A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors
Corresponding Author: Tianyu Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 118
Abstract
The article reviews the recent progress of electrochemical techniques on synthesizing nano-/microstructures as supercapacitor electrodes. With a history of more than a century, electrochemical techniques have evolved from metal plating since their inception to versatile synthesis tools for electrochemically active materials of diverse morphologies, compositions, and functions. The review begins with tutorials on the operating mechanisms of five commonly used electrochemical techniques, including cyclic voltammetry, potentiostatic deposition, galvanostatic deposition, pulse deposition, and electrophoretic deposition, followed by thorough surveys of the nano-/microstructured materials synthesized electrochemically. Specifically, representative synthesis mechanisms and the state-of-the-art electrochemical performances of exfoliated graphene, conducting polymers, metal oxides, metal sulfides, and their composites are surveyed. The article concludes with summaries of the unique merits, potential challenges, and associated opportunities of electrochemical synthesis techniques for electrode materials in supercapacitors.
Highlights:
1 Recent progress of active materials in supercapacitors synthesized by electrochemical techniques is reviewed.
2 Electrochemically synthesized nanostructures of various dimensions, compositions, and electrochemical properties are discussed.
3 The advantages and challenges of electrochemical technologies in preparing nano-/microstructured materials for electrochemical energy storage devices are summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei, J. Lau, B. Dunn, Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2019). https://doi.org/10.1038/s41578-019-0142-z
- J. Pu, Z. Shen, C. Zhong, Q. Zhou, J. Liu, J. Zhu, H. Zhang, Electrodeposition technologies for Li-based batteries: new frontiers of energy storage. Adv. Mater. (2019). https://doi.org/10.1002/adma.201903808
- P. Simon, Y. Gogotsi, B. Dunn, Materials science. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- T. Liu, F. Zhang, Y. Song, Y. Li, Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705–17733 (2017). https://doi.org/10.1039/c7ta05646j
- B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York, 2013), pp. 11–31
- Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2, 30–37 (2019). https://doi.org/10.1002/eem2.12028
- J. Miller, Introduction to electrochemical capacitor technology. IEEE Electr. Insul. Mag. 26, 40–47 (2010). https://doi.org/10.1109/mei.2010.5511188
- Y. Huang, Z. Tang, Z. Liu, J. Wei, H. Hu, C. Zhi, Toward enhancing wearability and fashion of wearable supercapacitor with modified polyurethane artificial leather electrolyte. Nano-Micro Lett. 10, 38 (2018). https://doi.org/10.1007/s40820-018-0191-7
- Z. Bo, C. Li, H. Yang, K. Ostrikov, J. Yan, K. Cen, Design of supercapacitor electrodes using molecular dynamics simulations. Nano-Micro Lett. 10, 33 (2018). https://doi.org/10.1007/s40820-018-0188-2
- Y. Liu, B. Soucaze-Guillous, P.-L. Taberna, P. Simon, Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods. J. Power Sources 366, 123–130 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.104
- J.R. Miller, P. Simon, Materials science. Electrochemical capacitors for energy management. Science 321, 651–652 (2008). https://doi.org/10.1126/science.1158736
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297
- V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014). https://doi.org/10.1039/c3ee44164d
- N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, H. Xia, High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29, 1700804 (2017). https://doi.org/10.1002/adma.201700804
- W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011). https://doi.org/10.1039/c0cs00127a
- Y. Wu, Y. Yang, X. Zhao, Y. Tan, Y. Liu, Z. Wang, F. Ran, A novel hierarchical porous 3D structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett. 10, 63 (2018). https://doi.org/10.1007/s40820-018-0217-1
- L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009). https://doi.org/10.1039/b813846j
- D. Landolt, Electrodeposition science and technology in the last quarter of the twentieth century. J. Electrochem. Soc. 149, S9 (2002). https://doi.org/10.1149/1.1469028
- I.M. Dharmadasa, J. Haigh, Strengths and advantages of electrodeposition as a semiconductor growth technique for applications in macroelectronic devices. J. Electrochem. Soc. 153, G47–G52 (2006). https://doi.org/10.1149/1.2128120
- M.F. Montemor, S. Eugénio, N. Tuyen, R.P. Silva, T.M. Silva, M.J. Carmezim, Nanostructured Transition Metal Oxides Produced by Electrodeposition for Application as Redox Electrodes for Supercapacitors (Springer, Berlin, 2016), pp. 681–714. https://doi.org/10.1007/978-3-319-15266-0_14
- J. Wang, K.K. Manga, Q. Bao, K.P. Loh, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 133, 8888–8891 (2011). https://doi.org/10.1021/ja203725d
- W. Chen, R.B. Rakhi, L. Hu, X. Xie, Y. Cui, H.N. Alshareef, High-performance nanostructured supercapacitors on a sponge. Nano Lett. 11, 5165–5172 (2011). https://doi.org/10.1021/nl2023433
- X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011). https://doi.org/10.1038/nnano.2011.13
- T. Liu, Y. Ling, Y. Yang, L. Finn, E. Collazo, T. Zhai, Y. Tong, Y. Li, Investigation of hematite nanorod–nanoflake morphological transformation and the application of ultrathin nanoflakes for electrochemical devices. Nano Energy 12, 169–177 (2015). https://doi.org/10.1016/j.nanoen.2014.12.023
- T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett. 14, 2522–2527 (2014). https://doi.org/10.1021/nl500255v
- Y. Song, T.-Y. Liu, X.-X. Xu, D.-Y. Feng, Y. Li, X.-X. Liu, Pushing the cycling stability limit of polypyrrole for supercapacitors. Adv. Funct. Mater. 25, 4626–4632 (2015). https://doi.org/10.1002/adfm.201501709
- M.-H. Bai, T.-Y. Liu, F. Luan, Y. Li, X.-X. Liu, Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors. J. Mater. Chem. A 2, 10882–10888 (2014). https://doi.org/10.1039/c3ta15391f
- Y. Song, P. Deng, Z. Qin, D. Feng, D. Guo, X. Sun, X.-X. Liu, A polyanionic molybdenophosphate anode for a 2.7 V aqueous pseudocapacitor. Nano Energy 65, 104010 (2019). https://doi.org/10.1016/j.nanoen.2019.104010
- F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 11, 25 (2019). https://doi.org/10.1007/s40820-019-0256-2
- R.G. Kelly, J.R. Scully, D. Shoesmith, R.G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering. CRC Press, Boca Raton. (2002). https://doi.org/10.1201/9780203909133
- A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 1980)
- N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2017). https://doi.org/10.1021/acs.jchemed.7b00361
- D.K. Gosser, Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms (VCH, New York, 1993)
- R. Dong, Y. Song, D. Yang, H.-Y. Shi, Z. Qin et al., Electrochemical in situ construction of vanadium oxide heterostructures with boosted pseudocapacitive charge storage. J. Mater. Chem. A 8, 1176–1183 (2020). https://doi.org/10.1039/c9ta12097a
- Z. Sun, X. Cai, D.-Y. Feng, Z.-H. Huang, Y. Song, X.-X. Liu, Hybrid iron oxide on three-dimensional exfoliated graphite electrode with ultrahigh capacitance for energy storage applications. ChemElectroChem 5, 1501–1508 (2018). https://doi.org/10.1002/celc.201800143
- Z. Sun, X. Cai, Y. Song, X.-X. Liu, Electrochemical deposition of honeycomb magnetite on partially exfoliated graphite as anode for capacitive applications. J. Power Sources 359, 57–63 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.055
- Y. Song, T.Y. Liu, B. Yao, T.Y. Kou, D.Y. Feng, X.X. Liu, Y. Li, Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability. Small 13, 1700067 (2017). https://doi.org/10.1002/smll.201700067
- X. Cai, Y. Song, S.-Q. Wang, X. Sun, X.-X. Liu, Extending the cycle life of high mass loading MoOx electrode for supercapacitor applications. Electrochim. Acta 325, 134877 (2019). https://doi.org/10.1016/j.electacta.2019.134877
- M. Paunovic, Electrochemical Deposition. Encyclopedia of Electrochemistry: Online (2007). https://doi.org/10.1002/9783527610426.bard050003
- D. Lincot, Electrodeposition of semiconductors. Thin Solid Films 487, 40–48 (2005). https://doi.org/10.1016/j.tsf.2005.01.032
- M. Paunovic, M. Schlesinger, Fundamentals of Electrochemical Deposition (Wiley, New York, 1998)
- D.M. Kolb, M. Przasnyski, H. Gerischer, Underpotential deposition of metals and work function differences. J. Electroanal. Chem. 54, 25–38 (1974). https://doi.org/10.1016/s0022-0728(74)80377-3
- E. Herrero, L.J. Buller, H.D. Abruna, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001). https://doi.org/10.1021/cr9600363
- Z. Shi, S. Wu, J. Lipkowski, Investigations of Cl− adsorption at the Au(111) electrode in the presence of underpotentially deposited copper atoms. J. Electroanal. Chem. 384, 171–177 (1995). https://doi.org/10.1016/0022-0728(94)03747-q
- J.C. Ballesteros, E. Chaînet, P. Ozil, G. Trejo, Y. Meas, Electrochemical studies of Zn underpotential/overpotential deposition on a nickel electrode from non-cyanide alkaline solution containing glycine. Electrochim. Acta 56, 5443–5451 (2011). https://doi.org/10.1016/j.electacta.2011.02.106
- M. Palomar-Pardavé, I. González, N. Batina, New insights into evaluation of kinetic parameters for potentiostatic metal deposition with underpotential and overpotential deposition processes. J. Phys. Chem. B 104, 3545–3555 (2000). https://doi.org/10.1021/jp9931861
- R.E. Rettew, J.W. Guthrie, F.M. Alamgir, Layer-by-layer Pt growth on polycrystalline Au: surface-limited redox replacement of overpotentially deposited Ni monolayers. J. Electrochem. Soc. 156, D513–D516 (2009). https://doi.org/10.1149/1.3224113
- M.G. Pavlović, L.J. Pavlović, N.D. Nikolić, K.I. Popov, The effect of some parameters of electrolysis on apparent density of electrolytic copper powder in galvanostatic deposition. Mater. Sci. Forum 352, 65–72 (2000). https://doi.org/10.4028/www.scientific.net/MSF.352.65
- R. Salazar, C. Lévy-Clément, V. Ivanova, Galvanostatic deposition of ZnO thin films. Electrochim. Acta 78, 547–556 (2012). https://doi.org/10.1016/j.electacta.2012.06.070
- Z.H. Huang, Y. Song, D.Y. Feng, Z. Sun, X. Sun, X.X. Liu, High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12, 3557–3567 (2018). https://doi.org/10.1021/acsnano.8b00621
- E.J. Podlaha, Selective electrodeposition of nanoparticulates into metal matrices. Nano Lett. 1, 413–416 (2001). https://doi.org/10.1021/nl015508u
- G. Zhu, C. Pan, W. Guo, C.Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12, 4960–4965 (2012). https://doi.org/10.1021/nl302560k
- Y. Su, I. Zhitomirsky, Pulse electrosynthesis of MnO2 electrodes for supercapacitors. Adv. Eng. Mater. 16, 760–766 (2014). https://doi.org/10.1002/adem.201400077
- M. Ghaemi, Effects of direct and pulse current on electrodeposition of manganese dioxide. J. Power Sources 111, 248–254 (2002). https://doi.org/10.1016/s0378-7753(02)00309-9
- H. Cheh, Electrodeposition of gold by pulsed current. J. Electrochem. Soc. 118, 551 (1971). https://doi.org/10.1149/1.2408110
- H.M.M.N. Hennayaka, H.S. Lee, Structural and optical properties of Zns thin film grown by pulsed electrodeposition. Thin Solid Films 548, 86–90 (2013). https://doi.org/10.1016/j.tsf.2013.09.011
- A. Davies, P. Audette, B. Farrow, F. Hassan, Z. Chen, J.-Y. Choi, A. Yu, Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J. Phys. Chem. C 115, 17612–17620 (2011). https://doi.org/10.1021/jp205568v
- L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater Sci. 52, 1–61 (2007). https://doi.org/10.1016/j.pmatsci.2006.07.001
- P. Sarkar, P.S. Nicholson, Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J. Am. Ceram. Soc. 79, 1987–2002 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08929.x
- C. Du, N. Pan, Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources 160, 1487–1494 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.092
- C. Du, N. Pan, High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17, 5314–5318 (2006). https://doi.org/10.1088/0957-4484/17/21/005
- D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
- Y. Su, I. Zhitomirsky, Electrophoretic nanotechnology of composite electrodes for electrochemical supercapacitors. J. Phys. Chem. B 117, 1563–1570 (2013). https://doi.org/10.1021/jp304358q
- Y. Wang, I. Zhitomirsky, Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors. Langmuir 25, 9684–9689 (2009). https://doi.org/10.1021/la900937e
- H. Zhang, X. Zhang, D. Zhang, X. Sun, H. Lin, C. Wang, Y. Ma, One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes. J. Phys. Chem. B 117, 1616–1627 (2013). https://doi.org/10.1021/jp305198j
- Z.Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli et al., The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv. Funct. Mater. 23, 4684–4693 (2013). https://doi.org/10.1002/adfm.201203686
- A.M. Abdelkader, I.A. Kinloch, R.A. Dryfe, Continuous electrochemical exfoliation of micrometer-sized graphene using synergistic ion intercalations and organic solvents. ACS Appl. Mater. Interfaces. 6, 1632–1639 (2014). https://doi.org/10.1021/am404497n
- A.M. Abdelkader, A.J. Cooper, R.A. Dryfe, I.A. Kinloch, How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7, 6944–6956 (2015). https://doi.org/10.1039/c4nr06942k
- A. Ambrosi, M. Pumera, Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev. 47, 7213–7224 (2018). https://doi.org/10.1039/c7cs00811b
- R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Prog. Energy Combust. 75, 100786 (2019). https://doi.org/10.1016/j.pecs.2019.100786
- A. Ambrosi, M. Pumera, Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chemistry 22, 153–159 (2016). https://doi.org/10.1002/chem.201503110
- P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong, Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci. 20, 329–338 (2015). https://doi.org/10.1016/j.cocis.2015.10.007
- S. Yang, M.R. Lohe, K. Mullen, X. Feng, New-generation graphene from electrochemical approaches: production and applications. Adv. Mater. 28, 6213–6221 (2016). https://doi.org/10.1002/adma.201505326
- W. Wei, G. Wang, S. Yang, X. Feng, K. Mullen, Efficient coupling of nanoparticles to electrochemically exfoliated graphene. J. Am. Chem. Soc. 137, 5576–5581 (2015). https://doi.org/10.1021/jacs.5b02284
- L. Wu, W. Li, P. Li, S. Liao, S. Qiu et al., Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite. Small 10, 1421–1429 (2014). https://doi.org/10.1002/smll.201302730
- A. Ejigu, K. Fujisawa, B.F. Spencer, B. Wang, M. Terrones, I.A. Kinloch, R.A.W. Dryfe, On the role of transition metal salts during electrochemical exfoliation of graphite: antioxidants or metal oxide decorators for energy storage applications. Adv. Funct. Mater. 28, 1804357 (2018). https://doi.org/10.1002/adfm.201804357
- K.S. Rao, J. Sentilnathan, H.-W. Cho, J.-J. Wu, M. Yoshimura, Soft processing of graphene nanosheets by glycine-bisulfate ionic-complex-assisted electrochemical exfoliation of graphite for reduction catalysis. Adv. Funct. Mater. 25, 298–305 (2015). https://doi.org/10.1002/adfm.201402621
- C.Y. Su, A.Y. Lu, Y. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5, 2332–2339 (2011). https://doi.org/10.1021/nn200025p
- J. Lu, J.X. Yang, J. Wang, A. Lim, S. Wang, K.P. Loh, One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3, 2367–2375 (2009). https://doi.org/10.1021/nn900546b
- W. Cai, X. Feng, W. Hu, Y. Pan, Y. Hu, X. Gong, Functionalized graphene from electrochemical exfoliation for thermoplastic polyurethane: thermal stability, mechanical properties, and flame retardancy. Ind. Eng. Chem. Res. 55, 10681–10689 (2016). https://doi.org/10.1021/acs.iecr.6b02579
- M. Mao, M. Wang, J. Hu, G. Lei, S. Chen, H. Liu, Simultaneous electrochemical synthesis of few-layer graphene flakes on both electrodes in protic ionic liquids. Chem. Commun. 49, 5301–5303 (2013). https://doi.org/10.1039/c3cc41909f
- H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, W. Zhang, Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism. J. Mater. Chem. 22, 10452–10456 (2012). https://doi.org/10.1039/c2jm00092j
- Y. Yang, F. Lu, Z. Zhou, W. Song, Q. Chen, X. Ji, Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties. Electrochim. Acta 113, 9–16 (2013). https://doi.org/10.1016/j.electacta.2013.09.031
- K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Mullen, Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7, 3598–3606 (2013). https://doi.org/10.1021/nn400576v
- W. Wang, W. Liu, Y. Zeng, Y. Han, M. Yu, X. Lu, Y. Tong, A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv. Mater. 27, 3572–3578 (2015). https://doi.org/10.1002/adma.201500707
- Y. Song, S. Duan, D. Yang, R. Dong, D. Guo, X. Sun, X.-X. Liu, 3D exfoliated carbon paper toward highly loaded aqueous energy storage applications. Energy Technol. 7, 1900892 (2019). https://doi.org/10.1002/ente.201900892
- F. Zeng, Z. Sun, X. Sang, D. Diamond, K.T. Lau, X. Liu, D.S. Su, In situ one-step electrochemical preparation of graphene oxide nanosheet-modified electrodes for biosensors. Chemsuschem 4, 1587–1591 (2011). https://doi.org/10.1002/cssc.201100319
- Y. Song, D.Y. Feng, T.Y. Liu, Y. Li, X.X. Liu, Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors. Nanoscale 7, 3581–3587 (2015). https://doi.org/10.1039/c4nr06559j
- K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Mullen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014). https://doi.org/10.1021/ja5017156
- M. Alanyalıoğlu, J.J. Segura, J. Oró-Solè, N. Casañ-Pastor, The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50, 142–152 (2012). https://doi.org/10.1016/j.carbon.2011.07.064
- C.-H. Chen, S.-W. Yang, M.-C. Chuang, W.-Y. Woon, C.-Y. Su, Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation. Nanoscale 7, 15362–15373 (2015). https://doi.org/10.1039/c5nr03669k
- K. Chen, D. Xue, Preparation of colloidal graphene in quantity by electrochemical exfoliation. J. Colloid Interface Sci. 436, 41–46 (2014). https://doi.org/10.1016/j.jcis.2014.08.057
- A.J. Cooper, N.R. Wilson, I.A. Kinloch, R.A.W. Dryfe, Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66, 340–350 (2014). https://doi.org/10.1016/j.carbon.2013.09.009
- A. Ejigu, I.A. Kinloch, R.A. Dryfe, Single stage simultaneous electrochemical exfoliation and functionalization of graphene. ACS Appl. Mater. Interfaces 9, 710–721 (2017). https://doi.org/10.1021/acsami.6b12868
- S. Yang, S. Bruller, Z.S. Wu, Z. Liu, K. Parvez et al., Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene. J. Am. Chem. Soc. 137, 13927–13932 (2015). https://doi.org/10.1021/jacs.5b09000
- X. Cai, Y. Song, Z. Sun, D. Guo, X.-X. Liu, Rate capability improvement of Co–Ni double hydroxides integrated in cathodically partially exfoliated graphite. J. Power Sources 365, 126–133 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.039
- D.-Y. Feng, Y. Song, Z.-H. Huang, X.-X. Xu, X.-X. Liu, Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor. J. Power Sources 324, 788–797 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.112
- L. Hu, X. Peng, Y. Li, L. Wang, K. Huo, L.Y.S. Lee, K.Y. Wong, P.K. Chu, Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors. Nano Energy 34, 515–523 (2017). https://doi.org/10.1016/j.nanoen.2017.03.007
- T. Liu, C. Zhu, T. Kou, M.A. Worsley, F. Qian, C. Condes, E.B. Duoss, C.M. Spadaccini, Y. Li, Ion intercalation induced capacitance improvement for graphene-based supercapacitor electrodes. ChemNanoMat 2, 635–641 (2016). https://doi.org/10.1002/cnma.201600107
- Y. Song, T. Liu, F. Qian, C. Zhu, B. Yao, E. Duoss, C. Spadaccini, M. Worsley, Y. Li, Three-dimensional carbon architectures for electrochemical capacitors. J. Colloid Interface Sci. 509, 529–545 (2018). https://doi.org/10.1016/j.jcis.2017.07.081
- Y. Song, T.-Y. Liu, G.-L. Xu, D.-Y. Feng, B. Yao, T.-Y. Kou, X.-X. Liu, Y. Li, Tri-layered graphite foil for electrochemical capacitors. J. Mater. Chem. A 4, 7683–7688 (2016). https://doi.org/10.1039/c6ta02075e
- Y. Zou, S. Wang, Interconnecting carbon fibers with the in situ electrochemically exfoliated graphene as advanced binder-free electrode materials for flexible supercapacitor. Sci. Rep. 5, 11792 (2015). https://doi.org/10.1038/srep11792
- S.-H. Lee, S.-D. Seo, Y.-H. Jin, H.-W. Shim, D.-W. Kim, A graphite foil electrode covered with electrochemically exfoliated graphene nanosheets. Electrochem. Commun. 12, 1419–1422 (2010). https://doi.org/10.1016/j.elecom.2010.07.036
- R.M. Tamgadge, A. Shukla, A PH-dependent partial electrochemical exfoliation of highly oriented pyrolytic graphite for high areal capacitance electric double layer capacitor electrode. Electrochim. Acta 325, 134933 (2019). https://doi.org/10.1016/j.electacta.2019.134933
- Y. Song, J.-L. Xu, X.-X. Liu, Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J. Power Sources 249, 48–58 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.102
- Y. Song, X. Cai, X. Xu, X.-X. Liu, Integration of nickel–cobalt double hydroxide nanosheets and polypyrrole films with functionalized partially exfoliated graphite for asymmetric supercapacitors with improved rate capability. J. Mater. Chem. A 3, 14712–14720 (2015). https://doi.org/10.1039/c5ta02810h
- Z. Liu, Z.S. Wu, S. Yang, R. Dong, X. Feng, K. Mullen, Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv. Mater. 28, 2217–2222 (2016). https://doi.org/10.1002/adma.201505304
- J.M. Munuera, J.I. Paredes, M. Enterria, A. Pagan, S. Villar-Rodil, M.F.R. Pereira et al., Electrochemical exfoliation of graphite in aqueous sodium halide electrolytes toward low oxygen content graphene for energy and environmental applications. ACS Appl. Mater. Interfaces 9, 24085–24099 (2017). https://doi.org/10.1021/acsami.7b04802
- N. Parveen, M.O. Ansari, S.A. Ansari, M.H. Cho, Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials. J. Mater. Chem. A 4, 233–240 (2016). https://doi.org/10.1039/c5ta07963b
- J. Liu, M. Notarianni, G. Will, V.T. Tiong, H. Wang, N. Motta, Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties. Langmuir 29, 13307–13314 (2013). https://doi.org/10.1021/la403159n
- S.M. Jung, D.L. Mafra, C.T. Lin, H.Y. Jung, J. Kong, Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale 7, 4386–4393 (2015). https://doi.org/10.1039/c4nr07564a
- X. Xiao, Y. Zeng, H. Feng, K. Xu, G. Zhong et al., Three-dimensional nitrogen-doped graphene frameworks from electrochemical exfoliation of graphite as efficient supercapacitor electrodes. ChemNanoMat 5, 152–157 (2019). https://doi.org/10.1002/cnma.201800452
- P. Khanra, T. Kuila, S.H. Bae, N.H. Kim, J.H. Lee, Electrochemically exfoliated graphene using 9-anthracene carboxylic acid for supercapacitor application. J. Mater. Chem. 22, 24403–24410 (2012). https://doi.org/10.1039/c2jm34838a
- S. Liu, J. Ou, J. Wang, X. Liu, S. Yang, A simple two-step electrochemical synthesis of graphene sheets film on the ITO electrode as supercapacitors. J. Appl. Electrochem. 41, 881–884 (2011). https://doi.org/10.1007/s10800-011-0304-1
- V. Thirumal, A. Pandurangan, R. Jayavel, K.S. Venkatesh, N.S. Palani, R. Ragavan, R. Ilangovan, Single pot electrochemical synthesis of functionalized and phosphorus doped graphene nanosheets for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 26, 6319–6328 (2015). https://doi.org/10.1007/s10854-015-3219-5
- C. Li, H. Bai, G. Shi, Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. 38, 2397–2409 (2009). https://doi.org/10.1039/b816681c
- G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.084
- R. Gangopadhyay, A. De, Conducting polymer nanocomposites: a brief overview. Chem. Mater. 12, 608–622 (2000). https://doi.org/10.1021/cm990537f
- Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin, H. Peng, Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J. Mater. Chem. A 1, 258–261 (2013). https://doi.org/10.1039/c2ta00274d
- K.M. Kim, Y.-G. Lee, D.O. Shin, J.M. Ko, Supercapacitive properties of layered electrodes composed of electrodeposited RuO2 and polyaniline. Electrochim. Acta 196, 309–315 (2016). https://doi.org/10.1016/j.electacta.2016.02.194
- H. Li, J. Song, L. Wang, X. Feng, R. Liu, W. Zeng, Z. Huang, Y. Ma, L. Wang, Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array. Nanoscale 9, 193–200 (2017). https://doi.org/10.1039/c6nr07921k
- C. Tran, R. Singhal, D. Lawrence, V. Kalra, Polyaniline-coated freestanding porous carbon nanofibers as efficient hybrid electrodes for supercapacitors. J. Power Sources 293, 373–379 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.054
- Y. Xie, D. Wang, J. Ji, Preparation and supercapacitor performance of freestanding polypyrrole/polyaniline coaxial nanoarrays. Energy Technol. 4, 714–721 (2016). https://doi.org/10.1002/ente.201500460
- C. Fu, H. Zhou, R. Liu, Z. Huang, J. Chen, Y. Kuang, Supercapacitor based on electropolymerized polythiophene and multi-walled carbon nanotubes composites. Mater. Chem. Phys. 132, 596–600 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.074
- A. Laforgue, P. Simon, C. Sarrazin, J.-F. Fauvarque, Polythiophene-based supercapacitors. J. Power Sources 80, 142–148 (1999). https://doi.org/10.1016/s0378-7753(98)00258-4
- F.N. Ajjan, N. Casado, T. Rębiś, A. Elfwing, N. Solin, D. Mecerreyes, O. Inganäs, High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors. J. Mater. Chem. A 4, 1838–1847 (2016). https://doi.org/10.1039/c5ta10096h
- A.M. Osterholm, D.E. Shen, A.L. Dyer, J.R. Reynolds, Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices. ACS Appl. Mater. Interfaces 5, 13432–13440 (2013). https://doi.org/10.1021/am4043454
- J. Xu, Z. Ku, Y. Zhang, D. Chao, H.J. Fan, Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell. Adv. Mater. Technol. 1, 1600074 (2016). https://doi.org/10.1002/admt.201600074
- S.-B. Yoon, K.-B. Kim, Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) on the pseudocapacitive properties of manganese oxide (MnO2) in the PEDOT/MnO2/multiwall carbon nanotube (MWNT) composite. Electrochim. Acta 106, 135–142 (2013). https://doi.org/10.1016/j.electacta.2013.05.058
- G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, P.S. Lee, Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6, 1501882 (2016). https://doi.org/10.1002/aenm.201501882
- D. Yang, Y. Song, Y.-J. Ye, M. Zhang, X. Sun, X.-X. Liu, Boosting the pseudocapacitance of nitrogen-rich carbon nanorod arrays for electrochemical capacitors. J. Mater. Chem. A 7, 12086–12094 (2019). https://doi.org/10.1039/c9ta01973a
- Y. Huang, J. Tao, W. Meng, M. Zhu, Y. Huang, Y. Fu, Y. Gao, C. Zhi, Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11, 518–525 (2015). https://doi.org/10.1016/j.nanoen.2014.10.031
- J.G. Ibanez, M.E. Rincon, S. Gutierrez-Granados, M. Chahma, O.A. Jaramillo-Quintero, B.A. Frontana-Uribe, Conducting polymers in the fields of energy, environmental remediation, and chemical-chiral sensors. Chem. Rev. 118, 4731–4816 (2018). https://doi.org/10.1021/acs.chemrev.7b00482
- G. Sabouraud, S. Sadki, N. Brodie, The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 29, 283–293 (2000). https://doi.org/10.1039/a807124a
- J. Jang, Conducting Polymer Nanomaterials and Their Applications (Springer, Berlin, 2006), pp. 189–260
- S.C. Erwin, L. Zu, M.I. Haftel, A.L. Efros, T.A. Kennedy, D.J. Norris, Doping semiconductor nanocrystals. Nature 436, 91–94 (2005). https://doi.org/10.1038/nature03832
- T.F. Otero, J.G. Martinez, Structural and biomimetic chemical kinetics: kinetic magnitudes include structural information. Adv. Funct. Mater. 23, 404–416 (2013). https://doi.org/10.1002/adfm.201200719
- T. Liu, Y. Li, Addressing the achilles’ heel of pseudocapacitive materials: long-term stability. InfoMat (2020). https://doi.org/10.1002/inf2.12105
- Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44, 6684–6696 (2015). https://doi.org/10.1039/c5cs00362h
- B. Anothumakkool, A.T.A. Torris, S.N. Bhange, M.V. Badiger, S. Kurungot, Electrodeposited polyethylenedioxythiophene with infiltrated gel electrolyte interface: a close contest of an all-solid-state supercapacitor with its liquid-state counterpart. Nanoscale 6, 5944–5952 (2014). https://doi.org/10.1039/c4nr00659c
- Y. Xie, Y. Liu, Y. Zhao, Y.H. Tsang, S.P. Lau, H. Huang, Y. Chai, Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2, 9142–9149 (2014). https://doi.org/10.1039/c4ta00734d
- S. Lehtimaki, M. Suominen, P. Damlin, S. Tuukkanen, C. Kvarnstrom, D. Lupo, Preparation of supercapacitors on flexible substrates with electrodeposited PEDOT/graphene composites. ACS Appl. Mater. Interfaces 7, 22137–22147 (2015). https://doi.org/10.1021/acsami.5b05937
- Y. Huang, M. Zhu, Z. Pei, Y. Huang, H. Geng, C. Zhi, Extremely stable polypyrrole achieved via molecular ordering for highly flexible supercapacitors. ACS Appl. Mater. Interfaces 8, 2435–2440 (2016). https://doi.org/10.1021/acsami.5b11815
- N. Kurra, M.K. Hota, H.N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy 13, 500–508 (2015). https://doi.org/10.1016/j.nanoen.2015.03.018
- N. Hui, F. Chai, P. Lin, Z. Song, X. Sun, Y. Li, S. Niu, X. Luo, Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors. Electrochim. Acta 199, 234–241 (2016). https://doi.org/10.1016/j.electacta.2016.03.115
- X.-Y. Peng, F. Luan, X.-X. Liu, D. Diamond, K.-T. Lau, pH-controlled morphological structure of polyaniline during electrochemical deposition. Electrochim. Acta 54, 6172–6177 (2009). https://doi.org/10.1016/j.electacta.2009.05.075
- B. Yao, L. Yuan, X. Xiao, J. Zhang, Y. Qi et al., Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2, 1071–1078 (2013). https://doi.org/10.1016/j.nanoen.2013.09.002
- Y. Wang, Y. Shi, L. Pan, Y. Ding, Y. Zhao, Y. Li, Y. Shi, G. Yu, Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett. 15, 7736–7741 (2015). https://doi.org/10.1021/acs.nanolett.5b03891
- Z.H. Huang, Y. Song, X.X. Xu, X.X. Liu, Ordered polypyrrole nanowire arrays grown on a carbon cloth substrate for a high-performance pseudocapacitor electrode. ACS Appl. Mater. Interfaces 7, 25506–25513 (2015). https://doi.org/10.1021/acsami.5b08830
- S. Huang, Y. Han, S. Lyu, W. Lin, P. Chen, S. Fang, A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors. Nanotechnology 28, 435204 (2017). https://doi.org/10.1088/1361-6528/aa84cb
- J. Huang, R.B. Kaner, Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew. Chem. Int. Ed. 43, 5817–5821 (2004). https://doi.org/10.1002/anie.200460616
- N.R. Chiou, C. Lu, J. Guan, L.J. Lee, A.J. Epstein, Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat. Nanotechnol. 2, 354–357 (2007). https://doi.org/10.1038/nnano.2007.147
- K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 114, 8062–8067 (2010). https://doi.org/10.1021/jp9113255
- Y.-J. Ye, Z.-H. Huang, Y. Song, J.-W. Geng, X.-X. Xu, X.-X. Liu, Electrochemical growth of polyaniline nanowire arrays on graphene sheets in partially exfoliated graphite foil for high-performance supercapacitive materials. Electrochim. Acta 240, 72–79 (2017). https://doi.org/10.1016/j.electacta.2017.04.025
- H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 6, 1185–1191 (2013). https://doi.org/10.1039/c2ee24203f
- M. Yu, Y. Ma, J. Liu, S. Li, Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for supercapacitor electrodes. Carbon 87, 98–105 (2015). https://doi.org/10.1016/j.carbon.2015.02.017
- G.F. Chen, X.X. Li, L.Y. Zhang, N. Li, T.Y. Ma, Z.Q. Liu, A porous perchlorate-doped polypyrrole nanocoating on nickel nanotube arrays for stable wide-potential-window supercapacitors. Adv. Mater. 28, 7680–7687 (2016). https://doi.org/10.1002/adma.201601781
- G. Lu, G. Shi, Electrochemical polymerization of pyrene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer. J. Electroanal. Chem. 586, 154–160 (2006). https://doi.org/10.1016/j.jelechem.2005.10.020
- D.P. Dubal, S.H. Lee, J.G. Kim, W.B. Kim, C.D. Lokhande, Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J. Mater. Chem. 22, 3044–3052 (2012). https://doi.org/10.1039/c2jm14470k
- D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen et al., Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3, 1745–1752 (2009). https://doi.org/10.1021/nn900297m
- J. Han, Y. Dou, J. Zhao, M. Wei, D.G. Evans, X. Duan, Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Small 9, 98–106 (2013). https://doi.org/10.1002/smll.201201336
- G. Lu, L. Qu, G. Shi, Electrochemical fabrication of neuron-type networks based on crystalline oligopyrene nanosheets. Electrochim. Acta 51, 340–346 (2005). https://doi.org/10.1016/j.electacta.2005.04.043
- X. He, W. Yang, X. Mao, L. Xu, Y. Zhou et al., All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly(3,4-ethylenedioxythiophene) (PEDOT) sponge electrodes. J. Power Sources 376, 138–146 (2018). https://doi.org/10.1016/j.jpowsour.2017.09.084
- H. Park, J.W. Kim, S.Y. Hong, G. Lee, D.S. Kim, J.H. Oh et al., Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv. Funct. Mater. 28, 1707013 (2018). https://doi.org/10.1002/adfm.201707013
- C. Wang, Y. Ding, Y. Yuan, A. Cao, X. He, Q. Peng, Y. Li, Multifunctional, highly flexible, free-standing 3D polypyrrole foam. Small 12, 4070–4076 (2016). https://doi.org/10.1002/smll.201601905
- D.-Y. Feng, Z. Sun, Z.-H. Huang, X. Cai, Y. Song, X.-X. Liu, Highly loaded manganese oxide with high rate capability for capacitive applications. J. Power Sources 396, 238–245 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.026
- T. Zhai, S. Xie, M. Yu, P. Fang, C. Liang, X. Lu, Y. Tong, Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8, 255–263 (2014). https://doi.org/10.1016/j.nanoen.2014.06.013
- Z. Sun, S. Firdoz, E.Y. Yap, L. Li, X. Lu, Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. Nanoscale 5, 4379–4387 (2013). https://doi.org/10.1039/c3nr00209h
- W. Wei, X. Cui, W. Chen, D.G. Ivey, Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition: implications for high-rate capability electrochemical supercapacitors. J. Phys. Chem. C 112, 15075–15083 (2008). https://doi.org/10.1021/jp804044s
- W. Wei, X. Cui, X. Mao, W. Chen, D.G. Ivey, Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapacitor applications—effect of supersaturation ratio. Electrochim. Acta 56, 1619–1628 (2011). https://doi.org/10.1016/j.electacta.2010.10.044
- F. Grote, Y. Lei, A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy 10, 63–70 (2014). https://doi.org/10.1016/j.nanoen.2014.08.019
- S.B. Singh, T.I. Singh, N.H. Kim, J.H. Lee, A core–shell MnO2@Au nanofiber network as a high-performance flexible transparent supercapacitor electrode. J. Mater. Chem. A 7, 10672–10683 (2019). https://doi.org/10.1039/c9ta00778d
- Q. Li, X.F. Lu, H. Xu, Y.X. Tong, G.R. Li, Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. ACS Appl. Mater. Interfaces 6, 2726–2733 (2014). https://doi.org/10.1021/am405271q
- H. Xia, J. Feng, H. Wang, M.O. Lai, L. Lu, MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J. Power Sources 195, 4410–4413 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.075
- J. Duay, S.A. Sherrill, Z. Gui, E. Gillette, S.B. Lee, Self-limiting electrodeposition of hierarchical MnO2 and Mn(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7, 1200–1214 (2013). https://doi.org/10.1021/nn3056077
- X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, H-TiO2@MnO2//H-TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 25, 267–272 (2013). https://doi.org/10.1002/adma.201203410
- E. Eustache, C. Douard, R. Retoux, C. Lethien, T. Brousse, MnO2 thin films on 3D scaffold: microsupercapacitor electrodes competing with “bulk” carbon electrodes. Adv. Energy Mater. 5, 1500680 (2015). https://doi.org/10.1002/aenm.201500680
- L. Yuan, X.H. Lu, X. Xiao, T. Zhai, J. Dai et al., Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6, 656–661 (2012). https://doi.org/10.1021/nn2041279
- S.H. Lee, H. Lee, M.S. Cho, J.-D. Nam, Y. Lee, Morphology and composition control of manganese oxide by the pulse reverse electrodeposition technique for high performance supercapacitors. J. Mater. Chem. A 1, 14606–14611 (2013). https://doi.org/10.1039/c3ta12828h
- X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 4, 2915–2921 (2011). https://doi.org/10.1039/c1ee01338f
- T. Beyazay, F. Eylul Sarac Oztuna, U. Unal, Self-standing reduced graphene oxide papers electrodeposited with manganese oxide nanostructures as electrodes for electrochemical capacitors. Electrochim. Acta 296, 916–924 (2019). https://doi.org/10.1016/j.electacta.2018.11.033
- Q. Chen, Y. Meng, C. Hu, Y. Zhao, H. Shao, N. Chen, L. Qu, MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources 247, 32–39 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.045
- H. Gao, F. Xiao, C.B. Ching, H. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl. Mater. Interfaces 4, 2801–2810 (2012). https://doi.org/10.1021/am300455d
- S.H. Kazemi, M.A. Kiani, M. Ghaemmaghami, H. Kazemi, Nano-architectured MnO2 electrodeposited on the Cu-decorated nickel foam substrate as supercapacitor electrode with excellent areal capacitance. Electrochim. Acta 197, 107–116 (2016). https://doi.org/10.1016/j.electacta.2016.03.063
- M. Kundu, L. Liu, Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. J. Power Sources 243, 676–681 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.059
- L. Li, X. Zhang, G. Wu, X. Peng, K. Huo, P.K. Chu, Supercapacitor electrodes based on hierarchical mesoporous MnOx/nitrided TiO2 nanorod arrays on carbon fiber paper. Adv. Mater. Interfaces 2, 1400446 (2015). https://doi.org/10.1002/admi.201400446
- S.-M. Li, Y.-S. Wang, S.-Y. Yang, C.-H. Liu, K.-H. Chang et al., Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene–carbon nanotube structure for ultrahigh-performance electrochemical capacitors. J. Power Sources 225, 347–355 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.037
- W. Li, K. Xu, B. Li, J. Sun, F. Jiang et al., MnO2 nanoflower arrays with high rate capability for flexible supercapacitors. ChemElectroChem 1, 1003–1008 (2014). https://doi.org/10.1002/celc.201400006
- Y.-H. Lin, T.-Y. Wei, H.-C. Chien, S.-Y. Lu, Manganese oxide/carbon aerogel composite: an outstanding supercapacitor electrode material. Adv. Energy Mater. 1, 901–907 (2011). https://doi.org/10.1002/aenm.201100256
- Z. Pan, Y. Qiu, J. Yang, F. Ye, Y. Xu, X. Zhang, M. Liu, Y. Zhang, Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy 26, 610–619 (2016). https://doi.org/10.1016/j.nanoen.2016.05.053
- Z. Qi, A. Younis, D. Chu, S. Li, A facile and template-free one-pot synthesis of Mn3O4 nanostructures as electrochemical supercapacitors. Nano-Micro Lett. 8, 165–173 (2016). https://doi.org/10.1007/s40820-015-0074-0
- A. Rafique, A. Massa, M. Fontana, S. Bianco, A. Chiodoni, C.F. Pirri, S. Hernandez, A. Lamberti, Highly uniform anodically deposited film of MnO2 nanoflakes on carbon fibers for flexible and wearable fiber-shaped supercapacitors. ACS Appl. Mater. Interfaces 9, 28386–28393 (2017). https://doi.org/10.1021/acsami.7b06311
- W. Wei, X. Cui, W. Chen, D.G. Ivey, Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors. J. Power Sources 186, 543–550 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.058
- Z. Ye, T. Li, G. Ma, X. Peng, J. Zhao, Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J. Power Sources 351, 51–57 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.104
- Y. Zheng, W. Pann, D. Zhengn, C. Sun, Fabrication of functionalized graphene-based MnO2 nanoflower through electrodeposition for high-performance supercapacitor electrodes. J. Electrochem. Soc. 163, D230–D238 (2016). https://doi.org/10.1149/2.0341606jes
- B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, Y. Li, Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020
- Y. Song, T. Liu, B. Yao, M. Li, T. Kou et al., Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752–1759 (2017). https://doi.org/10.1021/acsenergylett.7b00405
- Z.-H. Huang, Y. Song, X.-X. Liu, Boosting operating voltage of vanadium oxide-based symmetric aqueous supercapacitor to 2V. Chem. Eng. J. 358, 1529–1538 (2019). https://doi.org/10.1016/j.cej.2018.10.136
- A.M. Engstrom, F.M. Doyle, Exploring the cycle behavior of electrodeposited vanadium oxide electrochemical capacitor electrodes in various aqueous environments. J. Power Sources 228, 120–131 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.075
- A. Ghosh, E.J. Ra, M. Jin, H.-K. Jeong, T.H. Kim, C. Biswas, Y.H. Lee, High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon-nanofiber paper. Adv. Funct. Mater. 21, 2541–2547 (2011). https://doi.org/10.1002/adfm.201002603
- R.S. Ingole, B.J. Lokhande, Electrochemically synthesized mesoporous architecture of vanadium oxide on flexible stainless steel for high performance supercapacitor. J. Mater. Sci.: Mater. Electron. 28, 10951–10957 (2017). https://doi.org/10.1007/s10854-017-6875-9
- C.-H. Lai, C.-K. Lin, S.-W. Lee, H.-Y. Li, J.-K. Chang, M.-J. Deng, Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications. J. Alloys Compd. 536, S428–S431 (2012). https://doi.org/10.1016/j.jallcom.2011.12.038
- E. Armstrong, M. O’Sullivan, J. O’Connell, J.D. Holmes, C. O’Dwyer, 3D vanadium oxide inverse opal growth by electrodeposition. J. Electrochem. Soc. 162, D605–D612 (2015). https://doi.org/10.1149/2.0541514jes
- D.L. da Silva, R.G. Delatorre, G. Pattanaik, G. Zangari, W. Figueiredo, R.-P. Blum, H. Niehus, A.A. Pasa, Electrochemical synthesis of vanadium oxide nanofibers. J. Electrochem. Soc. 155, E14 (2008). https://doi.org/10.1149/1.2804856
- Y.R. Lu, T.Z. Wu, C.L. Chen, D.H. Wei, J.L. Chen, W.C. Chou, C.L. Dong, Mechanism of electrochemical deposition and coloration of electrochromic V2O5 nano thin films: an in situ X-ray spectroscopy study. Nanoscale Res. Lett. 10, 387 (2015). https://doi.org/10.1186/s11671-015-1095-9
- D. Rehnlund, M. Valvo, K. Edström, L. Nyholm, Electrodeposition of vanadium oxide/manganese oxide hybrid thin films on nanostructured aluminum substrates. J. Electrochem. Soc. 161, D515–D521 (2014). https://doi.org/10.1149/2.0511410jes
- K. Takahashi, S.J. Limmer, Y. Wang, G. Cao, Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition. J. Phys. Chem. B 108, 9795–9800 (2004). https://doi.org/10.1021/jp0491820
- Y. Wang, K. Takahashi, H. Shang, G. Cao, Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays. J. Phys. Chem. B 109, 3085–3088 (2005). https://doi.org/10.1021/jp044286w
- J.-D. Xie, H.-Y. Li, T.-Y. Wu, J.-K. Chang, Y.A. Gandomi, Electrochemical energy storage of nanocrystalline vanadium oxide thin films prepared from various plating solutions for supercapacitors. Electrochim. Acta 273, 257–263 (2018). https://doi.org/10.1016/j.electacta.2018.04.007
- H. Drosos, A. Sapountzis, E. Koudoumas, N. Katsarakis, D. Vernardou, Effect of deposition current density on electrodeposited vanadium oxide coatings. J. Mater. Chem. 159, E145–E147 (2012). https://doi.org/10.1149/2.017208jes
- Q. Qu, Y. Zhu, X. Gao, Y. Wu, Core–shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv. Energy Mater. 2, 950–955 (2012). https://doi.org/10.1002/aenm.201200088
- J.G. Wang, H. Liu, H. Liu, W. Hua, M. Shao, Interfacial constructing flexible V2O5@polypyrrole core–shell nanowire membrane with superior supercapacitive performance. ACS Appl. Mater. Interfaces. 10, 18816–18823 (2018). https://doi.org/10.1021/acsami.8b05660
- T.M. McEvoy, K.J. Stevenson, Elucidation of the electrodeposition mechanism of molybdenum oxide from iso- and peroxo-polymolybdate solutions. J. Mater. Res. 19, 429–438 (2011). https://doi.org/10.1557/jmr.2004.19.2.429
- V.S. Saji, C.W. Lee, Molybdenum, molybdenum oxides, and their electrochemistry. Chemsuschem 5, 1146–1161 (2012). https://doi.org/10.1002/cssc.201100660
- W. Zhang, H. Li, C.J. Firby, M. Al-Hussein, A.Y. Elezzabi, Oxygen-vacancy-tunable electrochemical properties of electrodeposited molybdenum oxide films. ACS Appl. Mater. Interfaces. 11, 20378–20385 (2019). https://doi.org/10.1021/acsami.9b04386
- H. Farsi, F. Gobal, H. Raissi, S. Moghiminia, The pH effects on the capacitive behavior of nanostructured molybdenum oxide. J. Solid State Electrochem. 14, 681–686 (2009). https://doi.org/10.1007/s10008-009-0828-z
- H. Farsi, F. Gobal, H. Raissi, S. Moghiminia, On the pseudocapacitive behavior of nanostructured molybdenum oxide. J. Solid State Electrochem. 14, 643–650 (2009). https://doi.org/10.1007/s10008-009-0830-5
- T. Tsumura, Lithium insertion/extraction reaction on crystalline MoO3. Solid State Ion. 104, 183–189 (1997). https://doi.org/10.1016/s0167-2738(97)00418-9
- C.R. Clayton, Y.C. Lu, Electrochemical and XPS evidence of the aqueous formation of Mo2O5. Surf. Interface Anal. 14, 66–70 (1989). https://doi.org/10.1002/sia.740140114
- C. Liu, Z. Xie, W. Wang, Z. Li, Z. Zhang, The Ti@MoOx nanorod array as a threedimensional film electrode for micro-supercapacitors. Electrochem. Commun. 44, 23–26 (2014). https://doi.org/10.1016/j.elecom.2014.04.007
- C. Liu, Z. Xie, W. Wang, Z. Li, Z. Zhang, Fabrication of MoOx film as a conductive anode material for micro-supercapacitors by electrodeposition and annealing. J. Electrochem. Soc. 161, A1051–A1057 (2014). https://doi.org/10.1149/2.081406jes
- K.K. Upadhyay, T. Nguyen, T.M. Silva, M.J. Carmezim, M.F. Montemor, Electrodeposited MoOx films as negative electrode materials for redox supercapacitors. Electrochim. Acta 225, 19–28 (2017). https://doi.org/10.1016/j.electacta.2016.12.106
- D.D. Yao, J.Z. Ou, K. Latham, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, Electrodeposited α- and β-phase MoO3 films and investigation of their gasochromic properties. Cryst. Growth Des. 12, 1865–1870 (2012). https://doi.org/10.1021/cg201500b
- F. Wang, Z. Liu, X. Wang, X. Yuan, X. Wu, Y. Zhu, L. Fu, Y. Wu, A conductive polymer coated MoO3 anode enables an Al-ion capacitor with high performance. J. Mater. Chem. A 4, 5115–5123 (2016). https://doi.org/10.1039/c6ta01398h
- S. Sun, X. Liao, Y. Sun, G. Yin, Y. Yao, Z. Huang, X. Pu, Facile synthesis of a α-MoO3 nanoplate/TiO2 nanotube composite for high electrochemical performance. RSC Adv. 7, 22983–22989 (2017). https://doi.org/10.1039/c7ra01164d
- X. Xiao, T. Ding, L. Yuan, Y. Shen, Q. Zhong et al., WO3−x/MoO3Electrochemical and XPS evidence of the aqueous formation of Mo2O5x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 2, 1328–1332 (2012). https://doi.org/10.1002/aenm.201200380
- G.-R. Li, Z.-L. Wang, F.-L. Zheng, Y.-N. Ou, Y.-X. Tong, ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. J. Mater. Chem. 21, 4217–4221 (2011). https://doi.org/10.1039/c0jm03500a
- J.-C. Liu, H. Li, M. Batmunkh, X. Xiao, Y. Sun et al., Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass loadings. J. Mater. Chem. A 7, 23941–23948 (2019). https://doi.org/10.1039/c9ta04835a
- X.F. Lu, Z.X. Huang, Y.X. Tong, G.R. Li, Asymmetric supercapacitors with high energy density based on helical hierarchical porous NaxMnO2 and MoO2. Chem. Sci. 7, 510–517 (2016). https://doi.org/10.1039/c5sc03326h
- H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2196 (2011). https://doi.org/10.1002/adfm.201002477
- B. Yang, H. Li, M. Blackford, V. Luca, Novel low density mesoporous WO3 films prepared by electrodeposition. Curr. Appl. Phys. 6, 436–439 (2006). https://doi.org/10.1016/j.cap.2005.11.035
- S. Wang, X. Feng, J. Yao, L. Jiang, Controlling wettability and photochromism in a dual-responsive tungsten oxide film. Angew. Chem. Int. Ed. 45, 1264–1267 (2006). https://doi.org/10.1002/anie.200502061
- P. Shen, N. Chi, K.-Y. Chan, Morphology of electrodeposited WO3 studied by atomic force microscopy. J. Mater. Chem. 10, 697–700 (2000). https://doi.org/10.1039/a908348k
- Z. Sun, X.G. Sang, Y. Song, D. Guo, D.Y. Feng, X. Sun, X.X. Liu, A high performance tungsten bronze electrode in a mixed electrolyte and applications in supercapacitors. Chem. Commun. 55, 14323–14326 (2019). https://doi.org/10.1039/c9cc06845g
- G. Yang, X.-X. Liu, Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor. J. Power Sources 383, 17–23 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.035
- T. Pauporté, A simplified method for WO3 electrodeposition. J. Electrochem. Soc. 149, C539–C545 (2002). https://doi.org/10.1088/2053-1583/ab1e0a
- S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky, E.W. McFarland, Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 15, 1269–1273 (2003). https://doi.org/10.1002/adma.200304669
- A.K. Srivastava, M. Deepa, S. Singh, R. Kishore, S.A. Agnihotry, Microstructural and electrochromic characteristics of electrodeposited and annealed WO3 films. Solid State Ionics 176, 1161–1168 (2005). https://doi.org/10.1016/j.ssi.2004.10.006
- M. Deepa, A.K. Srivastava, T.K. Saxena, S.A. Agnihotry, Annealing induced microstructural evolution of electrodeposited electrochromic tungsten oxide films. Appl. Surf. Sci. 252, 1568–1580 (2005). https://doi.org/10.1016/j.apsusc.2005.02.123
- M. Deepa, M. Kar, S.A. Agnihotry, Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance. Thin Solid Films 468, 32–42 (2004). https://doi.org/10.1016/j.tsf.2004.04.056
- C. Yao, B. Wei, H. Li, G. Wang, Q. Han, H. Ma, Q. Gong, Carbon-encapsulated tungsten oxide nanowires as a stable and high-rate anode material for flexible asymmetric supercapacitors. J. Mater. Chem. A 5, 56–61 (2017). https://doi.org/10.1039/c6ta08274b
- Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, Y. Tong, Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 6, 1601053 (2016). https://doi.org/10.1002/aenm.201601053
- Q. Xia, M. Xu, H. Xia, J. Xie, Nanostructured iron oxide/hydroxide-based electrode materials for supercapacitors. ChemNanoMat 2, 588–600 (2016). https://doi.org/10.1002/cnma.201600110
- J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Amorphous nanostructured FeOOH and Co–Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy 21, 145–153 (2016). https://doi.org/10.1016/j.nanoen.2015.12.029
- X.-F. Lu, X.-Y. Chen, W. Zhou, Y.-X. Tong, G.-R. Li, α-Fe2O3@PANI core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 14843–14850 (2015). https://doi.org/10.1021/acsami.5b03126
- J. Liu, M. Zheng, X. Shi, H. Zeng, H. Xia, Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater. 26, 919–930 (2016). https://doi.org/10.1002/adfm.201504019
- J. Sun, Y. Huang, C. Fu, Y. Huang, M. Zhu, X. Tao, C. Zhi, H. Hu, A high performance fiber-shaped PEDOT@MnO2//C@Fe3O4 asymmetric supercapacitor for wearable electronics. J. Mater. Chem. A 4, 14877–14883 (2016). https://doi.org/10.1039/c6ta05898a
- M.-S. Wu, R.-H. Lee, Electrochemical growth of iron oxide thin films with nanorods and nanosheets for capacitors. J. Electrochem. Soc. 156, A737–A743 (2009). https://doi.org/10.1149/1.3160547
- K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao et al., Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8, 14264 (2017). https://doi.org/10.1038/ncomms14264
- W. Fu, E. Zhao, X. Ren, A. Magasinski, G. Yushin, Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors. Adv. Energy Mater. 8, 1703454 (2018). https://doi.org/10.1002/aenm.201703454
- Y.C. Chen, Y.G. Lin, Y.K. Hsu, S.C. Yen, K.H. Chen, L.C. Chen, Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. Small 10, 3803–3810 (2014). https://doi.org/10.1002/smll.201400597
- X. Tang, R. Jia, T. Zhai, H. Xia, Hierarchical Fe3O4@Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 27518–27525 (2015). https://doi.org/10.1021/acsami.5b09766
- Y. Li, J. Xu, T. Feng, Q. Yao, J. Xie, H. Xia, Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 27, 1606728 (2017). https://doi.org/10.1002/adfm.201606728
- T. Deng, W. Zhang, O. Arcelus, J.G. Kim, J. Carrasco et al., Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun. 8, 15194 (2017). https://doi.org/10.1038/ncomms15194
- V. Gupta, S. Gupta, N. Miura, Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors. J. Power Sources 175, 680–685 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.004
- Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie, X. Lu, Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 30, 1802396 (2018). https://doi.org/10.1002/adma.201802396
- Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu et al., An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode. Adv. Mater. 29, 1702698 (2017). https://doi.org/10.1002/adma.201702698
- M. Huang, M. Li, C. Niu, Q. Li, L. Mai, Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Adv. Funct. Mater. 29, 1807847 (2019). https://doi.org/10.1002/adfm.201807847
- Y. Liu, N. Fu, G. Zhang, M. Xu, W. Lu, L. Zhou, H. Huang, Design of hierarchical Ni–Co@Ni–Co layered double hydroxide core–shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors. Adv. Funct. Mater. 27, 1605307 (2017). https://doi.org/10.1002/adfm.201605307
- G. Nagaraju, S. Chandra Sekhar, L. Krishna Bharat, J.S. Yu, Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors. ACS Nano 11, 10860–10874 (2017). https://doi.org/10.1021/acsnano.7b04368
- T. Wang, B. Zhao, H. Jiang, H.-P. Yang, K. Zhang et al., Electro-deposition of CoNi2S4 flower-like nanosheets on 3D hierarchically porous nickel skeletons with high electrochemical capacitive performance. J. Mater. Chem. A 3, 23035–23041 (2015). https://doi.org/10.1039/c5ta04705f
- H. Xu, C. Zhang, W. Zhou, G.R. Li, Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors. Nanoscale 7, 16932–16942 (2015). https://doi.org/10.1039/c5nr04449a
- G. Xiong, P. He, D. Wang, Q. Zhang, T. Chen, T.S. Fisher, Hierarchical Ni–Co hydroxide petals on mechanically robust graphene petal foam for high-energy asymmetric supercapacitors. Adv. Funct. Mater. 26, 5460–5470 (2016). https://doi.org/10.1002/adfm.201600879
- J.A. Syed, J. Ma, B. Zhu, S. Tang, X. Meng, Hierarchical multicomponent electrode with interlaced Ni(OH)2 nanoflakes wrapped zinc cobalt sulfide nanotube arrays for sustainable high-performance supercapacitors. Adv. Energy Mater. 7, 1701228 (2017)
- X. Lu, X. Huang, S. Xie, T. Zhai, C. Wang et al., Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors. J. Mater. Chem. 22, 13357–13364 (2012). https://doi.org/10.1039/c2jm30927k
- H. Li, Y. Gao, C. Wang, G. Yang, A simple electrochemical route to access amorphous mixed-metal hydroxides for supercapacitor electrode materials. Adv. Energy Mater. 5, 1401767 (2015). https://doi.org/10.1002/aenm.201401767
- X. Xia, J. Tu, Y. Zhang, J. Chen, X. Wang, C. Gu, C. Guan, J. Luo, H.J. Fan, Porous hydroxide nanosheets on preformed nanowires by electrodeposition: branched nanoarrays for electrochemical energy storage. Chem. Mater. 24, 3793–3799 (2012). https://doi.org/10.1021/cm302416d
- W. Guo, C. Yu, S. Li, X. Song, H. Huang et al., A universal converse voltage process for triggering transition metal hybrids in situ phase restruction toward ultrahigh-rate supercapacitors. Adv. Mater. 31, 1901241 (2019). https://doi.org/10.1002/adma.201901241
- J.C. Chen, C.-T. Hsu, C.-C. Hu, Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. J. Power Sources 253, 205–213 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.073
- R. Li, S. Wang, Z. Huang, F. Lu, T. He, NiCo2S4@Co(OH)2 core–shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J. Power Sources 312, 156–164 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.047
- H. Pourfarzad, M. Shabani-Nooshabadi, M.R. Ganjali, H. Kashani, Synthesis of Ni–Co–Fe layered double hydroxide and Fe2O3/graphene nanocomposites as actively materials for high electrochemical performance supercapacitors. Electrochim. Acta 317, 83–92 (2019). https://doi.org/10.1016/j.electacta.2019.05.122
- Z. Li, H. Duan, M. Shao, J. Li, D. O’Hare, M. Wei, Z.L. Wang, Ordered-vacancy-induced cation intercalation into layered double hydroxides: a general approach for high-performance supercapacitors. Chem 4, 2168–2179 (2018). https://doi.org/10.1016/j.chempr.2018.06.007
- G. Lee, J.W. Kim, H. Park, J.Y. Lee, H. Lee et al., Dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn–Mo mixed oxide electrodes and air-stable organic electrolyte. ACS Nano 13, 855–866 (2019). https://doi.org/10.1021/acsnano.8b08645
- K. Okamura, R. Inoue, T. Sebille, K. Tomono, M. Nakayama, An approach to optimize the composition of supercapacitor electrodes consisting of manganese–molybdenum mixed oxide and carbon nanotubes. J. Electrochem. Soc. 158, A711 (2011). https://doi.org/10.1149/1.3578039
- Y.-H. Li, Q.-Y. Li, H.-Q. Wang, Y.-G. Huang, X.-H. Zhang et al., Synthesis and electrochemical properties of nickel–manganese oxide on MWCNTs/CFP substrate as a supercapacitor electrode. Appl. Energy 153, 78–86 (2015). https://doi.org/10.1016/j.apenergy.2014.09.055
- H. Zhou, X. Zou, K. Zhang, P. Sun, M.S. Islam, J. Gong, Y. Zhang, J. Yang, Molybdenum–tungsten mixed oxide deposited into titanium dioxide nanotube arrays for ultrahigh rate supercapacitors. ACS Appl. Mater. Interfaces 9, 18699–18709 (2017). https://doi.org/10.1021/acsami.7b01871
- E. Karaca, D. Gökcen, N.Ö. Pekmez, K. Pekmez, Electrochemical synthesis of PPy composites with nanostructured MnOx, CoOx, NiOx, and FeOx in acetonitrile for supercapacitor applications. Electrochim. Acta 305, 502–513 (2019). https://doi.org/10.1016/j.electacta.2019.03.060
- C.H. Ng, H.N. Lim, Y.S. Lim, W.K. Chee, N.M. Huang, Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int. J. Energy Res. 39, 344–355 (2015). https://doi.org/10.1002/er.3247
- L. Chen, L.-J. Sun, F. Luan, Y. Liang, Y. Li, X.-X. Liu, Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J. Power Sources 195, 3742–3747 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.036
- J. Kim, H. Ju, A.I. Inamdar, Y. Jo, J. Han, H. Kim, H. Im, Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2–polyaniline nanocomposite electrodes. Energy 70, 473–477 (2014). https://doi.org/10.1016/j.energy.2014
References
C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei, J. Lau, B. Dunn, Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2019). https://doi.org/10.1038/s41578-019-0142-z
J. Pu, Z. Shen, C. Zhong, Q. Zhou, J. Liu, J. Zhu, H. Zhang, Electrodeposition technologies for Li-based batteries: new frontiers of energy storage. Adv. Mater. (2019). https://doi.org/10.1002/adma.201903808
P. Simon, Y. Gogotsi, B. Dunn, Materials science. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
T. Liu, F. Zhang, Y. Song, Y. Li, Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705–17733 (2017). https://doi.org/10.1039/c7ta05646j
B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York, 2013), pp. 11–31
Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2, 30–37 (2019). https://doi.org/10.1002/eem2.12028
J. Miller, Introduction to electrochemical capacitor technology. IEEE Electr. Insul. Mag. 26, 40–47 (2010). https://doi.org/10.1109/mei.2010.5511188
Y. Huang, Z. Tang, Z. Liu, J. Wei, H. Hu, C. Zhi, Toward enhancing wearability and fashion of wearable supercapacitor with modified polyurethane artificial leather electrolyte. Nano-Micro Lett. 10, 38 (2018). https://doi.org/10.1007/s40820-018-0191-7
Z. Bo, C. Li, H. Yang, K. Ostrikov, J. Yan, K. Cen, Design of supercapacitor electrodes using molecular dynamics simulations. Nano-Micro Lett. 10, 33 (2018). https://doi.org/10.1007/s40820-018-0188-2
Y. Liu, B. Soucaze-Guillous, P.-L. Taberna, P. Simon, Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods. J. Power Sources 366, 123–130 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.104
J.R. Miller, P. Simon, Materials science. Electrochemical capacitors for energy management. Science 321, 651–652 (2008). https://doi.org/10.1126/science.1158736
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297
V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014). https://doi.org/10.1039/c3ee44164d
N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, H. Xia, High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29, 1700804 (2017). https://doi.org/10.1002/adma.201700804
W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011). https://doi.org/10.1039/c0cs00127a
Y. Wu, Y. Yang, X. Zhao, Y. Tan, Y. Liu, Z. Wang, F. Ran, A novel hierarchical porous 3D structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett. 10, 63 (2018). https://doi.org/10.1007/s40820-018-0217-1
L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009). https://doi.org/10.1039/b813846j
D. Landolt, Electrodeposition science and technology in the last quarter of the twentieth century. J. Electrochem. Soc. 149, S9 (2002). https://doi.org/10.1149/1.1469028
I.M. Dharmadasa, J. Haigh, Strengths and advantages of electrodeposition as a semiconductor growth technique for applications in macroelectronic devices. J. Electrochem. Soc. 153, G47–G52 (2006). https://doi.org/10.1149/1.2128120
M.F. Montemor, S. Eugénio, N. Tuyen, R.P. Silva, T.M. Silva, M.J. Carmezim, Nanostructured Transition Metal Oxides Produced by Electrodeposition for Application as Redox Electrodes for Supercapacitors (Springer, Berlin, 2016), pp. 681–714. https://doi.org/10.1007/978-3-319-15266-0_14
J. Wang, K.K. Manga, Q. Bao, K.P. Loh, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 133, 8888–8891 (2011). https://doi.org/10.1021/ja203725d
W. Chen, R.B. Rakhi, L. Hu, X. Xie, Y. Cui, H.N. Alshareef, High-performance nanostructured supercapacitors on a sponge. Nano Lett. 11, 5165–5172 (2011). https://doi.org/10.1021/nl2023433
X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011). https://doi.org/10.1038/nnano.2011.13
T. Liu, Y. Ling, Y. Yang, L. Finn, E. Collazo, T. Zhai, Y. Tong, Y. Li, Investigation of hematite nanorod–nanoflake morphological transformation and the application of ultrathin nanoflakes for electrochemical devices. Nano Energy 12, 169–177 (2015). https://doi.org/10.1016/j.nanoen.2014.12.023
T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett. 14, 2522–2527 (2014). https://doi.org/10.1021/nl500255v
Y. Song, T.-Y. Liu, X.-X. Xu, D.-Y. Feng, Y. Li, X.-X. Liu, Pushing the cycling stability limit of polypyrrole for supercapacitors. Adv. Funct. Mater. 25, 4626–4632 (2015). https://doi.org/10.1002/adfm.201501709
M.-H. Bai, T.-Y. Liu, F. Luan, Y. Li, X.-X. Liu, Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors. J. Mater. Chem. A 2, 10882–10888 (2014). https://doi.org/10.1039/c3ta15391f
Y. Song, P. Deng, Z. Qin, D. Feng, D. Guo, X. Sun, X.-X. Liu, A polyanionic molybdenophosphate anode for a 2.7 V aqueous pseudocapacitor. Nano Energy 65, 104010 (2019). https://doi.org/10.1016/j.nanoen.2019.104010
F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 11, 25 (2019). https://doi.org/10.1007/s40820-019-0256-2
R.G. Kelly, J.R. Scully, D. Shoesmith, R.G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering. CRC Press, Boca Raton. (2002). https://doi.org/10.1201/9780203909133
A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 1980)
N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2017). https://doi.org/10.1021/acs.jchemed.7b00361
D.K. Gosser, Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms (VCH, New York, 1993)
R. Dong, Y. Song, D. Yang, H.-Y. Shi, Z. Qin et al., Electrochemical in situ construction of vanadium oxide heterostructures with boosted pseudocapacitive charge storage. J. Mater. Chem. A 8, 1176–1183 (2020). https://doi.org/10.1039/c9ta12097a
Z. Sun, X. Cai, D.-Y. Feng, Z.-H. Huang, Y. Song, X.-X. Liu, Hybrid iron oxide on three-dimensional exfoliated graphite electrode with ultrahigh capacitance for energy storage applications. ChemElectroChem 5, 1501–1508 (2018). https://doi.org/10.1002/celc.201800143
Z. Sun, X. Cai, Y. Song, X.-X. Liu, Electrochemical deposition of honeycomb magnetite on partially exfoliated graphite as anode for capacitive applications. J. Power Sources 359, 57–63 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.055
Y. Song, T.Y. Liu, B. Yao, T.Y. Kou, D.Y. Feng, X.X. Liu, Y. Li, Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability. Small 13, 1700067 (2017). https://doi.org/10.1002/smll.201700067
X. Cai, Y. Song, S.-Q. Wang, X. Sun, X.-X. Liu, Extending the cycle life of high mass loading MoOx electrode for supercapacitor applications. Electrochim. Acta 325, 134877 (2019). https://doi.org/10.1016/j.electacta.2019.134877
M. Paunovic, Electrochemical Deposition. Encyclopedia of Electrochemistry: Online (2007). https://doi.org/10.1002/9783527610426.bard050003
D. Lincot, Electrodeposition of semiconductors. Thin Solid Films 487, 40–48 (2005). https://doi.org/10.1016/j.tsf.2005.01.032
M. Paunovic, M. Schlesinger, Fundamentals of Electrochemical Deposition (Wiley, New York, 1998)
D.M. Kolb, M. Przasnyski, H. Gerischer, Underpotential deposition of metals and work function differences. J. Electroanal. Chem. 54, 25–38 (1974). https://doi.org/10.1016/s0022-0728(74)80377-3
E. Herrero, L.J. Buller, H.D. Abruna, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001). https://doi.org/10.1021/cr9600363
Z. Shi, S. Wu, J. Lipkowski, Investigations of Cl− adsorption at the Au(111) electrode in the presence of underpotentially deposited copper atoms. J. Electroanal. Chem. 384, 171–177 (1995). https://doi.org/10.1016/0022-0728(94)03747-q
J.C. Ballesteros, E. Chaînet, P. Ozil, G. Trejo, Y. Meas, Electrochemical studies of Zn underpotential/overpotential deposition on a nickel electrode from non-cyanide alkaline solution containing glycine. Electrochim. Acta 56, 5443–5451 (2011). https://doi.org/10.1016/j.electacta.2011.02.106
M. Palomar-Pardavé, I. González, N. Batina, New insights into evaluation of kinetic parameters for potentiostatic metal deposition with underpotential and overpotential deposition processes. J. Phys. Chem. B 104, 3545–3555 (2000). https://doi.org/10.1021/jp9931861
R.E. Rettew, J.W. Guthrie, F.M. Alamgir, Layer-by-layer Pt growth on polycrystalline Au: surface-limited redox replacement of overpotentially deposited Ni monolayers. J. Electrochem. Soc. 156, D513–D516 (2009). https://doi.org/10.1149/1.3224113
M.G. Pavlović, L.J. Pavlović, N.D. Nikolić, K.I. Popov, The effect of some parameters of electrolysis on apparent density of electrolytic copper powder in galvanostatic deposition. Mater. Sci. Forum 352, 65–72 (2000). https://doi.org/10.4028/www.scientific.net/MSF.352.65
R. Salazar, C. Lévy-Clément, V. Ivanova, Galvanostatic deposition of ZnO thin films. Electrochim. Acta 78, 547–556 (2012). https://doi.org/10.1016/j.electacta.2012.06.070
Z.H. Huang, Y. Song, D.Y. Feng, Z. Sun, X. Sun, X.X. Liu, High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12, 3557–3567 (2018). https://doi.org/10.1021/acsnano.8b00621
E.J. Podlaha, Selective electrodeposition of nanoparticulates into metal matrices. Nano Lett. 1, 413–416 (2001). https://doi.org/10.1021/nl015508u
G. Zhu, C. Pan, W. Guo, C.Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12, 4960–4965 (2012). https://doi.org/10.1021/nl302560k
Y. Su, I. Zhitomirsky, Pulse electrosynthesis of MnO2 electrodes for supercapacitors. Adv. Eng. Mater. 16, 760–766 (2014). https://doi.org/10.1002/adem.201400077
M. Ghaemi, Effects of direct and pulse current on electrodeposition of manganese dioxide. J. Power Sources 111, 248–254 (2002). https://doi.org/10.1016/s0378-7753(02)00309-9
H. Cheh, Electrodeposition of gold by pulsed current. J. Electrochem. Soc. 118, 551 (1971). https://doi.org/10.1149/1.2408110
H.M.M.N. Hennayaka, H.S. Lee, Structural and optical properties of Zns thin film grown by pulsed electrodeposition. Thin Solid Films 548, 86–90 (2013). https://doi.org/10.1016/j.tsf.2013.09.011
A. Davies, P. Audette, B. Farrow, F. Hassan, Z. Chen, J.-Y. Choi, A. Yu, Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J. Phys. Chem. C 115, 17612–17620 (2011). https://doi.org/10.1021/jp205568v
L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater Sci. 52, 1–61 (2007). https://doi.org/10.1016/j.pmatsci.2006.07.001
P. Sarkar, P.S. Nicholson, Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J. Am. Ceram. Soc. 79, 1987–2002 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08929.x
C. Du, N. Pan, Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources 160, 1487–1494 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.092
C. Du, N. Pan, High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17, 5314–5318 (2006). https://doi.org/10.1088/0957-4484/17/21/005
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
Y. Su, I. Zhitomirsky, Electrophoretic nanotechnology of composite electrodes for electrochemical supercapacitors. J. Phys. Chem. B 117, 1563–1570 (2013). https://doi.org/10.1021/jp304358q
Y. Wang, I. Zhitomirsky, Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors. Langmuir 25, 9684–9689 (2009). https://doi.org/10.1021/la900937e
H. Zhang, X. Zhang, D. Zhang, X. Sun, H. Lin, C. Wang, Y. Ma, One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes. J. Phys. Chem. B 117, 1616–1627 (2013). https://doi.org/10.1021/jp305198j
Z.Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli et al., The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv. Funct. Mater. 23, 4684–4693 (2013). https://doi.org/10.1002/adfm.201203686
A.M. Abdelkader, I.A. Kinloch, R.A. Dryfe, Continuous electrochemical exfoliation of micrometer-sized graphene using synergistic ion intercalations and organic solvents. ACS Appl. Mater. Interfaces. 6, 1632–1639 (2014). https://doi.org/10.1021/am404497n
A.M. Abdelkader, A.J. Cooper, R.A. Dryfe, I.A. Kinloch, How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7, 6944–6956 (2015). https://doi.org/10.1039/c4nr06942k
A. Ambrosi, M. Pumera, Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev. 47, 7213–7224 (2018). https://doi.org/10.1039/c7cs00811b
R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Prog. Energy Combust. 75, 100786 (2019). https://doi.org/10.1016/j.pecs.2019.100786
A. Ambrosi, M. Pumera, Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chemistry 22, 153–159 (2016). https://doi.org/10.1002/chem.201503110
P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong, Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci. 20, 329–338 (2015). https://doi.org/10.1016/j.cocis.2015.10.007
S. Yang, M.R. Lohe, K. Mullen, X. Feng, New-generation graphene from electrochemical approaches: production and applications. Adv. Mater. 28, 6213–6221 (2016). https://doi.org/10.1002/adma.201505326
W. Wei, G. Wang, S. Yang, X. Feng, K. Mullen, Efficient coupling of nanoparticles to electrochemically exfoliated graphene. J. Am. Chem. Soc. 137, 5576–5581 (2015). https://doi.org/10.1021/jacs.5b02284
L. Wu, W. Li, P. Li, S. Liao, S. Qiu et al., Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite. Small 10, 1421–1429 (2014). https://doi.org/10.1002/smll.201302730
A. Ejigu, K. Fujisawa, B.F. Spencer, B. Wang, M. Terrones, I.A. Kinloch, R.A.W. Dryfe, On the role of transition metal salts during electrochemical exfoliation of graphite: antioxidants or metal oxide decorators for energy storage applications. Adv. Funct. Mater. 28, 1804357 (2018). https://doi.org/10.1002/adfm.201804357
K.S. Rao, J. Sentilnathan, H.-W. Cho, J.-J. Wu, M. Yoshimura, Soft processing of graphene nanosheets by glycine-bisulfate ionic-complex-assisted electrochemical exfoliation of graphite for reduction catalysis. Adv. Funct. Mater. 25, 298–305 (2015). https://doi.org/10.1002/adfm.201402621
C.Y. Su, A.Y. Lu, Y. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5, 2332–2339 (2011). https://doi.org/10.1021/nn200025p
J. Lu, J.X. Yang, J. Wang, A. Lim, S. Wang, K.P. Loh, One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3, 2367–2375 (2009). https://doi.org/10.1021/nn900546b
W. Cai, X. Feng, W. Hu, Y. Pan, Y. Hu, X. Gong, Functionalized graphene from electrochemical exfoliation for thermoplastic polyurethane: thermal stability, mechanical properties, and flame retardancy. Ind. Eng. Chem. Res. 55, 10681–10689 (2016). https://doi.org/10.1021/acs.iecr.6b02579
M. Mao, M. Wang, J. Hu, G. Lei, S. Chen, H. Liu, Simultaneous electrochemical synthesis of few-layer graphene flakes on both electrodes in protic ionic liquids. Chem. Commun. 49, 5301–5303 (2013). https://doi.org/10.1039/c3cc41909f
H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, W. Zhang, Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism. J. Mater. Chem. 22, 10452–10456 (2012). https://doi.org/10.1039/c2jm00092j
Y. Yang, F. Lu, Z. Zhou, W. Song, Q. Chen, X. Ji, Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties. Electrochim. Acta 113, 9–16 (2013). https://doi.org/10.1016/j.electacta.2013.09.031
K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Mullen, Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7, 3598–3606 (2013). https://doi.org/10.1021/nn400576v
W. Wang, W. Liu, Y. Zeng, Y. Han, M. Yu, X. Lu, Y. Tong, A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv. Mater. 27, 3572–3578 (2015). https://doi.org/10.1002/adma.201500707
Y. Song, S. Duan, D. Yang, R. Dong, D. Guo, X. Sun, X.-X. Liu, 3D exfoliated carbon paper toward highly loaded aqueous energy storage applications. Energy Technol. 7, 1900892 (2019). https://doi.org/10.1002/ente.201900892
F. Zeng, Z. Sun, X. Sang, D. Diamond, K.T. Lau, X. Liu, D.S. Su, In situ one-step electrochemical preparation of graphene oxide nanosheet-modified electrodes for biosensors. Chemsuschem 4, 1587–1591 (2011). https://doi.org/10.1002/cssc.201100319
Y. Song, D.Y. Feng, T.Y. Liu, Y. Li, X.X. Liu, Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors. Nanoscale 7, 3581–3587 (2015). https://doi.org/10.1039/c4nr06559j
K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Mullen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014). https://doi.org/10.1021/ja5017156
M. Alanyalıoğlu, J.J. Segura, J. Oró-Solè, N. Casañ-Pastor, The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50, 142–152 (2012). https://doi.org/10.1016/j.carbon.2011.07.064
C.-H. Chen, S.-W. Yang, M.-C. Chuang, W.-Y. Woon, C.-Y. Su, Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation. Nanoscale 7, 15362–15373 (2015). https://doi.org/10.1039/c5nr03669k
K. Chen, D. Xue, Preparation of colloidal graphene in quantity by electrochemical exfoliation. J. Colloid Interface Sci. 436, 41–46 (2014). https://doi.org/10.1016/j.jcis.2014.08.057
A.J. Cooper, N.R. Wilson, I.A. Kinloch, R.A.W. Dryfe, Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66, 340–350 (2014). https://doi.org/10.1016/j.carbon.2013.09.009
A. Ejigu, I.A. Kinloch, R.A. Dryfe, Single stage simultaneous electrochemical exfoliation and functionalization of graphene. ACS Appl. Mater. Interfaces 9, 710–721 (2017). https://doi.org/10.1021/acsami.6b12868
S. Yang, S. Bruller, Z.S. Wu, Z. Liu, K. Parvez et al., Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene. J. Am. Chem. Soc. 137, 13927–13932 (2015). https://doi.org/10.1021/jacs.5b09000
X. Cai, Y. Song, Z. Sun, D. Guo, X.-X. Liu, Rate capability improvement of Co–Ni double hydroxides integrated in cathodically partially exfoliated graphite. J. Power Sources 365, 126–133 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.039
D.-Y. Feng, Y. Song, Z.-H. Huang, X.-X. Xu, X.-X. Liu, Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor. J. Power Sources 324, 788–797 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.112
L. Hu, X. Peng, Y. Li, L. Wang, K. Huo, L.Y.S. Lee, K.Y. Wong, P.K. Chu, Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors. Nano Energy 34, 515–523 (2017). https://doi.org/10.1016/j.nanoen.2017.03.007
T. Liu, C. Zhu, T. Kou, M.A. Worsley, F. Qian, C. Condes, E.B. Duoss, C.M. Spadaccini, Y. Li, Ion intercalation induced capacitance improvement for graphene-based supercapacitor electrodes. ChemNanoMat 2, 635–641 (2016). https://doi.org/10.1002/cnma.201600107
Y. Song, T. Liu, F. Qian, C. Zhu, B. Yao, E. Duoss, C. Spadaccini, M. Worsley, Y. Li, Three-dimensional carbon architectures for electrochemical capacitors. J. Colloid Interface Sci. 509, 529–545 (2018). https://doi.org/10.1016/j.jcis.2017.07.081
Y. Song, T.-Y. Liu, G.-L. Xu, D.-Y. Feng, B. Yao, T.-Y. Kou, X.-X. Liu, Y. Li, Tri-layered graphite foil for electrochemical capacitors. J. Mater. Chem. A 4, 7683–7688 (2016). https://doi.org/10.1039/c6ta02075e
Y. Zou, S. Wang, Interconnecting carbon fibers with the in situ electrochemically exfoliated graphene as advanced binder-free electrode materials for flexible supercapacitor. Sci. Rep. 5, 11792 (2015). https://doi.org/10.1038/srep11792
S.-H. Lee, S.-D. Seo, Y.-H. Jin, H.-W. Shim, D.-W. Kim, A graphite foil electrode covered with electrochemically exfoliated graphene nanosheets. Electrochem. Commun. 12, 1419–1422 (2010). https://doi.org/10.1016/j.elecom.2010.07.036
R.M. Tamgadge, A. Shukla, A PH-dependent partial electrochemical exfoliation of highly oriented pyrolytic graphite for high areal capacitance electric double layer capacitor electrode. Electrochim. Acta 325, 134933 (2019). https://doi.org/10.1016/j.electacta.2019.134933
Y. Song, J.-L. Xu, X.-X. Liu, Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J. Power Sources 249, 48–58 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.102
Y. Song, X. Cai, X. Xu, X.-X. Liu, Integration of nickel–cobalt double hydroxide nanosheets and polypyrrole films with functionalized partially exfoliated graphite for asymmetric supercapacitors with improved rate capability. J. Mater. Chem. A 3, 14712–14720 (2015). https://doi.org/10.1039/c5ta02810h
Z. Liu, Z.S. Wu, S. Yang, R. Dong, X. Feng, K. Mullen, Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv. Mater. 28, 2217–2222 (2016). https://doi.org/10.1002/adma.201505304
J.M. Munuera, J.I. Paredes, M. Enterria, A. Pagan, S. Villar-Rodil, M.F.R. Pereira et al., Electrochemical exfoliation of graphite in aqueous sodium halide electrolytes toward low oxygen content graphene for energy and environmental applications. ACS Appl. Mater. Interfaces 9, 24085–24099 (2017). https://doi.org/10.1021/acsami.7b04802
N. Parveen, M.O. Ansari, S.A. Ansari, M.H. Cho, Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials. J. Mater. Chem. A 4, 233–240 (2016). https://doi.org/10.1039/c5ta07963b
J. Liu, M. Notarianni, G. Will, V.T. Tiong, H. Wang, N. Motta, Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties. Langmuir 29, 13307–13314 (2013). https://doi.org/10.1021/la403159n
S.M. Jung, D.L. Mafra, C.T. Lin, H.Y. Jung, J. Kong, Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale 7, 4386–4393 (2015). https://doi.org/10.1039/c4nr07564a
X. Xiao, Y. Zeng, H. Feng, K. Xu, G. Zhong et al., Three-dimensional nitrogen-doped graphene frameworks from electrochemical exfoliation of graphite as efficient supercapacitor electrodes. ChemNanoMat 5, 152–157 (2019). https://doi.org/10.1002/cnma.201800452
P. Khanra, T. Kuila, S.H. Bae, N.H. Kim, J.H. Lee, Electrochemically exfoliated graphene using 9-anthracene carboxylic acid for supercapacitor application. J. Mater. Chem. 22, 24403–24410 (2012). https://doi.org/10.1039/c2jm34838a
S. Liu, J. Ou, J. Wang, X. Liu, S. Yang, A simple two-step electrochemical synthesis of graphene sheets film on the ITO electrode as supercapacitors. J. Appl. Electrochem. 41, 881–884 (2011). https://doi.org/10.1007/s10800-011-0304-1
V. Thirumal, A. Pandurangan, R. Jayavel, K.S. Venkatesh, N.S. Palani, R. Ragavan, R. Ilangovan, Single pot electrochemical synthesis of functionalized and phosphorus doped graphene nanosheets for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 26, 6319–6328 (2015). https://doi.org/10.1007/s10854-015-3219-5
C. Li, H. Bai, G. Shi, Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. 38, 2397–2409 (2009). https://doi.org/10.1039/b816681c
G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.084
R. Gangopadhyay, A. De, Conducting polymer nanocomposites: a brief overview. Chem. Mater. 12, 608–622 (2000). https://doi.org/10.1021/cm990537f
Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin, H. Peng, Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J. Mater. Chem. A 1, 258–261 (2013). https://doi.org/10.1039/c2ta00274d
K.M. Kim, Y.-G. Lee, D.O. Shin, J.M. Ko, Supercapacitive properties of layered electrodes composed of electrodeposited RuO2 and polyaniline. Electrochim. Acta 196, 309–315 (2016). https://doi.org/10.1016/j.electacta.2016.02.194
H. Li, J. Song, L. Wang, X. Feng, R. Liu, W. Zeng, Z. Huang, Y. Ma, L. Wang, Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array. Nanoscale 9, 193–200 (2017). https://doi.org/10.1039/c6nr07921k
C. Tran, R. Singhal, D. Lawrence, V. Kalra, Polyaniline-coated freestanding porous carbon nanofibers as efficient hybrid electrodes for supercapacitors. J. Power Sources 293, 373–379 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.054
Y. Xie, D. Wang, J. Ji, Preparation and supercapacitor performance of freestanding polypyrrole/polyaniline coaxial nanoarrays. Energy Technol. 4, 714–721 (2016). https://doi.org/10.1002/ente.201500460
C. Fu, H. Zhou, R. Liu, Z. Huang, J. Chen, Y. Kuang, Supercapacitor based on electropolymerized polythiophene and multi-walled carbon nanotubes composites. Mater. Chem. Phys. 132, 596–600 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.074
A. Laforgue, P. Simon, C. Sarrazin, J.-F. Fauvarque, Polythiophene-based supercapacitors. J. Power Sources 80, 142–148 (1999). https://doi.org/10.1016/s0378-7753(98)00258-4
F.N. Ajjan, N. Casado, T. Rębiś, A. Elfwing, N. Solin, D. Mecerreyes, O. Inganäs, High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors. J. Mater. Chem. A 4, 1838–1847 (2016). https://doi.org/10.1039/c5ta10096h
A.M. Osterholm, D.E. Shen, A.L. Dyer, J.R. Reynolds, Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices. ACS Appl. Mater. Interfaces 5, 13432–13440 (2013). https://doi.org/10.1021/am4043454
J. Xu, Z. Ku, Y. Zhang, D. Chao, H.J. Fan, Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell. Adv. Mater. Technol. 1, 1600074 (2016). https://doi.org/10.1002/admt.201600074
S.-B. Yoon, K.-B. Kim, Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) on the pseudocapacitive properties of manganese oxide (MnO2) in the PEDOT/MnO2/multiwall carbon nanotube (MWNT) composite. Electrochim. Acta 106, 135–142 (2013). https://doi.org/10.1016/j.electacta.2013.05.058
G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, P.S. Lee, Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6, 1501882 (2016). https://doi.org/10.1002/aenm.201501882
D. Yang, Y. Song, Y.-J. Ye, M. Zhang, X. Sun, X.-X. Liu, Boosting the pseudocapacitance of nitrogen-rich carbon nanorod arrays for electrochemical capacitors. J. Mater. Chem. A 7, 12086–12094 (2019). https://doi.org/10.1039/c9ta01973a
Y. Huang, J. Tao, W. Meng, M. Zhu, Y. Huang, Y. Fu, Y. Gao, C. Zhi, Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11, 518–525 (2015). https://doi.org/10.1016/j.nanoen.2014.10.031
J.G. Ibanez, M.E. Rincon, S. Gutierrez-Granados, M. Chahma, O.A. Jaramillo-Quintero, B.A. Frontana-Uribe, Conducting polymers in the fields of energy, environmental remediation, and chemical-chiral sensors. Chem. Rev. 118, 4731–4816 (2018). https://doi.org/10.1021/acs.chemrev.7b00482
G. Sabouraud, S. Sadki, N. Brodie, The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 29, 283–293 (2000). https://doi.org/10.1039/a807124a
J. Jang, Conducting Polymer Nanomaterials and Their Applications (Springer, Berlin, 2006), pp. 189–260
S.C. Erwin, L. Zu, M.I. Haftel, A.L. Efros, T.A. Kennedy, D.J. Norris, Doping semiconductor nanocrystals. Nature 436, 91–94 (2005). https://doi.org/10.1038/nature03832
T.F. Otero, J.G. Martinez, Structural and biomimetic chemical kinetics: kinetic magnitudes include structural information. Adv. Funct. Mater. 23, 404–416 (2013). https://doi.org/10.1002/adfm.201200719
T. Liu, Y. Li, Addressing the achilles’ heel of pseudocapacitive materials: long-term stability. InfoMat (2020). https://doi.org/10.1002/inf2.12105
Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44, 6684–6696 (2015). https://doi.org/10.1039/c5cs00362h
B. Anothumakkool, A.T.A. Torris, S.N. Bhange, M.V. Badiger, S. Kurungot, Electrodeposited polyethylenedioxythiophene with infiltrated gel electrolyte interface: a close contest of an all-solid-state supercapacitor with its liquid-state counterpart. Nanoscale 6, 5944–5952 (2014). https://doi.org/10.1039/c4nr00659c
Y. Xie, Y. Liu, Y. Zhao, Y.H. Tsang, S.P. Lau, H. Huang, Y. Chai, Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2, 9142–9149 (2014). https://doi.org/10.1039/c4ta00734d
S. Lehtimaki, M. Suominen, P. Damlin, S. Tuukkanen, C. Kvarnstrom, D. Lupo, Preparation of supercapacitors on flexible substrates with electrodeposited PEDOT/graphene composites. ACS Appl. Mater. Interfaces 7, 22137–22147 (2015). https://doi.org/10.1021/acsami.5b05937
Y. Huang, M. Zhu, Z. Pei, Y. Huang, H. Geng, C. Zhi, Extremely stable polypyrrole achieved via molecular ordering for highly flexible supercapacitors. ACS Appl. Mater. Interfaces 8, 2435–2440 (2016). https://doi.org/10.1021/acsami.5b11815
N. Kurra, M.K. Hota, H.N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy 13, 500–508 (2015). https://doi.org/10.1016/j.nanoen.2015.03.018
N. Hui, F. Chai, P. Lin, Z. Song, X. Sun, Y. Li, S. Niu, X. Luo, Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors. Electrochim. Acta 199, 234–241 (2016). https://doi.org/10.1016/j.electacta.2016.03.115
X.-Y. Peng, F. Luan, X.-X. Liu, D. Diamond, K.-T. Lau, pH-controlled morphological structure of polyaniline during electrochemical deposition. Electrochim. Acta 54, 6172–6177 (2009). https://doi.org/10.1016/j.electacta.2009.05.075
B. Yao, L. Yuan, X. Xiao, J. Zhang, Y. Qi et al., Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2, 1071–1078 (2013). https://doi.org/10.1016/j.nanoen.2013.09.002
Y. Wang, Y. Shi, L. Pan, Y. Ding, Y. Zhao, Y. Li, Y. Shi, G. Yu, Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett. 15, 7736–7741 (2015). https://doi.org/10.1021/acs.nanolett.5b03891
Z.H. Huang, Y. Song, X.X. Xu, X.X. Liu, Ordered polypyrrole nanowire arrays grown on a carbon cloth substrate for a high-performance pseudocapacitor electrode. ACS Appl. Mater. Interfaces 7, 25506–25513 (2015). https://doi.org/10.1021/acsami.5b08830
S. Huang, Y. Han, S. Lyu, W. Lin, P. Chen, S. Fang, A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors. Nanotechnology 28, 435204 (2017). https://doi.org/10.1088/1361-6528/aa84cb
J. Huang, R.B. Kaner, Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew. Chem. Int. Ed. 43, 5817–5821 (2004). https://doi.org/10.1002/anie.200460616
N.R. Chiou, C. Lu, J. Guan, L.J. Lee, A.J. Epstein, Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat. Nanotechnol. 2, 354–357 (2007). https://doi.org/10.1038/nnano.2007.147
K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 114, 8062–8067 (2010). https://doi.org/10.1021/jp9113255
Y.-J. Ye, Z.-H. Huang, Y. Song, J.-W. Geng, X.-X. Xu, X.-X. Liu, Electrochemical growth of polyaniline nanowire arrays on graphene sheets in partially exfoliated graphite foil for high-performance supercapacitive materials. Electrochim. Acta 240, 72–79 (2017). https://doi.org/10.1016/j.electacta.2017.04.025
H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 6, 1185–1191 (2013). https://doi.org/10.1039/c2ee24203f
M. Yu, Y. Ma, J. Liu, S. Li, Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for supercapacitor electrodes. Carbon 87, 98–105 (2015). https://doi.org/10.1016/j.carbon.2015.02.017
G.F. Chen, X.X. Li, L.Y. Zhang, N. Li, T.Y. Ma, Z.Q. Liu, A porous perchlorate-doped polypyrrole nanocoating on nickel nanotube arrays for stable wide-potential-window supercapacitors. Adv. Mater. 28, 7680–7687 (2016). https://doi.org/10.1002/adma.201601781
G. Lu, G. Shi, Electrochemical polymerization of pyrene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer. J. Electroanal. Chem. 586, 154–160 (2006). https://doi.org/10.1016/j.jelechem.2005.10.020
D.P. Dubal, S.H. Lee, J.G. Kim, W.B. Kim, C.D. Lokhande, Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J. Mater. Chem. 22, 3044–3052 (2012). https://doi.org/10.1039/c2jm14470k
D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen et al., Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3, 1745–1752 (2009). https://doi.org/10.1021/nn900297m
J. Han, Y. Dou, J. Zhao, M. Wei, D.G. Evans, X. Duan, Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Small 9, 98–106 (2013). https://doi.org/10.1002/smll.201201336
G. Lu, L. Qu, G. Shi, Electrochemical fabrication of neuron-type networks based on crystalline oligopyrene nanosheets. Electrochim. Acta 51, 340–346 (2005). https://doi.org/10.1016/j.electacta.2005.04.043
X. He, W. Yang, X. Mao, L. Xu, Y. Zhou et al., All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly(3,4-ethylenedioxythiophene) (PEDOT) sponge electrodes. J. Power Sources 376, 138–146 (2018). https://doi.org/10.1016/j.jpowsour.2017.09.084
H. Park, J.W. Kim, S.Y. Hong, G. Lee, D.S. Kim, J.H. Oh et al., Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv. Funct. Mater. 28, 1707013 (2018). https://doi.org/10.1002/adfm.201707013
C. Wang, Y. Ding, Y. Yuan, A. Cao, X. He, Q. Peng, Y. Li, Multifunctional, highly flexible, free-standing 3D polypyrrole foam. Small 12, 4070–4076 (2016). https://doi.org/10.1002/smll.201601905
D.-Y. Feng, Z. Sun, Z.-H. Huang, X. Cai, Y. Song, X.-X. Liu, Highly loaded manganese oxide with high rate capability for capacitive applications. J. Power Sources 396, 238–245 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.026
T. Zhai, S. Xie, M. Yu, P. Fang, C. Liang, X. Lu, Y. Tong, Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8, 255–263 (2014). https://doi.org/10.1016/j.nanoen.2014.06.013
Z. Sun, S. Firdoz, E.Y. Yap, L. Li, X. Lu, Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. Nanoscale 5, 4379–4387 (2013). https://doi.org/10.1039/c3nr00209h
W. Wei, X. Cui, W. Chen, D.G. Ivey, Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition: implications for high-rate capability electrochemical supercapacitors. J. Phys. Chem. C 112, 15075–15083 (2008). https://doi.org/10.1021/jp804044s
W. Wei, X. Cui, X. Mao, W. Chen, D.G. Ivey, Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapacitor applications—effect of supersaturation ratio. Electrochim. Acta 56, 1619–1628 (2011). https://doi.org/10.1016/j.electacta.2010.10.044
F. Grote, Y. Lei, A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy 10, 63–70 (2014). https://doi.org/10.1016/j.nanoen.2014.08.019
S.B. Singh, T.I. Singh, N.H. Kim, J.H. Lee, A core–shell MnO2@Au nanofiber network as a high-performance flexible transparent supercapacitor electrode. J. Mater. Chem. A 7, 10672–10683 (2019). https://doi.org/10.1039/c9ta00778d
Q. Li, X.F. Lu, H. Xu, Y.X. Tong, G.R. Li, Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. ACS Appl. Mater. Interfaces 6, 2726–2733 (2014). https://doi.org/10.1021/am405271q
H. Xia, J. Feng, H. Wang, M.O. Lai, L. Lu, MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J. Power Sources 195, 4410–4413 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.075
J. Duay, S.A. Sherrill, Z. Gui, E. Gillette, S.B. Lee, Self-limiting electrodeposition of hierarchical MnO2 and Mn(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7, 1200–1214 (2013). https://doi.org/10.1021/nn3056077
X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, H-TiO2@MnO2//H-TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 25, 267–272 (2013). https://doi.org/10.1002/adma.201203410
E. Eustache, C. Douard, R. Retoux, C. Lethien, T. Brousse, MnO2 thin films on 3D scaffold: microsupercapacitor electrodes competing with “bulk” carbon electrodes. Adv. Energy Mater. 5, 1500680 (2015). https://doi.org/10.1002/aenm.201500680
L. Yuan, X.H. Lu, X. Xiao, T. Zhai, J. Dai et al., Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6, 656–661 (2012). https://doi.org/10.1021/nn2041279
S.H. Lee, H. Lee, M.S. Cho, J.-D. Nam, Y. Lee, Morphology and composition control of manganese oxide by the pulse reverse electrodeposition technique for high performance supercapacitors. J. Mater. Chem. A 1, 14606–14611 (2013). https://doi.org/10.1039/c3ta12828h
X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 4, 2915–2921 (2011). https://doi.org/10.1039/c1ee01338f
T. Beyazay, F. Eylul Sarac Oztuna, U. Unal, Self-standing reduced graphene oxide papers electrodeposited with manganese oxide nanostructures as electrodes for electrochemical capacitors. Electrochim. Acta 296, 916–924 (2019). https://doi.org/10.1016/j.electacta.2018.11.033
Q. Chen, Y. Meng, C. Hu, Y. Zhao, H. Shao, N. Chen, L. Qu, MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources 247, 32–39 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.045
H. Gao, F. Xiao, C.B. Ching, H. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl. Mater. Interfaces 4, 2801–2810 (2012). https://doi.org/10.1021/am300455d
S.H. Kazemi, M.A. Kiani, M. Ghaemmaghami, H. Kazemi, Nano-architectured MnO2 electrodeposited on the Cu-decorated nickel foam substrate as supercapacitor electrode with excellent areal capacitance. Electrochim. Acta 197, 107–116 (2016). https://doi.org/10.1016/j.electacta.2016.03.063
M. Kundu, L. Liu, Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. J. Power Sources 243, 676–681 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.059
L. Li, X. Zhang, G. Wu, X. Peng, K. Huo, P.K. Chu, Supercapacitor electrodes based on hierarchical mesoporous MnOx/nitrided TiO2 nanorod arrays on carbon fiber paper. Adv. Mater. Interfaces 2, 1400446 (2015). https://doi.org/10.1002/admi.201400446
S.-M. Li, Y.-S. Wang, S.-Y. Yang, C.-H. Liu, K.-H. Chang et al., Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene–carbon nanotube structure for ultrahigh-performance electrochemical capacitors. J. Power Sources 225, 347–355 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.037
W. Li, K. Xu, B. Li, J. Sun, F. Jiang et al., MnO2 nanoflower arrays with high rate capability for flexible supercapacitors. ChemElectroChem 1, 1003–1008 (2014). https://doi.org/10.1002/celc.201400006
Y.-H. Lin, T.-Y. Wei, H.-C. Chien, S.-Y. Lu, Manganese oxide/carbon aerogel composite: an outstanding supercapacitor electrode material. Adv. Energy Mater. 1, 901–907 (2011). https://doi.org/10.1002/aenm.201100256
Z. Pan, Y. Qiu, J. Yang, F. Ye, Y. Xu, X. Zhang, M. Liu, Y. Zhang, Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy 26, 610–619 (2016). https://doi.org/10.1016/j.nanoen.2016.05.053
Z. Qi, A. Younis, D. Chu, S. Li, A facile and template-free one-pot synthesis of Mn3O4 nanostructures as electrochemical supercapacitors. Nano-Micro Lett. 8, 165–173 (2016). https://doi.org/10.1007/s40820-015-0074-0
A. Rafique, A. Massa, M. Fontana, S. Bianco, A. Chiodoni, C.F. Pirri, S. Hernandez, A. Lamberti, Highly uniform anodically deposited film of MnO2 nanoflakes on carbon fibers for flexible and wearable fiber-shaped supercapacitors. ACS Appl. Mater. Interfaces 9, 28386–28393 (2017). https://doi.org/10.1021/acsami.7b06311
W. Wei, X. Cui, W. Chen, D.G. Ivey, Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors. J. Power Sources 186, 543–550 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.058
Z. Ye, T. Li, G. Ma, X. Peng, J. Zhao, Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J. Power Sources 351, 51–57 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.104
Y. Zheng, W. Pann, D. Zhengn, C. Sun, Fabrication of functionalized graphene-based MnO2 nanoflower through electrodeposition for high-performance supercapacitor electrodes. J. Electrochem. Soc. 163, D230–D238 (2016). https://doi.org/10.1149/2.0341606jes
B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, Y. Li, Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020
Y. Song, T. Liu, B. Yao, M. Li, T. Kou et al., Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752–1759 (2017). https://doi.org/10.1021/acsenergylett.7b00405
Z.-H. Huang, Y. Song, X.-X. Liu, Boosting operating voltage of vanadium oxide-based symmetric aqueous supercapacitor to 2V. Chem. Eng. J. 358, 1529–1538 (2019). https://doi.org/10.1016/j.cej.2018.10.136
A.M. Engstrom, F.M. Doyle, Exploring the cycle behavior of electrodeposited vanadium oxide electrochemical capacitor electrodes in various aqueous environments. J. Power Sources 228, 120–131 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.075
A. Ghosh, E.J. Ra, M. Jin, H.-K. Jeong, T.H. Kim, C. Biswas, Y.H. Lee, High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon-nanofiber paper. Adv. Funct. Mater. 21, 2541–2547 (2011). https://doi.org/10.1002/adfm.201002603
R.S. Ingole, B.J. Lokhande, Electrochemically synthesized mesoporous architecture of vanadium oxide on flexible stainless steel for high performance supercapacitor. J. Mater. Sci.: Mater. Electron. 28, 10951–10957 (2017). https://doi.org/10.1007/s10854-017-6875-9
C.-H. Lai, C.-K. Lin, S.-W. Lee, H.-Y. Li, J.-K. Chang, M.-J. Deng, Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications. J. Alloys Compd. 536, S428–S431 (2012). https://doi.org/10.1016/j.jallcom.2011.12.038
E. Armstrong, M. O’Sullivan, J. O’Connell, J.D. Holmes, C. O’Dwyer, 3D vanadium oxide inverse opal growth by electrodeposition. J. Electrochem. Soc. 162, D605–D612 (2015). https://doi.org/10.1149/2.0541514jes
D.L. da Silva, R.G. Delatorre, G. Pattanaik, G. Zangari, W. Figueiredo, R.-P. Blum, H. Niehus, A.A. Pasa, Electrochemical synthesis of vanadium oxide nanofibers. J. Electrochem. Soc. 155, E14 (2008). https://doi.org/10.1149/1.2804856
Y.R. Lu, T.Z. Wu, C.L. Chen, D.H. Wei, J.L. Chen, W.C. Chou, C.L. Dong, Mechanism of electrochemical deposition and coloration of electrochromic V2O5 nano thin films: an in situ X-ray spectroscopy study. Nanoscale Res. Lett. 10, 387 (2015). https://doi.org/10.1186/s11671-015-1095-9
D. Rehnlund, M. Valvo, K. Edström, L. Nyholm, Electrodeposition of vanadium oxide/manganese oxide hybrid thin films on nanostructured aluminum substrates. J. Electrochem. Soc. 161, D515–D521 (2014). https://doi.org/10.1149/2.0511410jes
K. Takahashi, S.J. Limmer, Y. Wang, G. Cao, Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition. J. Phys. Chem. B 108, 9795–9800 (2004). https://doi.org/10.1021/jp0491820
Y. Wang, K. Takahashi, H. Shang, G. Cao, Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays. J. Phys. Chem. B 109, 3085–3088 (2005). https://doi.org/10.1021/jp044286w
J.-D. Xie, H.-Y. Li, T.-Y. Wu, J.-K. Chang, Y.A. Gandomi, Electrochemical energy storage of nanocrystalline vanadium oxide thin films prepared from various plating solutions for supercapacitors. Electrochim. Acta 273, 257–263 (2018). https://doi.org/10.1016/j.electacta.2018.04.007
H. Drosos, A. Sapountzis, E. Koudoumas, N. Katsarakis, D. Vernardou, Effect of deposition current density on electrodeposited vanadium oxide coatings. J. Mater. Chem. 159, E145–E147 (2012). https://doi.org/10.1149/2.017208jes
Q. Qu, Y. Zhu, X. Gao, Y. Wu, Core–shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv. Energy Mater. 2, 950–955 (2012). https://doi.org/10.1002/aenm.201200088
J.G. Wang, H. Liu, H. Liu, W. Hua, M. Shao, Interfacial constructing flexible V2O5@polypyrrole core–shell nanowire membrane with superior supercapacitive performance. ACS Appl. Mater. Interfaces. 10, 18816–18823 (2018). https://doi.org/10.1021/acsami.8b05660
T.M. McEvoy, K.J. Stevenson, Elucidation of the electrodeposition mechanism of molybdenum oxide from iso- and peroxo-polymolybdate solutions. J. Mater. Res. 19, 429–438 (2011). https://doi.org/10.1557/jmr.2004.19.2.429
V.S. Saji, C.W. Lee, Molybdenum, molybdenum oxides, and their electrochemistry. Chemsuschem 5, 1146–1161 (2012). https://doi.org/10.1002/cssc.201100660
W. Zhang, H. Li, C.J. Firby, M. Al-Hussein, A.Y. Elezzabi, Oxygen-vacancy-tunable electrochemical properties of electrodeposited molybdenum oxide films. ACS Appl. Mater. Interfaces. 11, 20378–20385 (2019). https://doi.org/10.1021/acsami.9b04386
H. Farsi, F. Gobal, H. Raissi, S. Moghiminia, The pH effects on the capacitive behavior of nanostructured molybdenum oxide. J. Solid State Electrochem. 14, 681–686 (2009). https://doi.org/10.1007/s10008-009-0828-z
H. Farsi, F. Gobal, H. Raissi, S. Moghiminia, On the pseudocapacitive behavior of nanostructured molybdenum oxide. J. Solid State Electrochem. 14, 643–650 (2009). https://doi.org/10.1007/s10008-009-0830-5
T. Tsumura, Lithium insertion/extraction reaction on crystalline MoO3. Solid State Ion. 104, 183–189 (1997). https://doi.org/10.1016/s0167-2738(97)00418-9
C.R. Clayton, Y.C. Lu, Electrochemical and XPS evidence of the aqueous formation of Mo2O5. Surf. Interface Anal. 14, 66–70 (1989). https://doi.org/10.1002/sia.740140114
C. Liu, Z. Xie, W. Wang, Z. Li, Z. Zhang, The Ti@MoOx nanorod array as a threedimensional film electrode for micro-supercapacitors. Electrochem. Commun. 44, 23–26 (2014). https://doi.org/10.1016/j.elecom.2014.04.007
C. Liu, Z. Xie, W. Wang, Z. Li, Z. Zhang, Fabrication of MoOx film as a conductive anode material for micro-supercapacitors by electrodeposition and annealing. J. Electrochem. Soc. 161, A1051–A1057 (2014). https://doi.org/10.1149/2.081406jes
K.K. Upadhyay, T. Nguyen, T.M. Silva, M.J. Carmezim, M.F. Montemor, Electrodeposited MoOx films as negative electrode materials for redox supercapacitors. Electrochim. Acta 225, 19–28 (2017). https://doi.org/10.1016/j.electacta.2016.12.106
D.D. Yao, J.Z. Ou, K. Latham, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, Electrodeposited α- and β-phase MoO3 films and investigation of their gasochromic properties. Cryst. Growth Des. 12, 1865–1870 (2012). https://doi.org/10.1021/cg201500b
F. Wang, Z. Liu, X. Wang, X. Yuan, X. Wu, Y. Zhu, L. Fu, Y. Wu, A conductive polymer coated MoO3 anode enables an Al-ion capacitor with high performance. J. Mater. Chem. A 4, 5115–5123 (2016). https://doi.org/10.1039/c6ta01398h
S. Sun, X. Liao, Y. Sun, G. Yin, Y. Yao, Z. Huang, X. Pu, Facile synthesis of a α-MoO3 nanoplate/TiO2 nanotube composite for high electrochemical performance. RSC Adv. 7, 22983–22989 (2017). https://doi.org/10.1039/c7ra01164d
X. Xiao, T. Ding, L. Yuan, Y. Shen, Q. Zhong et al., WO3−x/MoO3Electrochemical and XPS evidence of the aqueous formation of Mo2O5x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 2, 1328–1332 (2012). https://doi.org/10.1002/aenm.201200380
G.-R. Li, Z.-L. Wang, F.-L. Zheng, Y.-N. Ou, Y.-X. Tong, ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. J. Mater. Chem. 21, 4217–4221 (2011). https://doi.org/10.1039/c0jm03500a
J.-C. Liu, H. Li, M. Batmunkh, X. Xiao, Y. Sun et al., Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass loadings. J. Mater. Chem. A 7, 23941–23948 (2019). https://doi.org/10.1039/c9ta04835a
X.F. Lu, Z.X. Huang, Y.X. Tong, G.R. Li, Asymmetric supercapacitors with high energy density based on helical hierarchical porous NaxMnO2 and MoO2. Chem. Sci. 7, 510–517 (2016). https://doi.org/10.1039/c5sc03326h
H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2196 (2011). https://doi.org/10.1002/adfm.201002477
B. Yang, H. Li, M. Blackford, V. Luca, Novel low density mesoporous WO3 films prepared by electrodeposition. Curr. Appl. Phys. 6, 436–439 (2006). https://doi.org/10.1016/j.cap.2005.11.035
S. Wang, X. Feng, J. Yao, L. Jiang, Controlling wettability and photochromism in a dual-responsive tungsten oxide film. Angew. Chem. Int. Ed. 45, 1264–1267 (2006). https://doi.org/10.1002/anie.200502061
P. Shen, N. Chi, K.-Y. Chan, Morphology of electrodeposited WO3 studied by atomic force microscopy. J. Mater. Chem. 10, 697–700 (2000). https://doi.org/10.1039/a908348k
Z. Sun, X.G. Sang, Y. Song, D. Guo, D.Y. Feng, X. Sun, X.X. Liu, A high performance tungsten bronze electrode in a mixed electrolyte and applications in supercapacitors. Chem. Commun. 55, 14323–14326 (2019). https://doi.org/10.1039/c9cc06845g
G. Yang, X.-X. Liu, Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor. J. Power Sources 383, 17–23 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.035
T. Pauporté, A simplified method for WO3 electrodeposition. J. Electrochem. Soc. 149, C539–C545 (2002). https://doi.org/10.1088/2053-1583/ab1e0a
S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky, E.W. McFarland, Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 15, 1269–1273 (2003). https://doi.org/10.1002/adma.200304669
A.K. Srivastava, M. Deepa, S. Singh, R. Kishore, S.A. Agnihotry, Microstructural and electrochromic characteristics of electrodeposited and annealed WO3 films. Solid State Ionics 176, 1161–1168 (2005). https://doi.org/10.1016/j.ssi.2004.10.006
M. Deepa, A.K. Srivastava, T.K. Saxena, S.A. Agnihotry, Annealing induced microstructural evolution of electrodeposited electrochromic tungsten oxide films. Appl. Surf. Sci. 252, 1568–1580 (2005). https://doi.org/10.1016/j.apsusc.2005.02.123
M. Deepa, M. Kar, S.A. Agnihotry, Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance. Thin Solid Films 468, 32–42 (2004). https://doi.org/10.1016/j.tsf.2004.04.056
C. Yao, B. Wei, H. Li, G. Wang, Q. Han, H. Ma, Q. Gong, Carbon-encapsulated tungsten oxide nanowires as a stable and high-rate anode material for flexible asymmetric supercapacitors. J. Mater. Chem. A 5, 56–61 (2017). https://doi.org/10.1039/c6ta08274b
Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, Y. Tong, Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 6, 1601053 (2016). https://doi.org/10.1002/aenm.201601053
Q. Xia, M. Xu, H. Xia, J. Xie, Nanostructured iron oxide/hydroxide-based electrode materials for supercapacitors. ChemNanoMat 2, 588–600 (2016). https://doi.org/10.1002/cnma.201600110
J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Amorphous nanostructured FeOOH and Co–Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy 21, 145–153 (2016). https://doi.org/10.1016/j.nanoen.2015.12.029
X.-F. Lu, X.-Y. Chen, W. Zhou, Y.-X. Tong, G.-R. Li, α-Fe2O3@PANI core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 14843–14850 (2015). https://doi.org/10.1021/acsami.5b03126
J. Liu, M. Zheng, X. Shi, H. Zeng, H. Xia, Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater. 26, 919–930 (2016). https://doi.org/10.1002/adfm.201504019
J. Sun, Y. Huang, C. Fu, Y. Huang, M. Zhu, X. Tao, C. Zhi, H. Hu, A high performance fiber-shaped PEDOT@MnO2//C@Fe3O4 asymmetric supercapacitor for wearable electronics. J. Mater. Chem. A 4, 14877–14883 (2016). https://doi.org/10.1039/c6ta05898a
M.-S. Wu, R.-H. Lee, Electrochemical growth of iron oxide thin films with nanorods and nanosheets for capacitors. J. Electrochem. Soc. 156, A737–A743 (2009). https://doi.org/10.1149/1.3160547
K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao et al., Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8, 14264 (2017). https://doi.org/10.1038/ncomms14264
W. Fu, E. Zhao, X. Ren, A. Magasinski, G. Yushin, Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors. Adv. Energy Mater. 8, 1703454 (2018). https://doi.org/10.1002/aenm.201703454
Y.C. Chen, Y.G. Lin, Y.K. Hsu, S.C. Yen, K.H. Chen, L.C. Chen, Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. Small 10, 3803–3810 (2014). https://doi.org/10.1002/smll.201400597
X. Tang, R. Jia, T. Zhai, H. Xia, Hierarchical Fe3O4@Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 27518–27525 (2015). https://doi.org/10.1021/acsami.5b09766
Y. Li, J. Xu, T. Feng, Q. Yao, J. Xie, H. Xia, Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 27, 1606728 (2017). https://doi.org/10.1002/adfm.201606728
T. Deng, W. Zhang, O. Arcelus, J.G. Kim, J. Carrasco et al., Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun. 8, 15194 (2017). https://doi.org/10.1038/ncomms15194
V. Gupta, S. Gupta, N. Miura, Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors. J. Power Sources 175, 680–685 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.004
Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie, X. Lu, Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 30, 1802396 (2018). https://doi.org/10.1002/adma.201802396
Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu et al., An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode. Adv. Mater. 29, 1702698 (2017). https://doi.org/10.1002/adma.201702698
M. Huang, M. Li, C. Niu, Q. Li, L. Mai, Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Adv. Funct. Mater. 29, 1807847 (2019). https://doi.org/10.1002/adfm.201807847
Y. Liu, N. Fu, G. Zhang, M. Xu, W. Lu, L. Zhou, H. Huang, Design of hierarchical Ni–Co@Ni–Co layered double hydroxide core–shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors. Adv. Funct. Mater. 27, 1605307 (2017). https://doi.org/10.1002/adfm.201605307
G. Nagaraju, S. Chandra Sekhar, L. Krishna Bharat, J.S. Yu, Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors. ACS Nano 11, 10860–10874 (2017). https://doi.org/10.1021/acsnano.7b04368
T. Wang, B. Zhao, H. Jiang, H.-P. Yang, K. Zhang et al., Electro-deposition of CoNi2S4 flower-like nanosheets on 3D hierarchically porous nickel skeletons with high electrochemical capacitive performance. J. Mater. Chem. A 3, 23035–23041 (2015). https://doi.org/10.1039/c5ta04705f
H. Xu, C. Zhang, W. Zhou, G.R. Li, Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors. Nanoscale 7, 16932–16942 (2015). https://doi.org/10.1039/c5nr04449a
G. Xiong, P. He, D. Wang, Q. Zhang, T. Chen, T.S. Fisher, Hierarchical Ni–Co hydroxide petals on mechanically robust graphene petal foam for high-energy asymmetric supercapacitors. Adv. Funct. Mater. 26, 5460–5470 (2016). https://doi.org/10.1002/adfm.201600879
J.A. Syed, J. Ma, B. Zhu, S. Tang, X. Meng, Hierarchical multicomponent electrode with interlaced Ni(OH)2 nanoflakes wrapped zinc cobalt sulfide nanotube arrays for sustainable high-performance supercapacitors. Adv. Energy Mater. 7, 1701228 (2017)
X. Lu, X. Huang, S. Xie, T. Zhai, C. Wang et al., Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors. J. Mater. Chem. 22, 13357–13364 (2012). https://doi.org/10.1039/c2jm30927k
H. Li, Y. Gao, C. Wang, G. Yang, A simple electrochemical route to access amorphous mixed-metal hydroxides for supercapacitor electrode materials. Adv. Energy Mater. 5, 1401767 (2015). https://doi.org/10.1002/aenm.201401767
X. Xia, J. Tu, Y. Zhang, J. Chen, X. Wang, C. Gu, C. Guan, J. Luo, H.J. Fan, Porous hydroxide nanosheets on preformed nanowires by electrodeposition: branched nanoarrays for electrochemical energy storage. Chem. Mater. 24, 3793–3799 (2012). https://doi.org/10.1021/cm302416d
W. Guo, C. Yu, S. Li, X. Song, H. Huang et al., A universal converse voltage process for triggering transition metal hybrids in situ phase restruction toward ultrahigh-rate supercapacitors. Adv. Mater. 31, 1901241 (2019). https://doi.org/10.1002/adma.201901241
J.C. Chen, C.-T. Hsu, C.-C. Hu, Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. J. Power Sources 253, 205–213 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.073
R. Li, S. Wang, Z. Huang, F. Lu, T. He, NiCo2S4@Co(OH)2 core–shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J. Power Sources 312, 156–164 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.047
H. Pourfarzad, M. Shabani-Nooshabadi, M.R. Ganjali, H. Kashani, Synthesis of Ni–Co–Fe layered double hydroxide and Fe2O3/graphene nanocomposites as actively materials for high electrochemical performance supercapacitors. Electrochim. Acta 317, 83–92 (2019). https://doi.org/10.1016/j.electacta.2019.05.122
Z. Li, H. Duan, M. Shao, J. Li, D. O’Hare, M. Wei, Z.L. Wang, Ordered-vacancy-induced cation intercalation into layered double hydroxides: a general approach for high-performance supercapacitors. Chem 4, 2168–2179 (2018). https://doi.org/10.1016/j.chempr.2018.06.007
G. Lee, J.W. Kim, H. Park, J.Y. Lee, H. Lee et al., Dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn–Mo mixed oxide electrodes and air-stable organic electrolyte. ACS Nano 13, 855–866 (2019). https://doi.org/10.1021/acsnano.8b08645
K. Okamura, R. Inoue, T. Sebille, K. Tomono, M. Nakayama, An approach to optimize the composition of supercapacitor electrodes consisting of manganese–molybdenum mixed oxide and carbon nanotubes. J. Electrochem. Soc. 158, A711 (2011). https://doi.org/10.1149/1.3578039
Y.-H. Li, Q.-Y. Li, H.-Q. Wang, Y.-G. Huang, X.-H. Zhang et al., Synthesis and electrochemical properties of nickel–manganese oxide on MWCNTs/CFP substrate as a supercapacitor electrode. Appl. Energy 153, 78–86 (2015). https://doi.org/10.1016/j.apenergy.2014.09.055
H. Zhou, X. Zou, K. Zhang, P. Sun, M.S. Islam, J. Gong, Y. Zhang, J. Yang, Molybdenum–tungsten mixed oxide deposited into titanium dioxide nanotube arrays for ultrahigh rate supercapacitors. ACS Appl. Mater. Interfaces 9, 18699–18709 (2017). https://doi.org/10.1021/acsami.7b01871
E. Karaca, D. Gökcen, N.Ö. Pekmez, K. Pekmez, Electrochemical synthesis of PPy composites with nanostructured MnOx, CoOx, NiOx, and FeOx in acetonitrile for supercapacitor applications. Electrochim. Acta 305, 502–513 (2019). https://doi.org/10.1016/j.electacta.2019.03.060
C.H. Ng, H.N. Lim, Y.S. Lim, W.K. Chee, N.M. Huang, Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int. J. Energy Res. 39, 344–355 (2015). https://doi.org/10.1002/er.3247
L. Chen, L.-J. Sun, F. Luan, Y. Liang, Y. Li, X.-X. Liu, Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J. Power Sources 195, 3742–3747 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.036
J. Kim, H. Ju, A.I. Inamdar, Y. Jo, J. Han, H. Kim, H. Im, Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2–polyaniline nanocomposite electrodes. Energy 70, 473–477 (2014). https://doi.org/10.1016/j.energy.2014