Two-Dimensional Black Phosphorus: An Emerging Anode Material for Lithium-Ion Batteries
Corresponding Author: JiPing Zhu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 120
Abstract
Two-dimensional black phosphorus (2D BP), an emerging material, has aroused tremendous interest once discovered. This is due to the fact that it integrates unprecedented properties of other 2D materials, such as tunable bandgap structures, outstanding electrochemical properties, anisotropic mechanical, thermodynamic, and photoelectric properties, making it of great research value in many fields. The emergence of 2D BP has greatly promoted the development of electrochemical energy storage devices, especially lithium-ion batteries. However, in the application of 2D BP, there are still some problems to be solved urgently, such as the difficulty in the synthesis of large-scale high-quality phosphorene, poor environmental stability, and the volume expansion as electrode materials. Herein, according to the latest research progress of 2D BP in the field of energy storage, we systematically summarize and compare the preparation methods of phosphorene and discuss the basic structure and properties of BP, especially the environmental instability and passivation techniques. In particular, the practical application and challenges of 2D BP as anode material for lithium-ion batteries are analyzed in detail. Finally, some personal perspectives on the future development and challenges of BP are presented.
Highlights:
1 The preparation methods, basic structure, and properties as well as environmental instability and passivation techniques of two-dimensional black phosphorus are systematically summarized and analyzed.
2 The application of anode materials based on two-dimensional black phosphorus in lithium-ion batteries in recent years is wholly reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J. Power Sources 258, 290–296 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.056
- I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, Mechanical properties of suspended graphene sheets. J. Vac. Sci. Techn. B 25(6), 2558 (2007). https://doi.org/10.1116/1.2789446
- A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109
- L.A. Falkovsky, Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008). https://doi.org/10.1088/1742-6596/129/1/012004
- J. Lee, J. Kim, S. Kim, D.H. Min, Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev. 105, 275–287 (2016). https://doi.org/10.1016/j.addr.2016.06.001
- S. Wan, J. Peng, L. Jiang, Q. Cheng, Bioinspired graphene-based nanocomposites and their application in flexible energy devices. Adv. Mater. 28(36), 7862–7898 (2016). https://doi.org/10.1002/adma.201601934
- Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nat. Photon. 10(4), 227–238 (2016). https://doi.org/10.1038/nphoton.2016.15
- G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao, G. Wang, J. Lian, Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). https://doi.org/10.1126/science.aaa6502
- H. Zhang, Introduction: 2D materials chemistry. Chem. Rev. 118(13), 6089–6090 (2018). https://doi.org/10.1021/acs.chemrev.8b00278
- V. Kranthi Kumar, S. Dhar, T.H. Choudhury, S.A. Shivashankar, S. Raghavan, A predictive approach to CVD of crystalline layers of TMDs: the case of MoS2. Nanoscale 7(17), 7802–7810 (2015). https://doi.org/10.1039/c4nr07080a
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45(14), 3989–4012 (2016). https://doi.org/10.1039/c5cs00869g
- L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin et al., Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209–3215 (2010). https://doi.org/10.1021/nl1022139
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- H.O. Churchill, P. Jarillo-Herrero, Two-dimensional crystals: phosphorus joins the family. Nat. Nanotechnol. 9(5), 330–331 (2014). https://doi.org/10.1038/nnano.2014.85
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353(6298), 9439 (2016). https://doi.org/10.1126/science.aac9439
- A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater Sci. 73, 44–126 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.002
- B. Liu, A. Abbas, C. Zhou, Two-dimensional semiconductors: from materials preparation to electronic applications. Adv. Electron. Mater. 3(7), 1700045 (2017). https://doi.org/10.1002/aelm.201700045
- X. Cai, Y. Luo, B. Liu, H.M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47(16), 6224–6266 (2018). https://doi.org/10.1039/c8cs00254a
- J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coordin. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
- X. Zhang, L. Hou, A. Ciesielski, P. Samorì, 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 6(23), 1600671 (2016). https://doi.org/10.1002/aenm.201600671
- S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Res. 45(1), 63–84 (2015). https://doi.org/10.1146/annurev-matsci-070214-020901
- Y. Zhang, W. Xia, Y. Wu, P. Zhang, Prediction of MXene based 2D tunable band gap semiconductors: gW quasiparticle calculations. Nanoscale 11(9), 3993–4000 (2019). https://doi.org/10.1039/c9nr01160a
- Y. Zhou, M. Zhang, Z. Guo, L. Miao, S.T. Han et al., Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horizons 4, 997–1019 (2017). https://doi.org/10.1039/C7MH00543A
- K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5(46), 11992–12022 (2017). https://doi.org/10.1039/c7tc04300g
- M. Qiu, W.X. Ren, T. Jeong, M. Won, G.Y. Park et al., Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 47(15), 5588–5601 (2018). https://doi.org/10.1039/c8cs00342d
- P. Chen, N. Li, X. Chen, W.-J. Ong, X. Zhao, The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5(1), 014002 (2017). https://doi.org/10.1088/2053-1583/aa8d37
- R. Fei, L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014). https://doi.org/10.1021/nl500935z
- D.J. Late, Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor. Micropor. Mesopor. Mat. 225, 494–503 (2016). https://doi.org/10.1016/j.micromeso.2016.01.031
- Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang et al., From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015). https://doi.org/10.1002/adfm.201502902
- M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, H. Zhang, 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 7(1), 1800224 (2019). https://doi.org/10.1002/adom.201800224
- Y. Zhang, Y. Zheng, K. Rui, H.H. Hng, K. Hippalgaonkar et al., 2D black phosphorus for energy storage and thermoelectric applications. Small 13(28), 1700661 (2017). https://doi.org/10.1002/smll.201700661
- H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, S. Wang, Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv. Mater. 30(32), 1800295 (2018). https://doi.org/10.1002/adma.201800295
- P.W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 36(7), 1344–1363 (1914). https://doi.org/10.1021/ja02184a002
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- W. Lei, Y. Mi, R. Feng, P. Liu, S. Hu et al., Hybrid 0D–2D black phosphorus quantum dots–graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy 50, 552–561 (2018). https://doi.org/10.1016/j.nanoen.2018.06.001
- Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou et al., TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13(11), 1602896 (2017). https://doi.org/10.1002/smll.201602896
- H.U. Lee, S.Y. Park, S.C. Lee, S. Choi, S. Seo et al., Black phosphorus (BP) nanodots for potential biomedical applications. Small 12(2), 214–219 (2016). https://doi.org/10.1002/smll.201502756
- J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu et al., Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 7, 42357 (2017). https://doi.org/10.1038/srep42357
- S.C. Dhanabalan, J.S. Ponraj, Z. Guo, S. Li, Q. Bao, H. Zhang, Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 4(6), 1600305 (2017). https://doi.org/10.1002/advs.201600305
- Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu et al., Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Opt. Express 23(10), 12823 (2015). https://doi.org/10.1364/oe.23.012823
- H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
- L. Guan, B. Xing, X. Niu, D. Wang, Y. Yu et al., Metal-assisted exfoliation of few-layer black phosphorus with high yield. Chem. Commun. 54(6), 595–598 (2018). https://doi.org/10.1039/c7cc08488a
- Y. Mu, M.S. Si, The mechanical exfoliation mechanism of black phosphorus to phosphorene: a first-principles study. Europhys. Lett. 112(3), 37003 (2015). https://doi.org/10.1209/0295-5075/112/37003
- J.O. Island, G.A. Steele, H.S.J. van der Zant, Castellanos-Gomez, Environmental instability of few-layer black phosphorus. 2D Mater 2(1), 011002 (2015). https://doi.org/10.1088/2053-1583/2/1/011002
- Z. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts, M.S. Lundstrom, P.D. Ye, X. Xu, Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015). https://doi.org/10.1038/ncomms9572
- Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu et al., Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29(42), 1703811 (2017). https://doi.org/10.1002/adma.201703811
- S. Lin, Y. Chui, Y. Li, S.P. Lau, Liquid-phase exfoliation of black phosphorus and its applications. Flatchem 2, 15–37 (2017). https://doi.org/10.1016/j.flatc.2017.03.001
- J.R. Brent, N. Savjani, E.A. Lewis, S.J. Haigh, D.J. Lewis, P. O’Brien, Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 50(87), 13338–13341 (2014). https://doi.org/10.1039/c4cc05752j
- J. Kang, J.D. Wood, S.A. Wells, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9(4), 3596–3604 (2015). https://doi.org/10.1021/acsnano.5b01143
- P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi et al., High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27(11), 1887–1892 (2015). https://doi.org/10.1002/adma.201405150
- D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015). https://doi.org/10.1038/ncomms9563
- J. Gómez-Pérez, Z. Kónya, Á. Kukovecz, Acetone improves the topographical homogeneity of liquid phase exfoliated few-layer black phosphorus flakes. Nanotechnology 29(36), 365303 (2018). https://doi.org/10.1088/1361-6528/aacc23
- Z. Yan, X. He, L. She, J. Sun, R. Jiang et al., Solvothermal-assisted liquid-phase exfoliation of large size and high quality black phosphorus. J. Mater. 4(2), 129–134 (2018). https://doi.org/10.1016/j.jmat.2018.01.003
- Y. Zhang, H. Wang, Z. Luo, H.T. Tan, B. Li et al., An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Adv. Energy Mater. 6(12), 1600453 (2016). https://doi.org/10.1002/aenm.201600453
- A.E. Del Rio Castillo, V. Pellegrini, H. Sun, J. Buha, D.A. Dinh et al., Exfoliation of few-layer black phosphorus in low-boiling-point solvents and its application in Li-ion batteries. Chem. Mater. 30(2), 506–516 (2018). https://doi.org/10.1021/acs.chemmater.7b04628
- J.Y. Xu, L.F. Gao, C.X. Hu, Z.Y. Zhu, M. Zhao, Q. Wang, H.L. Zhang, Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation. Chem. Commun. 52(52), 8107–8110 (2016). https://doi.org/10.1039/c6cc03206k
- M. Bat-Erdene, M. Batmunkh, C.J. Shearer, S.A. Tawfik, M.J. Ford et al., Efficient and fast synthesis of few-layer black phosphorus via microwave-assisted liquid-phase exfoliation. Small Methods 1(12), 1700260 (2017). https://doi.org/10.1002/smtd.201700260
- V. Sresht, A.A.H. Pádua, D. Blankschtein, Liquid-phase exfoliation of phosphorene: design rules from molecular dynamics simulations. ACS Nano 9(8), 8255–8268 (2015). https://doi.org/10.1021/acsnano.5b02683
- A. Ambrosi, M. Pumera, Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chemistry A Eur. J. 22(1), 153–159 (2016). https://doi.org/10.1002/chem.201503110
- C.Y. Su, A.Y. Lu, Y.P. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3), 2332–2339 (2011). https://doi.org/10.1021/nn200025p
- M.B. Erande, M.S. Pawar, D.J. Late, Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl. Mater. Interfaces. 8(18), 11548–11556 (2016). https://doi.org/10.1021/acsami.5b10247
- J. Li, C. Chen, S. Liu, J. Lu, W.P. Goh et al., Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene. Chem. Mater. 30(8), 2742–2749 (2018). https://doi.org/10.1021/acs.chemmater.8b00521
- A. Ambrosi, Z. Sofer, M. Pumera, Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem. Int. Ed. 56(35), 10443–10445 (2017). https://doi.org/10.1002/anie.201705071
- H. Xiao, M. Zhao, J. Zhang, X. Ma, J. Zhang, T. Hu, T. Tang, J. Jia, H. Wu, Electrochemical cathode exfoliation of bulky black phosphorus into few-layer phosphorene nanosheets. Electrochem. Commun. 89, 10–13 (2018). https://doi.org/10.1016/j.elecom.2018.02.010
- H.O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technologies and Applications (William Andrew, Amsterdam, 1999)
- G.H. Lee, R.C. Cooper, S.J. An, S. Lee, A. van der Zande et al., High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340(6136), 1073–1076 (2013). https://doi.org/10.1126/science.1235126
- S.M. Eichfeld, L. Hossain, Y.C. Lin, A.F. Piasecki, B. Kupp et al., Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano 9(2), 2080–2087 (2015). https://doi.org/10.1021/nn5073286
- J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6(12), 6705–6716 (2015). https://doi.org/10.1039/c5sc01941a
- J.B. Smith, D. Hagaman, H.F. Ji, Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27(21), 215602 (2016). https://doi.org/10.1088/0957-4484/27/21/215602
- Q. Jiang, J. Li, N. Yuan, Z. Wu, J. Tang, Black phosphorus with superior lithium ion batteries performance directly synthesized by the efficient thermal-vaporization method. Electrochim. Acta 263, 272–276 (2018). https://doi.org/10.1016/j.electacta.2018.01.012
- Z. Yang, J. Hao, S. Yuan, S. Lin, H.M. Yau, J. Dai, S.P. Lau, Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 27(25), 3748–3754 (2015). https://doi.org/10.1002/adma.201500990
- Y. Xu, X. Shi, Y. Zhang, H. Zhang, Q. Zhang et al., Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun. 11(1), 1330 (2020). https://doi.org/10.1038/s41467-020-14902-z
- R. Hultgren, N.S. Gingrich, B.E. Warren, The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3(6), 351–355 (1935). https://doi.org/10.1063/1.1749671
- L. Chen, G. Zhou, Z. Liu, X. Ma, J. Chen et al., Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 28(3), 510–517 (2016). https://doi.org/10.1002/adma.201503678
- J. Wu, N. Mao, L. Xie, H. Xu, J. Zhang, Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. Int. Ed. 54(8), 2366–2369 (2015). https://doi.org/10.1002/anie.201410108
- S. Wu, K.S. Hui, K.N. Hui, 2D black phosphorus: from preparation to applications for electrochemical energy storage. Adv. Sci. 5(5), 1700491 (2018). https://doi.org/10.1002/advs.201700491
- J. Zhao, J. Zhu, R. Cao, H. Wang, Z. Guo et al., Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. Nat. Commun. 10(1), 4062 (2019). https://doi.org/10.1038/s41467-019-11937-9
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
- A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S. van der Zant, N. Agrait, G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24(6), 772–775 (2012). https://doi.org/10.1002/adma.201103965
- Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104(25), 251915 (2014). https://doi.org/10.1063/1.4885215
- G. Yang, L. Li, W.B. Lee, M.C. Ng, Structure of graphene and its disorders: a review. Sci. Technol. Adv. Mater. 19(1), 613–648 (2018). https://doi.org/10.1080/14686996.2018.1494493
- F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). https://doi.org/10.1038/ncomms5458
- W. Keyes, Robert, The electrical properties of black phosphorus. Phys. Rev. 92(3), 580–584 (1953). https://doi.org/10.1103/physrev.92.580
- G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initiodensity functional calculations. Phys. Rev. B 76(7), 073103 (2007). https://doi.org/10.1103/PhysRevB.76.073103
- X. Ling, H. Wang, S. Huang, F. Xia, M.S. Dresselhaus, The renaissance of black phosphorus. Proc. Natl. Acad. Sci. U.S.A. 112(15), 4523–4530 (2015). https://doi.org/10.1073/pnas.1416581112
- A. Nie, Y. Cheng, S. Ning, T. Foroozan, P. Yasaei et al., Selective ionic transport pathways in phosphorene. Nano Lett. 16(4), 2240–2247 (2016). https://doi.org/10.1021/acs.nanolett.5b04514
- A. Sibari, A. Marjaoui, M. Lakhal, Z. Kerrami, A. Kara et al., Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: a first-principle study. Sol. Energ. Mater. Sol. Cells 180, 253–257 (2018). https://doi.org/10.1016/j.solmat.2017.06.034
- X. Li, L. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018). https://doi.org/10.1039/c7cs00871f
- Y. Xue, Q. Zhang, T. Zhang, L. Fu, Black phosphorus: properties, synthesis, and applications in energy conversion and storage. ChemNanoMat 3(6), 352–361 (2017). https://doi.org/10.1002/cnma.201700030
- F. Nobili, S. Dsoke, T. Mecozzi, R. Marassi, Metal-oxidized graphite composite electrodes for lithium-ion batteries. Electrochim. Acta 51(3), 536–544 (2005). https://doi.org/10.1016/j.electacta.2005.05.012
- Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9(1), 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
- H. Liu, L. Tao, Y. Zhang, C. Xie, P. Zhou, H. Liu, R. Chen, S. Wang, Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery. ACS Appl. Mater. Interfaces. 9(42), 36849–36856 (2017). https://doi.org/10.1021/acsami.7b11599
- F. Wang, G. Zhang, S. Huang, C. Song, C. Wang, Q. Xing, Y. Lei, H. Yan, Electronic structures of air-exposed few-layer black phosphorus by optical spectroscopy. Phys. Rev. B 99(7), 075427 (2019). https://doi.org/10.1103/PhysRevB.99.075427
- G. Abellán, S. Wild, V. Lloret, N. Scheuschner, R. Gillen et al., Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 139(30), 10432–10440 (2017). https://doi.org/10.1021/jacs.7b04971
- Y.K. Ryu, A. Castellanos-Gomez, R. Frisenda, Degradation of Black Phosphorus Upon Environmental Exposure and Encapsulation Strategies to Prevent it (American Chemical Society, Washington, 2019), pp. 47–59
- S. Kuriakose, T. Ahmed, S. Balendhran, V. Bansal, S. Sriram, M. Bhaskaran, S. Walia, Black phosphorus: ambient degradation and strategies for protection. 2D Mater 5(3), 032001 (2018). https://doi.org/10.1088/2053-1583/aab810
- S. Wu, F. He, G. Xie, Z. Bian, J. Luo, S. Wen, Black phosphorus: degradation favors lubrication. Nano Lett. 18(9), 5618–5627 (2018). https://doi.org/10.1021/acs.nanolett.8b02092
- A. Favron, E. Gaufres, F. Fossard, A.L. Phaneuf-L’Heureux, N.Y. Tang et al., Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14(8), 826–832 (2015). https://doi.org/10.1038/nmat4299
- A.A. Kistanov, Y. Cai, K. Zhou, S.V. Dmitriev, Y.W. Zhang, The role of H2O and O2 molecules and phosphorus vacancies in the structure instability of phosphorene. 2D Mater 4(1), 015010 (2016). https://doi.org/10.1088/2053-1583/4/1/015010
- S. Walia, Y. Sabri, T. Ahmed, M.R. Field, R. Ramanathan et al., Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Mater 4(1), 015025 (2016). https://doi.org/10.1088/2053-1583/4/1/015025
- Q. Zhou, Q. Chen, Y. Tong, J. Wang, Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55(38), 11437–11441 (2016). https://doi.org/10.1002/anie.201605168
- Y. Huang, J. Qiao, K. He, S. Bliznakov, E. Sutter et al., Interaction of black phosphorus with oxygen and water. Chem. Mater. 28(22), 8330–8339 (2016). https://doi.org/10.1021/acs.chemmater.6b03592
- Y. Wang, B. Yang, B. Wan, X. Xi, Z. Zeng et al., Degradation of black phosphorus: a real-time 31P NMR study. 2D Mater 3(3), 035025 (2016). https://doi.org/10.1088/2053-1583/3/3/035025
- D.K. Sang, H. Wang, Z. Guo, N. Xie, H. Zhang, Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications. Adv. Funct. Mater. 29(45), 1903419 (2019). https://doi.org/10.1002/adfm.201903419
- B. Wan, B. Yang, Y. Wang, J. Zhang, Z. Zeng, Z. Liu, W. Wang, Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology 26(43), 435702 (2015). https://doi.org/10.1088/0957-4484/26/43/435702
- M. Li, Q. Zhao, S. Zhang, D. Li, H. Li, X. Zhang, B. Xing, Facile passivation of black phosphorus nanosheets via silica coating for stable and efficient solar desalination. Environ. Sci. Nano 7, 414–423 (2020). https://doi.org/10.1039/c9en01138b
- R. Galceran, E. Gaufres, A. Loiseau, M. Piquemal-Banci, F. Godel et al., Stabilizing ultra-thin black phosphorus with in situ-grown 1 nm-Al2O3 barrier. Appl. Phys. Lett. 111(24), 243101 (2017). https://doi.org/10.1063/1.5008484
- K.L. Li, K.W. Ang, Y.M. Lv, X.K. Liu, Effects of Al2O3 capping layers on the thermal properties of thin black phosphorus. Appl. Phys. Lett. 109(26), 261901 (2016). https://doi.org/10.1063/1.4973363
- R. Guo, Y. Zheng, Z. Ma, X. Lian, H. Sun et al., Surface passivation of black phosphorus via van der Waals stacked PTCDA. Appl. Surface Sci. 496, 143688 (2019). https://doi.org/10.1016/j.apsusc.2019.143688
- V. Artel, Q. Guo, H. Cohen, R. Gasper, A. Ramasubramaniam, F. Xia, D. Naveh, Protective molecular passivation of black phosphorus. 2D Mater. Appl. 1(1), 6 (2017). https://doi.org/10.1038/s41699-017-0004-8
- S. Liang, L. Wu, H. Liu, J. Li, M. Chen, M. Zhang, Organic molecular passivation of phosphorene: an aptamer-based biosensing platform. Biosens. Bioelectron. 126, 30–35 (2019). https://doi.org/10.1016/j.bios.2018.10.037
- J.E.S. Fonsaca, S.H. Domingues, E.S. Orth, A.J.G. Zarbin, Air stable black phosphorous in polyaniline-based nanocomposite. Sci. Rep. 7(1), 10165 (2017). https://doi.org/10.1038/s41598-017-10533-5
- Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu et al., Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 55(16), 5003–5007 (2016). https://doi.org/10.1002/anie.201512038
- H. Li, P. Lian, Q. Lu, J. Chen, R. Hou, Y. Mei, Excellent air and water stability of two-dimensional black phosphorene/MXene heterostructure. Mater. Res. Express 6(6), 065504 (2019). https://doi.org/10.1088/2053-1591/ab0b84
- Y. Zhao, H. Wang, H. Huang, Q. Xiao, P.K. Chu, Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 55(16), 5087–5091 (2016). https://doi.org/10.1002/anie.201512038
- Z. Wei, S. Zhuiykov, Challenges and recent advancements of functionalization of two-dimensional nanostructured molybdenum trioxide and dichalcogenides. Nanoscale 11(34), 15709–15738 (2019). https://doi.org/10.1039/c9nr03072g
- Y. Tang, C. Yang, Y. Tian, Y. Luo, X. Yin, W. Que, The effect of in situ nitrogen doping on the oxygen evolution reaction of MXenes. Nanoscale Adv. 2(3), 1187–1194 (2020). https://doi.org/10.1039/c9na00706g
- Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47(9), 3100–3128 (2018). https://doi.org/10.1039/c8cs00024g
- H. Hu, Z. Shi, K. Khan, R. Cao, W. Liang et al., Recent advances in doping engineering of black phosphorus. J. Mater. Chem. A 8(11), 5421–5441 (2020). https://doi.org/10.1039/d0ta00416b
- X. Tang, W. Liang, J. Zhao, Z. Li, M. Qiu et al., Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 13(47), 1702739 (2017). https://doi.org/10.1002/smll.201702739
- Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun et al., Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 27(38), 1702211 (2017). https://doi.org/10.1002/adfm.201702211
- W. Lv, B. Yang, B. Wang, W. Wan, Y. Ge et al., Sulfur-doped black phosphorus field-effect transistors with enhanced stability. ACS Appl. Mater. Interfaces. 10(11), 9663–9668 (2018). https://doi.org/10.1021/acsami.7b19169
- I. Sultana, M.M. Rahman, T. Ramireddy, Y. Chen, A.M. Glushenkov, High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 5(45), 23506–23512 (2017). https://doi.org/10.1039/c7ta02483e
- M. Qiu, Z.T. Sun, D.K. Sang, X.G. Han, H. Zhang, C.M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 9(36), 13384–13403 (2017). https://doi.org/10.1039/c7nr03318d
- B. Scrosati, Recent advances in lithium ion battery materials. Electrochim. Acta 45(15–16), 2461–2466 (2000). https://doi.org/10.1016/S0013-4686(00)00333-9
- S. Guo, X. Hu, W. Zhou, X. Liu, Y. Gao et al., Mechanistic understanding of two-dimensional phosphorus, arsenic, and antimony high-capacity anodes for fast-charging lithium/sodium ion batteries. J. Phys. Chem. C 122(51), 29559–29566 (2018). https://doi.org/10.1021/acs.jpcc.8b08824
- J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao et al., Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 8(8), 1702093 (2018). https://doi.org/10.1002/aenm.201702093
- C. Zhang, M. Yu, G. Anderson, R.R. Dharmasena, G. Sumanasekera, The prospects of phosphorene as an anode material for high-performance lithium-ion batteries: a fundamental study. Nanotechnology 28(7), 075401 (2017). https://doi.org/10.1088/1361-6528/aa52ac
- S. Zhao, W. Kang, J. Xue, The potential application of phosphorene as an anode material in Li-ion batteries. J. Mater. Chem. A 2(44), 19046–19052 (2014). https://doi.org/10.1039/c4ta04368e
- L. Kou, C. Chen, S.C. Smith, Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6(14), 2794–2805 (2015). https://doi.org/10.1021/acs.jpclett.5b01094
- W. Li, Y. Yang, G. Zhang, Y.W. Zhang, Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 15(3), 1691–1697 (2015). https://doi.org/10.1021/nl504336h
- Y. Zhang, W. Sun, Z.Z. Luo, Y. Zheng, Z. Yu et al., Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy 40, 576–586 (2017). https://doi.org/10.1016/j.nanoen.2017.09.002
- J. Sun, G. Zheng, H.W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, Y. Cui, Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 14(8), 4573–4580 (2014). https://doi.org/10.1021/nl501617j
- T. Ramireddy, T. Xing, M.M. Rahman, Y. Chen, Q. Dutercq, D. Gunzelmann, A.M. Glushenkov, Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 3(10), 5572–5584 (2015). https://doi.org/10.1039/c4ta06186a
- H. Shin, J. Zhang, W. Lu, Material structure and chemical bond effect on the electrochemical performance of black phosphorus-graphite composite anodes. Electrochim. Acta 309, 264–273 (2019). https://doi.org/10.1016/j.electacta.2019.03.149
- H. Liu, Y. Zou, L. Tao, Z. Ma, D. Liu, P. Zhou, H. Liu, S. Wang, Sandwiched thin-film anode of chemically bonded black phosphorus/graphene hybrid for lithium-ion battery. Small 13(33), 1700758 (2017). https://doi.org/10.1002/smll.201700758
- R.H. Baughman, Carbon nanotubes–the route toward applications. Science 297(5582), 787–792 (2002). https://doi.org/10.1126/science.1060928
- S. Haghighat-Shishavan, M. Nazarian-Samani, M. Nazarian-Samani, H.-K. Roh, K.-Y. Chung, B.-W. Cho, S.F. Kashani-Bozorg, K.-B. Kim, Strong, persistent superficial oxidation-assisted chemical bonding of black phosphorus with multiwall carbon nanotubes for high-capacity ultradurable storage of lithium and sodium. J. Mater. Chem. A 6(21), 10121–10134 (2018). https://doi.org/10.1039/c8ta02590h
- J. Shi, H. Cai, K. Cai, Q.-H. Qin, Dynamic behavior of a black phosphorus and carbon nanotube composite system. J. Phys. D Appl. Phys. 50(2), 025304 (2017). https://doi.org/10.1088/1361-6463/50/2/025304
- T.N. Van, T.N. Danh, Q.L. Minh, Atomistic simulation of the uniaxial tension of black phosphorene nanotubes. Vietnam J. Mech. 40(2), 163–169 (2018). https://doi.org/10.15625/0866-7136/10751
- Y. Zhang, Y. Tang, W. Li, X. Chen, Nanostructured TiO2-based anode materials for high-performance rechargeable lithium-ion batteries. ChemNanoMat 2(8), 764–775 (2016). https://doi.org/10.1002/cnma.201600093
- J. Mei, Y. Zhang, T. Liao, X. Peng, G.A. Ayoko, Z. Sun, Black phosphorus nanosheets promoted 2D-TiO2-2D heterostructured anode for high-performance lithium storage. Energy Storage Mater. 19, 424–431 (2019). https://doi.org/10.1016/j.ensm.2019.03.010
- Y. Luo, H. Wu, L. Liu, Q. Li, K. Jiang, S. Fan, J. Li, J. Wang, TiO2-nanocoated black phosphorus electrodes with improved electrochemical performance. ACS Appl. Mater. Interfaces. 10(42), 36058–36066 (2018). https://doi.org/10.1021/acsami.8b14703
- F. Zhou, L. Ouyang, J. Liu, X.-S. Yang, M. Zhu, Chemical bonding black phosphorus with TiO2 and carbon toward high-performance lithium storage. J. Power Sources 449, 227549 (2020). https://doi.org/10.1016/j.jpowsour.2019.227549
- A.E. Baumann, D.A. Burns, B. Liu, V.S. Thoi, Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2(1), 86 (2019). https://doi.org/10.1038/s42004-019-0184-6
- W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 31(6), 1804740 (2019). https://doi.org/10.1002/adma.201804740
- J. Jin, Y. Zheng, S.Z. Huang, P.P. Sun, N. Srikanth, L.B. Kong, Q. Yan, K. Zhou, Directly anchoring 2D NiCo metal–organic frameworks on few-layer black phosphorus for advanced lithium-ion batteries. J. Mater. Chem. A 7(2), 783–790 (2019). https://doi.org/10.1039/c8ta09327j
- C. Chowdhury, S. Karmakar, A. Datta, Capping black phosphorene by h-BN enhances performances in anodes for Li and Na ion batteries. ACS Energy Lett. 1, 253–259 (2016). https://doi.org/10.1021/acsenergylett.6b00164
- H. Li, A. Liu, X. Ren, Y. Yang, L. Gao, M. Fan, T. Ma, A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: a combined experimental and theoretical study. Nanoscale 11(42), 19862–19869 (2019). https://doi.org/10.1039/c9nr04790e
- X. Li, W. Li, P. Shen, L. Yang, Y. Li, Z. Shi, H. Zhang, Layered GeP-black P(Ge2P3): an advanced binary-phase anode for Li/Na-storage. Ceram. Int. 45(12), 15711–15714 (2019). https://doi.org/10.1016/j.ceramint.2019.04.219
- W. Li, P. Shen, J. Liao, J. Yu, X. Li et al., Cu2P7-black P-MWCNTs (CuP5/MWCNTs): an advanced hybrid anode for Li/Na-ion batteries. Mater. Lett. 253, 263–267 (2019). https://doi.org/10.1016/j.matlet.2019.06.080
- L. Li, W. Wang, P. Gong, X. Zhu, B. Deng, 2D GeP: an unexploited low-symmetry semiconductor with strong in-plane anisotropy. Adv. Mater. 30(14), 1706771 (2018). https://doi.org/10.1002/adma.201706771
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J. Power Sources 258, 290–296 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.056
I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, Mechanical properties of suspended graphene sheets. J. Vac. Sci. Techn. B 25(6), 2558 (2007). https://doi.org/10.1116/1.2789446
A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109
L.A. Falkovsky, Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008). https://doi.org/10.1088/1742-6596/129/1/012004
J. Lee, J. Kim, S. Kim, D.H. Min, Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev. 105, 275–287 (2016). https://doi.org/10.1016/j.addr.2016.06.001
S. Wan, J. Peng, L. Jiang, Q. Cheng, Bioinspired graphene-based nanocomposites and their application in flexible energy devices. Adv. Mater. 28(36), 7862–7898 (2016). https://doi.org/10.1002/adma.201601934
Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nat. Photon. 10(4), 227–238 (2016). https://doi.org/10.1038/nphoton.2016.15
G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao, G. Wang, J. Lian, Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). https://doi.org/10.1126/science.aaa6502
H. Zhang, Introduction: 2D materials chemistry. Chem. Rev. 118(13), 6089–6090 (2018). https://doi.org/10.1021/acs.chemrev.8b00278
V. Kranthi Kumar, S. Dhar, T.H. Choudhury, S.A. Shivashankar, S. Raghavan, A predictive approach to CVD of crystalline layers of TMDs: the case of MoS2. Nanoscale 7(17), 7802–7810 (2015). https://doi.org/10.1039/c4nr07080a
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45(14), 3989–4012 (2016). https://doi.org/10.1039/c5cs00869g
L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin et al., Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209–3215 (2010). https://doi.org/10.1021/nl1022139
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
H.O. Churchill, P. Jarillo-Herrero, Two-dimensional crystals: phosphorus joins the family. Nat. Nanotechnol. 9(5), 330–331 (2014). https://doi.org/10.1038/nnano.2014.85
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353(6298), 9439 (2016). https://doi.org/10.1126/science.aac9439
A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater Sci. 73, 44–126 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.002
B. Liu, A. Abbas, C. Zhou, Two-dimensional semiconductors: from materials preparation to electronic applications. Adv. Electron. Mater. 3(7), 1700045 (2017). https://doi.org/10.1002/aelm.201700045
X. Cai, Y. Luo, B. Liu, H.M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47(16), 6224–6266 (2018). https://doi.org/10.1039/c8cs00254a
J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coordin. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
X. Zhang, L. Hou, A. Ciesielski, P. Samorì, 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 6(23), 1600671 (2016). https://doi.org/10.1002/aenm.201600671
S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Res. 45(1), 63–84 (2015). https://doi.org/10.1146/annurev-matsci-070214-020901
Y. Zhang, W. Xia, Y. Wu, P. Zhang, Prediction of MXene based 2D tunable band gap semiconductors: gW quasiparticle calculations. Nanoscale 11(9), 3993–4000 (2019). https://doi.org/10.1039/c9nr01160a
Y. Zhou, M. Zhang, Z. Guo, L. Miao, S.T. Han et al., Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horizons 4, 997–1019 (2017). https://doi.org/10.1039/C7MH00543A
K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5(46), 11992–12022 (2017). https://doi.org/10.1039/c7tc04300g
M. Qiu, W.X. Ren, T. Jeong, M. Won, G.Y. Park et al., Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 47(15), 5588–5601 (2018). https://doi.org/10.1039/c8cs00342d
P. Chen, N. Li, X. Chen, W.-J. Ong, X. Zhao, The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5(1), 014002 (2017). https://doi.org/10.1088/2053-1583/aa8d37
R. Fei, L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014). https://doi.org/10.1021/nl500935z
D.J. Late, Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor. Micropor. Mesopor. Mat. 225, 494–503 (2016). https://doi.org/10.1016/j.micromeso.2016.01.031
Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang et al., From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015). https://doi.org/10.1002/adfm.201502902
M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, H. Zhang, 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 7(1), 1800224 (2019). https://doi.org/10.1002/adom.201800224
Y. Zhang, Y. Zheng, K. Rui, H.H. Hng, K. Hippalgaonkar et al., 2D black phosphorus for energy storage and thermoelectric applications. Small 13(28), 1700661 (2017). https://doi.org/10.1002/smll.201700661
H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, S. Wang, Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv. Mater. 30(32), 1800295 (2018). https://doi.org/10.1002/adma.201800295
P.W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 36(7), 1344–1363 (1914). https://doi.org/10.1021/ja02184a002
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
W. Lei, Y. Mi, R. Feng, P. Liu, S. Hu et al., Hybrid 0D–2D black phosphorus quantum dots–graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy 50, 552–561 (2018). https://doi.org/10.1016/j.nanoen.2018.06.001
Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou et al., TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13(11), 1602896 (2017). https://doi.org/10.1002/smll.201602896
H.U. Lee, S.Y. Park, S.C. Lee, S. Choi, S. Seo et al., Black phosphorus (BP) nanodots for potential biomedical applications. Small 12(2), 214–219 (2016). https://doi.org/10.1002/smll.201502756
J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu et al., Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 7, 42357 (2017). https://doi.org/10.1038/srep42357
S.C. Dhanabalan, J.S. Ponraj, Z. Guo, S. Li, Q. Bao, H. Zhang, Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 4(6), 1600305 (2017). https://doi.org/10.1002/advs.201600305
Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu et al., Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Opt. Express 23(10), 12823 (2015). https://doi.org/10.1364/oe.23.012823
H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
L. Guan, B. Xing, X. Niu, D. Wang, Y. Yu et al., Metal-assisted exfoliation of few-layer black phosphorus with high yield. Chem. Commun. 54(6), 595–598 (2018). https://doi.org/10.1039/c7cc08488a
Y. Mu, M.S. Si, The mechanical exfoliation mechanism of black phosphorus to phosphorene: a first-principles study. Europhys. Lett. 112(3), 37003 (2015). https://doi.org/10.1209/0295-5075/112/37003
J.O. Island, G.A. Steele, H.S.J. van der Zant, Castellanos-Gomez, Environmental instability of few-layer black phosphorus. 2D Mater 2(1), 011002 (2015). https://doi.org/10.1088/2053-1583/2/1/011002
Z. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts, M.S. Lundstrom, P.D. Ye, X. Xu, Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015). https://doi.org/10.1038/ncomms9572
Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu et al., Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29(42), 1703811 (2017). https://doi.org/10.1002/adma.201703811
S. Lin, Y. Chui, Y. Li, S.P. Lau, Liquid-phase exfoliation of black phosphorus and its applications. Flatchem 2, 15–37 (2017). https://doi.org/10.1016/j.flatc.2017.03.001
J.R. Brent, N. Savjani, E.A. Lewis, S.J. Haigh, D.J. Lewis, P. O’Brien, Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 50(87), 13338–13341 (2014). https://doi.org/10.1039/c4cc05752j
J. Kang, J.D. Wood, S.A. Wells, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9(4), 3596–3604 (2015). https://doi.org/10.1021/acsnano.5b01143
P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi et al., High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27(11), 1887–1892 (2015). https://doi.org/10.1002/adma.201405150
D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015). https://doi.org/10.1038/ncomms9563
J. Gómez-Pérez, Z. Kónya, Á. Kukovecz, Acetone improves the topographical homogeneity of liquid phase exfoliated few-layer black phosphorus flakes. Nanotechnology 29(36), 365303 (2018). https://doi.org/10.1088/1361-6528/aacc23
Z. Yan, X. He, L. She, J. Sun, R. Jiang et al., Solvothermal-assisted liquid-phase exfoliation of large size and high quality black phosphorus. J. Mater. 4(2), 129–134 (2018). https://doi.org/10.1016/j.jmat.2018.01.003
Y. Zhang, H. Wang, Z. Luo, H.T. Tan, B. Li et al., An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Adv. Energy Mater. 6(12), 1600453 (2016). https://doi.org/10.1002/aenm.201600453
A.E. Del Rio Castillo, V. Pellegrini, H. Sun, J. Buha, D.A. Dinh et al., Exfoliation of few-layer black phosphorus in low-boiling-point solvents and its application in Li-ion batteries. Chem. Mater. 30(2), 506–516 (2018). https://doi.org/10.1021/acs.chemmater.7b04628
J.Y. Xu, L.F. Gao, C.X. Hu, Z.Y. Zhu, M. Zhao, Q. Wang, H.L. Zhang, Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation. Chem. Commun. 52(52), 8107–8110 (2016). https://doi.org/10.1039/c6cc03206k
M. Bat-Erdene, M. Batmunkh, C.J. Shearer, S.A. Tawfik, M.J. Ford et al., Efficient and fast synthesis of few-layer black phosphorus via microwave-assisted liquid-phase exfoliation. Small Methods 1(12), 1700260 (2017). https://doi.org/10.1002/smtd.201700260
V. Sresht, A.A.H. Pádua, D. Blankschtein, Liquid-phase exfoliation of phosphorene: design rules from molecular dynamics simulations. ACS Nano 9(8), 8255–8268 (2015). https://doi.org/10.1021/acsnano.5b02683
A. Ambrosi, M. Pumera, Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chemistry A Eur. J. 22(1), 153–159 (2016). https://doi.org/10.1002/chem.201503110
C.Y. Su, A.Y. Lu, Y.P. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3), 2332–2339 (2011). https://doi.org/10.1021/nn200025p
M.B. Erande, M.S. Pawar, D.J. Late, Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl. Mater. Interfaces. 8(18), 11548–11556 (2016). https://doi.org/10.1021/acsami.5b10247
J. Li, C. Chen, S. Liu, J. Lu, W.P. Goh et al., Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene. Chem. Mater. 30(8), 2742–2749 (2018). https://doi.org/10.1021/acs.chemmater.8b00521
A. Ambrosi, Z. Sofer, M. Pumera, Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem. Int. Ed. 56(35), 10443–10445 (2017). https://doi.org/10.1002/anie.201705071
H. Xiao, M. Zhao, J. Zhang, X. Ma, J. Zhang, T. Hu, T. Tang, J. Jia, H. Wu, Electrochemical cathode exfoliation of bulky black phosphorus into few-layer phosphorene nanosheets. Electrochem. Commun. 89, 10–13 (2018). https://doi.org/10.1016/j.elecom.2018.02.010
H.O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technologies and Applications (William Andrew, Amsterdam, 1999)
G.H. Lee, R.C. Cooper, S.J. An, S. Lee, A. van der Zande et al., High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340(6136), 1073–1076 (2013). https://doi.org/10.1126/science.1235126
S.M. Eichfeld, L. Hossain, Y.C. Lin, A.F. Piasecki, B. Kupp et al., Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano 9(2), 2080–2087 (2015). https://doi.org/10.1021/nn5073286
J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6(12), 6705–6716 (2015). https://doi.org/10.1039/c5sc01941a
J.B. Smith, D. Hagaman, H.F. Ji, Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27(21), 215602 (2016). https://doi.org/10.1088/0957-4484/27/21/215602
Q. Jiang, J. Li, N. Yuan, Z. Wu, J. Tang, Black phosphorus with superior lithium ion batteries performance directly synthesized by the efficient thermal-vaporization method. Electrochim. Acta 263, 272–276 (2018). https://doi.org/10.1016/j.electacta.2018.01.012
Z. Yang, J. Hao, S. Yuan, S. Lin, H.M. Yau, J. Dai, S.P. Lau, Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 27(25), 3748–3754 (2015). https://doi.org/10.1002/adma.201500990
Y. Xu, X. Shi, Y. Zhang, H. Zhang, Q. Zhang et al., Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun. 11(1), 1330 (2020). https://doi.org/10.1038/s41467-020-14902-z
R. Hultgren, N.S. Gingrich, B.E. Warren, The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3(6), 351–355 (1935). https://doi.org/10.1063/1.1749671
L. Chen, G. Zhou, Z. Liu, X. Ma, J. Chen et al., Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 28(3), 510–517 (2016). https://doi.org/10.1002/adma.201503678
J. Wu, N. Mao, L. Xie, H. Xu, J. Zhang, Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. Int. Ed. 54(8), 2366–2369 (2015). https://doi.org/10.1002/anie.201410108
S. Wu, K.S. Hui, K.N. Hui, 2D black phosphorus: from preparation to applications for electrochemical energy storage. Adv. Sci. 5(5), 1700491 (2018). https://doi.org/10.1002/advs.201700491
J. Zhao, J. Zhu, R. Cao, H. Wang, Z. Guo et al., Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. Nat. Commun. 10(1), 4062 (2019). https://doi.org/10.1038/s41467-019-11937-9
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S. van der Zant, N. Agrait, G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24(6), 772–775 (2012). https://doi.org/10.1002/adma.201103965
Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104(25), 251915 (2014). https://doi.org/10.1063/1.4885215
G. Yang, L. Li, W.B. Lee, M.C. Ng, Structure of graphene and its disorders: a review. Sci. Technol. Adv. Mater. 19(1), 613–648 (2018). https://doi.org/10.1080/14686996.2018.1494493
F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). https://doi.org/10.1038/ncomms5458
W. Keyes, Robert, The electrical properties of black phosphorus. Phys. Rev. 92(3), 580–584 (1953). https://doi.org/10.1103/physrev.92.580
G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initiodensity functional calculations. Phys. Rev. B 76(7), 073103 (2007). https://doi.org/10.1103/PhysRevB.76.073103
X. Ling, H. Wang, S. Huang, F. Xia, M.S. Dresselhaus, The renaissance of black phosphorus. Proc. Natl. Acad. Sci. U.S.A. 112(15), 4523–4530 (2015). https://doi.org/10.1073/pnas.1416581112
A. Nie, Y. Cheng, S. Ning, T. Foroozan, P. Yasaei et al., Selective ionic transport pathways in phosphorene. Nano Lett. 16(4), 2240–2247 (2016). https://doi.org/10.1021/acs.nanolett.5b04514
A. Sibari, A. Marjaoui, M. Lakhal, Z. Kerrami, A. Kara et al., Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: a first-principle study. Sol. Energ. Mater. Sol. Cells 180, 253–257 (2018). https://doi.org/10.1016/j.solmat.2017.06.034
X. Li, L. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018). https://doi.org/10.1039/c7cs00871f
Y. Xue, Q. Zhang, T. Zhang, L. Fu, Black phosphorus: properties, synthesis, and applications in energy conversion and storage. ChemNanoMat 3(6), 352–361 (2017). https://doi.org/10.1002/cnma.201700030
F. Nobili, S. Dsoke, T. Mecozzi, R. Marassi, Metal-oxidized graphite composite electrodes for lithium-ion batteries. Electrochim. Acta 51(3), 536–544 (2005). https://doi.org/10.1016/j.electacta.2005.05.012
Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9(1), 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
H. Liu, L. Tao, Y. Zhang, C. Xie, P. Zhou, H. Liu, R. Chen, S. Wang, Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery. ACS Appl. Mater. Interfaces. 9(42), 36849–36856 (2017). https://doi.org/10.1021/acsami.7b11599
F. Wang, G. Zhang, S. Huang, C. Song, C. Wang, Q. Xing, Y. Lei, H. Yan, Electronic structures of air-exposed few-layer black phosphorus by optical spectroscopy. Phys. Rev. B 99(7), 075427 (2019). https://doi.org/10.1103/PhysRevB.99.075427
G. Abellán, S. Wild, V. Lloret, N. Scheuschner, R. Gillen et al., Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 139(30), 10432–10440 (2017). https://doi.org/10.1021/jacs.7b04971
Y.K. Ryu, A. Castellanos-Gomez, R. Frisenda, Degradation of Black Phosphorus Upon Environmental Exposure and Encapsulation Strategies to Prevent it (American Chemical Society, Washington, 2019), pp. 47–59
S. Kuriakose, T. Ahmed, S. Balendhran, V. Bansal, S. Sriram, M. Bhaskaran, S. Walia, Black phosphorus: ambient degradation and strategies for protection. 2D Mater 5(3), 032001 (2018). https://doi.org/10.1088/2053-1583/aab810
S. Wu, F. He, G. Xie, Z. Bian, J. Luo, S. Wen, Black phosphorus: degradation favors lubrication. Nano Lett. 18(9), 5618–5627 (2018). https://doi.org/10.1021/acs.nanolett.8b02092
A. Favron, E. Gaufres, F. Fossard, A.L. Phaneuf-L’Heureux, N.Y. Tang et al., Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14(8), 826–832 (2015). https://doi.org/10.1038/nmat4299
A.A. Kistanov, Y. Cai, K. Zhou, S.V. Dmitriev, Y.W. Zhang, The role of H2O and O2 molecules and phosphorus vacancies in the structure instability of phosphorene. 2D Mater 4(1), 015010 (2016). https://doi.org/10.1088/2053-1583/4/1/015010
S. Walia, Y. Sabri, T. Ahmed, M.R. Field, R. Ramanathan et al., Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Mater 4(1), 015025 (2016). https://doi.org/10.1088/2053-1583/4/1/015025
Q. Zhou, Q. Chen, Y. Tong, J. Wang, Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55(38), 11437–11441 (2016). https://doi.org/10.1002/anie.201605168
Y. Huang, J. Qiao, K. He, S. Bliznakov, E. Sutter et al., Interaction of black phosphorus with oxygen and water. Chem. Mater. 28(22), 8330–8339 (2016). https://doi.org/10.1021/acs.chemmater.6b03592
Y. Wang, B. Yang, B. Wan, X. Xi, Z. Zeng et al., Degradation of black phosphorus: a real-time 31P NMR study. 2D Mater 3(3), 035025 (2016). https://doi.org/10.1088/2053-1583/3/3/035025
D.K. Sang, H. Wang, Z. Guo, N. Xie, H. Zhang, Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications. Adv. Funct. Mater. 29(45), 1903419 (2019). https://doi.org/10.1002/adfm.201903419
B. Wan, B. Yang, Y. Wang, J. Zhang, Z. Zeng, Z. Liu, W. Wang, Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology 26(43), 435702 (2015). https://doi.org/10.1088/0957-4484/26/43/435702
M. Li, Q. Zhao, S. Zhang, D. Li, H. Li, X. Zhang, B. Xing, Facile passivation of black phosphorus nanosheets via silica coating for stable and efficient solar desalination. Environ. Sci. Nano 7, 414–423 (2020). https://doi.org/10.1039/c9en01138b
R. Galceran, E. Gaufres, A. Loiseau, M. Piquemal-Banci, F. Godel et al., Stabilizing ultra-thin black phosphorus with in situ-grown 1 nm-Al2O3 barrier. Appl. Phys. Lett. 111(24), 243101 (2017). https://doi.org/10.1063/1.5008484
K.L. Li, K.W. Ang, Y.M. Lv, X.K. Liu, Effects of Al2O3 capping layers on the thermal properties of thin black phosphorus. Appl. Phys. Lett. 109(26), 261901 (2016). https://doi.org/10.1063/1.4973363
R. Guo, Y. Zheng, Z. Ma, X. Lian, H. Sun et al., Surface passivation of black phosphorus via van der Waals stacked PTCDA. Appl. Surface Sci. 496, 143688 (2019). https://doi.org/10.1016/j.apsusc.2019.143688
V. Artel, Q. Guo, H. Cohen, R. Gasper, A. Ramasubramaniam, F. Xia, D. Naveh, Protective molecular passivation of black phosphorus. 2D Mater. Appl. 1(1), 6 (2017). https://doi.org/10.1038/s41699-017-0004-8
S. Liang, L. Wu, H. Liu, J. Li, M. Chen, M. Zhang, Organic molecular passivation of phosphorene: an aptamer-based biosensing platform. Biosens. Bioelectron. 126, 30–35 (2019). https://doi.org/10.1016/j.bios.2018.10.037
J.E.S. Fonsaca, S.H. Domingues, E.S. Orth, A.J.G. Zarbin, Air stable black phosphorous in polyaniline-based nanocomposite. Sci. Rep. 7(1), 10165 (2017). https://doi.org/10.1038/s41598-017-10533-5
Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu et al., Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 55(16), 5003–5007 (2016). https://doi.org/10.1002/anie.201512038
H. Li, P. Lian, Q. Lu, J. Chen, R. Hou, Y. Mei, Excellent air and water stability of two-dimensional black phosphorene/MXene heterostructure. Mater. Res. Express 6(6), 065504 (2019). https://doi.org/10.1088/2053-1591/ab0b84
Y. Zhao, H. Wang, H. Huang, Q. Xiao, P.K. Chu, Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 55(16), 5087–5091 (2016). https://doi.org/10.1002/anie.201512038
Z. Wei, S. Zhuiykov, Challenges and recent advancements of functionalization of two-dimensional nanostructured molybdenum trioxide and dichalcogenides. Nanoscale 11(34), 15709–15738 (2019). https://doi.org/10.1039/c9nr03072g
Y. Tang, C. Yang, Y. Tian, Y. Luo, X. Yin, W. Que, The effect of in situ nitrogen doping on the oxygen evolution reaction of MXenes. Nanoscale Adv. 2(3), 1187–1194 (2020). https://doi.org/10.1039/c9na00706g
Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47(9), 3100–3128 (2018). https://doi.org/10.1039/c8cs00024g
H. Hu, Z. Shi, K. Khan, R. Cao, W. Liang et al., Recent advances in doping engineering of black phosphorus. J. Mater. Chem. A 8(11), 5421–5441 (2020). https://doi.org/10.1039/d0ta00416b
X. Tang, W. Liang, J. Zhao, Z. Li, M. Qiu et al., Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 13(47), 1702739 (2017). https://doi.org/10.1002/smll.201702739
Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun et al., Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 27(38), 1702211 (2017). https://doi.org/10.1002/adfm.201702211
W. Lv, B. Yang, B. Wang, W. Wan, Y. Ge et al., Sulfur-doped black phosphorus field-effect transistors with enhanced stability. ACS Appl. Mater. Interfaces. 10(11), 9663–9668 (2018). https://doi.org/10.1021/acsami.7b19169
I. Sultana, M.M. Rahman, T. Ramireddy, Y. Chen, A.M. Glushenkov, High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 5(45), 23506–23512 (2017). https://doi.org/10.1039/c7ta02483e
M. Qiu, Z.T. Sun, D.K. Sang, X.G. Han, H. Zhang, C.M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 9(36), 13384–13403 (2017). https://doi.org/10.1039/c7nr03318d
B. Scrosati, Recent advances in lithium ion battery materials. Electrochim. Acta 45(15–16), 2461–2466 (2000). https://doi.org/10.1016/S0013-4686(00)00333-9
S. Guo, X. Hu, W. Zhou, X. Liu, Y. Gao et al., Mechanistic understanding of two-dimensional phosphorus, arsenic, and antimony high-capacity anodes for fast-charging lithium/sodium ion batteries. J. Phys. Chem. C 122(51), 29559–29566 (2018). https://doi.org/10.1021/acs.jpcc.8b08824
J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao et al., Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 8(8), 1702093 (2018). https://doi.org/10.1002/aenm.201702093
C. Zhang, M. Yu, G. Anderson, R.R. Dharmasena, G. Sumanasekera, The prospects of phosphorene as an anode material for high-performance lithium-ion batteries: a fundamental study. Nanotechnology 28(7), 075401 (2017). https://doi.org/10.1088/1361-6528/aa52ac
S. Zhao, W. Kang, J. Xue, The potential application of phosphorene as an anode material in Li-ion batteries. J. Mater. Chem. A 2(44), 19046–19052 (2014). https://doi.org/10.1039/c4ta04368e
L. Kou, C. Chen, S.C. Smith, Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6(14), 2794–2805 (2015). https://doi.org/10.1021/acs.jpclett.5b01094
W. Li, Y. Yang, G. Zhang, Y.W. Zhang, Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 15(3), 1691–1697 (2015). https://doi.org/10.1021/nl504336h
Y. Zhang, W. Sun, Z.Z. Luo, Y. Zheng, Z. Yu et al., Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy 40, 576–586 (2017). https://doi.org/10.1016/j.nanoen.2017.09.002
J. Sun, G. Zheng, H.W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, Y. Cui, Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 14(8), 4573–4580 (2014). https://doi.org/10.1021/nl501617j
T. Ramireddy, T. Xing, M.M. Rahman, Y. Chen, Q. Dutercq, D. Gunzelmann, A.M. Glushenkov, Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 3(10), 5572–5584 (2015). https://doi.org/10.1039/c4ta06186a
H. Shin, J. Zhang, W. Lu, Material structure and chemical bond effect on the electrochemical performance of black phosphorus-graphite composite anodes. Electrochim. Acta 309, 264–273 (2019). https://doi.org/10.1016/j.electacta.2019.03.149
H. Liu, Y. Zou, L. Tao, Z. Ma, D. Liu, P. Zhou, H. Liu, S. Wang, Sandwiched thin-film anode of chemically bonded black phosphorus/graphene hybrid for lithium-ion battery. Small 13(33), 1700758 (2017). https://doi.org/10.1002/smll.201700758
R.H. Baughman, Carbon nanotubes–the route toward applications. Science 297(5582), 787–792 (2002). https://doi.org/10.1126/science.1060928
S. Haghighat-Shishavan, M. Nazarian-Samani, M. Nazarian-Samani, H.-K. Roh, K.-Y. Chung, B.-W. Cho, S.F. Kashani-Bozorg, K.-B. Kim, Strong, persistent superficial oxidation-assisted chemical bonding of black phosphorus with multiwall carbon nanotubes for high-capacity ultradurable storage of lithium and sodium. J. Mater. Chem. A 6(21), 10121–10134 (2018). https://doi.org/10.1039/c8ta02590h
J. Shi, H. Cai, K. Cai, Q.-H. Qin, Dynamic behavior of a black phosphorus and carbon nanotube composite system. J. Phys. D Appl. Phys. 50(2), 025304 (2017). https://doi.org/10.1088/1361-6463/50/2/025304
T.N. Van, T.N. Danh, Q.L. Minh, Atomistic simulation of the uniaxial tension of black phosphorene nanotubes. Vietnam J. Mech. 40(2), 163–169 (2018). https://doi.org/10.15625/0866-7136/10751
Y. Zhang, Y. Tang, W. Li, X. Chen, Nanostructured TiO2-based anode materials for high-performance rechargeable lithium-ion batteries. ChemNanoMat 2(8), 764–775 (2016). https://doi.org/10.1002/cnma.201600093
J. Mei, Y. Zhang, T. Liao, X. Peng, G.A. Ayoko, Z. Sun, Black phosphorus nanosheets promoted 2D-TiO2-2D heterostructured anode for high-performance lithium storage. Energy Storage Mater. 19, 424–431 (2019). https://doi.org/10.1016/j.ensm.2019.03.010
Y. Luo, H. Wu, L. Liu, Q. Li, K. Jiang, S. Fan, J. Li, J. Wang, TiO2-nanocoated black phosphorus electrodes with improved electrochemical performance. ACS Appl. Mater. Interfaces. 10(42), 36058–36066 (2018). https://doi.org/10.1021/acsami.8b14703
F. Zhou, L. Ouyang, J. Liu, X.-S. Yang, M. Zhu, Chemical bonding black phosphorus with TiO2 and carbon toward high-performance lithium storage. J. Power Sources 449, 227549 (2020). https://doi.org/10.1016/j.jpowsour.2019.227549
A.E. Baumann, D.A. Burns, B. Liu, V.S. Thoi, Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2(1), 86 (2019). https://doi.org/10.1038/s42004-019-0184-6
W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 31(6), 1804740 (2019). https://doi.org/10.1002/adma.201804740
J. Jin, Y. Zheng, S.Z. Huang, P.P. Sun, N. Srikanth, L.B. Kong, Q. Yan, K. Zhou, Directly anchoring 2D NiCo metal–organic frameworks on few-layer black phosphorus for advanced lithium-ion batteries. J. Mater. Chem. A 7(2), 783–790 (2019). https://doi.org/10.1039/c8ta09327j
C. Chowdhury, S. Karmakar, A. Datta, Capping black phosphorene by h-BN enhances performances in anodes for Li and Na ion batteries. ACS Energy Lett. 1, 253–259 (2016). https://doi.org/10.1021/acsenergylett.6b00164
H. Li, A. Liu, X. Ren, Y. Yang, L. Gao, M. Fan, T. Ma, A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: a combined experimental and theoretical study. Nanoscale 11(42), 19862–19869 (2019). https://doi.org/10.1039/c9nr04790e
X. Li, W. Li, P. Shen, L. Yang, Y. Li, Z. Shi, H. Zhang, Layered GeP-black P(Ge2P3): an advanced binary-phase anode for Li/Na-storage. Ceram. Int. 45(12), 15711–15714 (2019). https://doi.org/10.1016/j.ceramint.2019.04.219
W. Li, P. Shen, J. Liao, J. Yu, X. Li et al., Cu2P7-black P-MWCNTs (CuP5/MWCNTs): an advanced hybrid anode for Li/Na-ion batteries. Mater. Lett. 253, 263–267 (2019). https://doi.org/10.1016/j.matlet.2019.06.080
L. Li, W. Wang, P. Gong, X. Zhu, B. Deng, 2D GeP: an unexploited low-symmetry semiconductor with strong in-plane anisotropy. Adv. Mater. 30(14), 1706771 (2018). https://doi.org/10.1002/adma.201706771