkled morphology of Bacillus subtilis pellicles. Proc. Natl Acad. Sci. USA 110(6), 2011–2016 (2013). https://doi.org/10.1073/pnas.1217178110
- J.N. Wilking, V. Zaburdaev, M. De Volder, R. Losick, M.P. Brenner, D.A. Weitz, Liquid transport facilitated by channels in Bacillus subtilis biofilms. Proc. Natl Acad. Sci. USA 110(3), 848–852 (2013). https://doi.org/10.1073/pnas.1216376110
- S. Budday, E. Kuhl, J.W. Hutchinson, Period-doubling and period-tripling in growing bilayered systems. Philos. Mag. 95(28–30), 3208–3224 (2015). https://doi.org/10.1080/14786435.2015.1014443
- B.J. Casey, J.N. Giedd, K.M. Thomas, Structural and functional brain development and its relation to cognitive development. Biol. Psychol. 54(1), 241–257 (2000). https://doi.org/10.1016/S0301-0511(00)00058-2
- M.H. Johnson, Functional brain development in humans. Nat. Rev. Neurosci. 2(7), 475–483 (2001). https://doi.org/10.1038/35081509
- T. Tallinen, J.S. Biggins, L. Mahadevan, Surface sulci in squeezed soft solids. Phys. Rev. Lett. 110(2), 024302 (2013). https://doi.org/10.1103/PhysRevLett.110.024302
- V. Fernández, C. Llinares-Benadero, V. Borrell, Cerebral cortex expansion and folding: What have we learned? EMBO J. 35(10), 1021–1044 (2016). https://doi.org/10.15252/embj.201593701
- P.D. Griffiths, J. Morris, J.-C. Larroche, M. Reeves, in Section 3—Sectional Anatomy of the Postnatal Brain (Mosby, Philadelphia, 2010), pp. 153–260. https://doi.org/10.1016/B978-0-323-05296-2.50006-0
- A.E. Shyer, T. Tallinen, N.L. Nerurkar, Z. Wei, E.S. Gil, D.L. Kaplan, C.J. Tabin, L. Mahadevan, Villification: how the gut gets its villi. Science 342(6155), 212–218 (2013). https://doi.org/10.1126/science.1238842
- K.D. Walton, Å. Kolterud, M.J. Czerwinski, M.J. Bell, A. Prakash et al., Hedgehog-responsive mesenchymal clusters direct patterning and emergence of intestinal villi. Proc. Natl Acad. Sci. USA 109(39), 15817–15822 (2012). https://doi.org/10.1073/pnas.1205669109
- M. Ben Amar, F. Jia, Anisotropic growth shapes intestinal tissues during embryogenesis. Proc. Natl Acad. Sci. USA 110(26), 10525–10530 (2013). https://doi.org/10.1073/pnas.1217391110
- K.O. Leslie, M.R. Wick, 1: Lung anatomy, in Practical Pulmonary Pathology: A Diagnostic Approach (3rd edn) (Elsevier, 2018), pp. 1–14.e2. https://doi.org/10.1016/B978-0-323-44284-8.00001-6
- H. Itoh, M. Nishino, H. Hatabu, Architecture of the lung: morphology and function. J. Thorac. Imaging 19(4), 221–227 (2004). https://doi.org/10.1097/01.rti.0000142835.06988.b0
- B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Surface wrinkling of mucosa induced by volumetric growth: theory, simulation and experiment. J. Mech. Phys. Solids 59(4), 758–774 (2011). https://doi.org/10.1016/j.jmps.2011.01.010
- L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24(8), 4114–4119 (2008). https://doi.org/10.1021/la703821h
- U. Nath, B. Crawford, R. Carpenter, E. Coen, Genetic control of surface curvature. Science 299, 1404–1407 (2003). https://doi.org/10.1126/science.1079354
- E. Sharon, M. Marder, H. Swinney, Leaves, flowers and garbage bags: making waves. Am. Sci. 92, 254–261 (2004). https://doi.org/10.1511/2004.47.932
- J. Yin, X. Chen, I. Sheinman, Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems. J. Mech. Phys. Solids 57(9), 1470–1484 (2009). https://doi.org/10.1016/j.jmps.2009.06.002
- T. Tallinen, J.Y. Chung, J.S. Biggins, L. Mahadevan, Gyrification from constrained cortical expansion. Proc. Natl Acad. Sci. USA 111(35), 12667–12672 (2014). https://doi.org/10.1073/pnas.1406015111
- S. Okazaki, Resolution limits of optical lithography. J. Vac. Sci. Technol. B 9(6), 2829–2833 (1991). https://doi.org/10.1116/1.585650
- B.J. Lin, Optical lithography—present and future challenges. C. R. Phys. 7(8), 858–874 (2006). https://doi.org/10.1016/j.crhy.2006.10.005
- H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek, J. Fluitman, A survey on the reactive ion etching of silicon in microtechnology. J. Micromech. Microeng. 6(1), 14–28 (1996). https://doi.org/10.1088/0960-1317/6/1/002
- S. Mukhopadhyay, M.I. Jones, S.R. Hallett, Compressive failure of laminates containing an embedded wrinkle; experimental and numerical study. Composites A 73, 132–142 (2015). https://doi.org/10.1016/j.compositesa.2015.03.012
- M.W.B. Hayman, C. Berggreen, R. Pettersson, The effect of face sheet wrinkle defects on the strength of FRP sandwich structures. J. Sandw. Struct. Mater. 9(4), 377–404 (2007). https://doi.org/10.1177/1099636207069250
- P. Hallander, M. Akermo, C. Mattei, M. Petersson, T. Nyman, An experimental study of mechanisms behind wrinkle development during forming of composite laminates. Composites A 50, 54–64 (2013). https://doi.org/10.1016/j.compositesa.2013.03.013
- A. Schweikart, A. Fery, Controlled wrinkling as a novel method for the fabrication of patterned surfaces. Microchim. Acta 165(3–4), 249–263 (2009). https://doi.org/10.1007/s00604-009-0153-3
- J. Rodríguez-Hernández, Wrinkled interfaces: taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015). https://doi.org/10.1016/j.progpolymsci.2014.07.008
- Q. Wang, X. Zhao, Beyond wrinkles: multimodal surface instabilities for multifunctional patterning. MRS Bull. 41(2), 115–122 (2016). https://doi.org/10.1557/mrs.2015.338
- Y.L. Tan, Z.H. Jiang, Z.Y. Chu, Surface wrinkles based on polymer substrate: biomimetic construction, micro-regulation and applications. Acta Polym. Sin. 11, 1508 (2016). https://doi.org/10.11777/j.issn1000-3304.2016.16136
- X. Hu, Y. Dou, J. Li, Z. Liu, Buckled structures: fabrication and applications in wearable electronics. Small 15(32), 1804805 (2019). https://doi.org/10.1002/smll.201804805
- T. Ohzono, H. Monobe, Microwrinkles: shape-tunability and applications. J. Colloid Interface Sci. 368(1), 1–8 (2012). https://doi.org/10.1016/j.jcis.2011.11.075
- P.-Y. Chen, M. Liu, Z. Wang, R.H. Hurt, I.Y. Wong, From flatland to space land: higher dimensional patterning with two-dimensional materials. Adv. Mater. 29(23), 1605096 (2017). https://doi.org/10.1002/adma.201605096
- N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393(6681), 146–149 (1998). https://doi.org/10.1038/30193
- S.J. Kim, D.W. Kim, J. Lim, S.-Y. Cho, S.O. Kim, H.-T. Jung, Large-area buckled MoS2 films on the graphene substrate. ACS Appl. Mater. Interfaces 8(21), 13512–13519 (2016). https://doi.org/10.1021/acsami.6b01828
- L. Zhang, X. Lang, A. Hirata, M. Chen, Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement. ACS Nano 5(6), 4407–4413 (2011). https://doi.org/10.1021/nn201443p
- X. Yang, Y. Zhao, J. Xie, X. Han, J. Wang et al., Bioinspired fabrication of free-standing conducting films with hierarchical surface wrinkling patterns. ACS Nano 10(3), 3801–3808 (2016). https://doi.org/10.1021/acsnano.6b00509
- Y. Wang, Z. Li, J. Xiao, Stretchable thin film materials: fabrication, application and mechanics. J. Electron. Packag. (2016). https://doi.org/10.1115/1.4032984
- M. Guvendiren, J.A. Burdick, The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31(25), 6511–6518 (2010). https://doi.org/10.1016/j.biomaterials.2010.05.037
- A. Chen, D.K. Lieu, L. Freschauf, V. Lew, H. Sharma et al., Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives. Adv. Mater. 23(48), 5785–5791 (2011). https://doi.org/10.1002/adma.201103463
- H.S. Kim, A.J. Crosby, Solvent-responsive surface via wrinkling instability. Adv. Mater. 23(36), 4188–4192 (2011). https://doi.org/10.1002/adma.201101477
- C. Zong, Y. Zhao, H. Ji, X. Han, J. Xie, J. Wang, Y. Cao, S. Jiang, C. Lu, Tuning and erasing surface wrinkles by reversible visible-light-induced photoisomerization. Angew. Chem. Int. Ed. 55(12), 3931–3935 (2016). https://doi.org/10.1002/anie.201510796
- J. Bai, L. Zhang, H. Hou, Z. Shi, J. Yin, X. Jiang, Light-written reversible 3D fluorescence and topography dual-pattern with memory and self-healing abilities. Research 2019, 11 (2019). https://doi.org/10.34133/2019/2389254
- P.-Y. Chen, J. Sodhi, Y. Qiu, T.M. Valentin, R.S. Steinberg, Z. Wang, R.H. Hurt, I.Y. Wong, Multiscale graphene topographies programmed by sequential mechanical deformation. Adv. Mater. 28(18), 3564–3571 (2016). https://doi.org/10.1002/adma.201506194
- Y. Li, S. Dai, J. John, K.R. Carter, Superhydrophobic surfaces from hierarchically structured wrinkled polymers. ACS Appl. Mater. Interfaces 5(21), 11066–11073 (2013). https://doi.org/10.1021/am403209r
- W.-K. Lee, C.J. Engel, M.D. Huntington, J. Hu, T.W. Odom, Controlled three-dimensional hierarchical structuring by memory-based, sequential wrinkling. Nano Lett. 15(8), 5624–5629 (2015). https://doi.org/10.1021/acs.nanolett.5b02394
- X. Chen, J. Yin, Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication. Soft Matter 6(22), 5667–5680 (2010). https://doi.org/10.1039/C0SM00401D
- B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8(21), 5728–5745 (2012). https://doi.org/10.1039/C2SM00011C
- C. Li, X. Zhang, Z. Cao, Triangular and Fibonacci number patterns driven by stress on core/shell microstructures. Science 309(5736), 909–911 (2005). https://doi.org/10.1126/science.1113412
- J. Yin, E. Bar-Kochba, X. Chen, Mechanical self-assembly fabrication of gears. Soft Matter 5(18), 3469–3474 (2009). https://doi.org/10.1039/B904635F
- Z.F. Liu, S. Fang, F.A. Moura, J.N. Ding, N. Jiang et al., Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 349(6246), 400–404 (2015). https://doi.org/10.1126/science.aaa7952
- Y. Tan, B. Hu, Z. Chu, W. Wu, Bioinspired superhydrophobic papillae with tunable adhesive force and ultralarge liquid capacity for microdroplet manipulation. Adv. Funct. Mater. 29(15), 1900266 (2019). https://doi.org/10.1002/adfm.201900266
- Y. Tan, Z. Chu, Z. Jiang, T. Hu, G. Li, J. Song, Gyrification-inspired highly convoluted graphene oxide patterns for ultralarge deforming actuators. ACS Nano 11(7), 6843–6852 (2017). https://doi.org/10.1021/acsnano.7b01937
- G. Shin, I. Jung, V. Malyarchuk, J. Song, S. Wang, H.C. Ko, Y. Huang, J.S. Ha, J.A. Rogers, Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras. Small 6(7), 851–856 (2010). https://doi.org/10.1002/smll.200901350
- E.P. Chan, A.J. Crosby, Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18(24), 3238–3242 (2006). https://doi.org/10.1002/adma.200601595
- Y. Tan, J. Yan, Z. Chu, Thermal-shrinking-induced ring-patterned boron nitride wrinkles on carbon fibers. Carbon 152, 532–536 (2019). https://doi.org/10.1016/j.carbon.2019.06.058
- H. Yuan, K. Wu, J. Zhang, Y. Wang, G. Liu, J. Sun, Curvature-controlled wrinkling surfaces for friction. Adv. Mater. 31(25), 1900933 (2019). https://doi.org/10.1002/adma.201900933
- R. Wang, N. Jiang, J. Su, Q. Yin, Y. Zhang et al., A bi-sheath fiber sensor for giant tensile and torsional displacements. Adv. Funct. Mater. 27(35), 1702134 (2017). https://doi.org/10.1002/adfm.201702134
- J. Song, Y. Tan, Z. Chu, M. Xiao, G. Li, Z. Jiang, J. Wang, T. Hu, Hierarchical reduced graphene oxide ridges for stretchable, wearable, and washable strain sensors. ACS Appl. Mater. Interfaces 11(1), 1283–1293 (2019). https://doi.org/10.1021/acsami.8b18143
- Y. Li, X. Tian, S.-P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201907451
- L. Pocivavsek, S.-H. Ye, J. Pugar, E. Tzeng, E. Cerda, S. Velankar, W.R. Wagner, Active wrinkles to drive self-cleaning: a strategy for anti-thrombotic surfaces for vascular grafts. Biomaterials 192, 226–234 (2019). https://doi.org/10.1016/j.biomaterials.2018.11.005
- R. Wang, Z. Liu, G. Wan, T. Jia, C. Zhang et al., Controllable preparation of ordered and hierarchically buckled structures for inflatable tumor ablation, volumetric strain sensor, and communication via inflatable antenna. ACS Appl. Mater. Interfaces 11(11), 10862–10873 (2019). https://doi.org/10.1021/acsami.8b19241
- T. Tallinen, J.Y. Chung, F. Rousseau, N. Girard, J. Lefèvre, L. Mahadevan, On the growth and form of cortical convolutions. Nat. Phys. 12, 588 (2016). https://doi.org/10.1038/nphys3632
- E.S. Matsuo, T. Tanaka, Patterns in shrinking gels. Nature 358(6386), 482–485 (1992). https://doi.org/10.1038/358482a0
- T. Tanaka, S.-T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, T. Amiya, Mechanical instability of gels at the phase transition. Nature 325(6107), 796–798 (1987). https://doi.org/10.1038/325796a0
- M. Muller, M. Karg, A. Fortini, T. Hellweg, A. Fery, Wrinkle-assisted linear assembly of hard-core/soft-shell particles: impact of the soft shell on the local structure. Nanoscale 4(7), 2491–2499 (2012). https://doi.org/10.1039/C2NR11591C
- Y. Sun, W.M. Choi, H. Jiang, Y.Y. Huang, J.A. Rogers, Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1(3), 201–207 (2006). https://doi.org/10.1038/nnano.2006.131
- C. Cao, H.F. Chan, J. Zang, K.W. Leong, X. Zhao, Harnessing localized ridges for high-aspect-ratio hierarchical patterns with dynamic tunability and multifunctionality. Adv. Mater. 26(11), 1763–1770 (2014). https://doi.org/10.1002/adma.201304589
- M. Guvendiren, J.A. Burdick, S. Yang, Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients. Soft Matter 6(22), 5795–5801 (2010). https://doi.org/10.1039/C0SM00317D
- M.K. Kang, R. Huang, Effect of surface tension on swell-induced surface instability of substrate-confined hydrogel layers. Soft Matter 6(22), 5736–5742 (2010). https://doi.org/10.1039/C0SM00335B
- Q. Wang, L. Zhang, X. Zhao, Creasing to cratering instability in polymers under ultrahigh electric fields. Phys. Rev. Lett. 106, 118301 (2011). https://doi.org/10.1103/PhysRevLett.106.118301
- J. Yoon, J. Kim, R.C. Hayward, Nucleation, growth, and hysteresis of surface creases on swelled polymer gels. Soft Matter 6(22), 5807–5816 (2010). https://doi.org/10.1039/C0SM00372G
- S. Cai, K. Bertoldi, H. Wang, Z. Suo, Osmotic collapse of a void in an elastomer: breathing, buckling and creasing. Soft Matter 6(22), 5770–5777 (2010). https://doi.org/10.1039/C0SM00451K
- V. Trujillo, J. Kim, R.C. Hayward, Creasing instability of surface-attached hydrogels. Soft Matter 4(3), 564–569 (2008). https://doi.org/10.1039/B713263H
- Y. Cao, J. Hutchinson, From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling. Proc. R. Soc. Lond. A 468, 94–115 (2012). https://doi.org/10.1098/rspa.2011.0384
- Z. Wang, D. Tonderys, S.E. Leggett, E.K. Williams, M.T. Kiani et al., Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology. Carbon 97, 14–24 (2016). https://doi.org/10.1016/j.carbon.2015.03.040
- P. Goel, S. Kumar, J. Sarkar, J.P. Singh, Mechanical strain induced tunable anisotropic wetting on buckled PDMS silver nanorods arrays. ACS Appl. Mater. Interfaces 7(16), 8419–8426 (2015). https://doi.org/10.1021/acsami.5b01530
- D. Rhee, W.-K. Lee, T.W. Odom, Crack-free, soft wrinkles enable switchable anisotropic wetting. Angew. Chem. Int. Ed. 56(23), 6523–6527 (2017). https://doi.org/10.1002/anie.201701968
- P.-Y. Chen, M. Liu, T.M. Valentin, Z. Wang, R. Spitz Steinberg, J. Sodhi, I.Y. Wong, R.H. Hurt, Hierarchical metal oxide topographies replicated from highly textured graphene oxide by intercalation templating. ACS Nano 10(12), 10869–10879 (2016). https://doi.org/10.1021/acsnano.6b05179
- N. Gao, X. Zhang, S. Liao, H. Jia, Y. Wang, Polymer swelling induced conductive wrinkles for an ultrasensitive pressure sensor. ACS Macro Lett. 5(7), 823–827 (2016). https://doi.org/10.1021/acsmacrolett.6b00338
- J. Hou, Q. Li, X. Han, C. Lu, Swelling/deswelling-induced reversible surface wrinkling on layer-by-layer multilayers. J. Phys. Chem. B 118(49), 14502–14509 (2014). https://doi.org/10.1021/jp508724n
- S. Zeng, R. Li, S.G. Freire, V.M.M. Garbellotto, E.Y. Huang et al., Moisture-responsive wrinkling surfaces with tunable dynamics. Adv. Mater. 29(24), 1700828 (2017). https://doi.org/10.1002/adma.201700828
- J.Y. Chung, A.J. Nolte, C.M. Stafford, Surface wrinkling: a versatile platform for measuring thin-film properties. Adv. Mater. 23(3), 349–368 (2011). https://doi.org/10.1002/adma.201001759
- J. Genzer, J. Groenewold, Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2(4), 310–323 (2006). https://doi.org/10.1039/B516741H
- D.-Y. Khang, H. Jiang, Y. Huang, J. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006). https://doi.org/10.1126/science.1121401
- Z.Y. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53(9), 2101–2118 (2005). https://doi.org/10.1016/j.jmps.2005.03.007
- J. Song, H. Jiang, Y. Huang, J.A. Rogers, Mechanics of stretchable inorganic electronic materials. J. Vac. Sci. Technol. A 27(5), 1107–1125 (2009). https://doi.org/10.1116/1.3168555
- H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, J.A. Rogers, Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl Acad. Sci. USA 104(40), 15607–15612 (2007). https://doi.org/10.1073/pnas.0702927104
- J. Song, H. Jiang, Z.J. Liu, D.Y. Khang, Y. Huang, J.A. Rogers, C. Lu, C.G. Koh, Buckling of a stiff thin film on a compliant substrate in large deformation. Int. J. Solids Struct. 45(10), 3107–3121 (2008). https://doi.org/10.1016/j.ijsolstr.2008.01.023
- S. Cai, D. Breid, A.J. Crosby, Z. Suo, J.W. Hutchinson, Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solids 59(5), 1094–1114 (2011). https://doi.org/10.1016/j.jmps.2011.02.001
- B. Audoly, A. Boudaoud, Buckling of a stiff film bound to a compliant substrate—Part I: formulation, linear stability of cylindrical patterns, secondary bifurcations. J. Mech. Phys. Solids 56(7), 2401–2421 (2008). https://doi.org/10.1016/j.jmps.2008.03.003
- B. Audoly, A. Boudaoud, Buckling of a stiff film bound to a compliant substrate—Part II: a global scenario for the formation of herringbone pattern. J. Mech. Phys. Solids 56(7), 2422–2443 (2008). https://doi.org/10.1016/j.jmps.2008.03.002
- B. Audoly, A. Boudaoud, Buckling of a stiff film bound to a compliant substrate—Part III: herringbone solutions at large buckling parameter. J. Mech. Phys. Solids 56(7), 2444–2458 (2008). https://doi.org/10.1016/j.jmps.2008.03.001
- E. Sultan, A. Boudaoud, The buckling of a swollen thin gel layer bound to a compliant substrate. J. Appl. Mech. (2008). https://doi.org/10.1115/1.2936922
- L. Pocivavsek, R. Dellsy, A. Kern-Goldberger, S. Johnson, B. Lin, K.Y. Lee, E. Cerda, Stress and fold localization in thin elastic membranes. Science 320, 912–916 (2008). https://doi.org/10.1126/science.1154069
- F. Brau, H. Vandeparre, A. Sabbah, C. Poulard, A. Boudaoud, P. Damman, Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators. Nat. Phys. 7(1), 56–60 (2011). https://doi.org/10.1038/nphys1806
- Y. Cao, J.W. Hutchinson, Wrinkling phenomena in neo-Hookean film/substrate bilayers. J. Appl. Mech. (2012). https://doi.org/10.1115/1.4005960
- P. Kim, M. Abkarian, H.A. Stone, Hierarchical folding of elastic membranes under biaxial compressive stress. Nat. Mater. 10(12), 952–957 (2011). https://doi.org/10.1038/nmat3144
- Q. Wang, X. Zhao, Phase diagrams of instabilities in compressed film–substrate systems. J. Appl. Mech. (2013). https://doi.org/10.1115/1.4025828
- L. Jin, A. Auguste, R.C. Hayward, Z. Suo, Bifurcation diagrams for the formation of wrinkles or creases in soft bilayers. J. Appl. Mech. (2015). https://doi.org/10.1115/1.4030384
- Q. Wang, X. Zhao, A three-dimensional phase diagram of growth-induced surface instabilities. Sci. Rep. 5(1), 8887 (2015). https://doi.org/10.1038/srep08887
- A. Auguste, L. Jin, Z. Suo, R.C. Hayward, The role of substrate pre-stretch in post-wrinkling bifurcations. Soft Matter 10(34), 6520–6529 (2014). https://doi.org/10.1039/C4SM01038H
- Y.-C. Chen, A.J. Crosby, High aspect ratio wrinkles via substrate prestretch. Adv. Mater. 26(32), 5626–5631 (2014). https://doi.org/10.1002/adma.201401444
- A. Takei, L. Jin, J.W. Hutchinson, H. Fujita, Ridge localizations and networks in thin films compressed by the incremental release of a large equi-biaxial pre-stretch in the substrate. Adv. Mater. 26(24), 4061–4067 (2014). https://doi.org/10.1002/adma.201306162
- T. Tallinen, J. Biggins, Mechanics of invagination and folding: hybridized instabilities when one soft tissue grows on another. Phys. Rev. E 92, 022720 (2015). https://doi.org/10.1103/PhysRevE.92.022720
- R. Zhao, T. Zhang, M. Diab, H. Gao, K.S. Kim, The primary bilayer ruga-phase diagram I: localizations in ruga evolution. Extreme Mech. Lett. 4, 76–82 (2015). https://doi.org/10.1016/j.eml.2015.04.006
- A. Auguste, L. Jin, Z. Suo, R.C. Hayward, Post-wrinkle bifurcations in elastic bilayers with modest contrast in modulus. Extreme Mech. Lett. 11, 30–36 (2017). https://doi.org/10.1016/j.eml.2016.11.013
- J. Auguste, L. Yang, D. Jin, Z. Chen, R.C. Suo, Hayward, Formation of high aspect ratio wrinkles and ridges on elastic bilayers with small thickness contrast. Soft Matter 14(42), 8545–8551 (2018). https://doi.org/10.1039/C8SM01345D
- A.B. Croll, A.J. Crosby, Pattern driven stress localization in thin diblock copolymer films. Macromolecules 45(9), 4001–4006 (2012). https://doi.org/10.1021/ma300159x
- J.-W. Wang, B. Li, Y.-P. Cao, X.-Q. Feng, Surface wrinkling patterns of film–substrate systems with a structured interface. J. Appl. Mech. (2015). https://doi.org/10.1115/1.4030010
- W. Ding, Y. Yang, Y. Zhao, S. Jiang, Y. Cao, C. Lu, Well-defined orthogonal surface wrinkles directed by the wrinkled boundary. Soft Matter 9(14), 3720–3726 (2013). https://doi.org/10.1039/C2SM27359D
- J. Wang, B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Wrinkling micropatterns regulated by a hard skin layer with a periodic stiffness distribution on a soft material. Appl. Phys. Lett. 108, 021903 (2016). https://doi.org/10.1063/1.4939741
- D. Yan, K. Zhang, G. Hu, Wrinkling of structured thin films via contrasted materials. Soft Matter 12(17), 3937–3942 (2016). https://doi.org/10.1039/C6SM00228E
- D. Wang, N. Cheewaruangroj, Y. Li, G. McHale, Y. Jiang, D. Wood, J.S. Biggins, B.B. Xu, Spatially configuring wrinkle pattern and multiscale surface evolution with structural confinement. Adv. Funct. Mater. 28(1), 1704228 (2018). https://doi.org/10.1002/adfm.201704228
- A. Nogales, A. del Campo, T.A. Ezquerra, J. Rodriguez-Hernández, Wrinkling and folding on patched elastic surfaces: modulation of the chemistry and pattern size of microwrinkled surfaces. ACS Appl. Mater. Interfaces 9(23), 20188–20195 (2017). https://doi.org/10.1021/acsami.7b03161
- T. Ouchi, J. Yang, Z. Suo, R.C. Hayward, Effects of stiff film pattern geometry on surface buckling instabilities of elastic bilayers. ACS Appl. Mater. Interfaces 10(27), 23406–23413 (2018). https://doi.org/10.1021/acsami.8b04916
- T. Li, K. Hu, X. Ma, W. Zhang, J. Yin, X. Jiang, Hierarchical 3D patterns with dynamic wrinkles produced by a photocontrolled Diels-Alder reaction on the surface. Adv. Mater. 32(7), 1906712 (2020). https://doi.org/10.1002/adma.201906712
- D. Breid, A.J. Crosby, Effect of stress state on wrinkle morphology. Soft Matter 7(9), 4490–4496 (2011). https://doi.org/10.1039/C1SM05152K
- W.M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y.Y. Huang, J.A. Rogers, Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7(6), 1655–1663 (2007). https://doi.org/10.1021/nl0706244
- Z. Huang, W. Hong, Z. Suo, Evolution of wrinkles in hard films on soft substrates. Phys. Rev. E 70, 030601 (2004). https://doi.org/10.1103/PhysRevE.70.030601
- X. Chen, J.W. Hutchinson, A family of herringbone patterns in thin films. Scr. Mater. 50(6), 797–801 (2004). https://doi.org/10.1016/j.scriptamat.2003.11.035
- X. Chen, J.W. Hutchinson, Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71, 597 (2004). https://doi.org/10.1115/1.1756141
- J. Song, H. Jiang, W.M. Choi, D.Y. Khang, Y. Huang, J.A. Rogers, An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103(1), 014303 (2008). https://doi.org/10.1063/1.2828050
- Y. Zhao, X. Han, G. Li, C. Lu, Y. Cao, X.-Q. Feng, H. Gao, Effect of lateral dimension on the surface wrinkling of a thin film on compliant substrate induced by differential growth/swelling. J. Mech. Phys. Solids 83, 129–145 (2015). https://doi.org/10.1016/j.jmps.2015.06.003
- Y. Zhang, F. Zhang, Z. Yan, Q. Ma, X. Li, Y. Huang, J.A. Rogers, Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2(4), 17019 (2017). https://doi.org/10.1038/natrevmats.2017.19
- X. Cheng, Y. Zhang, Micro/nanoscale 3D assembly by rolling, folding, curving, and buckling approaches. Adv. Mater. 31(36), 1901895 (2019). https://doi.org/10.1002/adma.201901895
- J. Song, Y. Huang, J. Xiao, S. Wang, K.C. Hwang et al., Mechanics of noncoplanar mesh design for stretchable electronic circuits. J. Appl. Phys. 105(12), 123516 (2009). https://doi.org/10.1063/1.3148245
- L. Wang, C.-L. Pai, M.C. Boyce, G.C. Rutledge, Wrinkled surface topographies of electrospun polymer fibers. Appl. Phys. Lett. 94(15), 151916 (2009). https://doi.org/10.1063/1.3118526
- Q. Li, X. Han, J. Hou, J. Yin, S. Jiang, C. Lu, Patterning poly(dimethylsiloxane) microspheres via combination of oxygen plasma exposure and solvent treatment. J. Phys. Chem. B 119(42), 13450–13461 (2015). https://doi.org/10.1021/acs.jpcb.5b07208
- J. Yin, X. Han, Y. Cao, C. Lu, Surface wrinkling on polydimethylsiloxane microspheres via wet surface chemical oxidation. Sci. Rep. 4, 5710 (2014). https://doi.org/10.1038/srep05710
- Y.-P. Cao, B. Li, X.-Q. Feng, Surface wrinkling and folding of core–shell soft cylinders. Soft Matter 8(2), 556–562 (2012). https://doi.org/10.1039/C1SM06354E
- Y. Zhao, Y. Cao, X.-Q. Feng, K. Ma, Axial compression-induced wrinkles on a core–shell soft cylinder: theoretical analysis, simulations and experiments. J. Mech. Phys. Solids 73, 212–227 (2014). https://doi.org/10.1016/j.jmps.2014.09.005
- F. Xu, M. Potier-Ferry, On axisymmetric/diamond-like mode transitions in axially compressed core–shell cylinders. J. Mech. Phys. Solids 94, 68–87 (2016). https://doi.org/10.1016/j.jmps.2016.04.025
- Y. Yang, H.H. Dai, F. Xu, M. Potier-Ferry, Pattern transitions in a soft cylindrical shell. Phys. Rev. Lett. 120(21), 215503 (2018). https://doi.org/10.1103/PhysRevLett.120.215503
- F. Jia, B. Li, Y.-P. Cao, W.-H. Xie, X.-Q. Feng, Wrinkling pattern evolution of cylindrical biological tissues with differential growth. Phys. Rev. E 91(1), 012403 (2015). https://doi.org/10.1103/PhysRevE.91.012403
- J. Yin, X. Chen, Buckling of anisotropic films on cylindrical substrates: insights for self-assembly fabrication of 3D helical gears. J. Phys. D-Appl. Phys. 43(11), 115402 (2010). https://doi.org/10.1088/0022-3727/43/11/115402
- X. Zhang, P.T. Mather, M.J. Bowick, T. Zhang, Non-uniform curvature and anisotropic deformation control wrinkling patterns on tori. Soft Matter 15(26), 5204–5210 (2019). https://doi.org/10.1039/C9SM00235A
- R. Zhao, X. Zhao, Multimodal surface instabilities in curved film–substrate structures. J. Appl. Mech. 84(8), 081001 (2017). https://doi.org/10.1115/1.4036940
- J. Dervaux, Y. Couder, M.-A. Guedeau-Boudeville, M. Ben Amar, Shape transition in artificial tumors: from smooth buckles to singular creases. Phys. Rev. Lett. 107, 018103 (2011). https://doi.org/10.1103/PhysRevLett.107.018103
- L. Jin, S. Cai, Z. Suo, Creases in soft tissues generated by growth. EuroPhys. Lett. 95(6), 64002 (2011). https://doi.org/10.1209/0295-5075/95/64002
- R. Lagrange, F. López Jiménez, D. Terwagne, M. Brojan, P.M. Reis, From wrinkling to global buckling of a ring on a curved substrate. J. Mech. Phys. Solids 89, 77–95 (2016). https://doi.org/10.1016/j.jmps.2016.02.004
- W. Yang, T.C. Fung, K.S. Chian, C.K. Chong, Instability of the two-layered thick-walled esophageal model under the external pressure and circular outer boundary condition. J. Biomech. 40(3), 481–490 (2007). https://doi.org/10.1016/j.jbiomech.2006.02.020
- C. Wiggs, J. Hrousis, R. Drazen, Kamm, On the mechanism of mucosal folding in normal and asthmatic airways. J. Appl. Physiol. 83, 1814–1821 (1998). https://doi.org/10.1152/jappl.1997.83.6.1814
- C.A. Hrousis, B.J.R. Wiggs, J.M. Drazen, D.M. Parks, R.D. Kamm, Mucosal folding in biologic vessels. J. Biomech. Eng. 124(4), 334–341 (2002). https://doi.org/10.1115/1.1489450
- R.K. Lambert, S.L. Codd, M.R. Alley, R.J. Pack, Physical determinants of bronchial mucosal folding. J. Appl. Physiol. 77(3), 1206–1216 (1994). https://doi.org/10.1152/jappl.1994.77.3.1206
- Y.-P. Li, X.-Q. Cao, Feng, Growth and surface folding of esophageal mucosa: a biomechanical model. J. Biomech. 44(1), 182–188 (2011). https://doi.org/10.1016/j.jbiomech.2010.09.007
- D.E. Moulton, A. Goriely, Circumferential buckling instability of a growing cylindrical tube. J. Mech. Phys. Solids 59(3), 525–537 (2011). https://doi.org/10.1016/j.jmps.2011.01.005
- D.E. Moulton, A. Goriely, Possible role of differential growth in airway wall remodeling in asthma. J. Appl. Physiol. 110(4), 1003–1012 (2011). https://doi.org/10.1152/japplphysiol.00991.2010
- J. Dervaux, M. Ben Amar, Localized growth of layered tissues. IMA J. Appl. Math. 75, 571–580 (2010). https://doi.org/10.1093/imamat/hxq023
- A. Goriely, R. Vandiver, On the mechanical stability of growing arteries. IMA J. Appl. Math. 75(4), 549–570 (2010). https://doi.org/10.1093/imamat/hxq021
- J. Hannezo, J.F. Prost, Joanny, Instabilities of monolayered epithelia: shape and structure of villi and crypts. Phys. Rev. Lett. 107(7), 078104 (2011). https://doi.org/10.1103/PhysRevLett.107.078104
- P. Ciarletta, M. Ben Amar, Pattern formation in fiber-reinforced tubular tissues: folding and segmentation during epithelial growth. J. Mech. Phys. Solids 60(3), 525–537 (2012). https://doi.org/10.1016/j.jmps.2011.11.004
- B. Li, F. Jia, Y.P. Cao, X.Q. Feng, H. Gao, Surface wrinkling patterns on a core–shell soft sphere. Phys. Rev. Lett. 106(23), 2155–2161 (2011). https://doi.org/10.1103/PhysRevLett.106.234301
- A.J. Breid, Crosby, Curvature-controlled wrinkle morphologies. Soft Matter 9(13), 3624–3630 (2013). https://doi.org/10.1039/C3SM27331H
- N. Stoop, R. Lagrange, D. Terwagne, P.M. Reis, J. Dunkel, Curvature-induced symmetry breaking determines elastic surface patterns. Nat. Mater. 14(3), 337–342 (2015). https://doi.org/10.1038/nmat4202
- X. Cao, C. Chen, A. Li, Z. Ji, Cao, Self-assembled triangular and labyrinth buckling patterns of thin films on spherical substrates. Phys. Rev. Lett. 100(3), 036102 (2008). https://doi.org/10.1103/PhysRevLett.100.036102
- J. Yin, Z. Cao, C. Li, I. Sheinman, X. Chen, Stress-driven buckling patterns in spheroidal core/shell structures. Proc. Natl Acad. Sci. USA 105(49), 19132–19135 (2008). https://doi.org/10.1073/pnas.0810443105
- E. Katifori, S. Alben, E. Cerda, D.R. Nelson, J. Dumais, Foldable structures and the natural design of pollen grains. Proc. Natl Acad. Sci. USA 107(17), 7635–7639 (2010). https://doi.org/10.1073/pnas.0911223107
- E. Cerda, L. Mahadevan, Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003). https://doi.org/10.1103/PhysRevLett.90.074302
- F. López Jiménez, N. Stoop, R. Lagrange, J. Dunkel, P.M. Reis, Curvature-controlled defect localization in elastic surface crystals. Phys. Rev. Lett. 116(10), 104301 (2016). https://doi.org/10.1103/PhysRevLett.116.104301
- E.H. Yong, D. Nelson, L. Mahadevan, Elastic platonic shells. Phys. Rev. Lett. 111, 177801 (2013). https://doi.org/10.1103/PhysRevLett.111.177801
- T. Veldin, B. Brank, M. Brojan, Computational finite element model for surface wrinkling of shells on soft substrates. Commun. Nonlinear Sci. Numer. Simul. 78, 104863 (2019). https://doi.org/10.1016/j.cnsns.2019.104863
- Y. Zhao, H. Zhu, C. Jiang, Y. Cao, X.-Q. Feng, Wrinkling pattern evolution on curved surfaces. J. Mech. Phys. Solids 135, 103798 (2020). https://doi.org/10.1016/j.jmps.2019.103798
- F. Jia, S.P. Pearce, A. Goriely, Curvature delays growth-induced wrinkling. Phys. Rev. E 98(3), 033003 (2018). https://doi.org/10.1103/PhysRevE.98.033003
- E. Hohlfeld, B. Davidovitch, Sheet on a deformable sphere: wrinkle patterns suppress curvature-induced delamination. Phys. Rev. E 91(1), 012407 (2015). https://doi.org/10.1103/PhysRevE.91.012407
- P.V. Bayly, R.J. Okamoto, G. Xu, Y. Shi, L.A. Taber, A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys. Biol. 10(1), 016005 (2013). https://doi.org/10.1088/1478-3975/10/1/016005
- S. Budday, P. Steinmann, A. Goriely, E. Kuhl, Size and curvature regulate pattern selection in the mammalian brain. Extreme Mech. Lett. 4, 193–198 (2015). https://doi.org/10.1016/j.eml.2015.07.004
- M.J. Razavi, T. Zhang, X. Li, T. Liu, X. Wang, Role of mechanical factors in cortical folding development. Phys. Rev. E 92(3), 032701 (2015). https://doi.org/10.1103/PhysRevE.92.032701
- B. Li, Y.P. Cao, X.Q. Feng, S.W. Yu, Mucosal wrinkling in animal antra induced by volumetric growth. Appl. Phys. Lett. 98(15), 1814 (2011). https://doi.org/10.1063/1.3579142
- W.-H. Xie, S.F. Yin, B. Li, Y.-P. Cao, X.-Q. Feng, Three-dimensional morphological wrinkling of cylindrical soft tissues. Acta Phys. Sin. 65(18), 188704 (2016). https://doi.org/10.7498/aps.65.188704
- W.-H. Xie, B. Li, Y.-P. Cao, X.-Q. Feng, Effects of internal pressure and surface tension on the growth-induced wrinkling of mucosae. J. Mech. Behav. Biomed. Mater. 29, 594–601 (2014). https://doi.org/10.1016/j.jmbbm.2013.05.009
- J. Yin, G.J. Gerling, X. Chen, Mechanical modeling of a wrinkled fingertip immersed in water. Acta Biomater. 6(4), 1487–1496 (2010). https://doi.org/10.1016/j.actbio.2009.10.025
- A.L. Schwarz, Koch, Phase and electron microscopic observations of osmotically induced wrinkling and the role of endocytotic vesicles in the plasmolysis of the gram-negative cell wall. Microbiology 141(12), 3161–3170 (1995). https://doi.org/10.1099/13500872-141-12-3161
- H.M. Poling, D. Wu, N. Brown, M. Baker, T.A. Hausfeld et al., Mechanically induced development and maturation of human intestinal organoids in vivo. Nat. Biomed. Eng. 2(6), 429–442 (2018). https://doi.org/10.1038/s41551-018-0243-9
- A.C. Trindade, J.P. Canejo, L.F.V. Pinto, P. Patrício, P. Brogueira, P.I.C. Teixeira, M.H. Godinho, Wrinkling labyrinth patterns on elastomeric janus particles. Macromolecules 44(7), 2220–2228 (2011). https://doi.org/10.1021/ma1025169
- Z.-C. Shao, Y. Zhao, W. Zhang, Y. Cao, X.-Q. Feng, Curvature induced hierarchical wrinkling patterns in soft bilayers. Soft Matter 12(38), 7977–7982 (2016). https://doi.org/10.1039/C6SM01088A
- A.C. Trindade, J.P. Canejo, P.I.C. Teixeira, P. Patrício, M.H. Godinho, First curl, then wrinkle. Macromol. Rapid Commun. 34(20), 1618–1622 (2013). https://doi.org/10.1002/marc.201300436
- K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nested self-similar wrinkling patterns in skins. Nat. Mater. 4(4), 293–297 (2005). https://doi.org/10.1038/nmat1342
- A. Takei, L. Jin, H. Fujita, A. Takei, H. Fujita, L. Jin, High-aspect-ratio ridge structures induced by plastic deformation as a novel microfabrication technique. ACS Appl. Mater. Interfaces 8(36), 24230–24237 (2016). https://doi.org/10.1021/acsami.6b07957
- X. Yang, J. Yin, X. Han, C.H. Lu, Surface wrinkling on monodispersed polystyrene microspheres. Acta Polym. Sin. 3, 337–344 (2016). https://doi.org/10.11777/j.issn1000-3304.2016.15214
- D. Wang, B. Sheng, X. Wu, Y. Huang, L. Peng, B. Xu, B. Li, Z. Ni, Self-assembly ring wrinkles formed on the surface of polydimethylsiloxane cylinders. Mater. Res. Express 6(9), 095312 (2019). https://doi.org/10.1088/2053-1591/ab2f23
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- M. Li, D. Joung, B. Hughes, S.D. Waldman, J.A. Kozinski, D.K. Hwang, Wrinkling non-spherical particles and its application in cell attachment promotion. Sci. Rep. 6, 30463 (2016). https://doi.org/10.1038/srep30463
- M. Götz, W.B. Huttner, The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6(10), 777–788 (2005). https://doi.org/10.1038/nrm1739
- R. Stahl, T. Walcher, C. De Juan Romero, G.A. Pilz, S. Cappello et al., Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153(3), 535–549 (2013). https://doi.org/10.1016/j.cell.2013.03.027
- A. Goriely, M.G.D. Geers, G.A. Holzapfel, J. Jayamohan, A. Jérusalem et al., Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 14(5), 931–965 (2015). https://doi.org/10.1007/s10237-015-0662-4
- F. An, P. Zhou, C. Lu, Y. Liu, Tuning the surface grooves of carbon fibers by dry-jet gel-spinning. Carbon 143, 200–203 (2019). https://doi.org/10.1016/j.carbon.2018.11.009
- Y. Zhang, W. Zhang, G. Ye, Q. Tan, Y. Zhao et al., Core–sheath stretchable conductive fibers for safe underwater wearable electronics. Adv. Mater. Technol. (2019). https://doi.org/10.1002/admt.201900880
- Y. Wei, S. Chen, X. Yuan, P. Wang, L. Liu, Multiscale wrinkled microstructures for piezoresistive fibers. Adv. Funct. Mater. 26(28), 5078–5085 (2016). https://doi.org/10.1002/adfm.201600580
- H. Wang, Z. Liu, J. Ding, X. Lepró, S. Fang et al., Downsized sheath–core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv. Mater. 28(25), 4998–5007 (2016). https://doi.org/10.1002/adma.201600405
- F. Jia, Y.P. Cao, Y. Zhao, X.Q. Feng, Buckling and surface wrinkling of an elastic graded cylinder with elastic modulus arbitrarily varying along radial direction. Int. J. Appl. Mech. 06(01), 1450003 (2014). https://doi.org/10.1142/s1758825114500033
- B. Li, Y. Li, G.-K. Xu, X.-Q. Feng, Surface patterning of soft polymer film-coated cylinders via an electric field. J. Phys.: Condens. Matter 21(44), 445006 (2009). https://doi.org/10.1088/0953-8984/21/44/445006
- E. Corona, L.H. Lee, S. Kyriakides, Yield anisotropy effects on buckling of circular tubes under bending. Int. J. Solids Struct. 43(22), 7099–7118 (2006). https://doi.org/10.1016/j.ijsolstr.2006.03.005
- F.C. Bardi, S. Kyriakides, H.D. Yun, Plastic buckling of circular tubes under axial compression—Part II: analysis. Int. J. Mech. Sci. 48(8), 842–854 (2006). https://doi.org/10.1016/j.ijmecsci.2006.03.002
- F.C. Bardi, S. Kyriakides, Plastic buckling of circular tubes under axial compression—Part I: experiments. Int. J. Mech. Sci. 48(8), 830–841 (2006). https://doi.org/10.1016/j.ijmecsci.2006.03.005
- H. Yang, Y. Lin, Wrinkling analysis for forming limit of tube bending processes. J. Mater. Process. Technol. 152(3), 363–369 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.410
- M. Brojan, D. Terwagne, R. Lagrange, P.M. Reis, Wrinkling crystallography on spherical surfaces. Proc. Natl Acad. Sci. USA 112(1), 14–19 (2015). https://doi.org/10.1073/pnas.1411559112
- P.-Y. Chen, M. Zhang, M. Liu, I.Y. Wong, R.H. Hurt, Ultrastretchable graphene-based molecular barriers for chemical protection, detection, and actuation. ACS Nano 12(1), 234–244 (2018). https://doi.org/10.1021/acsnano.7b05961
- F. Yin, J. Yang, P. Ji, H. Peng, Y. Tang, W. Yuan, Bioinspired pretextured reduced graphene oxide patterns with multiscale topographies for high-performance mechanosensors. ACS Appl. Mater. Interfaces 11(20), 18645–18653 (2019). https://doi.org/10.1021/acsami.9b04509
- D. Vella, A. Ajdari, A. Vaziri, A. Boudaoud, Wrinkling of pressurized elastic shells. Phys. Rev. Lett. 107(17), 174301 (2011). https://doi.org/10.1103/PhysRevLett.107.174301
- G.M. Grason, B. Davidovitch, Universal collapse of stress and wrinkle-to-scar transition in spherically confined crystalline sheets. Proc. Natl Acad. Sci. USA 110(32), 12893–12898 (2013). https://doi.org/10.1073/pnas.1301695110
- J.D. Paulsen, E. Hohlfeld, H. King, J. Huang, Z. Qiu, T.P. Russell, N. Menon, D. Vella, B. Davidovitch, Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. Proc. Natl Acad. Sci. USA 113(5), 1144–1149 (2016). https://doi.org/10.1073/pnas.1521520113
- M. Li, N. Hakimi, R. Perez, S. Waldman, J.A. Kozinski, D.K. Hwang, Microarchitecture for a three-dimensional wrinkled surface platform. Adv. Mater. 27(11), 1880–1886 (2015). https://doi.org/10.1002/adma.201405851
- S. Deng, E. Gao, Y. Wang, S. Sen, S.T. Sreenivasan, S. Behura, P. Král, Z. Xu, V. Berry, Confined, oriented, and electrically anisotropic graphene wrinkles on bacteria. ACS Nano 10(9), 8403–8412 (2016). https://doi.org/10.1021/acsnano.6b03214
- C.M. González-Henríquez, M.A. Sarabia-Vallejos, J. Rodriguez-Hernandez, Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog. Polym. Sci. 94, 57–116 (2019). https://doi.org/10.1016/j.progpolymsci.2019.03.001
- N. Vargas-Alfredo, H. Reinecke, A. Gallardo, A. del Campo, J. Rodríguez-Hernández, Fabrication of 3D printed objects with controlled surface chemistry and topography. Eur. Polym. J. 98, 21–27 (2018). https://doi.org/10.1016/j.eurpolymj.2017.10.033
- Y. Nishigami, H. Ito, S. Sonobe, M. Ichikawa, Non-periodic oscillatory deformation of an actomyosin microdroplet encapsulated within a lipid interface. Sci. Rep. 6(1), 18964 (2016). https://doi.org/10.1038/srep18964
- H. Ito, Y. Nishigami, S. Sonobe, M. Ichikawa, Wrinkling of a spherical lipid interface induced by actomyosin cortex. Phys. Rev. E 92(6), 062711 (2015). https://doi.org/10.1103/PhysRevE.92.062711
- L.R.J. Scarratt, B.S. Hoatson, E.S. Wood, B.S. Hawkett, C. Neto, Durable superhydrophobic surfaces via spontaneous wrinkling of Teflon AF. ACS Appl. Mater. Interfaces 8(10), 6743–6750 (2016). https://doi.org/10.1021/acsami.5b12165
- C.S. Ware, T. Smith-Palmer, S. Peppou-Chapman, L.R.J. Scarratt, E.M. Humphries, D. Balzer, C. Neto, Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces. ACS Appl. Mater. Interfaces 10(4), 4173–4182 (2018). https://doi.org/10.1021/acsami.7b14736
- J. Khare, S. Zhou, Yang, Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves. Langmuir 25(21), 12794–12799 (2009). https://doi.org/10.1021/la901736n
- Z. Li, Z. Zhen, M. Chai, X. Zhao, Y. Zhong, H. Zhu, Transparent electrothermal film defoggers and antiicing coatings based on wrinkled graphene. Small 16(4), 1905945 (2020). https://doi.org/10.1002/smll.201905945
- V. Parihar, S. Bandyopadhyay, S. Das, S. Dasgupta, Anisotropic electrowetting on wrinkled surfaces: enhanced wetting and dependency on initial wetting state. Langmuir 34(5), 1844–1854 (2018). https://doi.org/10.1021/acs.Langmuir7b03467
- G. Lin, Q. Zhang, C. Lv, Y. Tang, J. Yin, Small degree of anisotropic wetting on self-similar hierarchical wrinkled surfaces. Soft Matter 14(9), 1517–1529 (2018). https://doi.org/10.1039/C7SM02208E
- R. Prathapan, J.D. Berry, A. Fery, G. Garnier, R.F. Tabor, Decreasing the wettability of cellulose nanocrystal surfaces using wrinkle-based alignment. ACS Appl. Mater. Interfaces 9(17), 15202–15211 (2017). https://doi.org/10.1021/acsami.7b03094
- S. Hiltl, A. Böker, Wetting phenomena on (gradient) wrinkle substrates. Langmuir 32(35), 8882–8888 (2016). https://doi.org/10.1021/acs.Langmuir6b02364
- W.-K. Lee, W.-B. Jung, D. Rhee, J. Hu, Y.-A.L. Lee, C. Jacobson, H.-T. Jung, T.W. Odom, Monolithic polymer nanoridges with programmable wetting transitions. Adv. Mater. 30(32), 1706657 (2018). https://doi.org/10.1002/adma.201706657
- S. Zang, N. Ryu, Q. Pugno, Q. Wang, M. Tu, X. Buehler, Zhao, Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013). https://doi.org/10.1038/nmat3542
- P.-C. Lin, S. Yang, Mechanically switchable wetting on wrinkled elastomers with dual-scale roughness. Soft Matter 5(5), 1011–1018 (2009). https://doi.org/10.1039/B814145B
- W.-K. Lee, W.-B. Jung, S.R. Nagel, T.W. Odom, Stretchable superhydrophobicity from monolithic, three-dimensional hierarchical wrinkles. Nano Lett. 16(6), 3774–3779 (2016). https://doi.org/10.1021/acs.nanolett.6b01169
- Y.H. Kim, Y.M. Lee, J.Y. Lee, M.J. Ko, P.J. Yoo, Hierarchical nanoflake surface driven by spontaneous wrinkling of polyelectrolyte/metal complexed films. ACS Nano 6(2), 1082–1093 (2012). https://doi.org/10.1021/nn203226k
- B.N. Sahoo, J. Woo, H. Algadi, J. Lee, T. Lee, Superhydrophobic, transparent, and stretchable 3D hierarchical wrinkled film-based sensors for wearable applications. Adv. Mater. Technol. 4(10), 1900230 (2019). https://doi.org/10.1002/admt.201900230
- S. Gaume, N. Gorb, Rowe, Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. N. Phytol. 156(3), 479–489 (2002). https://doi.org/10.1046/j.1469-8137.2002.00530.x
- X. Yan, Y. Jin, X. Chen, C. Zhang, C. Hao, Z. Wang, Nature-inspired surface topography: design and function. Sci. China Phys. Mech. Astron. 63, 224601 (2020). https://doi.org/10.1007/s11433-019-9643-0
- K.-C. Park, P. Kim, A. Grinthal, N. He, D. Fox, J.C. Weaver, J. Aizenberg, Condensation on slippery asymmetric bumps. Nature 531, 78 (2016). https://doi.org/10.1038/nature16956
- F. Bernardeschi, G. Greco, A. Ciofani, V. Marino, B. Mattoli, L. Mazzolai, Beccai, A soft, stretchable and conductive biointerface for cell mechanobiology. Biomed. Microdevices 17, 46 (2015). https://doi.org/10.1007/s10544-015-9950-0
- W.-G. Bae, H. Eui Jeong, J. Kim, Multiscale engineered hierarchical structures with precisely controlled sizes for bio-inspired cell culture. Mater. Lett. 159, 213–217 (2015). https://doi.org/10.1016/j.matlet.2015.06.122
- M.R. Aufan, Y. Sumi, S. Kim, J.Y. Lee, Facile synthesis of conductive polypyrrole wrinkle topographies on polydimethylsiloxane via a swelling–deswelling process and their potential uses in tissue engineering. ACS Appl. Mater. Interfaces 7(42), 23454–23463 (2015). https://doi.org/10.1021/acsami.5b09355
- W.-G. Bae, J. Kim, Y.-H. Choung, Y. Chung, K.Y. Suh, C. Pang, J.H. Chung, H.E. Jeong, Bio-inspired configurable multiscale extracellular matrix-like structures for functional alignment and guided orientation of cells. Biomaterials 69, 158–164 (2015). https://doi.org/10.1016/j.biomaterials.2015.08.006
- K. Saha, J. Kim, E. Irwin, J. Yoon, F. Momin, V. Trujillo, D.V. Schaffer, K.E. Healy, R.C. Hayward, Surface creasing instability of soft polyacrylamide cell culture substrates. Biophys. J. 99(12), 94–96 (2010). https://doi.org/10.1016/j.bpj.2010.09.045
- J. Kim, J. Yoon, R.C. Hayward, Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat. Mater. 9(2), 159–164 (2010). https://doi.org/10.1038/nmat2606
- G.A. Dunn, J.P. Heath, A new hypothesis of contact guidance in tissue cells. Exp. Cell Res. 101(1), 1–14 (1976). https://doi.org/10.1016/0014-4827(76)90405-5
- J. Dow, P. Clark, P. Connolly, A. Curtis, C. Wilkinson, Novel methods for the guidance and monitoring of single cells and simple networks in culture. J. Cell. Sci. Suppl. 8, 55–79 (1987). https://doi.org/10.1242/jcs.1987
- J. Shintake, S. Rosset, B. Schubert, D. Floreano, H. Shea, Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28(2), 231–238 (2016). https://doi.org/10.1002/adma.201504264
- J. Tang, J. Li, J.J. Vlassak, Z. Suo, Adhesion between highly stretchable materials. Soft Matter 12(4), 1093–1099 (2016). https://doi.org/10.1039/C5SM02305J
- C. Kleinstreuer, J. Li, J. Koo, Microfluidics of nano-drug delivery. Int. J. Heat Mass Transf. 51(23), 5590–5597 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.043
- S. Xu, Z. Yan, K.-I. Jang, W. Huang, H. Fu et al., Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347(6218), 154–159 (2015). https://doi.org/10.1126/science.1260960
- D.-H. Kim, J.-H. Ahn, W. Choi, H.-S. Kim, T.-H. Kim et al., Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008). https://doi.org/10.1126/science.1154367
- J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010). https://doi.org/10.1126/science.1182383
- D.-H. Kim, J. Song, W.M. Choi, H.-S. Kim, R.-H. Kim et al., Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl Acad. Sci. USA 105(48), 18675–18680 (2008). https://doi.org/10.1073/pnas.0807476105
- B. Xu, D. Chen, R.C. Hayward, Mechanically gated electrical switches by creasing of patterned metal/elastomer bilayer films. Adv. Mater. 26(25), 4381–4385 (2014). https://doi.org/10.1002/adma.201400992
- C. Wang, B. Xu, J. Terry, S. Smith, A. Walton, S. Wang, H. Lv, Y. Li, Flexible, strain gated logic transducer arrays enabled by initializing surface instability on elastic bilayers. APL Mater. 7, 031509 (2019). https://doi.org/10.1063/1.5079403
- T. Ouchi, R.C. Hayward, Harnessing multiple surface deformation modes for switchable conductivity surfaces. ACS Appl. Mater. Interfaces 12(8), 10031–10038 (2020). https://doi.org/10.1021/acsami.9b22662
- T.-H. Chang, Y. Tian, C. Li, X. Gu, K. Li et al., Stretchable graphene pressure sensors with Shar-Pei-like hierarchical wrinkles for collision-aware surgical robotics. ACS Appl. Mater. Interfaces 11(10), 10226–10236 (2019). https://doi.org/10.1021/acsami.9b00166
- Y. Wang, J. Qiu, C. Jia, J. Wang, K. Deng, Pan, Wavelength-gradient graphene films for pressure-sensitive sensors. Adv. Mater. Technol. 4(1), 1800363 (2019). https://doi.org/10.1002/admt.201800363
- J. Xu, J. Chen, M. Zhang, J.-D. Hong, G. Shi, Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes. Adv. Electron. Mater. 2, 1600022 (2016). https://doi.org/10.1002/aelm.201600022
- D.O. Carpenter, K. Arcaro, D.C. Spink, Understanding the human health effects of chemical mixtures. Environ. Health Perspect. 110(1), 25–42 (2002). https://doi.org/10.1289/ehp.02110s125
- M. Röösli, Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: a systematic review. Environ. Res. 107(2), 277–287 (2008). https://doi.org/10.1016/j.envres.2008.02.003
- J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets. Nano Lett. 8(8), 2458–2462 (2008). https://doi.org/10.1021/nl801457b
- M.A. Creighton, W. Zhu, F. van Krieken, R.A. Petteruti, H. Gao, R.H. Hurt, Three-dimensional graphene-based microbarriers for controlling release and reactivity in colloidal liquid phases. ACS Nano 10(2), 2268–2276 (2016). https://doi.org/10.1021/acsnano.5b06963
- Z. Wang, X. Lv, Y. Chen, D. Liu, X. Xu, G.T.R. Palmore, R.H. Hurt, Crumpled graphene nanoreactors. Nanoscale 7(22), 10267–10278 (2015). https://doi.org/10.1039/C5NR00963D
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- S. Yuan, S. Luan, S. Yan, H. Shi, J. Yin, Facile fabrication of lubricant-infused wrinkling surface for preventing thrombus formation and infection. ACS Appl. Mater. Interfaces 7(34), 19466–19473 (2015). https://doi.org/10.1021/acsami.5b05865
- H. Lin, Y. Wang, Y. Gan, H. Hou, J. Yin, X. Jiang, Simultaneous formation of a self-wrinkled surface and silver nanoparticles on a functional photocuring coating. Langmuir 31(43), 11800–11808 (2015). https://doi.org/10.1021/acs.Langmuir5b03484
- F. Zou, H. Zhou, D.Y. Jeong, J. Kwon, S.U. Eom, T.J. Park, S.W. Hong, J. Lee, Wrinkled surface-mediated antibacterial activity of graphene oxide nanosheets. ACS Appl. Mater. Interfaces 9(2), 1343–1351 (2017). https://doi.org/10.1021/acsami.6b15085
- K. Efimenko, J. Finlay, M.E. Callow, J.A. Callow, J. Genzer, Development and testing of hierarchically wrinkled coatings for marine antifouling. ACS Appl. Mater. Interfaces 1(5), 1031–1040 (2009). https://doi.org/10.1021/am9000562
- J. Braam, In touch: plant responses to mechanical stimuli. N. Phytol. 165(2), 373–389 (2005). https://doi.org/10.1111/j.1469-8137.2004.01263.x
- W. Wong, M. Li, D. Nisbet, V. Craig, Z. Wang, A. Tricoli, Mimosa origami: a nanostructure-enabled directional self-organization regime of materials. Sci. Adv. 2, e1600417 (2016). https://doi.org/10.1126/sciadv.1600417
- L. Ionov, Polymeric actuators. Langmuir 31(18), 5015–5024 (2015). https://doi.org/10.1021/la503407z
- L. Ionov, Hydrogel-based actuators: possibilities and limitations. Mater. Today 17(10), 494–503 (2014). https://doi.org/10.1016/j.mattod.2014.07.002
- B. Li, T. Du, B. Yu, J. van der Gucht, F. Zhou, Caterpillar-inspired design and fabrication of a self-walking actuator with anisotropy, gradient, and instant response. Small 11(28), 3494–3501 (2015). https://doi.org/10.1002/smll.201500577
- Y. Qiu, M. Wang, W. Zhang, Y. Liu, Y.V. Li, K. Pan, An asymmetric graphene oxide film for developing moisture actuators. Nanoscale 10(29), 14060–14066 (2018). https://doi.org/10.1039/C8NR01785A
- K. Jun, D. Kim, S. Ryu, I.-K. Oh, Surface modification of anisotropic dielectric elastomer actuators with uni- and bi-axially wrinkled carbon electrodes for wettability control. Sci. Rep. 7(1), 6091 (2017). https://doi.org/10.1038/s41598-017-06274-0
- M. Watanabe, H. Shirai, T. Hirai, Wrinkled polypyrrole electrode for electroactive polymer actuators. J. Appl. Phys. 92(8), 4631–4637 (2002). https://doi.org/10.1063/1.1505674
- J. Ki-Woo, K. Jong-Nam, J. Jin-Young, O. Il-Kwon, Wrinkled graphene–AgNWS hybrid electrodes for smart window. Micromachines 8(2), 43 (2017). https://doi.org/10.3390/mi8020043
- C. Xu, G.T. Stiubianu, A.A. Gorodetsky, Adaptive infrared-reflecting systems inspired by cephalopods. Science 359(6383), 1495–1500 (2018). https://doi.org/10.1126/science.aar5191
- Y. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013). https://doi.org/10.1038/nature12083
- J. Jung, V. Xiao, C. Malyarchuk, M. Lu, Z. Li, J. Liu, Y. Yoon, J.A. Huang, Rogers, Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl Acad. Sci. USA 108(5), 1788–1793 (2011). https://doi.org/10.1073/pnas.1015440108
- D. Chandra, S. Yang, P.-C. Lin, Strain responsive concave and convex microlens arrays. Appl. Phys. Lett. 91(25), 251912 (2007). https://doi.org/10.1063/1.2827185
- D. Terwagne, M. Brojan, P.M. Reis, Smart morphable surfaces for aerodynamic drag control. Adv. Mater. 26(38), 6608–6611 (2014). https://doi.org/10.1002/adma.201401403
- H.F. Chan, R. Zhao, G.A. Parada, H. Meng, K.W. Leong, L.G. Griffith, X. Zhao, Folding artificial mucosa with cell-laden hydrogels guided by mechanics models. Proc. Natl Acad. Sci. USA 115(29), 7503–7508 (2018). https://doi.org/10.1073/pnas.1802361115
References
G.T. Eisenhoffer, P.D. Loftus, M. Yoshigi, H. Otsuna, C.-B. Chien, P.A. Morcos, J. Rosenblatt, Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484(7395), 546–549 (2012). https://doi.org/10.1038/nature10999
L. Wang, C.E. Castro, M.C. Boyce, Growth strain-induced wrinkled membrane morphology of white blood cells. Soft Matter 7(24), 11319–11324 (2011). https://doi.org/10.1039/C1SM06637D
M.B. Hallett, C.J. von Ruhland, S. Dewitt, Chemotaxis and the cell surface-area problem. Nat. Rev. Mol. Cell Biol. 9, 662 (2008). https://doi.org/10.1038/nrm2419-c1
M. Trejo, C. Douarche, V. Bailleux, C. Poulard, S. Mariot, C. Regeard, E. Raspaud, Elasticity and wrinkled morphology of Bacillus subtilis pellicles. Proc. Natl Acad. Sci. USA 110(6), 2011–2016 (2013). https://doi.org/10.1073/pnas.1217178110
J.N. Wilking, V. Zaburdaev, M. De Volder, R. Losick, M.P. Brenner, D.A. Weitz, Liquid transport facilitated by channels in Bacillus subtilis biofilms. Proc. Natl Acad. Sci. USA 110(3), 848–852 (2013). https://doi.org/10.1073/pnas.1216376110
S. Budday, E. Kuhl, J.W. Hutchinson, Period-doubling and period-tripling in growing bilayered systems. Philos. Mag. 95(28–30), 3208–3224 (2015). https://doi.org/10.1080/14786435.2015.1014443
B.J. Casey, J.N. Giedd, K.M. Thomas, Structural and functional brain development and its relation to cognitive development. Biol. Psychol. 54(1), 241–257 (2000). https://doi.org/10.1016/S0301-0511(00)00058-2
M.H. Johnson, Functional brain development in humans. Nat. Rev. Neurosci. 2(7), 475–483 (2001). https://doi.org/10.1038/35081509
T. Tallinen, J.S. Biggins, L. Mahadevan, Surface sulci in squeezed soft solids. Phys. Rev. Lett. 110(2), 024302 (2013). https://doi.org/10.1103/PhysRevLett.110.024302
V. Fernández, C. Llinares-Benadero, V. Borrell, Cerebral cortex expansion and folding: What have we learned? EMBO J. 35(10), 1021–1044 (2016). https://doi.org/10.15252/embj.201593701
P.D. Griffiths, J. Morris, J.-C. Larroche, M. Reeves, in Section 3—Sectional Anatomy of the Postnatal Brain (Mosby, Philadelphia, 2010), pp. 153–260. https://doi.org/10.1016/B978-0-323-05296-2.50006-0
A.E. Shyer, T. Tallinen, N.L. Nerurkar, Z. Wei, E.S. Gil, D.L. Kaplan, C.J. Tabin, L. Mahadevan, Villification: how the gut gets its villi. Science 342(6155), 212–218 (2013). https://doi.org/10.1126/science.1238842
K.D. Walton, Å. Kolterud, M.J. Czerwinski, M.J. Bell, A. Prakash et al., Hedgehog-responsive mesenchymal clusters direct patterning and emergence of intestinal villi. Proc. Natl Acad. Sci. USA 109(39), 15817–15822 (2012). https://doi.org/10.1073/pnas.1205669109
M. Ben Amar, F. Jia, Anisotropic growth shapes intestinal tissues during embryogenesis. Proc. Natl Acad. Sci. USA 110(26), 10525–10530 (2013). https://doi.org/10.1073/pnas.1217391110
K.O. Leslie, M.R. Wick, 1: Lung anatomy, in Practical Pulmonary Pathology: A Diagnostic Approach (3rd edn) (Elsevier, 2018), pp. 1–14.e2. https://doi.org/10.1016/B978-0-323-44284-8.00001-6
H. Itoh, M. Nishino, H. Hatabu, Architecture of the lung: morphology and function. J. Thorac. Imaging 19(4), 221–227 (2004). https://doi.org/10.1097/01.rti.0000142835.06988.b0
B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Surface wrinkling of mucosa induced by volumetric growth: theory, simulation and experiment. J. Mech. Phys. Solids 59(4), 758–774 (2011). https://doi.org/10.1016/j.jmps.2011.01.010
L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24(8), 4114–4119 (2008). https://doi.org/10.1021/la703821h
U. Nath, B. Crawford, R. Carpenter, E. Coen, Genetic control of surface curvature. Science 299, 1404–1407 (2003). https://doi.org/10.1126/science.1079354
E. Sharon, M. Marder, H. Swinney, Leaves, flowers and garbage bags: making waves. Am. Sci. 92, 254–261 (2004). https://doi.org/10.1511/2004.47.932
J. Yin, X. Chen, I. Sheinman, Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems. J. Mech. Phys. Solids 57(9), 1470–1484 (2009). https://doi.org/10.1016/j.jmps.2009.06.002
T. Tallinen, J.Y. Chung, J.S. Biggins, L. Mahadevan, Gyrification from constrained cortical expansion. Proc. Natl Acad. Sci. USA 111(35), 12667–12672 (2014). https://doi.org/10.1073/pnas.1406015111
S. Okazaki, Resolution limits of optical lithography. J. Vac. Sci. Technol. B 9(6), 2829–2833 (1991). https://doi.org/10.1116/1.585650
B.J. Lin, Optical lithography—present and future challenges. C. R. Phys. 7(8), 858–874 (2006). https://doi.org/10.1016/j.crhy.2006.10.005
H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek, J. Fluitman, A survey on the reactive ion etching of silicon in microtechnology. J. Micromech. Microeng. 6(1), 14–28 (1996). https://doi.org/10.1088/0960-1317/6/1/002
S. Mukhopadhyay, M.I. Jones, S.R. Hallett, Compressive failure of laminates containing an embedded wrinkle; experimental and numerical study. Composites A 73, 132–142 (2015). https://doi.org/10.1016/j.compositesa.2015.03.012
M.W.B. Hayman, C. Berggreen, R. Pettersson, The effect of face sheet wrinkle defects on the strength of FRP sandwich structures. J. Sandw. Struct. Mater. 9(4), 377–404 (2007). https://doi.org/10.1177/1099636207069250
P. Hallander, M. Akermo, C. Mattei, M. Petersson, T. Nyman, An experimental study of mechanisms behind wrinkle development during forming of composite laminates. Composites A 50, 54–64 (2013). https://doi.org/10.1016/j.compositesa.2013.03.013
A. Schweikart, A. Fery, Controlled wrinkling as a novel method for the fabrication of patterned surfaces. Microchim. Acta 165(3–4), 249–263 (2009). https://doi.org/10.1007/s00604-009-0153-3
J. Rodríguez-Hernández, Wrinkled interfaces: taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015). https://doi.org/10.1016/j.progpolymsci.2014.07.008
Q. Wang, X. Zhao, Beyond wrinkles: multimodal surface instabilities for multifunctional patterning. MRS Bull. 41(2), 115–122 (2016). https://doi.org/10.1557/mrs.2015.338
Y.L. Tan, Z.H. Jiang, Z.Y. Chu, Surface wrinkles based on polymer substrate: biomimetic construction, micro-regulation and applications. Acta Polym. Sin. 11, 1508 (2016). https://doi.org/10.11777/j.issn1000-3304.2016.16136
X. Hu, Y. Dou, J. Li, Z. Liu, Buckled structures: fabrication and applications in wearable electronics. Small 15(32), 1804805 (2019). https://doi.org/10.1002/smll.201804805
T. Ohzono, H. Monobe, Microwrinkles: shape-tunability and applications. J. Colloid Interface Sci. 368(1), 1–8 (2012). https://doi.org/10.1016/j.jcis.2011.11.075
P.-Y. Chen, M. Liu, Z. Wang, R.H. Hurt, I.Y. Wong, From flatland to space land: higher dimensional patterning with two-dimensional materials. Adv. Mater. 29(23), 1605096 (2017). https://doi.org/10.1002/adma.201605096
N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393(6681), 146–149 (1998). https://doi.org/10.1038/30193
S.J. Kim, D.W. Kim, J. Lim, S.-Y. Cho, S.O. Kim, H.-T. Jung, Large-area buckled MoS2 films on the graphene substrate. ACS Appl. Mater. Interfaces 8(21), 13512–13519 (2016). https://doi.org/10.1021/acsami.6b01828
L. Zhang, X. Lang, A. Hirata, M. Chen, Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement. ACS Nano 5(6), 4407–4413 (2011). https://doi.org/10.1021/nn201443p
X. Yang, Y. Zhao, J. Xie, X. Han, J. Wang et al., Bioinspired fabrication of free-standing conducting films with hierarchical surface wrinkling patterns. ACS Nano 10(3), 3801–3808 (2016). https://doi.org/10.1021/acsnano.6b00509
Y. Wang, Z. Li, J. Xiao, Stretchable thin film materials: fabrication, application and mechanics. J. Electron. Packag. (2016). https://doi.org/10.1115/1.4032984
M. Guvendiren, J.A. Burdick, The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31(25), 6511–6518 (2010). https://doi.org/10.1016/j.biomaterials.2010.05.037
A. Chen, D.K. Lieu, L. Freschauf, V. Lew, H. Sharma et al., Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives. Adv. Mater. 23(48), 5785–5791 (2011). https://doi.org/10.1002/adma.201103463
H.S. Kim, A.J. Crosby, Solvent-responsive surface via wrinkling instability. Adv. Mater. 23(36), 4188–4192 (2011). https://doi.org/10.1002/adma.201101477
C. Zong, Y. Zhao, H. Ji, X. Han, J. Xie, J. Wang, Y. Cao, S. Jiang, C. Lu, Tuning and erasing surface wrinkles by reversible visible-light-induced photoisomerization. Angew. Chem. Int. Ed. 55(12), 3931–3935 (2016). https://doi.org/10.1002/anie.201510796
J. Bai, L. Zhang, H. Hou, Z. Shi, J. Yin, X. Jiang, Light-written reversible 3D fluorescence and topography dual-pattern with memory and self-healing abilities. Research 2019, 11 (2019). https://doi.org/10.34133/2019/2389254
P.-Y. Chen, J. Sodhi, Y. Qiu, T.M. Valentin, R.S. Steinberg, Z. Wang, R.H. Hurt, I.Y. Wong, Multiscale graphene topographies programmed by sequential mechanical deformation. Adv. Mater. 28(18), 3564–3571 (2016). https://doi.org/10.1002/adma.201506194
Y. Li, S. Dai, J. John, K.R. Carter, Superhydrophobic surfaces from hierarchically structured wrinkled polymers. ACS Appl. Mater. Interfaces 5(21), 11066–11073 (2013). https://doi.org/10.1021/am403209r
W.-K. Lee, C.J. Engel, M.D. Huntington, J. Hu, T.W. Odom, Controlled three-dimensional hierarchical structuring by memory-based, sequential wrinkling. Nano Lett. 15(8), 5624–5629 (2015). https://doi.org/10.1021/acs.nanolett.5b02394
X. Chen, J. Yin, Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication. Soft Matter 6(22), 5667–5680 (2010). https://doi.org/10.1039/C0SM00401D
B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8(21), 5728–5745 (2012). https://doi.org/10.1039/C2SM00011C
C. Li, X. Zhang, Z. Cao, Triangular and Fibonacci number patterns driven by stress on core/shell microstructures. Science 309(5736), 909–911 (2005). https://doi.org/10.1126/science.1113412
J. Yin, E. Bar-Kochba, X. Chen, Mechanical self-assembly fabrication of gears. Soft Matter 5(18), 3469–3474 (2009). https://doi.org/10.1039/B904635F
Z.F. Liu, S. Fang, F.A. Moura, J.N. Ding, N. Jiang et al., Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 349(6246), 400–404 (2015). https://doi.org/10.1126/science.aaa7952
Y. Tan, B. Hu, Z. Chu, W. Wu, Bioinspired superhydrophobic papillae with tunable adhesive force and ultralarge liquid capacity for microdroplet manipulation. Adv. Funct. Mater. 29(15), 1900266 (2019). https://doi.org/10.1002/adfm.201900266
Y. Tan, Z. Chu, Z. Jiang, T. Hu, G. Li, J. Song, Gyrification-inspired highly convoluted graphene oxide patterns for ultralarge deforming actuators. ACS Nano 11(7), 6843–6852 (2017). https://doi.org/10.1021/acsnano.7b01937
G. Shin, I. Jung, V. Malyarchuk, J. Song, S. Wang, H.C. Ko, Y. Huang, J.S. Ha, J.A. Rogers, Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras. Small 6(7), 851–856 (2010). https://doi.org/10.1002/smll.200901350
E.P. Chan, A.J. Crosby, Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18(24), 3238–3242 (2006). https://doi.org/10.1002/adma.200601595
Y. Tan, J. Yan, Z. Chu, Thermal-shrinking-induced ring-patterned boron nitride wrinkles on carbon fibers. Carbon 152, 532–536 (2019). https://doi.org/10.1016/j.carbon.2019.06.058
H. Yuan, K. Wu, J. Zhang, Y. Wang, G. Liu, J. Sun, Curvature-controlled wrinkling surfaces for friction. Adv. Mater. 31(25), 1900933 (2019). https://doi.org/10.1002/adma.201900933
R. Wang, N. Jiang, J. Su, Q. Yin, Y. Zhang et al., A bi-sheath fiber sensor for giant tensile and torsional displacements. Adv. Funct. Mater. 27(35), 1702134 (2017). https://doi.org/10.1002/adfm.201702134
J. Song, Y. Tan, Z. Chu, M. Xiao, G. Li, Z. Jiang, J. Wang, T. Hu, Hierarchical reduced graphene oxide ridges for stretchable, wearable, and washable strain sensors. ACS Appl. Mater. Interfaces 11(1), 1283–1293 (2019). https://doi.org/10.1021/acsami.8b18143
Y. Li, X. Tian, S.-P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201907451
L. Pocivavsek, S.-H. Ye, J. Pugar, E. Tzeng, E. Cerda, S. Velankar, W.R. Wagner, Active wrinkles to drive self-cleaning: a strategy for anti-thrombotic surfaces for vascular grafts. Biomaterials 192, 226–234 (2019). https://doi.org/10.1016/j.biomaterials.2018.11.005
R. Wang, Z. Liu, G. Wan, T. Jia, C. Zhang et al., Controllable preparation of ordered and hierarchically buckled structures for inflatable tumor ablation, volumetric strain sensor, and communication via inflatable antenna. ACS Appl. Mater. Interfaces 11(11), 10862–10873 (2019). https://doi.org/10.1021/acsami.8b19241
T. Tallinen, J.Y. Chung, F. Rousseau, N. Girard, J. Lefèvre, L. Mahadevan, On the growth and form of cortical convolutions. Nat. Phys. 12, 588 (2016). https://doi.org/10.1038/nphys3632
E.S. Matsuo, T. Tanaka, Patterns in shrinking gels. Nature 358(6386), 482–485 (1992). https://doi.org/10.1038/358482a0
T. Tanaka, S.-T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, T. Amiya, Mechanical instability of gels at the phase transition. Nature 325(6107), 796–798 (1987). https://doi.org/10.1038/325796a0
M. Muller, M. Karg, A. Fortini, T. Hellweg, A. Fery, Wrinkle-assisted linear assembly of hard-core/soft-shell particles: impact of the soft shell on the local structure. Nanoscale 4(7), 2491–2499 (2012). https://doi.org/10.1039/C2NR11591C
Y. Sun, W.M. Choi, H. Jiang, Y.Y. Huang, J.A. Rogers, Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1(3), 201–207 (2006). https://doi.org/10.1038/nnano.2006.131
C. Cao, H.F. Chan, J. Zang, K.W. Leong, X. Zhao, Harnessing localized ridges for high-aspect-ratio hierarchical patterns with dynamic tunability and multifunctionality. Adv. Mater. 26(11), 1763–1770 (2014). https://doi.org/10.1002/adma.201304589
M. Guvendiren, J.A. Burdick, S. Yang, Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients. Soft Matter 6(22), 5795–5801 (2010). https://doi.org/10.1039/C0SM00317D
M.K. Kang, R. Huang, Effect of surface tension on swell-induced surface instability of substrate-confined hydrogel layers. Soft Matter 6(22), 5736–5742 (2010). https://doi.org/10.1039/C0SM00335B
Q. Wang, L. Zhang, X. Zhao, Creasing to cratering instability in polymers under ultrahigh electric fields. Phys. Rev. Lett. 106, 118301 (2011). https://doi.org/10.1103/PhysRevLett.106.118301
J. Yoon, J. Kim, R.C. Hayward, Nucleation, growth, and hysteresis of surface creases on swelled polymer gels. Soft Matter 6(22), 5807–5816 (2010). https://doi.org/10.1039/C0SM00372G
S. Cai, K. Bertoldi, H. Wang, Z. Suo, Osmotic collapse of a void in an elastomer: breathing, buckling and creasing. Soft Matter 6(22), 5770–5777 (2010). https://doi.org/10.1039/C0SM00451K
V. Trujillo, J. Kim, R.C. Hayward, Creasing instability of surface-attached hydrogels. Soft Matter 4(3), 564–569 (2008). https://doi.org/10.1039/B713263H
Y. Cao, J. Hutchinson, From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling. Proc. R. Soc. Lond. A 468, 94–115 (2012). https://doi.org/10.1098/rspa.2011.0384
Z. Wang, D. Tonderys, S.E. Leggett, E.K. Williams, M.T. Kiani et al., Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology. Carbon 97, 14–24 (2016). https://doi.org/10.1016/j.carbon.2015.03.040
P. Goel, S. Kumar, J. Sarkar, J.P. Singh, Mechanical strain induced tunable anisotropic wetting on buckled PDMS silver nanorods arrays. ACS Appl. Mater. Interfaces 7(16), 8419–8426 (2015). https://doi.org/10.1021/acsami.5b01530
D. Rhee, W.-K. Lee, T.W. Odom, Crack-free, soft wrinkles enable switchable anisotropic wetting. Angew. Chem. Int. Ed. 56(23), 6523–6527 (2017). https://doi.org/10.1002/anie.201701968
P.-Y. Chen, M. Liu, T.M. Valentin, Z. Wang, R. Spitz Steinberg, J. Sodhi, I.Y. Wong, R.H. Hurt, Hierarchical metal oxide topographies replicated from highly textured graphene oxide by intercalation templating. ACS Nano 10(12), 10869–10879 (2016). https://doi.org/10.1021/acsnano.6b05179
N. Gao, X. Zhang, S. Liao, H. Jia, Y. Wang, Polymer swelling induced conductive wrinkles for an ultrasensitive pressure sensor. ACS Macro Lett. 5(7), 823–827 (2016). https://doi.org/10.1021/acsmacrolett.6b00338
J. Hou, Q. Li, X. Han, C. Lu, Swelling/deswelling-induced reversible surface wrinkling on layer-by-layer multilayers. J. Phys. Chem. B 118(49), 14502–14509 (2014). https://doi.org/10.1021/jp508724n
S. Zeng, R. Li, S.G. Freire, V.M.M. Garbellotto, E.Y. Huang et al., Moisture-responsive wrinkling surfaces with tunable dynamics. Adv. Mater. 29(24), 1700828 (2017). https://doi.org/10.1002/adma.201700828
J.Y. Chung, A.J. Nolte, C.M. Stafford, Surface wrinkling: a versatile platform for measuring thin-film properties. Adv. Mater. 23(3), 349–368 (2011). https://doi.org/10.1002/adma.201001759
J. Genzer, J. Groenewold, Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2(4), 310–323 (2006). https://doi.org/10.1039/B516741H
D.-Y. Khang, H. Jiang, Y. Huang, J. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006). https://doi.org/10.1126/science.1121401
Z.Y. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53(9), 2101–2118 (2005). https://doi.org/10.1016/j.jmps.2005.03.007
J. Song, H. Jiang, Y. Huang, J.A. Rogers, Mechanics of stretchable inorganic electronic materials. J. Vac. Sci. Technol. A 27(5), 1107–1125 (2009). https://doi.org/10.1116/1.3168555
H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, J.A. Rogers, Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl Acad. Sci. USA 104(40), 15607–15612 (2007). https://doi.org/10.1073/pnas.0702927104
J. Song, H. Jiang, Z.J. Liu, D.Y. Khang, Y. Huang, J.A. Rogers, C. Lu, C.G. Koh, Buckling of a stiff thin film on a compliant substrate in large deformation. Int. J. Solids Struct. 45(10), 3107–3121 (2008). https://doi.org/10.1016/j.ijsolstr.2008.01.023
S. Cai, D. Breid, A.J. Crosby, Z. Suo, J.W. Hutchinson, Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solids 59(5), 1094–1114 (2011). https://doi.org/10.1016/j.jmps.2011.02.001
B. Audoly, A. Boudaoud, Buckling of a stiff film bound to a compliant substrate—Part I: formulation, linear stability of cylindrical patterns, secondary bifurcations. J. Mech. Phys. Solids 56(7), 2401–2421 (2008). https://doi.org/10.1016/j.jmps.2008.03.003
B. Audoly, A. Boudaoud, Buckling of a stiff film bound to a compliant substrate—Part II: a global scenario for the formation of herringbone pattern. J. Mech. Phys. Solids 56(7), 2422–2443 (2008). https://doi.org/10.1016/j.jmps.2008.03.002
B. Audoly, A. Boudaoud, Buckling of a stiff film bound to a compliant substrate—Part III: herringbone solutions at large buckling parameter. J. Mech. Phys. Solids 56(7), 2444–2458 (2008). https://doi.org/10.1016/j.jmps.2008.03.001
E. Sultan, A. Boudaoud, The buckling of a swollen thin gel layer bound to a compliant substrate. J. Appl. Mech. (2008). https://doi.org/10.1115/1.2936922
L. Pocivavsek, R. Dellsy, A. Kern-Goldberger, S. Johnson, B. Lin, K.Y. Lee, E. Cerda, Stress and fold localization in thin elastic membranes. Science 320, 912–916 (2008). https://doi.org/10.1126/science.1154069
F. Brau, H. Vandeparre, A. Sabbah, C. Poulard, A. Boudaoud, P. Damman, Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators. Nat. Phys. 7(1), 56–60 (2011). https://doi.org/10.1038/nphys1806
Y. Cao, J.W. Hutchinson, Wrinkling phenomena in neo-Hookean film/substrate bilayers. J. Appl. Mech. (2012). https://doi.org/10.1115/1.4005960
P. Kim, M. Abkarian, H.A. Stone, Hierarchical folding of elastic membranes under biaxial compressive stress. Nat. Mater. 10(12), 952–957 (2011). https://doi.org/10.1038/nmat3144
Q. Wang, X. Zhao, Phase diagrams of instabilities in compressed film–substrate systems. J. Appl. Mech. (2013). https://doi.org/10.1115/1.4025828
L. Jin, A. Auguste, R.C. Hayward, Z. Suo, Bifurcation diagrams for the formation of wrinkles or creases in soft bilayers. J. Appl. Mech. (2015). https://doi.org/10.1115/1.4030384
Q. Wang, X. Zhao, A three-dimensional phase diagram of growth-induced surface instabilities. Sci. Rep. 5(1), 8887 (2015). https://doi.org/10.1038/srep08887
A. Auguste, L. Jin, Z. Suo, R.C. Hayward, The role of substrate pre-stretch in post-wrinkling bifurcations. Soft Matter 10(34), 6520–6529 (2014). https://doi.org/10.1039/C4SM01038H
Y.-C. Chen, A.J. Crosby, High aspect ratio wrinkles via substrate prestretch. Adv. Mater. 26(32), 5626–5631 (2014). https://doi.org/10.1002/adma.201401444
A. Takei, L. Jin, J.W. Hutchinson, H. Fujita, Ridge localizations and networks in thin films compressed by the incremental release of a large equi-biaxial pre-stretch in the substrate. Adv. Mater. 26(24), 4061–4067 (2014). https://doi.org/10.1002/adma.201306162
T. Tallinen, J. Biggins, Mechanics of invagination and folding: hybridized instabilities when one soft tissue grows on another. Phys. Rev. E 92, 022720 (2015). https://doi.org/10.1103/PhysRevE.92.022720
R. Zhao, T. Zhang, M. Diab, H. Gao, K.S. Kim, The primary bilayer ruga-phase diagram I: localizations in ruga evolution. Extreme Mech. Lett. 4, 76–82 (2015). https://doi.org/10.1016/j.eml.2015.04.006
A. Auguste, L. Jin, Z. Suo, R.C. Hayward, Post-wrinkle bifurcations in elastic bilayers with modest contrast in modulus. Extreme Mech. Lett. 11, 30–36 (2017). https://doi.org/10.1016/j.eml.2016.11.013
J. Auguste, L. Yang, D. Jin, Z. Chen, R.C. Suo, Hayward, Formation of high aspect ratio wrinkles and ridges on elastic bilayers with small thickness contrast. Soft Matter 14(42), 8545–8551 (2018). https://doi.org/10.1039/C8SM01345D
A.B. Croll, A.J. Crosby, Pattern driven stress localization in thin diblock copolymer films. Macromolecules 45(9), 4001–4006 (2012). https://doi.org/10.1021/ma300159x
J.-W. Wang, B. Li, Y.-P. Cao, X.-Q. Feng, Surface wrinkling patterns of film–substrate systems with a structured interface. J. Appl. Mech. (2015). https://doi.org/10.1115/1.4030010
W. Ding, Y. Yang, Y. Zhao, S. Jiang, Y. Cao, C. Lu, Well-defined orthogonal surface wrinkles directed by the wrinkled boundary. Soft Matter 9(14), 3720–3726 (2013). https://doi.org/10.1039/C2SM27359D
J. Wang, B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Wrinkling micropatterns regulated by a hard skin layer with a periodic stiffness distribution on a soft material. Appl. Phys. Lett. 108, 021903 (2016). https://doi.org/10.1063/1.4939741
D. Yan, K. Zhang, G. Hu, Wrinkling of structured thin films via contrasted materials. Soft Matter 12(17), 3937–3942 (2016). https://doi.org/10.1039/C6SM00228E
D. Wang, N. Cheewaruangroj, Y. Li, G. McHale, Y. Jiang, D. Wood, J.S. Biggins, B.B. Xu, Spatially configuring wrinkle pattern and multiscale surface evolution with structural confinement. Adv. Funct. Mater. 28(1), 1704228 (2018). https://doi.org/10.1002/adfm.201704228
A. Nogales, A. del Campo, T.A. Ezquerra, J. Rodriguez-Hernández, Wrinkling and folding on patched elastic surfaces: modulation of the chemistry and pattern size of microwrinkled surfaces. ACS Appl. Mater. Interfaces 9(23), 20188–20195 (2017). https://doi.org/10.1021/acsami.7b03161
T. Ouchi, J. Yang, Z. Suo, R.C. Hayward, Effects of stiff film pattern geometry on surface buckling instabilities of elastic bilayers. ACS Appl. Mater. Interfaces 10(27), 23406–23413 (2018). https://doi.org/10.1021/acsami.8b04916
T. Li, K. Hu, X. Ma, W. Zhang, J. Yin, X. Jiang, Hierarchical 3D patterns with dynamic wrinkles produced by a photocontrolled Diels-Alder reaction on the surface. Adv. Mater. 32(7), 1906712 (2020). https://doi.org/10.1002/adma.201906712
D. Breid, A.J. Crosby, Effect of stress state on wrinkle morphology. Soft Matter 7(9), 4490–4496 (2011). https://doi.org/10.1039/C1SM05152K
W.M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y.Y. Huang, J.A. Rogers, Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7(6), 1655–1663 (2007). https://doi.org/10.1021/nl0706244
Z. Huang, W. Hong, Z. Suo, Evolution of wrinkles in hard films on soft substrates. Phys. Rev. E 70, 030601 (2004). https://doi.org/10.1103/PhysRevE.70.030601
X. Chen, J.W. Hutchinson, A family of herringbone patterns in thin films. Scr. Mater. 50(6), 797–801 (2004). https://doi.org/10.1016/j.scriptamat.2003.11.035
X. Chen, J.W. Hutchinson, Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71, 597 (2004). https://doi.org/10.1115/1.1756141
J. Song, H. Jiang, W.M. Choi, D.Y. Khang, Y. Huang, J.A. Rogers, An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103(1), 014303 (2008). https://doi.org/10.1063/1.2828050
Y. Zhao, X. Han, G. Li, C. Lu, Y. Cao, X.-Q. Feng, H. Gao, Effect of lateral dimension on the surface wrinkling of a thin film on compliant substrate induced by differential growth/swelling. J. Mech. Phys. Solids 83, 129–145 (2015). https://doi.org/10.1016/j.jmps.2015.06.003
Y. Zhang, F. Zhang, Z. Yan, Q. Ma, X. Li, Y. Huang, J.A. Rogers, Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2(4), 17019 (2017). https://doi.org/10.1038/natrevmats.2017.19
X. Cheng, Y. Zhang, Micro/nanoscale 3D assembly by rolling, folding, curving, and buckling approaches. Adv. Mater. 31(36), 1901895 (2019). https://doi.org/10.1002/adma.201901895
J. Song, Y. Huang, J. Xiao, S. Wang, K.C. Hwang et al., Mechanics of noncoplanar mesh design for stretchable electronic circuits. J. Appl. Phys. 105(12), 123516 (2009). https://doi.org/10.1063/1.3148245
L. Wang, C.-L. Pai, M.C. Boyce, G.C. Rutledge, Wrinkled surface topographies of electrospun polymer fibers. Appl. Phys. Lett. 94(15), 151916 (2009). https://doi.org/10.1063/1.3118526
Q. Li, X. Han, J. Hou, J. Yin, S. Jiang, C. Lu, Patterning poly(dimethylsiloxane) microspheres via combination of oxygen plasma exposure and solvent treatment. J. Phys. Chem. B 119(42), 13450–13461 (2015). https://doi.org/10.1021/acs.jpcb.5b07208
J. Yin, X. Han, Y. Cao, C. Lu, Surface wrinkling on polydimethylsiloxane microspheres via wet surface chemical oxidation. Sci. Rep. 4, 5710 (2014). https://doi.org/10.1038/srep05710
Y.-P. Cao, B. Li, X.-Q. Feng, Surface wrinkling and folding of core–shell soft cylinders. Soft Matter 8(2), 556–562 (2012). https://doi.org/10.1039/C1SM06354E
Y. Zhao, Y. Cao, X.-Q. Feng, K. Ma, Axial compression-induced wrinkles on a core–shell soft cylinder: theoretical analysis, simulations and experiments. J. Mech. Phys. Solids 73, 212–227 (2014). https://doi.org/10.1016/j.jmps.2014.09.005
F. Xu, M. Potier-Ferry, On axisymmetric/diamond-like mode transitions in axially compressed core–shell cylinders. J. Mech. Phys. Solids 94, 68–87 (2016). https://doi.org/10.1016/j.jmps.2016.04.025
Y. Yang, H.H. Dai, F. Xu, M. Potier-Ferry, Pattern transitions in a soft cylindrical shell. Phys. Rev. Lett. 120(21), 215503 (2018). https://doi.org/10.1103/PhysRevLett.120.215503
F. Jia, B. Li, Y.-P. Cao, W.-H. Xie, X.-Q. Feng, Wrinkling pattern evolution of cylindrical biological tissues with differential growth. Phys. Rev. E 91(1), 012403 (2015). https://doi.org/10.1103/PhysRevE.91.012403
J. Yin, X. Chen, Buckling of anisotropic films on cylindrical substrates: insights for self-assembly fabrication of 3D helical gears. J. Phys. D-Appl. Phys. 43(11), 115402 (2010). https://doi.org/10.1088/0022-3727/43/11/115402
X. Zhang, P.T. Mather, M.J. Bowick, T. Zhang, Non-uniform curvature and anisotropic deformation control wrinkling patterns on tori. Soft Matter 15(26), 5204–5210 (2019). https://doi.org/10.1039/C9SM00235A
R. Zhao, X. Zhao, Multimodal surface instabilities in curved film–substrate structures. J. Appl. Mech. 84(8), 081001 (2017). https://doi.org/10.1115/1.4036940
J. Dervaux, Y. Couder, M.-A. Guedeau-Boudeville, M. Ben Amar, Shape transition in artificial tumors: from smooth buckles to singular creases. Phys. Rev. Lett. 107, 018103 (2011). https://doi.org/10.1103/PhysRevLett.107.018103
L. Jin, S. Cai, Z. Suo, Creases in soft tissues generated by growth. EuroPhys. Lett. 95(6), 64002 (2011). https://doi.org/10.1209/0295-5075/95/64002
R. Lagrange, F. López Jiménez, D. Terwagne, M. Brojan, P.M. Reis, From wrinkling to global buckling of a ring on a curved substrate. J. Mech. Phys. Solids 89, 77–95 (2016). https://doi.org/10.1016/j.jmps.2016.02.004
W. Yang, T.C. Fung, K.S. Chian, C.K. Chong, Instability of the two-layered thick-walled esophageal model under the external pressure and circular outer boundary condition. J. Biomech. 40(3), 481–490 (2007). https://doi.org/10.1016/j.jbiomech.2006.02.020
C. Wiggs, J. Hrousis, R. Drazen, Kamm, On the mechanism of mucosal folding in normal and asthmatic airways. J. Appl. Physiol. 83, 1814–1821 (1998). https://doi.org/10.1152/jappl.1997.83.6.1814
C.A. Hrousis, B.J.R. Wiggs, J.M. Drazen, D.M. Parks, R.D. Kamm, Mucosal folding in biologic vessels. J. Biomech. Eng. 124(4), 334–341 (2002). https://doi.org/10.1115/1.1489450
R.K. Lambert, S.L. Codd, M.R. Alley, R.J. Pack, Physical determinants of bronchial mucosal folding. J. Appl. Physiol. 77(3), 1206–1216 (1994). https://doi.org/10.1152/jappl.1994.77.3.1206
Y.-P. Li, X.-Q. Cao, Feng, Growth and surface folding of esophageal mucosa: a biomechanical model. J. Biomech. 44(1), 182–188 (2011). https://doi.org/10.1016/j.jbiomech.2010.09.007
D.E. Moulton, A. Goriely, Circumferential buckling instability of a growing cylindrical tube. J. Mech. Phys. Solids 59(3), 525–537 (2011). https://doi.org/10.1016/j.jmps.2011.01.005
D.E. Moulton, A. Goriely, Possible role of differential growth in airway wall remodeling in asthma. J. Appl. Physiol. 110(4), 1003–1012 (2011). https://doi.org/10.1152/japplphysiol.00991.2010
J. Dervaux, M. Ben Amar, Localized growth of layered tissues. IMA J. Appl. Math. 75, 571–580 (2010). https://doi.org/10.1093/imamat/hxq023
A. Goriely, R. Vandiver, On the mechanical stability of growing arteries. IMA J. Appl. Math. 75(4), 549–570 (2010). https://doi.org/10.1093/imamat/hxq021
J. Hannezo, J.F. Prost, Joanny, Instabilities of monolayered epithelia: shape and structure of villi and crypts. Phys. Rev. Lett. 107(7), 078104 (2011). https://doi.org/10.1103/PhysRevLett.107.078104
P. Ciarletta, M. Ben Amar, Pattern formation in fiber-reinforced tubular tissues: folding and segmentation during epithelial growth. J. Mech. Phys. Solids 60(3), 525–537 (2012). https://doi.org/10.1016/j.jmps.2011.11.004
B. Li, F. Jia, Y.P. Cao, X.Q. Feng, H. Gao, Surface wrinkling patterns on a core–shell soft sphere. Phys. Rev. Lett. 106(23), 2155–2161 (2011). https://doi.org/10.1103/PhysRevLett.106.234301
A.J. Breid, Crosby, Curvature-controlled wrinkle morphologies. Soft Matter 9(13), 3624–3630 (2013). https://doi.org/10.1039/C3SM27331H
N. Stoop, R. Lagrange, D. Terwagne, P.M. Reis, J. Dunkel, Curvature-induced symmetry breaking determines elastic surface patterns. Nat. Mater. 14(3), 337–342 (2015). https://doi.org/10.1038/nmat4202
X. Cao, C. Chen, A. Li, Z. Ji, Cao, Self-assembled triangular and labyrinth buckling patterns of thin films on spherical substrates. Phys. Rev. Lett. 100(3), 036102 (2008). https://doi.org/10.1103/PhysRevLett.100.036102
J. Yin, Z. Cao, C. Li, I. Sheinman, X. Chen, Stress-driven buckling patterns in spheroidal core/shell structures. Proc. Natl Acad. Sci. USA 105(49), 19132–19135 (2008). https://doi.org/10.1073/pnas.0810443105
E. Katifori, S. Alben, E. Cerda, D.R. Nelson, J. Dumais, Foldable structures and the natural design of pollen grains. Proc. Natl Acad. Sci. USA 107(17), 7635–7639 (2010). https://doi.org/10.1073/pnas.0911223107
E. Cerda, L. Mahadevan, Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003). https://doi.org/10.1103/PhysRevLett.90.074302
F. López Jiménez, N. Stoop, R. Lagrange, J. Dunkel, P.M. Reis, Curvature-controlled defect localization in elastic surface crystals. Phys. Rev. Lett. 116(10), 104301 (2016). https://doi.org/10.1103/PhysRevLett.116.104301
E.H. Yong, D. Nelson, L. Mahadevan, Elastic platonic shells. Phys. Rev. Lett. 111, 177801 (2013). https://doi.org/10.1103/PhysRevLett.111.177801
T. Veldin, B. Brank, M. Brojan, Computational finite element model for surface wrinkling of shells on soft substrates. Commun. Nonlinear Sci. Numer. Simul. 78, 104863 (2019). https://doi.org/10.1016/j.cnsns.2019.104863
Y. Zhao, H. Zhu, C. Jiang, Y. Cao, X.-Q. Feng, Wrinkling pattern evolution on curved surfaces. J. Mech. Phys. Solids 135, 103798 (2020). https://doi.org/10.1016/j.jmps.2019.103798
F. Jia, S.P. Pearce, A. Goriely, Curvature delays growth-induced wrinkling. Phys. Rev. E 98(3), 033003 (2018). https://doi.org/10.1103/PhysRevE.98.033003
E. Hohlfeld, B. Davidovitch, Sheet on a deformable sphere: wrinkle patterns suppress curvature-induced delamination. Phys. Rev. E 91(1), 012407 (2015). https://doi.org/10.1103/PhysRevE.91.012407
P.V. Bayly, R.J. Okamoto, G. Xu, Y. Shi, L.A. Taber, A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys. Biol. 10(1), 016005 (2013). https://doi.org/10.1088/1478-3975/10/1/016005
S. Budday, P. Steinmann, A. Goriely, E. Kuhl, Size and curvature regulate pattern selection in the mammalian brain. Extreme Mech. Lett. 4, 193–198 (2015). https://doi.org/10.1016/j.eml.2015.07.004
M.J. Razavi, T. Zhang, X. Li, T. Liu, X. Wang, Role of mechanical factors in cortical folding development. Phys. Rev. E 92(3), 032701 (2015). https://doi.org/10.1103/PhysRevE.92.032701
B. Li, Y.P. Cao, X.Q. Feng, S.W. Yu, Mucosal wrinkling in animal antra induced by volumetric growth. Appl. Phys. Lett. 98(15), 1814 (2011). https://doi.org/10.1063/1.3579142
W.-H. Xie, S.F. Yin, B. Li, Y.-P. Cao, X.-Q. Feng, Three-dimensional morphological wrinkling of cylindrical soft tissues. Acta Phys. Sin. 65(18), 188704 (2016). https://doi.org/10.7498/aps.65.188704
W.-H. Xie, B. Li, Y.-P. Cao, X.-Q. Feng, Effects of internal pressure and surface tension on the growth-induced wrinkling of mucosae. J. Mech. Behav. Biomed. Mater. 29, 594–601 (2014). https://doi.org/10.1016/j.jmbbm.2013.05.009
J. Yin, G.J. Gerling, X. Chen, Mechanical modeling of a wrinkled fingertip immersed in water. Acta Biomater. 6(4), 1487–1496 (2010). https://doi.org/10.1016/j.actbio.2009.10.025
A.L. Schwarz, Koch, Phase and electron microscopic observations of osmotically induced wrinkling and the role of endocytotic vesicles in the plasmolysis of the gram-negative cell wall. Microbiology 141(12), 3161–3170 (1995). https://doi.org/10.1099/13500872-141-12-3161
H.M. Poling, D. Wu, N. Brown, M. Baker, T.A. Hausfeld et al., Mechanically induced development and maturation of human intestinal organoids in vivo. Nat. Biomed. Eng. 2(6), 429–442 (2018). https://doi.org/10.1038/s41551-018-0243-9
A.C. Trindade, J.P. Canejo, L.F.V. Pinto, P. Patrício, P. Brogueira, P.I.C. Teixeira, M.H. Godinho, Wrinkling labyrinth patterns on elastomeric janus particles. Macromolecules 44(7), 2220–2228 (2011). https://doi.org/10.1021/ma1025169
Z.-C. Shao, Y. Zhao, W. Zhang, Y. Cao, X.-Q. Feng, Curvature induced hierarchical wrinkling patterns in soft bilayers. Soft Matter 12(38), 7977–7982 (2016). https://doi.org/10.1039/C6SM01088A
A.C. Trindade, J.P. Canejo, P.I.C. Teixeira, P. Patrício, M.H. Godinho, First curl, then wrinkle. Macromol. Rapid Commun. 34(20), 1618–1622 (2013). https://doi.org/10.1002/marc.201300436
K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nested self-similar wrinkling patterns in skins. Nat. Mater. 4(4), 293–297 (2005). https://doi.org/10.1038/nmat1342
A. Takei, L. Jin, H. Fujita, A. Takei, H. Fujita, L. Jin, High-aspect-ratio ridge structures induced by plastic deformation as a novel microfabrication technique. ACS Appl. Mater. Interfaces 8(36), 24230–24237 (2016). https://doi.org/10.1021/acsami.6b07957
X. Yang, J. Yin, X. Han, C.H. Lu, Surface wrinkling on monodispersed polystyrene microspheres. Acta Polym. Sin. 3, 337–344 (2016). https://doi.org/10.11777/j.issn1000-3304.2016.15214
D. Wang, B. Sheng, X. Wu, Y. Huang, L. Peng, B. Xu, B. Li, Z. Ni, Self-assembly ring wrinkles formed on the surface of polydimethylsiloxane cylinders. Mater. Res. Express 6(9), 095312 (2019). https://doi.org/10.1088/2053-1591/ab2f23
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
M. Li, D. Joung, B. Hughes, S.D. Waldman, J.A. Kozinski, D.K. Hwang, Wrinkling non-spherical particles and its application in cell attachment promotion. Sci. Rep. 6, 30463 (2016). https://doi.org/10.1038/srep30463
M. Götz, W.B. Huttner, The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6(10), 777–788 (2005). https://doi.org/10.1038/nrm1739
R. Stahl, T. Walcher, C. De Juan Romero, G.A. Pilz, S. Cappello et al., Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153(3), 535–549 (2013). https://doi.org/10.1016/j.cell.2013.03.027
A. Goriely, M.G.D. Geers, G.A. Holzapfel, J. Jayamohan, A. Jérusalem et al., Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 14(5), 931–965 (2015). https://doi.org/10.1007/s10237-015-0662-4
F. An, P. Zhou, C. Lu, Y. Liu, Tuning the surface grooves of carbon fibers by dry-jet gel-spinning. Carbon 143, 200–203 (2019). https://doi.org/10.1016/j.carbon.2018.11.009
Y. Zhang, W. Zhang, G. Ye, Q. Tan, Y. Zhao et al., Core–sheath stretchable conductive fibers for safe underwater wearable electronics. Adv. Mater. Technol. (2019). https://doi.org/10.1002/admt.201900880
Y. Wei, S. Chen, X. Yuan, P. Wang, L. Liu, Multiscale wrinkled microstructures for piezoresistive fibers. Adv. Funct. Mater. 26(28), 5078–5085 (2016). https://doi.org/10.1002/adfm.201600580
H. Wang, Z. Liu, J. Ding, X. Lepró, S. Fang et al., Downsized sheath–core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv. Mater. 28(25), 4998–5007 (2016). https://doi.org/10.1002/adma.201600405
F. Jia, Y.P. Cao, Y. Zhao, X.Q. Feng, Buckling and surface wrinkling of an elastic graded cylinder with elastic modulus arbitrarily varying along radial direction. Int. J. Appl. Mech. 06(01), 1450003 (2014). https://doi.org/10.1142/s1758825114500033
B. Li, Y. Li, G.-K. Xu, X.-Q. Feng, Surface patterning of soft polymer film-coated cylinders via an electric field. J. Phys.: Condens. Matter 21(44), 445006 (2009). https://doi.org/10.1088/0953-8984/21/44/445006
E. Corona, L.H. Lee, S. Kyriakides, Yield anisotropy effects on buckling of circular tubes under bending. Int. J. Solids Struct. 43(22), 7099–7118 (2006). https://doi.org/10.1016/j.ijsolstr.2006.03.005
F.C. Bardi, S. Kyriakides, H.D. Yun, Plastic buckling of circular tubes under axial compression—Part II: analysis. Int. J. Mech. Sci. 48(8), 842–854 (2006). https://doi.org/10.1016/j.ijmecsci.2006.03.002
F.C. Bardi, S. Kyriakides, Plastic buckling of circular tubes under axial compression—Part I: experiments. Int. J. Mech. Sci. 48(8), 830–841 (2006). https://doi.org/10.1016/j.ijmecsci.2006.03.005
H. Yang, Y. Lin, Wrinkling analysis for forming limit of tube bending processes. J. Mater. Process. Technol. 152(3), 363–369 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.410
M. Brojan, D. Terwagne, R. Lagrange, P.M. Reis, Wrinkling crystallography on spherical surfaces. Proc. Natl Acad. Sci. USA 112(1), 14–19 (2015). https://doi.org/10.1073/pnas.1411559112
P.-Y. Chen, M. Zhang, M. Liu, I.Y. Wong, R.H. Hurt, Ultrastretchable graphene-based molecular barriers for chemical protection, detection, and actuation. ACS Nano 12(1), 234–244 (2018). https://doi.org/10.1021/acsnano.7b05961
F. Yin, J. Yang, P. Ji, H. Peng, Y. Tang, W. Yuan, Bioinspired pretextured reduced graphene oxide patterns with multiscale topographies for high-performance mechanosensors. ACS Appl. Mater. Interfaces 11(20), 18645–18653 (2019). https://doi.org/10.1021/acsami.9b04509
D. Vella, A. Ajdari, A. Vaziri, A. Boudaoud, Wrinkling of pressurized elastic shells. Phys. Rev. Lett. 107(17), 174301 (2011). https://doi.org/10.1103/PhysRevLett.107.174301
G.M. Grason, B. Davidovitch, Universal collapse of stress and wrinkle-to-scar transition in spherically confined crystalline sheets. Proc. Natl Acad. Sci. USA 110(32), 12893–12898 (2013). https://doi.org/10.1073/pnas.1301695110
J.D. Paulsen, E. Hohlfeld, H. King, J. Huang, Z. Qiu, T.P. Russell, N. Menon, D. Vella, B. Davidovitch, Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. Proc. Natl Acad. Sci. USA 113(5), 1144–1149 (2016). https://doi.org/10.1073/pnas.1521520113
M. Li, N. Hakimi, R. Perez, S. Waldman, J.A. Kozinski, D.K. Hwang, Microarchitecture for a three-dimensional wrinkled surface platform. Adv. Mater. 27(11), 1880–1886 (2015). https://doi.org/10.1002/adma.201405851
S. Deng, E. Gao, Y. Wang, S. Sen, S.T. Sreenivasan, S. Behura, P. Král, Z. Xu, V. Berry, Confined, oriented, and electrically anisotropic graphene wrinkles on bacteria. ACS Nano 10(9), 8403–8412 (2016). https://doi.org/10.1021/acsnano.6b03214
C.M. González-Henríquez, M.A. Sarabia-Vallejos, J. Rodriguez-Hernandez, Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog. Polym. Sci. 94, 57–116 (2019). https://doi.org/10.1016/j.progpolymsci.2019.03.001
N. Vargas-Alfredo, H. Reinecke, A. Gallardo, A. del Campo, J. Rodríguez-Hernández, Fabrication of 3D printed objects with controlled surface chemistry and topography. Eur. Polym. J. 98, 21–27 (2018). https://doi.org/10.1016/j.eurpolymj.2017.10.033
Y. Nishigami, H. Ito, S. Sonobe, M. Ichikawa, Non-periodic oscillatory deformation of an actomyosin microdroplet encapsulated within a lipid interface. Sci. Rep. 6(1), 18964 (2016). https://doi.org/10.1038/srep18964
H. Ito, Y. Nishigami, S. Sonobe, M. Ichikawa, Wrinkling of a spherical lipid interface induced by actomyosin cortex. Phys. Rev. E 92(6), 062711 (2015). https://doi.org/10.1103/PhysRevE.92.062711
L.R.J. Scarratt, B.S. Hoatson, E.S. Wood, B.S. Hawkett, C. Neto, Durable superhydrophobic surfaces via spontaneous wrinkling of Teflon AF. ACS Appl. Mater. Interfaces 8(10), 6743–6750 (2016). https://doi.org/10.1021/acsami.5b12165
C.S. Ware, T. Smith-Palmer, S. Peppou-Chapman, L.R.J. Scarratt, E.M. Humphries, D. Balzer, C. Neto, Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces. ACS Appl. Mater. Interfaces 10(4), 4173–4182 (2018). https://doi.org/10.1021/acsami.7b14736
J. Khare, S. Zhou, Yang, Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves. Langmuir 25(21), 12794–12799 (2009). https://doi.org/10.1021/la901736n
Z. Li, Z. Zhen, M. Chai, X. Zhao, Y. Zhong, H. Zhu, Transparent electrothermal film defoggers and antiicing coatings based on wrinkled graphene. Small 16(4), 1905945 (2020). https://doi.org/10.1002/smll.201905945
V. Parihar, S. Bandyopadhyay, S. Das, S. Dasgupta, Anisotropic electrowetting on wrinkled surfaces: enhanced wetting and dependency on initial wetting state. Langmuir 34(5), 1844–1854 (2018). https://doi.org/10.1021/acs.Langmuir7b03467
G. Lin, Q. Zhang, C. Lv, Y. Tang, J. Yin, Small degree of anisotropic wetting on self-similar hierarchical wrinkled surfaces. Soft Matter 14(9), 1517–1529 (2018). https://doi.org/10.1039/C7SM02208E
R. Prathapan, J.D. Berry, A. Fery, G. Garnier, R.F. Tabor, Decreasing the wettability of cellulose nanocrystal surfaces using wrinkle-based alignment. ACS Appl. Mater. Interfaces 9(17), 15202–15211 (2017). https://doi.org/10.1021/acsami.7b03094
S. Hiltl, A. Böker, Wetting phenomena on (gradient) wrinkle substrates. Langmuir 32(35), 8882–8888 (2016). https://doi.org/10.1021/acs.Langmuir6b02364
W.-K. Lee, W.-B. Jung, D. Rhee, J. Hu, Y.-A.L. Lee, C. Jacobson, H.-T. Jung, T.W. Odom, Monolithic polymer nanoridges with programmable wetting transitions. Adv. Mater. 30(32), 1706657 (2018). https://doi.org/10.1002/adma.201706657
S. Zang, N. Ryu, Q. Pugno, Q. Wang, M. Tu, X. Buehler, Zhao, Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013). https://doi.org/10.1038/nmat3542
P.-C. Lin, S. Yang, Mechanically switchable wetting on wrinkled elastomers with dual-scale roughness. Soft Matter 5(5), 1011–1018 (2009). https://doi.org/10.1039/B814145B
W.-K. Lee, W.-B. Jung, S.R. Nagel, T.W. Odom, Stretchable superhydrophobicity from monolithic, three-dimensional hierarchical wrinkles. Nano Lett. 16(6), 3774–3779 (2016). https://doi.org/10.1021/acs.nanolett.6b01169
Y.H. Kim, Y.M. Lee, J.Y. Lee, M.J. Ko, P.J. Yoo, Hierarchical nanoflake surface driven by spontaneous wrinkling of polyelectrolyte/metal complexed films. ACS Nano 6(2), 1082–1093 (2012). https://doi.org/10.1021/nn203226k
B.N. Sahoo, J. Woo, H. Algadi, J. Lee, T. Lee, Superhydrophobic, transparent, and stretchable 3D hierarchical wrinkled film-based sensors for wearable applications. Adv. Mater. Technol. 4(10), 1900230 (2019). https://doi.org/10.1002/admt.201900230
S. Gaume, N. Gorb, Rowe, Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. N. Phytol. 156(3), 479–489 (2002). https://doi.org/10.1046/j.1469-8137.2002.00530.x
X. Yan, Y. Jin, X. Chen, C. Zhang, C. Hao, Z. Wang, Nature-inspired surface topography: design and function. Sci. China Phys. Mech. Astron. 63, 224601 (2020). https://doi.org/10.1007/s11433-019-9643-0
K.-C. Park, P. Kim, A. Grinthal, N. He, D. Fox, J.C. Weaver, J. Aizenberg, Condensation on slippery asymmetric bumps. Nature 531, 78 (2016). https://doi.org/10.1038/nature16956
F. Bernardeschi, G. Greco, A. Ciofani, V. Marino, B. Mattoli, L. Mazzolai, Beccai, A soft, stretchable and conductive biointerface for cell mechanobiology. Biomed. Microdevices 17, 46 (2015). https://doi.org/10.1007/s10544-015-9950-0
W.-G. Bae, H. Eui Jeong, J. Kim, Multiscale engineered hierarchical structures with precisely controlled sizes for bio-inspired cell culture. Mater. Lett. 159, 213–217 (2015). https://doi.org/10.1016/j.matlet.2015.06.122
M.R. Aufan, Y. Sumi, S. Kim, J.Y. Lee, Facile synthesis of conductive polypyrrole wrinkle topographies on polydimethylsiloxane via a swelling–deswelling process and their potential uses in tissue engineering. ACS Appl. Mater. Interfaces 7(42), 23454–23463 (2015). https://doi.org/10.1021/acsami.5b09355
W.-G. Bae, J. Kim, Y.-H. Choung, Y. Chung, K.Y. Suh, C. Pang, J.H. Chung, H.E. Jeong, Bio-inspired configurable multiscale extracellular matrix-like structures for functional alignment and guided orientation of cells. Biomaterials 69, 158–164 (2015). https://doi.org/10.1016/j.biomaterials.2015.08.006
K. Saha, J. Kim, E. Irwin, J. Yoon, F. Momin, V. Trujillo, D.V. Schaffer, K.E. Healy, R.C. Hayward, Surface creasing instability of soft polyacrylamide cell culture substrates. Biophys. J. 99(12), 94–96 (2010). https://doi.org/10.1016/j.bpj.2010.09.045
J. Kim, J. Yoon, R.C. Hayward, Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat. Mater. 9(2), 159–164 (2010). https://doi.org/10.1038/nmat2606
G.A. Dunn, J.P. Heath, A new hypothesis of contact guidance in tissue cells. Exp. Cell Res. 101(1), 1–14 (1976). https://doi.org/10.1016/0014-4827(76)90405-5
J. Dow, P. Clark, P. Connolly, A. Curtis, C. Wilkinson, Novel methods for the guidance and monitoring of single cells and simple networks in culture. J. Cell. Sci. Suppl. 8, 55–79 (1987). https://doi.org/10.1242/jcs.1987
J. Shintake, S. Rosset, B. Schubert, D. Floreano, H. Shea, Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28(2), 231–238 (2016). https://doi.org/10.1002/adma.201504264
J. Tang, J. Li, J.J. Vlassak, Z. Suo, Adhesion between highly stretchable materials. Soft Matter 12(4), 1093–1099 (2016). https://doi.org/10.1039/C5SM02305J
C. Kleinstreuer, J. Li, J. Koo, Microfluidics of nano-drug delivery. Int. J. Heat Mass Transf. 51(23), 5590–5597 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.043
S. Xu, Z. Yan, K.-I. Jang, W. Huang, H. Fu et al., Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347(6218), 154–159 (2015). https://doi.org/10.1126/science.1260960
D.-H. Kim, J.-H. Ahn, W. Choi, H.-S. Kim, T.-H. Kim et al., Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008). https://doi.org/10.1126/science.1154367
J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010). https://doi.org/10.1126/science.1182383
D.-H. Kim, J. Song, W.M. Choi, H.-S. Kim, R.-H. Kim et al., Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl Acad. Sci. USA 105(48), 18675–18680 (2008). https://doi.org/10.1073/pnas.0807476105
B. Xu, D. Chen, R.C. Hayward, Mechanically gated electrical switches by creasing of patterned metal/elastomer bilayer films. Adv. Mater. 26(25), 4381–4385 (2014). https://doi.org/10.1002/adma.201400992
C. Wang, B. Xu, J. Terry, S. Smith, A. Walton, S. Wang, H. Lv, Y. Li, Flexible, strain gated logic transducer arrays enabled by initializing surface instability on elastic bilayers. APL Mater. 7, 031509 (2019). https://doi.org/10.1063/1.5079403
T. Ouchi, R.C. Hayward, Harnessing multiple surface deformation modes for switchable conductivity surfaces. ACS Appl. Mater. Interfaces 12(8), 10031–10038 (2020). https://doi.org/10.1021/acsami.9b22662
T.-H. Chang, Y. Tian, C. Li, X. Gu, K. Li et al., Stretchable graphene pressure sensors with Shar-Pei-like hierarchical wrinkles for collision-aware surgical robotics. ACS Appl. Mater. Interfaces 11(10), 10226–10236 (2019). https://doi.org/10.1021/acsami.9b00166
Y. Wang, J. Qiu, C. Jia, J. Wang, K. Deng, Pan, Wavelength-gradient graphene films for pressure-sensitive sensors. Adv. Mater. Technol. 4(1), 1800363 (2019). https://doi.org/10.1002/admt.201800363
J. Xu, J. Chen, M. Zhang, J.-D. Hong, G. Shi, Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes. Adv. Electron. Mater. 2, 1600022 (2016). https://doi.org/10.1002/aelm.201600022
D.O. Carpenter, K. Arcaro, D.C. Spink, Understanding the human health effects of chemical mixtures. Environ. Health Perspect. 110(1), 25–42 (2002). https://doi.org/10.1289/ehp.02110s125
M. Röösli, Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: a systematic review. Environ. Res. 107(2), 277–287 (2008). https://doi.org/10.1016/j.envres.2008.02.003
J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets. Nano Lett. 8(8), 2458–2462 (2008). https://doi.org/10.1021/nl801457b
M.A. Creighton, W. Zhu, F. van Krieken, R.A. Petteruti, H. Gao, R.H. Hurt, Three-dimensional graphene-based microbarriers for controlling release and reactivity in colloidal liquid phases. ACS Nano 10(2), 2268–2276 (2016). https://doi.org/10.1021/acsnano.5b06963
Z. Wang, X. Lv, Y. Chen, D. Liu, X. Xu, G.T.R. Palmore, R.H. Hurt, Crumpled graphene nanoreactors. Nanoscale 7(22), 10267–10278 (2015). https://doi.org/10.1039/C5NR00963D
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
S. Yuan, S. Luan, S. Yan, H. Shi, J. Yin, Facile fabrication of lubricant-infused wrinkling surface for preventing thrombus formation and infection. ACS Appl. Mater. Interfaces 7(34), 19466–19473 (2015). https://doi.org/10.1021/acsami.5b05865
H. Lin, Y. Wang, Y. Gan, H. Hou, J. Yin, X. Jiang, Simultaneous formation of a self-wrinkled surface and silver nanoparticles on a functional photocuring coating. Langmuir 31(43), 11800–11808 (2015). https://doi.org/10.1021/acs.Langmuir5b03484
F. Zou, H. Zhou, D.Y. Jeong, J. Kwon, S.U. Eom, T.J. Park, S.W. Hong, J. Lee, Wrinkled surface-mediated antibacterial activity of graphene oxide nanosheets. ACS Appl. Mater. Interfaces 9(2), 1343–1351 (2017). https://doi.org/10.1021/acsami.6b15085
K. Efimenko, J. Finlay, M.E. Callow, J.A. Callow, J. Genzer, Development and testing of hierarchically wrinkled coatings for marine antifouling. ACS Appl. Mater. Interfaces 1(5), 1031–1040 (2009). https://doi.org/10.1021/am9000562
J. Braam, In touch: plant responses to mechanical stimuli. N. Phytol. 165(2), 373–389 (2005). https://doi.org/10.1111/j.1469-8137.2004.01263.x
W. Wong, M. Li, D. Nisbet, V. Craig, Z. Wang, A. Tricoli, Mimosa origami: a nanostructure-enabled directional self-organization regime of materials. Sci. Adv. 2, e1600417 (2016). https://doi.org/10.1126/sciadv.1600417
L. Ionov, Polymeric actuators. Langmuir 31(18), 5015–5024 (2015). https://doi.org/10.1021/la503407z
L. Ionov, Hydrogel-based actuators: possibilities and limitations. Mater. Today 17(10), 494–503 (2014). https://doi.org/10.1016/j.mattod.2014.07.002
B. Li, T. Du, B. Yu, J. van der Gucht, F. Zhou, Caterpillar-inspired design and fabrication of a self-walking actuator with anisotropy, gradient, and instant response. Small 11(28), 3494–3501 (2015). https://doi.org/10.1002/smll.201500577
Y. Qiu, M. Wang, W. Zhang, Y. Liu, Y.V. Li, K. Pan, An asymmetric graphene oxide film for developing moisture actuators. Nanoscale 10(29), 14060–14066 (2018). https://doi.org/10.1039/C8NR01785A
K. Jun, D. Kim, S. Ryu, I.-K. Oh, Surface modification of anisotropic dielectric elastomer actuators with uni- and bi-axially wrinkled carbon electrodes for wettability control. Sci. Rep. 7(1), 6091 (2017). https://doi.org/10.1038/s41598-017-06274-0
M. Watanabe, H. Shirai, T. Hirai, Wrinkled polypyrrole electrode for electroactive polymer actuators. J. Appl. Phys. 92(8), 4631–4637 (2002). https://doi.org/10.1063/1.1505674
J. Ki-Woo, K. Jong-Nam, J. Jin-Young, O. Il-Kwon, Wrinkled graphene–AgNWS hybrid electrodes for smart window. Micromachines 8(2), 43 (2017). https://doi.org/10.3390/mi8020043
C. Xu, G.T. Stiubianu, A.A. Gorodetsky, Adaptive infrared-reflecting systems inspired by cephalopods. Science 359(6383), 1495–1500 (2018). https://doi.org/10.1126/science.aar5191
Y. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013). https://doi.org/10.1038/nature12083
J. Jung, V. Xiao, C. Malyarchuk, M. Lu, Z. Li, J. Liu, Y. Yoon, J.A. Huang, Rogers, Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl Acad. Sci. USA 108(5), 1788–1793 (2011). https://doi.org/10.1073/pnas.1015440108
D. Chandra, S. Yang, P.-C. Lin, Strain responsive concave and convex microlens arrays. Appl. Phys. Lett. 91(25), 251912 (2007). https://doi.org/10.1063/1.2827185
D. Terwagne, M. Brojan, P.M. Reis, Smart morphable surfaces for aerodynamic drag control. Adv. Mater. 26(38), 6608–6611 (2014). https://doi.org/10.1002/adma.201401403
H.F. Chan, R. Zhao, G.A. Parada, H. Meng, K.W. Leong, L.G. Griffith, X. Zhao, Folding artificial mucosa with cell-laden hydrogels guided by mechanics models. Proc. Natl Acad. Sci. USA 115(29), 7503–7508 (2018). https://doi.org/10.1073/pnas.1802361115