The Principle of Introducing Halogen Ions Into β-FeOOH: Controlling Electronic Structure and Electrochemical Performance
Corresponding Author: Xiaodong Lei
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 107
Abstract
Coordination tuning electronic structure of host materials is a quite effective strategy for activating and improving the intrinsic properties. Herein, halogen anion (X−)-incorporated β-FeOOH (β-FeOOH(X), X = F−, Cl−, and Br−) was investigated with a spontaneous adsorption process, which realized a great improvement of supercapacitor performances by adjusting the coordination geometry. Experiments coupled with theoretical calculations demonstrated that the change of Fe–O bond length and structural distortion of β-FeOOH, which is rooted in halogen ions embedment, led to the relatively narrow band gap. Because of the strong electronegativity of X−, the Fe element in β-FeOOH(X)s presented the unexpected high valence state (3 + δ), which is facilitating to adsorb SO32− species. Consequently, the designed β-FeOOH(X)s exhibited the good electric conductivity and enhanced the contact between electrode and electrolyte. When used as a negative electrode, the β-FeOOH(F) showed the excellent specific capacity of 391.9 F g−1 at 1 A g−1 current density, almost tenfold improvement compared with initial β-FeOOH, with the superior rate capacity and cyclic stability. This combinational design principle of electronic structure and electrochemical performances provides a promising way to develop advanced electrode materials for supercapacitor.
Highlights:
1 Halogen ion-incorporated β-FeOOH(X)s (X = F−, Cl−, Br−) were designed and fabricated successfully and showed good performance for negative electrodes of supercapacitors.
2 The embedment of X− caused the change of Fe–O bond length and structural distortion of β-FeOOH, which resulted in the narrow band gap and good electric conductivity.
3 The presence of unexpected high valence state (3 + δ) Fe element facilitated the adsorption for SO32− species endowing the β-FeOOH(X)s with good wettability in Na2SO3 electrolyte.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
- Y. Li, J. Xu, T. Feng, Q. Yao, J. Xie, H. Xia, Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 27(14), 1606728 (2017). https://doi.org/10.1002/adfm.201606728
- X. Tang, R. Jia, T. Zhai, H. Xia, Hierarchical Fe3O4@Fe2O3 core-shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7(49), 27518–27525 (2015). https://doi.org/10.1021/acsami.5b09766
- D. Zhang, X. Kong, M. Jiang, D. Lei, X. Lei, NiOOH-decorated α-FeOOH nanosheet array on stainless steel for applications in oxygen evolution reactions and supercapacitors. ACS Sustain. Chem. Eng. 7(4), 4420–4428 (2019). https://doi.org/10.1021/acssuschemeng.8b06386
- S. Zheng, L. Zheng, Z. Zhu, J. Chen, J. Kang, Z. Huang, D. Yang, MoS2 nanosheet arrays rooted on hollow rGO spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett. 10(4), 62 (2018). https://doi.org/10.1007/s40820-018-0215-3
- Y. Yang, K. Shen, Y. Liu, Y. Tan, X. Zhao, J. Wu, X. Niu, F. Ran, Novel hybrid nanoparticles of vanadium nitride/porous carbon as an anode material for symmetrical supercapacitor. Nano-Micro Lett. 9(1), 6 (2017). https://doi.org/10.1007/s40820-016-0105-5
- Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, Y. Tong, Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 6(24), 1601053 (2016). https://doi.org/10.1002/aenm.201601053
- V.D. Nithya, N. Sabari Arul, Progress and development of Fe3O4 electrodes for supercapacitors. J. Mater. Chem. A 4(28), 10767–10778 (2016). https://doi.org/10.1039/c6ta02582j
- J. Li, D. Chen, Q. Wu, X. Wang, Y. Zhang, Q. Zhang, FeOOH nanorod arrays aligned on eggplant derived super long carbon tube networks as negative electrodes for supercapacitors. New J. Chem. 42(6), 4513–4519 (2018). https://doi.org/10.1039/c7nj04662f
- J. Sun, C. Wu, X. Sun, H. Hu, C. Zhi, L. Hou, C. Yuan, Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J. Mater. Chem. A 5(20), 9443–9464 (2017). https://doi.org/10.1039/c7ta00932a
- K. Du, G. Wei, F. Zhao, C. An, H. Wang, J. Li, C. An, Urchin-like FeOOH hollow microspheres decorated with MnO2 for enhanced supercapacitor performance. Sci. China Mater. 61(1), 48–56 (2017). https://doi.org/10.1007/s40843-017-9122-4
- S. Yu, V.M. Hong Ng, F. Wang, Z. Xiao, C. Li, L.B. Kong, W. Que, K. Zhou, Synthesis and application of iron-based nanomaterials as anodes of lithium-ion batteries and supercapacitors. J. Mater. Chem. A 6(20), 9332–9367 (2018). https://doi.org/10.1039/c8ta01683f
- Y.C. Chen, Y.G. Lin, Y.K. Hsu, S.C. Yen, K.H. Chen, L.C. Chen, Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. Small 10(18), 3803–3810 (2014). https://doi.org/10.1002/smll.201400597
- Q. Qu, S. Yang, X. Feng, 2d sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23(46), 5574–5580 (2011). https://doi.org/10.1002/adma.201103042
- G. Li, R. Li, W. Zhou, A wire-shaped supercapacitor in micrometer size based on Fe3O4 nanosheet arrays on Fe wire. Nano-Micro Lett. 9(4), 46 (2017). https://doi.org/10.1007/s40820-017-0147-3
- Y. Wu, Y. Yang, X. Zhao, Y. Tan, Y. Liu, Z. Wang, F. Ran, A novel hierarchical porous 3D structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett. 10(4), 63 (2018). https://doi.org/10.1007/s40820-018-0217-1
- C. Sun, W. Pan, D. Zheng, Y. Zheng, J. Zhu, C. Liu, Low-crystalline FeOOH nanoflower assembled mesoporous film anchored on MWCNTs for high-performance supercapacitor electrodes. ACS Omega 5(9), 4532–4541 (2020). https://doi.org/10.1021/acsomega.9b03869
- D. Zhang, Y. Shao, X. Kong, M. Jiang, X. Lei, Hierarchical carbon-decorated Fe3O4 on hollow Cuo nanotube array: fabrication and used as negative material for ultrahigh-energy density hybrid supercapacitor. Chem. Eng. J. 349, 491–499 (2018). https://doi.org/10.1016/j.cej.2018.05.120
- Z. Cai, D. Zhou, M. Wang, S.M. Bak, Y. Wu et al., Introducing Fe2+ into nickel-iron layered double hydroxide: local structure modulated water oxidation activity. Angew. Chem. Int. Ed. 57(30), 9392–9396 (2018). https://doi.org/10.1002/anie.201804881
- Y.-S. Xie, Z. Wang, M. Ju, X. Long, S. Yang, Dispersing transition metal vacancies in layered double hydroxides by ionic reductive complexation extraction for efficient water oxidation. Chem. Sci. (2019). https://doi.org/10.1039/c9sc02723h
- W. Liang, R. Poon, I. Zhitomirsky, Zn-doped FeOOH-polypyrrole electrodes for supercapacitors. Mater. Lett. 255, 126542 (2019). https://doi.org/10.1016/j.matlet.2019.126542
- X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. Xie, M.S. Balogun, Y. Tong, Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 26(19), 3148–3155 (2014). https://doi.org/10.1002/adma.201305851
- Y. Teng, X.-D. Wang, J.-F. Liao, W.-G. Li, H.-Y. Chen, Y.-J. Dong, D.-B. Kuang, Atomically thin defect-rich Fe-Mn-O hybrid nanosheets as high efficient electrocatalyst for water oxidation. Adv. Funct. Mater. 28(34), 1802463 (2018). https://doi.org/10.1002/adfm.201802463
- Y. Li, J. Huang, X. Hu, L. Bi, P. Cai et al., Fe vacancies induced surface FeO6 in nanoarchitectures of N-doped graphene protected β-FeOOH: effective active sites for pH-universal electrocatalytic oxygen reduction. Adv. Funct. Mater. 28(34), 1803330 (2018). https://doi.org/10.1002/adfm.201803330
- G. Meng, W. Sun, A.A. Mon, X. Wu, L. Xia et al., Strain regulation to optimize the acidic water oxidation performance of atomic-layer Irox. Adv. Mater. 1903616 (2019). https://doi.org/10.1002/adma.201903616
- Y. Liang, Y. Yu, Y. Huang, Y. Shi, B. Zhang, Adjusting the electronic structure by Ni incorporation: a generalized in situ electrochemical strategy to enhance water oxidation activity of oxyhydroxides. J. Mater. Chem. A 5(26), 13336–13340 (2017). https://doi.org/10.1039/c7ta03582a
- X. Han, C. Yu, J. Yang, X. Song, C. Zhao et al., Electrochemically driven coordination tuning of FeOOH integrated on carbon fiber paper for enhanced oxygen evolution. Small 15(18), 1901015 (2019). https://doi.org/10.1002/smll.201901015
- T. Zhai, S. Sun, X. Liu, C. Liang, G. Wang, H. Xia, Achieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitance. Adv. Mater. 30(12), 1706640 (2018). https://doi.org/10.1002/adma.201706640
- B. Zhang, K. Jiang, H. Wang, S. Hu, Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst. Nano Lett. 19(1), 530–537 (2019). https://doi.org/10.1021/acs.nanolett.8b04466
- P.A. Kozin, J.-F. Boily, Proton binding and ion exchange at the akaganéite/water interface. J. Phys. Chem. C 117(12), 6409–6419 (2013). https://doi.org/10.1021/jp3101046
- X. Song, J.F. Boily, Water vapor diffusion into a nanostructured iron oxyhydroxide. Inorg. Chem. 52(12), 7107–7113 (2013). https://doi.org/10.1021/ic400661d
- H. Song, Y. Gong, J. Su, Y. Li, Y. Li, L. Gu, C. Wang, Surfaces/interfaces modification for vacancies enhancing lithium storage capability of Cu2O ultrasmall nanocrystals. ACS Appl. Mater. Interfaces 10(41), 35137–35144 (2018). https://doi.org/10.1021/acsami.8b11592
- H. Song, J. Su, C. Wang, Vacancies revitalized Ni3ZnC0.7 bimetallic carbide hybrid electrodes with multiplied charge-storage capability for high-capacity and stable-cyclability lithium-ion storage. ACS Appl. Energy Mater. 1(9), 5008–5015 (2018). https://doi.org/10.1021/acsaem.8b00992
- G.-F. Chen, Y. Luo, L.-X. Ding, H. Wang, Low-voltage electrolytic hydrogen production derived from efficient water and ethanol oxidation on fluorine-modified FeOOH anode. ACS Catal. 8(1), 526–530 (2017). https://doi.org/10.1021/acscatal.7b03319
- L.-F. Chen, Z.-Y. Yu, J.-J. Wang, Q.-X. Li, Z.-Q. Tan, Y.-W. Zhu, S.-H. Yu, Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors. Nano Energy 11, 119–128 (2015). https://doi.org/10.1016/j.nanoen.2014.10.005
- D. Zhang, Y. Shao, X. Kong, M. Jiang, D. Lei, X. Lei, Facile fabrication of large-area hybrid Ni-Co hydroxide/Cu(OH)2/copper foam composites. Electrochim. Acta 218, 294–302 (2016). https://doi.org/10.1016/j.electacta.2016.09.137
- G. Park, Y.-I. Kim, Y.H. Kim, M. Park, K.Y. Jang, H. Song, K.M. Nam, Preparation and phase transition of FeOOH nanorods: strain effects on catalytic water oxidation. Nanoscale 9(14), 4751–4758 (2017). https://doi.org/10.1039/c6nr09790a
- C. Lu, C. Chen, High-pressure evolution of crystal bonding structures and properties of FeOOH. J. Phys. Chem. Lett. 9(9), 2181–2185 (2018). https://doi.org/10.1021/acs.jpclett.8b00947
- D. Zhou, S. Wang, Y. Jia, X. Xiong, H. Yang et al., NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem. Int. Ed. 58(3), 736–740 (2019). https://doi.org/10.1002/anie.201809689
- M. Zhang, β-FeOOH nanorods enriched with bulk chloride as lithium-ion battery cathodes. J. Alloy. Compd. 648, 134–138 (2015). https://doi.org/10.1016/j.jallcom.2015.06.158
- Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
- T. Nguyen, M. Fátima Montemor, γ-FeOOH and amorphous Ni–Mn hydroxide on carbon nanofoam paper electrodes for hybrid supercapacitors. J. Mater. Chem. A 6(6), 2612–2624 (2018). https://doi.org/10.1039/c7ta05582j
- L. Yu, L.P. Wang, S. Xi, P. Yang, Y. Du, M. Srinivasan, Z.J. Xu, β-FeOOH: an earth-abundant high-capacity negative electrode material for sodium-ion batteries. Chem. Mater. 27(15), 5340–5348 (2015). https://doi.org/10.1021/acs.chemmater.5b01747
- L. O’Neill, C. Johnston, P.S. Grant, Enhancing the supercapacitor behaviour of novel Fe3O4/FeOOH nanowire hybrid electrodes in aqueous electrolytes. J. Power Sources 274, 907–915 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.151
- Y.-N. Zhou, P.-F. Wang, Y.-B. Niu, Q. Li, X. Yu, Y.-X. Yin, S. Xu, Y.-G. Guo, A P2/P3 composite layered cathode for high-performance Na-ion full batteries. Nano Energy 55, 143–150 (2019). https://doi.org/10.1016/j.nanoen.2018.10.072
- J. Ni, M. Sun, L. Li, Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field. Adv. Mater. 1902603 (2019). https://doi.org/10.1002/adma.201902603
- Q. Liang, L. Zhong, C. Du, Y. Luo, J. Zhao et al., Interfacing epitaxial dinickel phosphide to 2d nickel thiophosphate nanosheets for boosting electrocatalytic water splitting. ACS Nano 13(7), 7975–7984 (2019). https://doi.org/10.1021/acsnano.9b02510
- H. Li, Y. Chen, S. Xi, J. Wang, S. Sun, Y. Sun, Y. Du, Z.J. Xu, Degree of geometric tilting determines the activity of FeO6 octahedra for water oxidation. Chem. Mater. 30(13), 4313–4320 (2018). https://doi.org/10.1021/acs.chemmater.8b01321
- W.-H. Jin, G.-T. Cao, J.-Y. Sun, Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. J. Power Sources 175(1), 686–691 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.115
- Y. Chen, C. Jing, X. Fu, M. Shen, T. Cao et al., In-situ fabricating MnO2 and its derived FeOOH nanostructures on mesoporous carbon towards high-performance asymmetric supercapacitor. Appl. Surf. Sci. 503, 144123 (2020). https://doi.org/10.1016/j.apsusc.2019.144123
- Q. Wang, Y. Ma, X. Liang, D. Zhang, M. Miao, Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem. Eng. J. 371, 145–153 (2019). https://doi.org/10.1016/j.cej.2019.04.021
- H.-J. Choi, S.-H. Lee, J.H. Kim, H.-K. Kim, J.-M. Kim, Zinc doped H2Ti12O25 anode and activated carbon cathode for hybrid supercapacitor with superior performance. Electrochim. Acta 251, 613–620 (2017). https://doi.org/10.1016/j.electacta.2017.08.094
- A. Farisabadi, M. Moradi, S. Hajati, M.A. Kiani, J.P. Espinos, Controlled thermolysis of mil-101(Fe, Cr) for synthesis of FexOy/porous carbon as negative electrode and Cr2O3/porous carbon as positive electrode of supercapacitor. Appl. Surf. Sci. 469, 192–203 (2019). https://doi.org/10.1016/j.apsusc.2018.11.053
- T. Qin, S. Peng, J. Hao, H. Li, Y. Wen et al., Novel MnO2/cobalt composites nanosheets array as efficient anode for asymmetric supercapacitor. Electrochim. Acta 292, 39–46 (2018). https://doi.org/10.1016/j.electacta.2018.09.145
References
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
Y. Li, J. Xu, T. Feng, Q. Yao, J. Xie, H. Xia, Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 27(14), 1606728 (2017). https://doi.org/10.1002/adfm.201606728
X. Tang, R. Jia, T. Zhai, H. Xia, Hierarchical Fe3O4@Fe2O3 core-shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7(49), 27518–27525 (2015). https://doi.org/10.1021/acsami.5b09766
D. Zhang, X. Kong, M. Jiang, D. Lei, X. Lei, NiOOH-decorated α-FeOOH nanosheet array on stainless steel for applications in oxygen evolution reactions and supercapacitors. ACS Sustain. Chem. Eng. 7(4), 4420–4428 (2019). https://doi.org/10.1021/acssuschemeng.8b06386
S. Zheng, L. Zheng, Z. Zhu, J. Chen, J. Kang, Z. Huang, D. Yang, MoS2 nanosheet arrays rooted on hollow rGO spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett. 10(4), 62 (2018). https://doi.org/10.1007/s40820-018-0215-3
Y. Yang, K. Shen, Y. Liu, Y. Tan, X. Zhao, J. Wu, X. Niu, F. Ran, Novel hybrid nanoparticles of vanadium nitride/porous carbon as an anode material for symmetrical supercapacitor. Nano-Micro Lett. 9(1), 6 (2017). https://doi.org/10.1007/s40820-016-0105-5
Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, Y. Tong, Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 6(24), 1601053 (2016). https://doi.org/10.1002/aenm.201601053
V.D. Nithya, N. Sabari Arul, Progress and development of Fe3O4 electrodes for supercapacitors. J. Mater. Chem. A 4(28), 10767–10778 (2016). https://doi.org/10.1039/c6ta02582j
J. Li, D. Chen, Q. Wu, X. Wang, Y. Zhang, Q. Zhang, FeOOH nanorod arrays aligned on eggplant derived super long carbon tube networks as negative electrodes for supercapacitors. New J. Chem. 42(6), 4513–4519 (2018). https://doi.org/10.1039/c7nj04662f
J. Sun, C. Wu, X. Sun, H. Hu, C. Zhi, L. Hou, C. Yuan, Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J. Mater. Chem. A 5(20), 9443–9464 (2017). https://doi.org/10.1039/c7ta00932a
K. Du, G. Wei, F. Zhao, C. An, H. Wang, J. Li, C. An, Urchin-like FeOOH hollow microspheres decorated with MnO2 for enhanced supercapacitor performance. Sci. China Mater. 61(1), 48–56 (2017). https://doi.org/10.1007/s40843-017-9122-4
S. Yu, V.M. Hong Ng, F. Wang, Z. Xiao, C. Li, L.B. Kong, W. Que, K. Zhou, Synthesis and application of iron-based nanomaterials as anodes of lithium-ion batteries and supercapacitors. J. Mater. Chem. A 6(20), 9332–9367 (2018). https://doi.org/10.1039/c8ta01683f
Y.C. Chen, Y.G. Lin, Y.K. Hsu, S.C. Yen, K.H. Chen, L.C. Chen, Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. Small 10(18), 3803–3810 (2014). https://doi.org/10.1002/smll.201400597
Q. Qu, S. Yang, X. Feng, 2d sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23(46), 5574–5580 (2011). https://doi.org/10.1002/adma.201103042
G. Li, R. Li, W. Zhou, A wire-shaped supercapacitor in micrometer size based on Fe3O4 nanosheet arrays on Fe wire. Nano-Micro Lett. 9(4), 46 (2017). https://doi.org/10.1007/s40820-017-0147-3
Y. Wu, Y. Yang, X. Zhao, Y. Tan, Y. Liu, Z. Wang, F. Ran, A novel hierarchical porous 3D structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett. 10(4), 63 (2018). https://doi.org/10.1007/s40820-018-0217-1
C. Sun, W. Pan, D. Zheng, Y. Zheng, J. Zhu, C. Liu, Low-crystalline FeOOH nanoflower assembled mesoporous film anchored on MWCNTs for high-performance supercapacitor electrodes. ACS Omega 5(9), 4532–4541 (2020). https://doi.org/10.1021/acsomega.9b03869
D. Zhang, Y. Shao, X. Kong, M. Jiang, X. Lei, Hierarchical carbon-decorated Fe3O4 on hollow Cuo nanotube array: fabrication and used as negative material for ultrahigh-energy density hybrid supercapacitor. Chem. Eng. J. 349, 491–499 (2018). https://doi.org/10.1016/j.cej.2018.05.120
Z. Cai, D. Zhou, M. Wang, S.M. Bak, Y. Wu et al., Introducing Fe2+ into nickel-iron layered double hydroxide: local structure modulated water oxidation activity. Angew. Chem. Int. Ed. 57(30), 9392–9396 (2018). https://doi.org/10.1002/anie.201804881
Y.-S. Xie, Z. Wang, M. Ju, X. Long, S. Yang, Dispersing transition metal vacancies in layered double hydroxides by ionic reductive complexation extraction for efficient water oxidation. Chem. Sci. (2019). https://doi.org/10.1039/c9sc02723h
W. Liang, R. Poon, I. Zhitomirsky, Zn-doped FeOOH-polypyrrole electrodes for supercapacitors. Mater. Lett. 255, 126542 (2019). https://doi.org/10.1016/j.matlet.2019.126542
X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. Xie, M.S. Balogun, Y. Tong, Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 26(19), 3148–3155 (2014). https://doi.org/10.1002/adma.201305851
Y. Teng, X.-D. Wang, J.-F. Liao, W.-G. Li, H.-Y. Chen, Y.-J. Dong, D.-B. Kuang, Atomically thin defect-rich Fe-Mn-O hybrid nanosheets as high efficient electrocatalyst for water oxidation. Adv. Funct. Mater. 28(34), 1802463 (2018). https://doi.org/10.1002/adfm.201802463
Y. Li, J. Huang, X. Hu, L. Bi, P. Cai et al., Fe vacancies induced surface FeO6 in nanoarchitectures of N-doped graphene protected β-FeOOH: effective active sites for pH-universal electrocatalytic oxygen reduction. Adv. Funct. Mater. 28(34), 1803330 (2018). https://doi.org/10.1002/adfm.201803330
G. Meng, W. Sun, A.A. Mon, X. Wu, L. Xia et al., Strain regulation to optimize the acidic water oxidation performance of atomic-layer Irox. Adv. Mater. 1903616 (2019). https://doi.org/10.1002/adma.201903616
Y. Liang, Y. Yu, Y. Huang, Y. Shi, B. Zhang, Adjusting the electronic structure by Ni incorporation: a generalized in situ electrochemical strategy to enhance water oxidation activity of oxyhydroxides. J. Mater. Chem. A 5(26), 13336–13340 (2017). https://doi.org/10.1039/c7ta03582a
X. Han, C. Yu, J. Yang, X. Song, C. Zhao et al., Electrochemically driven coordination tuning of FeOOH integrated on carbon fiber paper for enhanced oxygen evolution. Small 15(18), 1901015 (2019). https://doi.org/10.1002/smll.201901015
T. Zhai, S. Sun, X. Liu, C. Liang, G. Wang, H. Xia, Achieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitance. Adv. Mater. 30(12), 1706640 (2018). https://doi.org/10.1002/adma.201706640
B. Zhang, K. Jiang, H. Wang, S. Hu, Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst. Nano Lett. 19(1), 530–537 (2019). https://doi.org/10.1021/acs.nanolett.8b04466
P.A. Kozin, J.-F. Boily, Proton binding and ion exchange at the akaganéite/water interface. J. Phys. Chem. C 117(12), 6409–6419 (2013). https://doi.org/10.1021/jp3101046
X. Song, J.F. Boily, Water vapor diffusion into a nanostructured iron oxyhydroxide. Inorg. Chem. 52(12), 7107–7113 (2013). https://doi.org/10.1021/ic400661d
H. Song, Y. Gong, J. Su, Y. Li, Y. Li, L. Gu, C. Wang, Surfaces/interfaces modification for vacancies enhancing lithium storage capability of Cu2O ultrasmall nanocrystals. ACS Appl. Mater. Interfaces 10(41), 35137–35144 (2018). https://doi.org/10.1021/acsami.8b11592
H. Song, J. Su, C. Wang, Vacancies revitalized Ni3ZnC0.7 bimetallic carbide hybrid electrodes with multiplied charge-storage capability for high-capacity and stable-cyclability lithium-ion storage. ACS Appl. Energy Mater. 1(9), 5008–5015 (2018). https://doi.org/10.1021/acsaem.8b00992
G.-F. Chen, Y. Luo, L.-X. Ding, H. Wang, Low-voltage electrolytic hydrogen production derived from efficient water and ethanol oxidation on fluorine-modified FeOOH anode. ACS Catal. 8(1), 526–530 (2017). https://doi.org/10.1021/acscatal.7b03319
L.-F. Chen, Z.-Y. Yu, J.-J. Wang, Q.-X. Li, Z.-Q. Tan, Y.-W. Zhu, S.-H. Yu, Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors. Nano Energy 11, 119–128 (2015). https://doi.org/10.1016/j.nanoen.2014.10.005
D. Zhang, Y. Shao, X. Kong, M. Jiang, D. Lei, X. Lei, Facile fabrication of large-area hybrid Ni-Co hydroxide/Cu(OH)2/copper foam composites. Electrochim. Acta 218, 294–302 (2016). https://doi.org/10.1016/j.electacta.2016.09.137
G. Park, Y.-I. Kim, Y.H. Kim, M. Park, K.Y. Jang, H. Song, K.M. Nam, Preparation and phase transition of FeOOH nanorods: strain effects on catalytic water oxidation. Nanoscale 9(14), 4751–4758 (2017). https://doi.org/10.1039/c6nr09790a
C. Lu, C. Chen, High-pressure evolution of crystal bonding structures and properties of FeOOH. J. Phys. Chem. Lett. 9(9), 2181–2185 (2018). https://doi.org/10.1021/acs.jpclett.8b00947
D. Zhou, S. Wang, Y. Jia, X. Xiong, H. Yang et al., NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem. Int. Ed. 58(3), 736–740 (2019). https://doi.org/10.1002/anie.201809689
M. Zhang, β-FeOOH nanorods enriched with bulk chloride as lithium-ion battery cathodes. J. Alloy. Compd. 648, 134–138 (2015). https://doi.org/10.1016/j.jallcom.2015.06.158
Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
T. Nguyen, M. Fátima Montemor, γ-FeOOH and amorphous Ni–Mn hydroxide on carbon nanofoam paper electrodes for hybrid supercapacitors. J. Mater. Chem. A 6(6), 2612–2624 (2018). https://doi.org/10.1039/c7ta05582j
L. Yu, L.P. Wang, S. Xi, P. Yang, Y. Du, M. Srinivasan, Z.J. Xu, β-FeOOH: an earth-abundant high-capacity negative electrode material for sodium-ion batteries. Chem. Mater. 27(15), 5340–5348 (2015). https://doi.org/10.1021/acs.chemmater.5b01747
L. O’Neill, C. Johnston, P.S. Grant, Enhancing the supercapacitor behaviour of novel Fe3O4/FeOOH nanowire hybrid electrodes in aqueous electrolytes. J. Power Sources 274, 907–915 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.151
Y.-N. Zhou, P.-F. Wang, Y.-B. Niu, Q. Li, X. Yu, Y.-X. Yin, S. Xu, Y.-G. Guo, A P2/P3 composite layered cathode for high-performance Na-ion full batteries. Nano Energy 55, 143–150 (2019). https://doi.org/10.1016/j.nanoen.2018.10.072
J. Ni, M. Sun, L. Li, Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field. Adv. Mater. 1902603 (2019). https://doi.org/10.1002/adma.201902603
Q. Liang, L. Zhong, C. Du, Y. Luo, J. Zhao et al., Interfacing epitaxial dinickel phosphide to 2d nickel thiophosphate nanosheets for boosting electrocatalytic water splitting. ACS Nano 13(7), 7975–7984 (2019). https://doi.org/10.1021/acsnano.9b02510
H. Li, Y. Chen, S. Xi, J. Wang, S. Sun, Y. Sun, Y. Du, Z.J. Xu, Degree of geometric tilting determines the activity of FeO6 octahedra for water oxidation. Chem. Mater. 30(13), 4313–4320 (2018). https://doi.org/10.1021/acs.chemmater.8b01321
W.-H. Jin, G.-T. Cao, J.-Y. Sun, Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. J. Power Sources 175(1), 686–691 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.115
Y. Chen, C. Jing, X. Fu, M. Shen, T. Cao et al., In-situ fabricating MnO2 and its derived FeOOH nanostructures on mesoporous carbon towards high-performance asymmetric supercapacitor. Appl. Surf. Sci. 503, 144123 (2020). https://doi.org/10.1016/j.apsusc.2019.144123
Q. Wang, Y. Ma, X. Liang, D. Zhang, M. Miao, Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem. Eng. J. 371, 145–153 (2019). https://doi.org/10.1016/j.cej.2019.04.021
H.-J. Choi, S.-H. Lee, J.H. Kim, H.-K. Kim, J.-M. Kim, Zinc doped H2Ti12O25 anode and activated carbon cathode for hybrid supercapacitor with superior performance. Electrochim. Acta 251, 613–620 (2017). https://doi.org/10.1016/j.electacta.2017.08.094
A. Farisabadi, M. Moradi, S. Hajati, M.A. Kiani, J.P. Espinos, Controlled thermolysis of mil-101(Fe, Cr) for synthesis of FexOy/porous carbon as negative electrode and Cr2O3/porous carbon as positive electrode of supercapacitor. Appl. Surf. Sci. 469, 192–203 (2019). https://doi.org/10.1016/j.apsusc.2018.11.053
T. Qin, S. Peng, J. Hao, H. Li, Y. Wen et al., Novel MnO2/cobalt composites nanosheets array as efficient anode for asymmetric supercapacitor. Electrochim. Acta 292, 39–46 (2018). https://doi.org/10.1016/j.electacta.2018.09.145