Surface-Modified Graphene Oxide/Lead Sulfide Hybrid Film-Forming Ink for High-Efficiency Bulk Nano-Heterojunction Colloidal Quantum Dot Solar Cells
Corresponding Author: Qing Shen
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 111
Abstract
Solution-processed colloidal quantum dot solar cells (CQDSCs) is a promising candidate for new generation solar cells. To obtain stable and high performance lead sulfide (PbS)-based CQDSCs, high carrier mobility and low non-radiative recombination center density in the PbS CQDs active layer are required. In order to effectively improve the carrier mobility in PbS CQDs layer of CQDSCs, butylamine (BTA)-modified graphene oxide (BTA@GO) is first utilized in PbS-PbX2 (X = I−, Br−) CQDs ink to deposit the active layer of CQDSCs through one-step spin-coating method. Such surface treatment of GO dramatically upholds the intrinsic superior hole transfer peculiarity of GO and attenuates the hydrophilicity of GO in order to allow for its good dispersibility in ink solvent. The introduction of BTA@GO in CQDs layer can build up a bulk nano-heterojunction architecture, which provides a smooth charge carrier transport channel in turn improves the carrier mobility and conductivity, extends the carriers lifetime and reduces the trap density of PbS-PbX2 CQDs film. Finally, the BTA@GO/PbS-PbX2 hybrid CQDs film-based relatively large-area (0.35 cm2) CQDSCs shows a champion power conversion efficiency of 11.7% which is increased by 23.1% compared with the control device.
Highlights:
1 Butylamine-modified graphene oxide (BTA@GO) is first utilized in PbS colloidal quantum dots (CQDs) ink to deposit the active layer of colloidal quantum dot solar cells (CQDSCs).
2 The BTA@GO improves the carrier transfer rate in the CQDs active layer and 11.7% conversion efficiency is achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhang, G. Wu, F. Liu, C. Ding, Z. Zou, Q. Shen, Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chem. Soc. Rev. 49, 49–84 (2020). https://doi.org/10.1039/c9cs00560a
- R. Ahmed, L. Zhao, A.J. Mozer, G. Will, J. Bell, H. Wang, Enhanced electron lifetime of CdSe/CdS quantum dot (QD) sensitized solar cells using ZnSe core–shell structure with efficient regeneration of quantum dots. J. Phys. Chem. C 119(5), 2297–2307 (2015). https://doi.org/10.1021/jp510339z
- J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu et al., Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10(10), 765–771 (2011). https://doi.org/10.1038/nmat3118
- Y. Cao, A. Stavrinadis, T. Lasanta, D. So, G. Konstantatos, The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 1, 16035 (2016). https://doi.org/10.1038/nenergy.2016.35
- X. Zhang, J. Zhang, D. Phuyal, J. Du, L. Tian et al., Inorganic CsPbI3 perovskite coating on PbS quantum dot for highly efficient and stable infrared light converting solar cells. Adv. Energy Mater. 8(6), 1702049 (2018). https://doi.org/10.1002/aenm.201702049
- N. Nakazawa, Y. Zhang, F. Liu, C. Ding, K. Hori et al., The interparticle distance limit for multiple exciton dissociation in PbS quantum dot solid films. Nanoscale Horiz. 4(2), 445–451 (2019). https://doi.org/10.1039/C8NH00341F
- W. Chen, J.L. Zhong, J.Z. Li, N. Saxena, L.P. Kreuzer et al., Structure and charge carrier dynamics in colloidal PbS quantum dot solids. J. Phys. Chem. Lett. 10(9), 2058–2065 (2019). https://doi.org/10.1021/acs.jpclett.9b00869
- M.I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp, Y.H. Tsang, Perovskite/silicon tandem solar cells: from detailed balance limit calculations to photon management. Nano-Micro Lett. 11, 58 (2019). https://doi.org/10.1007/s40820-019-0287-8
- X. Ling, S. Zhou, J. Yuan, J. Shi, Y. Qian et al., 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 9(28), 1900721 (2019). https://doi.org/10.1002/aenm.201900721
- C.H.M. Chuang, P.R. Brown, V. Bulović, M.G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13(8), 796–801 (2014). https://doi.org/10.1038/nmat3984
- S. Pradhan, A. Stavrinadis, S. Gupta, S. Christodoulou, G. Konstantatos, Breaking the open-circuit voltage deficit floor in PbS quantum dot solar cells through synergistic ligand and architecture engineering. ACS Energy Lett. 2(6), 1444–1449 (2017). https://doi.org/10.1021/acsenergylett.7b00244
- Y.J. Gao, J.H. Zheng, W.J. Chen, L. Yuan, Z.L. Teh et al., Enhancing PbS colloidal quantum dot tandem solar cell performance by graded band alignment. J. Phys. Chem. Lett. 10(19), 5729–5734 (2019). https://doi.org/10.1021/acs.jpclett.9b02423
- X.K. Yang, L. Hu, H. Deng, K.K. Qiao, C. Hu et al., Improving the performance of PbS quantum dot solar cells by optimizing ZnO window layer. Nano-Micro Lett. 9(2), 24 (2017). https://doi.org/10.1007/s40820-016-0124-2
- F. Li, S. Zhou, J. Yuan, C. Qin, Y. Yang et al., Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. ACS Energy Lett. 4(11), 2571–2578 (2019). https://doi.org/10.1021/acsenergylett.9b01920
- J. Yuan, X. Ling, D. Yang, F. Li, S. Zhou et al., Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule 2(11), 2450–2463 (2018). https://doi.org/10.1016/j.joule.2018.08.011
- M. Liu, O. Voznyy, R. Sabatini, F.P. Garcia de Arquer, R. Munir et al., Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16(2), 258–263 (2017). https://doi.org/10.1038/nmat4800
- Y. Zhang, G. Wu, C. Ding, F. Liu, Y. Yao et al., Lead selenide colloidal quantum dot solar cells achieving high open-circuit voltage with one-step deposition strategy. J. Phys. Chem. Lett. 9(13), 3598–3603 (2018). https://doi.org/10.1021/acs.jpclett.8b01514
- G. Shi, A. Kaewprajak, X. Ling, A. Hayakawa, S. Zhou et al., Finely interpenetrating bulk heterojunction structure for lead sulfide colloidal quantum dot solar cells by convective assembly. ACS Energy Lett. 4(4), 960–967 (2019). https://doi.org/10.1021/acsenergylett.9b00053
- M. Hao, Y. Bai, S. Zeiske, L. Ren, J. Liu et al., Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5(1), 79–88 (2020). https://doi.org/10.1038/s41560-019-0535-7
- M.C. Hanna, A.J. Nozik, Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100(7), 074510 (2006). https://doi.org/10.1063/1.2356795
- M.J. Choi, F.P. García de Arquer, A.H. Proppe, A. Seifitokaldani, J. Choi et al., Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat. Commun. 11(1), 103 (2020). https://doi.org/10.1038/s41467-019-13437-2
- I.J. Kramer, D. Zhitomirsky, J.D. Bass, P.M. Rice, T. Topuria et al., Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Adv. Mater. 24(17), 2315–2319 (2012). https://doi.org/10.1002/adma.201104832
- H. Wang, V. Gonzalez-Pedro, T. Kubo, F. Fabregat-Santiago, J. Bisquert, Y. Sanehira, J. Nakazaki, H. Segawa, Enhanced carrier transport distance in colloidal PbS quantum-dot-based solar cells using ZnO nanowires. J. Phys. Chem. C 119(49), 27265–27274 (2015). https://doi.org/10.1021/acs.jpcc.5b09152
- S. Ozu, Y. Zhang, H. Yasuda, Y. Kitabatake, T. Toyoda et al., Improving photovoltaic performance of ZnO nanowires based colloidal quantum dot solar cells via SnO2 passivation strategy. Front. Energy Res. 7, 11 (2019). https://doi.org/10.3389/fenrg.2019.00011
- P.H. Rekemeyer, S. Chang, C.H.M. Chuang, G.W. Hwang, M.G. Bawendi, S. Gradečak, Enhanced photocurrent in PbS quantum dot photovoltaics via ZnO nanowires and band alignment engineering. Adv. Energy Mater. 6(24), 1600848 (2016). https://doi.org/10.1002/aenm.201600848
- D. Bederak, D.M. Balazs, N.V. Sukharevska, A.G. Shulga, M. Abdu-Aguye, D.N. Dirin, M.V. Kovalenko, M.A. Loi, Comparing halide ligands in PbS colloidal quantum dots for field-effect transistors and solar cells. ACS Appl. Nano Mater. 1(12), 6882–6889 (2018). https://doi.org/10.1021/acsanm.8b01696
- J. Liu, G.H. Kim, Y. Xue, J.Y. Kim, J.B. Baek, M. Durstock, L. Dai, Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells. Adv. Mater. 26(5), 786–790 (2014). https://doi.org/10.1002/adma.201302987
- D.-Y. Lee, S.-I. Na, S.-S. Kim, Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8, 1513–1522 (2016). https://doi.org/10.1039/C5NR05271H
- M. Shanmugam, T. Bansal, C.A. Durcan, B. Yu, Multilayer graphene oxide/cadmium selenide quantum-dot-coated titanium dioxide heterojunction solar cell. IEEE Electron Device Lett. 33(8), 1165–1167 (2012). https://doi.org/10.1109/LED.2012.2201911
- L. Hu, D.B. Li, L. Gao, H. Tan, C. Chen et al., Graphene doping improved device performance of ZnMgO/PbS colloidal quantum dot photovoltaics. Adv. Funct. Mater. 26(12), 1899–1907 (2016). https://doi.org/10.1002/adfm.201505043
- J. Xu, H. Wang, Y. Wang, S. Yang, G. Ni, B. Zou, Efficiency enhancement for solution-processed PbS quantum dots solar cells by inserting graphene oxide as hole-transporting and interface modifying layer. Org. Electron. 58, 270–275 (2018). https://doi.org/10.1016/j.orgel.2018.04.021
- S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15), 3342–3347 (2006). https://doi.org/10.1016/j.carbon.2006.06.004
- R.L.D. Whitby, A. Korobeinyk, V.M. Gun’ko, R. Busquets, A.B. Cundy et al., pH-driven physicochemical conformational changes of single-layer graphene oxide. Chem. Commun. 47(34), 9645–9647 (2011). https://doi.org/10.1039/C1CC13725E
- C.J. Shih, S. Lin, R. Sharma, M.S. Strano, D. Blankschtein, Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 28(1), 235–241 (2012). https://doi.org/10.1021/la203607w
- Y.L. Li, P.N. Yeh, S. Sharma, S.A. Chen, Promotion of performances of quantum dot solar cell and its tandem solar cell with low bandgap polymer (PTB7-Th): PC71BM by water vapor treatment on quantum dot layer on its surface. J. Mater. Chem. A 5(40), 21528–21535 (2017). https://doi.org/10.1039/C7TA04955B
- Y. Xia, S. Liu, K. Wang, X. Yang, L. Lian et al., Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 30(4), 1907379 (2019). https://doi.org/10.1002/adfm.201907379
- M. Li, B. Li, G. Cao, J. Tian, Monolithic MAPbI3 films for high-efficiency solar cells via coordination and a heat assisted process. J. Mater. Chem. A 5(40), 21313–21319 (2017). https://doi.org/10.1039/C7TA06766F
- L. Gao, K. Zeng, J. Guo, C. Ge, J. Du et al., Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett. 16(12), 7446–7454 (2016). https://doi.org/10.1021/acs.nanolett.6b03119
- Y. Cho, B. Hou, J. Lim, S. Lee, S. Pak et al., Balancing charge carrier transport in a quantum dot p-n junction toward hysteresis-free high-performance solar cells. ACS Energy Lett. 3(4), 1036–1043 (2018). https://doi.org/10.1021/acsenergylett.8b00130
- J.A. Geurst, Theory of space-charge-limited currents in thin semiconductor layers. Phys. Status Solidi B 15(1), 107–118 (1966). https://doi.org/10.1002/pssb.19660150108
- I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, Z. Hens, Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Krönig analysis of the absorbance spectrum. Phys. Rev. B 81(23), 235319 (2010). https://doi.org/10.1103/PhysRevB.81.235319
- H. Li, G. Wu, W. Li, Y. Zhang, Z. Liu, D. Wang, S. Liu, Additive engineering to grow micron-sized grains for stable high efficiency perovskite solar cells. Adv. Sci. 6(18), 1901241 (2019). https://doi.org/10.1002/advs.201901241
- A.K. Rath, F. Pelayo Garcia de Arquer, A. Stavrinadis, T. Lasanta, M. Bernechea, S.L. Diedenhofen, G. Konstantatos, Remote trap passivation in colloidal quantum dot bulk nano-heterojunctions and its effect in solution-processed solar cells. Adv. Mater. 26(27), 4741–4747 (2014). https://doi.org/10.1002/adma.201400297
- G.W. Guglietta, B.T. Diroll, E.A. Gaulding, J.L. Fordham, S. Li, C.B. Murray, J.B. Baxter, Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy. ACS Nano 9(2), 1820–1828 (2015). https://doi.org/10.1021/nn506724h
- J.M. Luther, M. Law, Q. Song, C.L. Perkins, M.C. Beard, A.J. Nozik, Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2(2), 271–280 (2008). https://doi.org/10.1021/nn7003348
- C.H.M. Chuang, A. Maurano, R.E. Brandt, G.W. Hwang, J. Jean, T. Buonassisi, V. Bulović, M.G. Bawendi, Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells. Nano Lett. 15(5), 3286–3294 (2015). https://doi.org/10.1021/acs.nanolett.5b00513
References
Y. Zhang, G. Wu, F. Liu, C. Ding, Z. Zou, Q. Shen, Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chem. Soc. Rev. 49, 49–84 (2020). https://doi.org/10.1039/c9cs00560a
R. Ahmed, L. Zhao, A.J. Mozer, G. Will, J. Bell, H. Wang, Enhanced electron lifetime of CdSe/CdS quantum dot (QD) sensitized solar cells using ZnSe core–shell structure with efficient regeneration of quantum dots. J. Phys. Chem. C 119(5), 2297–2307 (2015). https://doi.org/10.1021/jp510339z
J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu et al., Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10(10), 765–771 (2011). https://doi.org/10.1038/nmat3118
Y. Cao, A. Stavrinadis, T. Lasanta, D. So, G. Konstantatos, The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 1, 16035 (2016). https://doi.org/10.1038/nenergy.2016.35
X. Zhang, J. Zhang, D. Phuyal, J. Du, L. Tian et al., Inorganic CsPbI3 perovskite coating on PbS quantum dot for highly efficient and stable infrared light converting solar cells. Adv. Energy Mater. 8(6), 1702049 (2018). https://doi.org/10.1002/aenm.201702049
N. Nakazawa, Y. Zhang, F. Liu, C. Ding, K. Hori et al., The interparticle distance limit for multiple exciton dissociation in PbS quantum dot solid films. Nanoscale Horiz. 4(2), 445–451 (2019). https://doi.org/10.1039/C8NH00341F
W. Chen, J.L. Zhong, J.Z. Li, N. Saxena, L.P. Kreuzer et al., Structure and charge carrier dynamics in colloidal PbS quantum dot solids. J. Phys. Chem. Lett. 10(9), 2058–2065 (2019). https://doi.org/10.1021/acs.jpclett.9b00869
M.I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp, Y.H. Tsang, Perovskite/silicon tandem solar cells: from detailed balance limit calculations to photon management. Nano-Micro Lett. 11, 58 (2019). https://doi.org/10.1007/s40820-019-0287-8
X. Ling, S. Zhou, J. Yuan, J. Shi, Y. Qian et al., 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 9(28), 1900721 (2019). https://doi.org/10.1002/aenm.201900721
C.H.M. Chuang, P.R. Brown, V. Bulović, M.G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13(8), 796–801 (2014). https://doi.org/10.1038/nmat3984
S. Pradhan, A. Stavrinadis, S. Gupta, S. Christodoulou, G. Konstantatos, Breaking the open-circuit voltage deficit floor in PbS quantum dot solar cells through synergistic ligand and architecture engineering. ACS Energy Lett. 2(6), 1444–1449 (2017). https://doi.org/10.1021/acsenergylett.7b00244
Y.J. Gao, J.H. Zheng, W.J. Chen, L. Yuan, Z.L. Teh et al., Enhancing PbS colloidal quantum dot tandem solar cell performance by graded band alignment. J. Phys. Chem. Lett. 10(19), 5729–5734 (2019). https://doi.org/10.1021/acs.jpclett.9b02423
X.K. Yang, L. Hu, H. Deng, K.K. Qiao, C. Hu et al., Improving the performance of PbS quantum dot solar cells by optimizing ZnO window layer. Nano-Micro Lett. 9(2), 24 (2017). https://doi.org/10.1007/s40820-016-0124-2
F. Li, S. Zhou, J. Yuan, C. Qin, Y. Yang et al., Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. ACS Energy Lett. 4(11), 2571–2578 (2019). https://doi.org/10.1021/acsenergylett.9b01920
J. Yuan, X. Ling, D. Yang, F. Li, S. Zhou et al., Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule 2(11), 2450–2463 (2018). https://doi.org/10.1016/j.joule.2018.08.011
M. Liu, O. Voznyy, R. Sabatini, F.P. Garcia de Arquer, R. Munir et al., Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16(2), 258–263 (2017). https://doi.org/10.1038/nmat4800
Y. Zhang, G. Wu, C. Ding, F. Liu, Y. Yao et al., Lead selenide colloidal quantum dot solar cells achieving high open-circuit voltage with one-step deposition strategy. J. Phys. Chem. Lett. 9(13), 3598–3603 (2018). https://doi.org/10.1021/acs.jpclett.8b01514
G. Shi, A. Kaewprajak, X. Ling, A. Hayakawa, S. Zhou et al., Finely interpenetrating bulk heterojunction structure for lead sulfide colloidal quantum dot solar cells by convective assembly. ACS Energy Lett. 4(4), 960–967 (2019). https://doi.org/10.1021/acsenergylett.9b00053
M. Hao, Y. Bai, S. Zeiske, L. Ren, J. Liu et al., Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5(1), 79–88 (2020). https://doi.org/10.1038/s41560-019-0535-7
M.C. Hanna, A.J. Nozik, Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100(7), 074510 (2006). https://doi.org/10.1063/1.2356795
M.J. Choi, F.P. García de Arquer, A.H. Proppe, A. Seifitokaldani, J. Choi et al., Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat. Commun. 11(1), 103 (2020). https://doi.org/10.1038/s41467-019-13437-2
I.J. Kramer, D. Zhitomirsky, J.D. Bass, P.M. Rice, T. Topuria et al., Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Adv. Mater. 24(17), 2315–2319 (2012). https://doi.org/10.1002/adma.201104832
H. Wang, V. Gonzalez-Pedro, T. Kubo, F. Fabregat-Santiago, J. Bisquert, Y. Sanehira, J. Nakazaki, H. Segawa, Enhanced carrier transport distance in colloidal PbS quantum-dot-based solar cells using ZnO nanowires. J. Phys. Chem. C 119(49), 27265–27274 (2015). https://doi.org/10.1021/acs.jpcc.5b09152
S. Ozu, Y. Zhang, H. Yasuda, Y. Kitabatake, T. Toyoda et al., Improving photovoltaic performance of ZnO nanowires based colloidal quantum dot solar cells via SnO2 passivation strategy. Front. Energy Res. 7, 11 (2019). https://doi.org/10.3389/fenrg.2019.00011
P.H. Rekemeyer, S. Chang, C.H.M. Chuang, G.W. Hwang, M.G. Bawendi, S. Gradečak, Enhanced photocurrent in PbS quantum dot photovoltaics via ZnO nanowires and band alignment engineering. Adv. Energy Mater. 6(24), 1600848 (2016). https://doi.org/10.1002/aenm.201600848
D. Bederak, D.M. Balazs, N.V. Sukharevska, A.G. Shulga, M. Abdu-Aguye, D.N. Dirin, M.V. Kovalenko, M.A. Loi, Comparing halide ligands in PbS colloidal quantum dots for field-effect transistors and solar cells. ACS Appl. Nano Mater. 1(12), 6882–6889 (2018). https://doi.org/10.1021/acsanm.8b01696
J. Liu, G.H. Kim, Y. Xue, J.Y. Kim, J.B. Baek, M. Durstock, L. Dai, Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells. Adv. Mater. 26(5), 786–790 (2014). https://doi.org/10.1002/adma.201302987
D.-Y. Lee, S.-I. Na, S.-S. Kim, Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8, 1513–1522 (2016). https://doi.org/10.1039/C5NR05271H
M. Shanmugam, T. Bansal, C.A. Durcan, B. Yu, Multilayer graphene oxide/cadmium selenide quantum-dot-coated titanium dioxide heterojunction solar cell. IEEE Electron Device Lett. 33(8), 1165–1167 (2012). https://doi.org/10.1109/LED.2012.2201911
L. Hu, D.B. Li, L. Gao, H. Tan, C. Chen et al., Graphene doping improved device performance of ZnMgO/PbS colloidal quantum dot photovoltaics. Adv. Funct. Mater. 26(12), 1899–1907 (2016). https://doi.org/10.1002/adfm.201505043
J. Xu, H. Wang, Y. Wang, S. Yang, G. Ni, B. Zou, Efficiency enhancement for solution-processed PbS quantum dots solar cells by inserting graphene oxide as hole-transporting and interface modifying layer. Org. Electron. 58, 270–275 (2018). https://doi.org/10.1016/j.orgel.2018.04.021
S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15), 3342–3347 (2006). https://doi.org/10.1016/j.carbon.2006.06.004
R.L.D. Whitby, A. Korobeinyk, V.M. Gun’ko, R. Busquets, A.B. Cundy et al., pH-driven physicochemical conformational changes of single-layer graphene oxide. Chem. Commun. 47(34), 9645–9647 (2011). https://doi.org/10.1039/C1CC13725E
C.J. Shih, S. Lin, R. Sharma, M.S. Strano, D. Blankschtein, Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 28(1), 235–241 (2012). https://doi.org/10.1021/la203607w
Y.L. Li, P.N. Yeh, S. Sharma, S.A. Chen, Promotion of performances of quantum dot solar cell and its tandem solar cell with low bandgap polymer (PTB7-Th): PC71BM by water vapor treatment on quantum dot layer on its surface. J. Mater. Chem. A 5(40), 21528–21535 (2017). https://doi.org/10.1039/C7TA04955B
Y. Xia, S. Liu, K. Wang, X. Yang, L. Lian et al., Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 30(4), 1907379 (2019). https://doi.org/10.1002/adfm.201907379
M. Li, B. Li, G. Cao, J. Tian, Monolithic MAPbI3 films for high-efficiency solar cells via coordination and a heat assisted process. J. Mater. Chem. A 5(40), 21313–21319 (2017). https://doi.org/10.1039/C7TA06766F
L. Gao, K. Zeng, J. Guo, C. Ge, J. Du et al., Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett. 16(12), 7446–7454 (2016). https://doi.org/10.1021/acs.nanolett.6b03119
Y. Cho, B. Hou, J. Lim, S. Lee, S. Pak et al., Balancing charge carrier transport in a quantum dot p-n junction toward hysteresis-free high-performance solar cells. ACS Energy Lett. 3(4), 1036–1043 (2018). https://doi.org/10.1021/acsenergylett.8b00130
J.A. Geurst, Theory of space-charge-limited currents in thin semiconductor layers. Phys. Status Solidi B 15(1), 107–118 (1966). https://doi.org/10.1002/pssb.19660150108
I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, Z. Hens, Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Krönig analysis of the absorbance spectrum. Phys. Rev. B 81(23), 235319 (2010). https://doi.org/10.1103/PhysRevB.81.235319
H. Li, G. Wu, W. Li, Y. Zhang, Z. Liu, D. Wang, S. Liu, Additive engineering to grow micron-sized grains for stable high efficiency perovskite solar cells. Adv. Sci. 6(18), 1901241 (2019). https://doi.org/10.1002/advs.201901241
A.K. Rath, F. Pelayo Garcia de Arquer, A. Stavrinadis, T. Lasanta, M. Bernechea, S.L. Diedenhofen, G. Konstantatos, Remote trap passivation in colloidal quantum dot bulk nano-heterojunctions and its effect in solution-processed solar cells. Adv. Mater. 26(27), 4741–4747 (2014). https://doi.org/10.1002/adma.201400297
G.W. Guglietta, B.T. Diroll, E.A. Gaulding, J.L. Fordham, S. Li, C.B. Murray, J.B. Baxter, Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy. ACS Nano 9(2), 1820–1828 (2015). https://doi.org/10.1021/nn506724h
J.M. Luther, M. Law, Q. Song, C.L. Perkins, M.C. Beard, A.J. Nozik, Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2(2), 271–280 (2008). https://doi.org/10.1021/nn7003348
C.H.M. Chuang, A. Maurano, R.E. Brandt, G.W. Hwang, J. Jean, T. Buonassisi, V. Bulović, M.G. Bawendi, Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells. Nano Lett. 15(5), 3286–3294 (2015). https://doi.org/10.1021/acs.nanolett.5b00513