Opportunities and Challenges in Twisted Bilayer Graphene: A Review
Corresponding Author: Hyunmin Kim
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 126
Abstract
Two-dimensional (2D) materials exhibit enhanced physical, chemical, electronic, and optical properties when compared to those of bulk materials. Graphene demands significant attention due to its superior physical and electronic characteristics among different types of 2D materials. The bilayer graphene is fabricated by the stacking of the two monolayers of graphene. The twisted bilayer graphene (tBLG) superlattice is formed when these layers are twisted at a small angle. The presence of disorders and interlayer interactions in tBLG enhances several characteristics, including the optical and electrical properties. The studies on twisted bilayer graphene have been exciting and challenging thus far, especially after superconductivity was reported in tBLG at the magic angle. This article reviews the current progress in the fabrication techniques of twisted bilayer graphene and its twisting angle-dependent properties.
Highlights:
1 This article presents an overview of twisted bilayer graphene (tBLG) on their fabrication techniques and twisting angle-dependent properties.
2 The properties of tBLG can be controlled by controlling the twisting angle between two graphene sheets.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- M. Tahriri, M. Del Monico, A. Moghanian, M.T. Yaraki, R. Torres, A. Yadegari, L. Tayebi, Graphene and its derivatives: opportunities and challenges in dentistry. Mater. Sci. Eng. C 102, 171–185 (2019). https://doi.org/10.1016/j.msec.2019.04.051
- Z. Peng, Z. Yan, Z. Sun, J.M. Tour, Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel. ACS Nano 5(10), 8241–8247 (2011). https://doi.org/10.1021/nn202923y
- A.I. Cocemasov, D.L. Nika, A.A. Balandin, Phonons in twisted bilayer graphene. Phys. Rev. B 88, 035428 (2013). https://doi.org/10.1103/PhysRevB.88.035428
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). https://doi.org/10.1038/nature04233
- Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). https://doi.org/10.1038/nature04235
- M. Freitag, H.Y. Chiu, M. Steiner, V. Perebeinos, P. Avouris, Thermal infrared emission from biased graphene. Nat. Nanotechnol. 5, 497–501 (2010). https://doi.org/10.1038/NNANO.2010.90
- C. Xu, H. Li, K. Banerjee, Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Dev. 56, 8 (2009). https://doi.org/10.1109/TED.2009.2024254
- W. Liu, S. Kraemer, D. Sarkar, H. Li, P.M. Ajayan, K. Banerjee, Controllable and rapid synthesis of high-quality and large-areabernal stacked bilayer graphene using chemical vapor deposition. Chem. Mater. 26(2), 907–915 (2014). https://doi.org/10.1021/cm4021854
- S.Y. Dai, Y. Xiang, D.J. Srolovitz, Twisted bilayer graphene: moiré with a twist. Nano Lett. 16, 5923–5927 (2016). https://doi.org/10.1021/acs.nanolett.6b02870
- J. Hicks, M. Sprinkle, K. Shepperd, F. Wang, Symmetry breaking in commensurate graphene rotational stacking: comparison of theory and experiment. Phys. Rev. B 83, 205403 (2011). https://doi.org/10.1103/PhysRevB.83.205403
- E.S. Morell, P. Vargas, Charge redistribution and interlayer coupling in twisted bilayer graphene under electric fields. Phys. Rev. B 84, 195421 (2011). https://doi.org/10.1103/PhysRevB.84.195421
- G. Tarnopolsky, A.J. Kruchkov, A. Vishwanath, Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019). https://doi.org/10.1103/PhysRevLett.122.106405
- M. Anđelković, L. Covaci, F.M. Peeters, DC conductivity of twisted bilayer graphene: angle-dependent transport properties and effects of disorder. Phys. Rev. Mater. 2, 034004 (2018). https://doi.org/10.1103/PhysRevMaterials.2.034004
- E.J. Mele, Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405(R) (2010). https://doi.org/10.1103/PhysRevB.81.161405
- B.L. Huang, C.P. Chuu, M.F. Lin, Asymmetry-enriched electronic and optical properties of bilayer graphene. Sci. Rep. 9, 859 (2019). https://doi.org/10.1038/s41598-018-37058-9
- C.Y. Lin, J.Y. Wu, Y.H. Chiu, C.P. Chang, M.F. Lin, Stacking-dependent magnetoelectronic properties in multilayer graphene. Phys. Rev. B 90, 205434 (2014). https://doi.org/10.1103/PhysRevB.90.205434
- D.S. Lee, C. Riedl, T. Beringer, A.H.C. Neto, K.V. Klitzing, U. Starke, J.H. Smet, Quantum hall effect in twisted bilayer graphene. Phys. Rev. Lett. 107, 216602 (2011). https://doi.org/10.1103/PhysRevLett.107.216602
- C.C. Lu, Y.C. Lin, Z. Liu, C.H. Yeh, K. Suenaga, P.W. Chiu, Twisting bilayer graphene superlattices. ACS Nano 7(3), 2587–2594 (2013). https://doi.org/10.1021/nn3059828
- J.M.B. Lopes dos Santos, N.M.R. Peres, A.H.C. Neto, Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007). https://doi.org/10.1103/PhysRevLett.99.256802
- A.O. Sboychakov, A.L. Rakhmanov, A.V. Rozhkov, F. Nori, Electronic spectrum of twisted bilayer graphene. Phys. Rev. B 92, 075402 (2015). https://doi.org/10.1103/PhysRevB.92.075402
- W. Yan, W.Y. He, Z.D. Chu, M.X. Liu, L. Meng et al., Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat. Commun. 4, 2159 (2013). https://doi.org/10.1038/ncomms3159
- J.S. Alden, A.W. Tsen, P.Y. Huang, R. Hovden, L. Brown, J.W. Park, D.A. Muller, P.L. McEuen, Strain solitons and topological defects in bilayer graphene. PNAS 110(28), 11256–11260 (2013). https://doi.org/10.1073/pnas.1309394110
- K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H.C.P. Movva et al., van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16(3), 1989–1995 (2016). https://doi.org/10.1021/acs.nanolett.5b05263
- L.J. Yin, H. Jiang, J.B. Qiao, L. He, Direct imaging of topological edge states at a bilayer graphene domain wall. Nat. Commun. 7, 11760 (2016). https://doi.org/10.1038/ncomms11760
- L. Huder, A. Artaud, T.L. Quang, G.T. de Laissardière, A.G.M. Jansen, G. Lapertot, C. Chapelier, V.T. Renard, Electronic spectrum of twisted graphene layers under heterostrain. Phys. Rev. Lett. 120, 156405 (2018). https://doi.org/10.1103/PhysRevLett.120.156405
- J.B. Qiao, L.J. Yin, L. He, Twisted graphene bilayer around the first magic angle engineered by heterostrain. Phys. Rev. B 98, 235402 (2018). https://doi.org/10.1103/PhysRevB.98.235402
- L. Liao, H. Wang, H. Peng, J.B. Yin, A.L. Koh, Y.L. Chen, Q. Xie, H.L. Peng, Z.F. Liu, van Hove singularity enhanced photochemical reactivity of twisted bilayer graphene. Nano Lett. 15(8), 5585–5589 (2015). https://doi.org/10.1021/acs.nanolett.5b02240
- C.R. Woods, L. Britnell, A. Eckmann, R.S. Ma, J.C. Lu, H.M. Guo et al., Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014). https://doi.org/10.1038/NPHYS2954
- Q. Ye, J. Wang, Z.B. Liu, Z.C. Deng, X.T. Kong et al., Polarization-dependent optical absorption of graphene under total internal reflection. Appl. Phys. Lett. 102, 021912 (2013). https://doi.org/10.1063/1.4776694
- R.W. Havener, Y.F. Liang, L. Brown, L. Yang, J. Park, Van Hove singularities and excitonic effects in the optical conductivity of twisted bilayer graphene. Nano Lett. 14, 3353–3357 (2014). https://doi.org/10.1021/nl500823k
- M.D. Corato, C. Cocchi, D. Prezzi, M.J. Caldas, E. Molinari, A. Ruini, Optical properties of bilayer graphene nanoflakes. J. Phys. Chem. C 118(40), 23219–23225 (2014). https://doi.org/10.1021/jp504222m
- S.K. Jain, V. Juričić, G.T. Barkema, Structure of twisted and buckled bilayer graphene. 2D Mater. 4, 015018 (2017). https://doi.org/10.1088/2053-1583/4/1/015018
- S. Shallcross, S. Sharma, O.A. Pankratov, Quantum interference at the twist boundary in graphene. Phys. Rev. Lett. 101, 056803 (2008). https://doi.org/10.1103/PhysRevLett.101.056803
- R. de Gail, M.O. Goerbig, F. Guinea, G. Montambaux, A.H.C. Neto, Topologically protected zero modes in twisted bilayer graphene. Phys. Rev. B 84, 045436 (2011). https://doi.org/10.1103/PhysRevB.84.045436
- R. Bistritzer, A.H. MacDonald, Moiré butterflies in twisted bilayer graphene. Phys. Rev. B 84, 035440 (2011). https://doi.org/10.1103/PhysRevB.84.035440
- G.T. de Laissardie`re, D. Mayou, L. Magaud, Localization of dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010). https://doi.org/10.1021/nl902948m
- L. Meng, W. Yan, L.J. Yin, Z.D. Chu, Y.F. Zhang, L. Feng, R. Dou, J. Nie, Tuning the interlayer coupling of the twisted bilayer graphene by molecular adsorption. J. Phys. Chem. C 118, 6462–6466 (2014). https://doi.org/10.1021/jp4109915
- W. Yan, M.X. Liu, R.F. Dou, L. Meng, L. Feng et al., Angle-dependent van Hove Singularities in a slightly twisted graphene bilayer. Phys. Rev. Lett. 109, 126801 (2012). https://doi.org/10.1103/PhysRevLett.109.126801
- V.H. Nguyen, P. Dollfus, Strain-induced modulation of Dirac cones and van Hove singularities in twisted graphene bilayer. 2D Mater. 2, 035005 (2015). https://doi.org/10.1088/2053-1583/2/3/035005
- J.D.S.Y. Taniguchi, A. Yacoby, P. Jarillo-Herrero, Quantum hall effect, screening, and layer-polarized insulating states in twisted bilayer graphene. Phys. Rev. Lett. 108, 076601 (2012). https://doi.org/10.1103/PhysRevLett.108.076601
- M. Zarenia, I. Yudhistira, S. Adam, G. Vignale, Enhanced hydrodynamic transport in near magic angle twisted bilayer graphene. Phys. Rev. B 101, 045421 (2020). https://doi.org/10.1103/PhysRevB.101.045421
- Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). https://doi.org/10.1038/nature26154
- B. Lian, Z.J. Wang, B.A. Bernevig, Twisted bilayer graphene: a phonon-driven superconductor. Phys. Rev. Lett. 122, 257002 (2019). https://doi.org/10.1103/PhysRevLett.122.257002
- N.F.Q. Yuan, L. Fu, Model for the metal-insulator transition in graphene superlattices and beyond. Phys. Rev. B 98, 045103 (2018). https://doi.org/10.1103/PhysRevB.98.045103
- H.C. Po, L.J. Zou, A. Vishwanath, T. Senthil, Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018). https://doi.org/10.1103/PhysRevX.8.031089
- C. Xu, L. Balents, Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett. 121, 087001 (2018). https://doi.org/10.1103/PhysRevLett.121.087001
- B. Roy, V. Juričić, Unconventional superconductivity in nearly flat bands in twisted bilayer graphene. Phys. Rev. B 99, 121407(R) (2019). https://doi.org/10.1103/PhysRevB.99.121407
- G.E. Volovik, Graphite, graphene and the flat band superconductivity. JETP Lett. 107, 516 (2018). https://doi.org/10.1134/S0021364018080052
- B. Padhi, C. Setty, P.W. Phillips, Doped twisted bilayer graphene near magic angles: proximity to Wigner crystallization, not Mott insulation. Nano Lett. 18, 6175 (2018). https://doi.org/10.1021/acs.nanolett.8b02033
- J.F. Dodaro, S.A. Kivelson, Y. Schattner, X.Q. Sun, C. Wang, Phases of a phenomenological model of twisted bilayer graphene. Phys. Rev. B 98, 075154 (2018). https://doi.org/10.1103/PhysRevB.98.075154
- G. Baskaran, Theory of emergent Josephson lattice in neutral twisted bilayer graphene (moiŕe is different). arXiv:1804.00627
- F.C. Wu, A.H. MacDonald, I. Martin, Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018). https://doi.org/10.1103/PhysRevLett.121.257001
- H. Isobe, N.F.Q. Yuan, L. Fu, Unconventional superconductivity and density waves in twisted bilayer graphene. Phys. Rev. X 8, 041041 (2018). https://doi.org/10.1103/PhysRevX.8.041041
- T.Y. Huang, L.F. Zhang, T.X. Ma, Antiferromagnetically ordered mott insulator and d + id superconductivity in twisted bilayer graphene: a quantum monte carlo study. Sci. Bull. 64, 310 (2019). https://doi.org/10.1016/j.scib.2019.01.026
- Y.Z. You, A. Vishwanath, Superconductivity from valley fluctuations and approximate SO(4) symmetry in a weak coupling theory of twisted bilayer graphene. NPJ Quantum Mater. 4, 16 (2019). https://doi.org/10.1038/s41535-019-0153-4
- X.C. Wu, K.A. Pawlak, C.M. Jian, C.K. Xu, Emergent superconductivity in the weak Mott insulator phase of bilayer graphene Moiŕe superlattice. arXiv:1805.06906
- Y.H. Zhang, D. Mao, Y. Cao, P.J. Herrero, T. Senthil, Nearly flat chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019). https://doi.org/10.1103/PhysRevB.99.075127
- J. Kang, O. Vafek, Maximally localized Wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X 8, 031088 (2018). https://doi.org/10.1103/PhysRevX.8.031088
- M. Koshino, N.F.Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki, L. Fu, Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018). https://doi.org/10.1103/PhysRevX.8.031087
- D.M. Kennes, J. Lischner, C. Karrasch, Strong correlations and d + id superconductivity in twisted bilayer graphene. Phys. Rev. B 98, 241407(R) (2018). https://doi.org/10.1103/PhysRevB.98.241407
- L. Zhang, Lowest-energy moire band formed by Dirac zero modes in twisted bilayer graphene. Sci. Bull. 64, 495 (2019). https://doi.org/10.1016/j.scib.2019.03.010
- J.M. Pizarro, M.J. Calderón, E. Bascones, The nature of correlations in the insulating states of twisted bilayer graphene. J. Phys. Commun. 3, 035024 (2019). https://doi.org/10.1088/2399-6528/ab0fa9
- F. Guineaa, N.R. Walet, Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proc. Natl. Acad. Sci. U. S. A. 115, 13174 (2018). https://doi.org/10.1073/pnas.1810947115
- L.J. Zou, H.C. Po, A. Vishwanath, T. Senthil, Band structure of twisted bilayer graphene: emergent symmetries, commensurate approximants, and Wannier obstructions. Phys. Rev. B 98, 085435 (2018). https://doi.org/10.1103/PhysRevB.98.085435
- M.P. Lima, J.E. Padilha, R.B. Pontes, A. Fazzio, A.J.R. Silva, Stacking-dependent transport properties in few-layers graphene. Solid State Commun. 250, 70–74 (2017). https://doi.org/10.1016/j.ssc.2016.11.012
- C.X. Cong, T. Yu, Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers. Nat. Commun. 5, 4709 (2014). https://doi.org/10.1038/ncomms5709
- K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008). https://doi.org/10.1021/nl071822y
- K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. PNAS 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
- C. Virojanadara, M. Syväjarvi, R. Yakimova, L.I. Johansson, A.A. Zakharov, T. Balasubramanian, Homogeneous large-area graphene layer growth on 6H-SiC(0001). Phys. Rev. B 78, 245403 (2008). https://doi.org/10.1103/PhysRevB.78.245403
- C. Berger, Z.M. Song, X.B. Li, X.S. Wu, N. Brown et al., Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006). https://doi.org/10.1126/science.1125925
- X. Li, W.W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009). https://doi.org/10.1126/science.1171245
- Y.C. Chen, W.H. Lin, W.S. Tseng, C.C. Chen, G.R. Rossman, C.D. Chen, Y.S. Wu, N.C. Yeh, Direct growth of mm-size twisted bilayer graphene by plasma-enhanced chemical vapor deposition. Carbon 156, 212–224 (2020). https://doi.org/10.1016/j.carbon.2019.09.052
- J.T. Robinson, S.W. Schmucker, C.B. Diaconescu, J.P. Long, J.C. Culbertson, T. Ohta, A.L. Friedman, T.E. Beechem, Electronic hybridization of large-area stacked graphene films. ACS Nano 7(1), 637–644 (2013). https://doi.org/10.1021/nn304834p
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). https://doi.org/10.1038/nature07719
- A. Reina, X.T. Jia, J. Ho, D. Nezich, H. Son et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009). https://doi.org/10.1021/nl801827v
- S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/NNANO.2010.132
- K. Kim, A. DaSilva, S.Q. Huang, B. Fallahazad, S. Larentis et al., Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. PNAS 114(13), 3364–3369 (2017). https://doi.org/10.1073/pnas.1620140114
- L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao et al., One dimensional electrical contact to a two-dimensional material. Science 342(6158), 614–617 (2013). https://doi.org/10.1126/science.1244358
- X.D. Chen, W. Xin, W.S. Jiang, Z.B. Liu, Y.S. Chen, J.G. Tian, High-precision twist-controlled bilayer and trilayer graphene. Adv. Mater. 28, 2563–2570 (2016). https://doi.org/10.1002/adma.201505129
- B. Wang, M. Huang, N.Y. Kim, B.V. Cunning, Y. Huang et al., Controlled folding of single crystal graphene. Nano Lett. 17, 1467–1473 (2017). https://doi.org/10.1021/acs.nanolett.6b04459
- L. Ju, Z.W. Shi, N. Nair, Y. Lv, C.H. Jin et al., Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015). https://doi.org/10.1038/nature14364
- A. Thomson, S. Chatterjee, S. Sachdev, M.S. Scheurer, Triangular antiferromagnetism on the honeycomb lattice of twisted bilayer graphene. Phys. Rev. B 98, 075109 (2018). https://doi.org/10.1103/PhysRevB.98.075109
- T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313(5789), 951–954 (2006). https://doi.org/10.1126/science.1130681
- J.B. Yin, H. Wang, H. Peng, Z.J. Tan, L. Liao et al., Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat. Commun. 7, 10699 (2016). https://doi.org/10.1038/ncomms10699
- S. Shallcross, S. Sharma, O. Pankratov, Emergent momentum scale, localization, and van Hove singularities in the graphene twist bilayer. Phys. Rev. B 87, 245403 (2013). https://doi.org/10.1103/PhysRevB.87.245403
- S. Shallcross, S. Sharma, E. Kandelaki, O.A. Pankratov, Electronic structure of turbostratic graphene. Phys. Rev. B 81, 1 (2010). https://doi.org/10.1103/PhysRevB.81.165105
- W. Landgraf, S. Shallcross, K. Türschmann, D. Weckbecker, O. Pankratov, Electronic structure of twisted graphene flakes. Phys. Rev. B 87, 075433 (2013). https://doi.org/10.1103/PhysRevB.87.075433
- T. Ohta, J.T. Robinson, P.J. Feibelman, A. Bostwick, E. Rotenberg, T.E. Beechem, Evidence for interlayer coupling and moiré periodic potentials in twisted bilayer graphene. Phys. Rev. Lett. 109, 186807 (2012). https://doi.org/10.1103/PhysRevLett.109.186807
- W. Yan, L. Meng, M.X. Liu, J.B. Qiao, Z.D. Chu et al., Angle-dependent van Hove singularities and their breakdown in twisted graphene bilayers. Phys. Rev. B 90, 115402 (2014). https://doi.org/10.1103/PhysRevB.90.115402
- A. Luican, G.H. Li, A. Reina, J. Kong, R.R. Nair, K.S. Novoselov, A.K. Geim, E.Y. Andrei, Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802 (2011). https://doi.org/10.1103/PhysRevLett.106.126802
- S. Coh, L.Z. Tan, S.G. Louie, M.L. Cohen, Theory of the Raman spectrum of rotated double-layer graphene. Phys. Rev. B 88, 165431 (2013). https://doi.org/10.1103/PhysRevB.88.165431
- K. Sato, R. Saito, C.X. Cong, T. Yu, M.S. Dresselhaus, Zone folding effect in Raman G-band intensity of twisted bilayer graphene. Phys. Rev. B 86, 125414 (2012). https://doi.org/10.1103/PhysRevB.86.125414
- P. Poncharal, A. Ayari, T. Michel, J.L. Sauvajol, Raman spectra of misoriented bilayer graphene. Phys. Rev. B 78, 113407 (2008). https://doi.org/10.1103/PhysRevB.78.113407
- Z.H. Ni, Y.Y. Wang, T. Yu, Y.M. You, Z.X. Shen, Reduction of fermi velocity in folded graphene observed by resonance Raman spectroscopy. Phys. Rev. B 77, 235403 (2008). https://doi.org/10.1103/PhysRevB.77.235403
- Y.Y. Wang, Z.H. Ni, L. Liu, Y.H. Liu, C.X. Cong et al., Stacking-dependent optical conductivity of bilayer graphene. ACS Nano 4(7), 4074–4080 (2010). https://doi.org/10.1021/nn1004974
- I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly de Laissardière, M.M. Ugeda et al., Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 109, 196802 (2012). https://doi.org/10.1103/PhysRevLett.109.196802
- F. Symalla, S. Shallcross, I. Beljakov, K. Fink, W. Wenzel, V. Meded, Band-gap engineering with a twist: formation of intercalant superlattices in twisted graphene bilayers. Phys. Rev. B 91, 205412 (2015). https://doi.org/10.1103/PhysRevB.91.205412
- D. Wong, Y. Wang, J. Jung, S. Pezzini, A.M. DaSilva et al., Crommie, local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene. Phys. Rev. B 92, 155409 (2015). https://doi.org/10.1103/PhysRevB.92.155409
- J.B. Wu, M.L. Lin, X. Cong, H.N. Liua, P.H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47, 1822 (2018). https://doi.org/10.1039/c6cs00915h
- H. Nishi, Y. Matsushita, A. Oshiyama, Band-unfolding approach to moiré-induced band-gap opening and Fermi level velocity reduction in twisted bilayer graphene. Phys. Rev. B 95, 085420 (2017). https://doi.org/10.1103/PhysRevB.95.085420
- K. Uchida, S. Furuya, J.I. Iwata, A. Oshiyama, Atomic corrugation and electron localization due to moiré patterns in twisted bilayer graphenes. Phys. Rev. B 90, 155451 (2014). https://doi.org/10.1103/PhysRevB.90.155451
- A. Ferrari, D. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nano 8, 235–246 (2013). https://doi.org/10.1038/NNANO.2013.46
- L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
- L.M. Malard, J. Nilsson, D.C. Elias, J.C. Brant, F. Plentz, E.S. Alves, A.H. Castro Neto, M.A. Pimenta, Probing the electronic structure of bilayer graphene by Raman scattering. Phys. Rev. B 76, 201401(R) (2007). https://doi.org/10.1103/PhysRevB.76.201401
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
- R. Saito, A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta, Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys. Rev. Lett. 88, 027401 (2001). https://doi.org/10.1103/PhysRevLett.88.027401
- C. Thomsen, S. Reich, Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85(24), 5214–5217 (2000). https://doi.org/10.1103/PhysRevLett.85.5214
- V. Carozo, C.M. Almeida, E.H.M. Ferreira, L.G. Cancado, C.A. Achete, A. Jorio, Raman signature of graphene superlattices. Nano Lett. 11, 4527–4534 (2011). https://doi.org/10.1021/nl201370m
- J.B. Wu, X. Zhang, M. Ijäs, W.P. Han, X.F. Qiao et al., Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 5, 5309 (2014). https://doi.org/10.1038/ncomms6309
- J. Campos-Delgado, L.G. Cançado, C.A. Achete, A. Jorio, J.P. Raskin, Raman scattering study of the phonon dispersion in twisted bilayer graphene. Nano Res. 6, 269–274 (2013). https://doi.org/10.1007/s12274-013-0304-z
- J.B. Wu, H. Wang, X.L. Li, H.L. Peng, P.H. Tan, Raman spectroscopic characterization of stacking configuration and interlayer coupling of twisted multilayer graphene grown by chemical vapor deposition. Carbon 110, 225–231 (2016). https://doi.org/10.1016/j.carbon.2016.09.006
- C.H. Lui, L.M. Malard, S. Kim, G. Lantz, F.E. Laverge, R. Saito, T.F. Heinz, Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 12, 5539–5544 (2012). https://doi.org/10.1021/nl302450s
- R. He, T.F. Chung, C. Delaney, C. Keiser, L.A. Jauregui et al., Observation of low energy Raman modes in twisted bilayer graphene. Nano Lett. 13, 3594–3601 (2013). https://doi.org/10.1021/nl4013387
- A.K. Gupta, Y.J. Tang, V.H. Crespi, P.C. Eklund, Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene. Phys. Rev. B 82, 241406(R) (2010). https://doi.org/10.1103/PhysRevB.82.241406
- A. Jorio, M. Kasperczyk, N. Clark, E. Neu, P. Maletinsky, A. Vijayaraghavan, L. Novotny, Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene. Nano Lett. 14, 5687–5692 (2014). https://doi.org/10.1021/nl502412g
- R.W. Havener, H. Zhuang, L. Brown, R.G. Hennig, J. Park, Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 12, 3162–3167 (2012). https://doi.org/10.1021/nl301137k
- J. Hass, F. Varchon, J.E. Millán-Otoya, M. Sprinkle, N. Sharma et al., Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008). https://doi.org/10.1103/PhysRevLett.100.125504
- R. Bistritzer, A.H. MacDonald, Moiré bands in twisted double-layer graphene. PNAS 108(30), 12233–12237 (2011). https://doi.org/10.1073/pnas.1108174108
- J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Continuum model of the twisted graphene bilayer. Phys. Rev. B 86, 155449 (2012). https://doi.org/10.1103/PhysRevB.86.155449
- M. Koshino, Stacking-dependent optical absorption in multilayer graphene. N. J. Phys. 15, 015010 (2013). https://doi.org/10.1088/1367-2630/15/1/015010
- Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. Phys. Rev. Lett. 102, 037403 (2009). https://doi.org/10.1103/PhysRevLett.102.037403
- K.F. Mak, M.Y. Sfeir, J.A. Misewich, T.F. Heinz, The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. PNAS 107(34), 14999–15004 (2010). https://doi.org/10.1073/pnas.1004595107
- Y.B. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009). https://doi.org/10.1038/nature08105
- H.A. Le, V.N. Do, Electronic structure and optical properties of twisted bilayer graphene calculated via time evolution of states in real space. Phys. Rev. B 97, 125136 (2018). https://doi.org/10.1103/PhysRevB.97.125136
- K. Yu, N.V. Luan, T. Kim, J. Jeon, J. Kim, P. Moon, Y.H. Lee, E.J. Choi, Gate tunable optical absorption and band structure of twisted bilayer graphene. Phys. Rev. B 99, 241405(R) (2019). https://doi.org/10.1103/PhysRevB.99.241405
- C.J. Tabert, E.J. Nicol, Optical conductivity of twisted bilayer graphene. Phys. Rev. B 87, 121402(R) (2013). https://doi.org/10.1103/PhysRevB.87.121402
- P. Moon, M. Koshino, Optical absorption in twisted bilayer graphene. Phys. Rev. B 87, 205404 (2013). https://doi.org/10.1103/PhysRevB.87.205404
- H. Patel, L. Huang, C.J. Kim, J. Park, M.W. Graham, Stacking angle-tunable photoluminescence from interlayer exciton states in twisted bilayer graphene. Nat. Commun. 10, 1445 (2019). https://doi.org/10.1038/s41467-019-09097-x
- F. Xia, T. Mueller, R.G. Mojarad, M. Freitag, Y.M. Lin, J. Tsang, V. Perebeinos, P. Avouris, Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9(3), 1039–1044 (2009). https://doi.org/10.1021/nl8033812
- T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris, Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B 79, 245430 (2009). https://doi.org/10.1103/PhysRevB.79.245430
- U. Mogera, R. Dhanya, R. Pujar, C. Narayana, G.U. Kulkarni, Highly decoupled graphene multilayers: turbostraticity at its best. J. Phys. Chem. Lett. 6, 4437–4443 (2015). https://doi.org/10.1021/acs.jpclett.5b02145
- U. Mogera, S. Walia, B. Bannur, M. Gedda, G.U. Kulkarni, Intrinsic nature of graphene revealed in temperature-dependent transport of twisted multilayer graphene. J. Phys. Chem. C 121, 13938–13943 (2017). https://doi.org/10.1021/acs.jpcc.7b04068
- Z.W. Yu, A. Song, L.Z. Sun, Y. Li, L. Gao et al., Understanding interlayer contact conductance in twisted bilayer graphene. Small (2019). https://doi.org/10.1002/smll.201902844
- L. Brown, R. Hovden, P. Huang, M. Wojcik, D.A. Muller, J. Park, Twinning and twisting of tri- and bilayer graphene. Nano Lett. 12, 1609–1615 (2012). https://doi.org/10.1021/nl204547v
- H. Polshyn, M. Yankowitz, S.W. Chen, Y.X. Zhang, K. Watanabe, T. Taniguchi, C.R. Dean, A.F. Young, Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019). https://doi.org/10.1038/s41567-019-0596-3
- L.J. Yin, J.B. Qiao, W.X. Wang, W.J. Zuo, W. Yan et al., Landau quantization and Fermi velocity renormalization in twisted graphene bilayers. Phys. Rev. B 92, 201408(R) (2015). https://doi.org/10.1103/PhysRevB.92.201408
- J. Wang, X. Mu, L. Wang, M. Sun, Properties and applications of new superlattice: twisted bilayer graphene. Mater. Today Phys. 9, 100099 (2019). https://doi.org/10.1016/j.mtphys.2019.100099
- B. Deng, B.B. Wang, N. Li, R. Li, Y. Wang et al., Interlayer decoupling in 30° twisted bilayer graphene quasicrystal. ACS Nano 14, 1656–1664 (2020). https://doi.org/10.1021/acsnano.9b07091
- Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P.J. Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). https://doi.org/10.1038/nature26160
- Y. Cao, J.Y. Luo, V. Fatemi, S. Fang, J.D. Sanchez-Yamagishi et al., Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016). https://doi.org/10.1126/science.aav1910
- M. Yankowitz, S.W. Chen, H. Polshyn, Y.X. Zhang, K. Watanabe et al., Tuning superconductivity in twisted bilayer graphene. Science 363(6431), 1059–1064 (2019). https://doi.org/10.1073/pnas.1108174108
- E. Codecido, Q.Y. Wang, R. Koester, S. Che, H.D. Tian, Correlated insulating and superconducting states in twisted bilayer graphene below the magic. Sci. Adv. 5(9), eaaw9770 (2019). https://doi.org/10.1126/sciadv.aaw9770
- F. Hu, S.R. Das, Y. Luan, T.F. Chung, Y.P. Chen, Z. Fei, Real-space imaging of the tailored plasmons in twisted bilayer graphene. Phys. Rev. Lett. 119, 247402 (2017). https://doi.org/10.1103/PhysRevLett.119.247402
- Y. Cao, D. Chowdhury, D.R. Legrain, O.R. Bigorda, K. Watanabe et al., Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020). https://doi.org/10.1103/PhysRevLett.124.076801
- L.A. Ponomarenko, R.V. Gorbachev, G.L. Yu, D.C. Elias, R. Jalil et al., Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013). https://doi.org/10.1038/nature12187
- C.R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari et al., Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013). https://doi.org/10.1038/nature12186
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
M. Tahriri, M. Del Monico, A. Moghanian, M.T. Yaraki, R. Torres, A. Yadegari, L. Tayebi, Graphene and its derivatives: opportunities and challenges in dentistry. Mater. Sci. Eng. C 102, 171–185 (2019). https://doi.org/10.1016/j.msec.2019.04.051
Z. Peng, Z. Yan, Z. Sun, J.M. Tour, Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel. ACS Nano 5(10), 8241–8247 (2011). https://doi.org/10.1021/nn202923y
A.I. Cocemasov, D.L. Nika, A.A. Balandin, Phonons in twisted bilayer graphene. Phys. Rev. B 88, 035428 (2013). https://doi.org/10.1103/PhysRevB.88.035428
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). https://doi.org/10.1038/nature04233
Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). https://doi.org/10.1038/nature04235
M. Freitag, H.Y. Chiu, M. Steiner, V. Perebeinos, P. Avouris, Thermal infrared emission from biased graphene. Nat. Nanotechnol. 5, 497–501 (2010). https://doi.org/10.1038/NNANO.2010.90
C. Xu, H. Li, K. Banerjee, Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Dev. 56, 8 (2009). https://doi.org/10.1109/TED.2009.2024254
W. Liu, S. Kraemer, D. Sarkar, H. Li, P.M. Ajayan, K. Banerjee, Controllable and rapid synthesis of high-quality and large-areabernal stacked bilayer graphene using chemical vapor deposition. Chem. Mater. 26(2), 907–915 (2014). https://doi.org/10.1021/cm4021854
S.Y. Dai, Y. Xiang, D.J. Srolovitz, Twisted bilayer graphene: moiré with a twist. Nano Lett. 16, 5923–5927 (2016). https://doi.org/10.1021/acs.nanolett.6b02870
J. Hicks, M. Sprinkle, K. Shepperd, F. Wang, Symmetry breaking in commensurate graphene rotational stacking: comparison of theory and experiment. Phys. Rev. B 83, 205403 (2011). https://doi.org/10.1103/PhysRevB.83.205403
E.S. Morell, P. Vargas, Charge redistribution and interlayer coupling in twisted bilayer graphene under electric fields. Phys. Rev. B 84, 195421 (2011). https://doi.org/10.1103/PhysRevB.84.195421
G. Tarnopolsky, A.J. Kruchkov, A. Vishwanath, Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019). https://doi.org/10.1103/PhysRevLett.122.106405
M. Anđelković, L. Covaci, F.M. Peeters, DC conductivity of twisted bilayer graphene: angle-dependent transport properties and effects of disorder. Phys. Rev. Mater. 2, 034004 (2018). https://doi.org/10.1103/PhysRevMaterials.2.034004
E.J. Mele, Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405(R) (2010). https://doi.org/10.1103/PhysRevB.81.161405
B.L. Huang, C.P. Chuu, M.F. Lin, Asymmetry-enriched electronic and optical properties of bilayer graphene. Sci. Rep. 9, 859 (2019). https://doi.org/10.1038/s41598-018-37058-9
C.Y. Lin, J.Y. Wu, Y.H. Chiu, C.P. Chang, M.F. Lin, Stacking-dependent magnetoelectronic properties in multilayer graphene. Phys. Rev. B 90, 205434 (2014). https://doi.org/10.1103/PhysRevB.90.205434
D.S. Lee, C. Riedl, T. Beringer, A.H.C. Neto, K.V. Klitzing, U. Starke, J.H. Smet, Quantum hall effect in twisted bilayer graphene. Phys. Rev. Lett. 107, 216602 (2011). https://doi.org/10.1103/PhysRevLett.107.216602
C.C. Lu, Y.C. Lin, Z. Liu, C.H. Yeh, K. Suenaga, P.W. Chiu, Twisting bilayer graphene superlattices. ACS Nano 7(3), 2587–2594 (2013). https://doi.org/10.1021/nn3059828
J.M.B. Lopes dos Santos, N.M.R. Peres, A.H.C. Neto, Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007). https://doi.org/10.1103/PhysRevLett.99.256802
A.O. Sboychakov, A.L. Rakhmanov, A.V. Rozhkov, F. Nori, Electronic spectrum of twisted bilayer graphene. Phys. Rev. B 92, 075402 (2015). https://doi.org/10.1103/PhysRevB.92.075402
W. Yan, W.Y. He, Z.D. Chu, M.X. Liu, L. Meng et al., Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat. Commun. 4, 2159 (2013). https://doi.org/10.1038/ncomms3159
J.S. Alden, A.W. Tsen, P.Y. Huang, R. Hovden, L. Brown, J.W. Park, D.A. Muller, P.L. McEuen, Strain solitons and topological defects in bilayer graphene. PNAS 110(28), 11256–11260 (2013). https://doi.org/10.1073/pnas.1309394110
K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H.C.P. Movva et al., van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16(3), 1989–1995 (2016). https://doi.org/10.1021/acs.nanolett.5b05263
L.J. Yin, H. Jiang, J.B. Qiao, L. He, Direct imaging of topological edge states at a bilayer graphene domain wall. Nat. Commun. 7, 11760 (2016). https://doi.org/10.1038/ncomms11760
L. Huder, A. Artaud, T.L. Quang, G.T. de Laissardière, A.G.M. Jansen, G. Lapertot, C. Chapelier, V.T. Renard, Electronic spectrum of twisted graphene layers under heterostrain. Phys. Rev. Lett. 120, 156405 (2018). https://doi.org/10.1103/PhysRevLett.120.156405
J.B. Qiao, L.J. Yin, L. He, Twisted graphene bilayer around the first magic angle engineered by heterostrain. Phys. Rev. B 98, 235402 (2018). https://doi.org/10.1103/PhysRevB.98.235402
L. Liao, H. Wang, H. Peng, J.B. Yin, A.L. Koh, Y.L. Chen, Q. Xie, H.L. Peng, Z.F. Liu, van Hove singularity enhanced photochemical reactivity of twisted bilayer graphene. Nano Lett. 15(8), 5585–5589 (2015). https://doi.org/10.1021/acs.nanolett.5b02240
C.R. Woods, L. Britnell, A. Eckmann, R.S. Ma, J.C. Lu, H.M. Guo et al., Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014). https://doi.org/10.1038/NPHYS2954
Q. Ye, J. Wang, Z.B. Liu, Z.C. Deng, X.T. Kong et al., Polarization-dependent optical absorption of graphene under total internal reflection. Appl. Phys. Lett. 102, 021912 (2013). https://doi.org/10.1063/1.4776694
R.W. Havener, Y.F. Liang, L. Brown, L. Yang, J. Park, Van Hove singularities and excitonic effects in the optical conductivity of twisted bilayer graphene. Nano Lett. 14, 3353–3357 (2014). https://doi.org/10.1021/nl500823k
M.D. Corato, C. Cocchi, D. Prezzi, M.J. Caldas, E. Molinari, A. Ruini, Optical properties of bilayer graphene nanoflakes. J. Phys. Chem. C 118(40), 23219–23225 (2014). https://doi.org/10.1021/jp504222m
S.K. Jain, V. Juričić, G.T. Barkema, Structure of twisted and buckled bilayer graphene. 2D Mater. 4, 015018 (2017). https://doi.org/10.1088/2053-1583/4/1/015018
S. Shallcross, S. Sharma, O.A. Pankratov, Quantum interference at the twist boundary in graphene. Phys. Rev. Lett. 101, 056803 (2008). https://doi.org/10.1103/PhysRevLett.101.056803
R. de Gail, M.O. Goerbig, F. Guinea, G. Montambaux, A.H.C. Neto, Topologically protected zero modes in twisted bilayer graphene. Phys. Rev. B 84, 045436 (2011). https://doi.org/10.1103/PhysRevB.84.045436
R. Bistritzer, A.H. MacDonald, Moiré butterflies in twisted bilayer graphene. Phys. Rev. B 84, 035440 (2011). https://doi.org/10.1103/PhysRevB.84.035440
G.T. de Laissardie`re, D. Mayou, L. Magaud, Localization of dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010). https://doi.org/10.1021/nl902948m
L. Meng, W. Yan, L.J. Yin, Z.D. Chu, Y.F. Zhang, L. Feng, R. Dou, J. Nie, Tuning the interlayer coupling of the twisted bilayer graphene by molecular adsorption. J. Phys. Chem. C 118, 6462–6466 (2014). https://doi.org/10.1021/jp4109915
W. Yan, M.X. Liu, R.F. Dou, L. Meng, L. Feng et al., Angle-dependent van Hove Singularities in a slightly twisted graphene bilayer. Phys. Rev. Lett. 109, 126801 (2012). https://doi.org/10.1103/PhysRevLett.109.126801
V.H. Nguyen, P. Dollfus, Strain-induced modulation of Dirac cones and van Hove singularities in twisted graphene bilayer. 2D Mater. 2, 035005 (2015). https://doi.org/10.1088/2053-1583/2/3/035005
J.D.S.Y. Taniguchi, A. Yacoby, P. Jarillo-Herrero, Quantum hall effect, screening, and layer-polarized insulating states in twisted bilayer graphene. Phys. Rev. Lett. 108, 076601 (2012). https://doi.org/10.1103/PhysRevLett.108.076601
M. Zarenia, I. Yudhistira, S. Adam, G. Vignale, Enhanced hydrodynamic transport in near magic angle twisted bilayer graphene. Phys. Rev. B 101, 045421 (2020). https://doi.org/10.1103/PhysRevB.101.045421
Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). https://doi.org/10.1038/nature26154
B. Lian, Z.J. Wang, B.A. Bernevig, Twisted bilayer graphene: a phonon-driven superconductor. Phys. Rev. Lett. 122, 257002 (2019). https://doi.org/10.1103/PhysRevLett.122.257002
N.F.Q. Yuan, L. Fu, Model for the metal-insulator transition in graphene superlattices and beyond. Phys. Rev. B 98, 045103 (2018). https://doi.org/10.1103/PhysRevB.98.045103
H.C. Po, L.J. Zou, A. Vishwanath, T. Senthil, Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018). https://doi.org/10.1103/PhysRevX.8.031089
C. Xu, L. Balents, Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett. 121, 087001 (2018). https://doi.org/10.1103/PhysRevLett.121.087001
B. Roy, V. Juričić, Unconventional superconductivity in nearly flat bands in twisted bilayer graphene. Phys. Rev. B 99, 121407(R) (2019). https://doi.org/10.1103/PhysRevB.99.121407
G.E. Volovik, Graphite, graphene and the flat band superconductivity. JETP Lett. 107, 516 (2018). https://doi.org/10.1134/S0021364018080052
B. Padhi, C. Setty, P.W. Phillips, Doped twisted bilayer graphene near magic angles: proximity to Wigner crystallization, not Mott insulation. Nano Lett. 18, 6175 (2018). https://doi.org/10.1021/acs.nanolett.8b02033
J.F. Dodaro, S.A. Kivelson, Y. Schattner, X.Q. Sun, C. Wang, Phases of a phenomenological model of twisted bilayer graphene. Phys. Rev. B 98, 075154 (2018). https://doi.org/10.1103/PhysRevB.98.075154
G. Baskaran, Theory of emergent Josephson lattice in neutral twisted bilayer graphene (moiŕe is different). arXiv:1804.00627
F.C. Wu, A.H. MacDonald, I. Martin, Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018). https://doi.org/10.1103/PhysRevLett.121.257001
H. Isobe, N.F.Q. Yuan, L. Fu, Unconventional superconductivity and density waves in twisted bilayer graphene. Phys. Rev. X 8, 041041 (2018). https://doi.org/10.1103/PhysRevX.8.041041
T.Y. Huang, L.F. Zhang, T.X. Ma, Antiferromagnetically ordered mott insulator and d + id superconductivity in twisted bilayer graphene: a quantum monte carlo study. Sci. Bull. 64, 310 (2019). https://doi.org/10.1016/j.scib.2019.01.026
Y.Z. You, A. Vishwanath, Superconductivity from valley fluctuations and approximate SO(4) symmetry in a weak coupling theory of twisted bilayer graphene. NPJ Quantum Mater. 4, 16 (2019). https://doi.org/10.1038/s41535-019-0153-4
X.C. Wu, K.A. Pawlak, C.M. Jian, C.K. Xu, Emergent superconductivity in the weak Mott insulator phase of bilayer graphene Moiŕe superlattice. arXiv:1805.06906
Y.H. Zhang, D. Mao, Y. Cao, P.J. Herrero, T. Senthil, Nearly flat chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019). https://doi.org/10.1103/PhysRevB.99.075127
J. Kang, O. Vafek, Maximally localized Wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X 8, 031088 (2018). https://doi.org/10.1103/PhysRevX.8.031088
M. Koshino, N.F.Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki, L. Fu, Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018). https://doi.org/10.1103/PhysRevX.8.031087
D.M. Kennes, J. Lischner, C. Karrasch, Strong correlations and d + id superconductivity in twisted bilayer graphene. Phys. Rev. B 98, 241407(R) (2018). https://doi.org/10.1103/PhysRevB.98.241407
L. Zhang, Lowest-energy moire band formed by Dirac zero modes in twisted bilayer graphene. Sci. Bull. 64, 495 (2019). https://doi.org/10.1016/j.scib.2019.03.010
J.M. Pizarro, M.J. Calderón, E. Bascones, The nature of correlations in the insulating states of twisted bilayer graphene. J. Phys. Commun. 3, 035024 (2019). https://doi.org/10.1088/2399-6528/ab0fa9
F. Guineaa, N.R. Walet, Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proc. Natl. Acad. Sci. U. S. A. 115, 13174 (2018). https://doi.org/10.1073/pnas.1810947115
L.J. Zou, H.C. Po, A. Vishwanath, T. Senthil, Band structure of twisted bilayer graphene: emergent symmetries, commensurate approximants, and Wannier obstructions. Phys. Rev. B 98, 085435 (2018). https://doi.org/10.1103/PhysRevB.98.085435
M.P. Lima, J.E. Padilha, R.B. Pontes, A. Fazzio, A.J.R. Silva, Stacking-dependent transport properties in few-layers graphene. Solid State Commun. 250, 70–74 (2017). https://doi.org/10.1016/j.ssc.2016.11.012
C.X. Cong, T. Yu, Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers. Nat. Commun. 5, 4709 (2014). https://doi.org/10.1038/ncomms5709
K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008). https://doi.org/10.1021/nl071822y
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. PNAS 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
C. Virojanadara, M. Syväjarvi, R. Yakimova, L.I. Johansson, A.A. Zakharov, T. Balasubramanian, Homogeneous large-area graphene layer growth on 6H-SiC(0001). Phys. Rev. B 78, 245403 (2008). https://doi.org/10.1103/PhysRevB.78.245403
C. Berger, Z.M. Song, X.B. Li, X.S. Wu, N. Brown et al., Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006). https://doi.org/10.1126/science.1125925
X. Li, W.W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009). https://doi.org/10.1126/science.1171245
Y.C. Chen, W.H. Lin, W.S. Tseng, C.C. Chen, G.R. Rossman, C.D. Chen, Y.S. Wu, N.C. Yeh, Direct growth of mm-size twisted bilayer graphene by plasma-enhanced chemical vapor deposition. Carbon 156, 212–224 (2020). https://doi.org/10.1016/j.carbon.2019.09.052
J.T. Robinson, S.W. Schmucker, C.B. Diaconescu, J.P. Long, J.C. Culbertson, T. Ohta, A.L. Friedman, T.E. Beechem, Electronic hybridization of large-area stacked graphene films. ACS Nano 7(1), 637–644 (2013). https://doi.org/10.1021/nn304834p
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). https://doi.org/10.1038/nature07719
A. Reina, X.T. Jia, J. Ho, D. Nezich, H. Son et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009). https://doi.org/10.1021/nl801827v
S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/NNANO.2010.132
K. Kim, A. DaSilva, S.Q. Huang, B. Fallahazad, S. Larentis et al., Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. PNAS 114(13), 3364–3369 (2017). https://doi.org/10.1073/pnas.1620140114
L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao et al., One dimensional electrical contact to a two-dimensional material. Science 342(6158), 614–617 (2013). https://doi.org/10.1126/science.1244358
X.D. Chen, W. Xin, W.S. Jiang, Z.B. Liu, Y.S. Chen, J.G. Tian, High-precision twist-controlled bilayer and trilayer graphene. Adv. Mater. 28, 2563–2570 (2016). https://doi.org/10.1002/adma.201505129
B. Wang, M. Huang, N.Y. Kim, B.V. Cunning, Y. Huang et al., Controlled folding of single crystal graphene. Nano Lett. 17, 1467–1473 (2017). https://doi.org/10.1021/acs.nanolett.6b04459
L. Ju, Z.W. Shi, N. Nair, Y. Lv, C.H. Jin et al., Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015). https://doi.org/10.1038/nature14364
A. Thomson, S. Chatterjee, S. Sachdev, M.S. Scheurer, Triangular antiferromagnetism on the honeycomb lattice of twisted bilayer graphene. Phys. Rev. B 98, 075109 (2018). https://doi.org/10.1103/PhysRevB.98.075109
T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313(5789), 951–954 (2006). https://doi.org/10.1126/science.1130681
J.B. Yin, H. Wang, H. Peng, Z.J. Tan, L. Liao et al., Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat. Commun. 7, 10699 (2016). https://doi.org/10.1038/ncomms10699
S. Shallcross, S. Sharma, O. Pankratov, Emergent momentum scale, localization, and van Hove singularities in the graphene twist bilayer. Phys. Rev. B 87, 245403 (2013). https://doi.org/10.1103/PhysRevB.87.245403
S. Shallcross, S. Sharma, E. Kandelaki, O.A. Pankratov, Electronic structure of turbostratic graphene. Phys. Rev. B 81, 1 (2010). https://doi.org/10.1103/PhysRevB.81.165105
W. Landgraf, S. Shallcross, K. Türschmann, D. Weckbecker, O. Pankratov, Electronic structure of twisted graphene flakes. Phys. Rev. B 87, 075433 (2013). https://doi.org/10.1103/PhysRevB.87.075433
T. Ohta, J.T. Robinson, P.J. Feibelman, A. Bostwick, E. Rotenberg, T.E. Beechem, Evidence for interlayer coupling and moiré periodic potentials in twisted bilayer graphene. Phys. Rev. Lett. 109, 186807 (2012). https://doi.org/10.1103/PhysRevLett.109.186807
W. Yan, L. Meng, M.X. Liu, J.B. Qiao, Z.D. Chu et al., Angle-dependent van Hove singularities and their breakdown in twisted graphene bilayers. Phys. Rev. B 90, 115402 (2014). https://doi.org/10.1103/PhysRevB.90.115402
A. Luican, G.H. Li, A. Reina, J. Kong, R.R. Nair, K.S. Novoselov, A.K. Geim, E.Y. Andrei, Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802 (2011). https://doi.org/10.1103/PhysRevLett.106.126802
S. Coh, L.Z. Tan, S.G. Louie, M.L. Cohen, Theory of the Raman spectrum of rotated double-layer graphene. Phys. Rev. B 88, 165431 (2013). https://doi.org/10.1103/PhysRevB.88.165431
K. Sato, R. Saito, C.X. Cong, T. Yu, M.S. Dresselhaus, Zone folding effect in Raman G-band intensity of twisted bilayer graphene. Phys. Rev. B 86, 125414 (2012). https://doi.org/10.1103/PhysRevB.86.125414
P. Poncharal, A. Ayari, T. Michel, J.L. Sauvajol, Raman spectra of misoriented bilayer graphene. Phys. Rev. B 78, 113407 (2008). https://doi.org/10.1103/PhysRevB.78.113407
Z.H. Ni, Y.Y. Wang, T. Yu, Y.M. You, Z.X. Shen, Reduction of fermi velocity in folded graphene observed by resonance Raman spectroscopy. Phys. Rev. B 77, 235403 (2008). https://doi.org/10.1103/PhysRevB.77.235403
Y.Y. Wang, Z.H. Ni, L. Liu, Y.H. Liu, C.X. Cong et al., Stacking-dependent optical conductivity of bilayer graphene. ACS Nano 4(7), 4074–4080 (2010). https://doi.org/10.1021/nn1004974
I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly de Laissardière, M.M. Ugeda et al., Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 109, 196802 (2012). https://doi.org/10.1103/PhysRevLett.109.196802
F. Symalla, S. Shallcross, I. Beljakov, K. Fink, W. Wenzel, V. Meded, Band-gap engineering with a twist: formation of intercalant superlattices in twisted graphene bilayers. Phys. Rev. B 91, 205412 (2015). https://doi.org/10.1103/PhysRevB.91.205412
D. Wong, Y. Wang, J. Jung, S. Pezzini, A.M. DaSilva et al., Crommie, local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene. Phys. Rev. B 92, 155409 (2015). https://doi.org/10.1103/PhysRevB.92.155409
J.B. Wu, M.L. Lin, X. Cong, H.N. Liua, P.H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47, 1822 (2018). https://doi.org/10.1039/c6cs00915h
H. Nishi, Y. Matsushita, A. Oshiyama, Band-unfolding approach to moiré-induced band-gap opening and Fermi level velocity reduction in twisted bilayer graphene. Phys. Rev. B 95, 085420 (2017). https://doi.org/10.1103/PhysRevB.95.085420
K. Uchida, S. Furuya, J.I. Iwata, A. Oshiyama, Atomic corrugation and electron localization due to moiré patterns in twisted bilayer graphenes. Phys. Rev. B 90, 155451 (2014). https://doi.org/10.1103/PhysRevB.90.155451
A. Ferrari, D. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nano 8, 235–246 (2013). https://doi.org/10.1038/NNANO.2013.46
L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
L.M. Malard, J. Nilsson, D.C. Elias, J.C. Brant, F. Plentz, E.S. Alves, A.H. Castro Neto, M.A. Pimenta, Probing the electronic structure of bilayer graphene by Raman scattering. Phys. Rev. B 76, 201401(R) (2007). https://doi.org/10.1103/PhysRevB.76.201401
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
R. Saito, A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta, Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys. Rev. Lett. 88, 027401 (2001). https://doi.org/10.1103/PhysRevLett.88.027401
C. Thomsen, S. Reich, Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85(24), 5214–5217 (2000). https://doi.org/10.1103/PhysRevLett.85.5214
V. Carozo, C.M. Almeida, E.H.M. Ferreira, L.G. Cancado, C.A. Achete, A. Jorio, Raman signature of graphene superlattices. Nano Lett. 11, 4527–4534 (2011). https://doi.org/10.1021/nl201370m
J.B. Wu, X. Zhang, M. Ijäs, W.P. Han, X.F. Qiao et al., Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 5, 5309 (2014). https://doi.org/10.1038/ncomms6309
J. Campos-Delgado, L.G. Cançado, C.A. Achete, A. Jorio, J.P. Raskin, Raman scattering study of the phonon dispersion in twisted bilayer graphene. Nano Res. 6, 269–274 (2013). https://doi.org/10.1007/s12274-013-0304-z
J.B. Wu, H. Wang, X.L. Li, H.L. Peng, P.H. Tan, Raman spectroscopic characterization of stacking configuration and interlayer coupling of twisted multilayer graphene grown by chemical vapor deposition. Carbon 110, 225–231 (2016). https://doi.org/10.1016/j.carbon.2016.09.006
C.H. Lui, L.M. Malard, S. Kim, G. Lantz, F.E. Laverge, R. Saito, T.F. Heinz, Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 12, 5539–5544 (2012). https://doi.org/10.1021/nl302450s
R. He, T.F. Chung, C. Delaney, C. Keiser, L.A. Jauregui et al., Observation of low energy Raman modes in twisted bilayer graphene. Nano Lett. 13, 3594–3601 (2013). https://doi.org/10.1021/nl4013387
A.K. Gupta, Y.J. Tang, V.H. Crespi, P.C. Eklund, Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene. Phys. Rev. B 82, 241406(R) (2010). https://doi.org/10.1103/PhysRevB.82.241406
A. Jorio, M. Kasperczyk, N. Clark, E. Neu, P. Maletinsky, A. Vijayaraghavan, L. Novotny, Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene. Nano Lett. 14, 5687–5692 (2014). https://doi.org/10.1021/nl502412g
R.W. Havener, H. Zhuang, L. Brown, R.G. Hennig, J. Park, Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 12, 3162–3167 (2012). https://doi.org/10.1021/nl301137k
J. Hass, F. Varchon, J.E. Millán-Otoya, M. Sprinkle, N. Sharma et al., Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008). https://doi.org/10.1103/PhysRevLett.100.125504
R. Bistritzer, A.H. MacDonald, Moiré bands in twisted double-layer graphene. PNAS 108(30), 12233–12237 (2011). https://doi.org/10.1073/pnas.1108174108
J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Continuum model of the twisted graphene bilayer. Phys. Rev. B 86, 155449 (2012). https://doi.org/10.1103/PhysRevB.86.155449
M. Koshino, Stacking-dependent optical absorption in multilayer graphene. N. J. Phys. 15, 015010 (2013). https://doi.org/10.1088/1367-2630/15/1/015010
Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. Phys. Rev. Lett. 102, 037403 (2009). https://doi.org/10.1103/PhysRevLett.102.037403
K.F. Mak, M.Y. Sfeir, J.A. Misewich, T.F. Heinz, The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. PNAS 107(34), 14999–15004 (2010). https://doi.org/10.1073/pnas.1004595107
Y.B. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009). https://doi.org/10.1038/nature08105
H.A. Le, V.N. Do, Electronic structure and optical properties of twisted bilayer graphene calculated via time evolution of states in real space. Phys. Rev. B 97, 125136 (2018). https://doi.org/10.1103/PhysRevB.97.125136
K. Yu, N.V. Luan, T. Kim, J. Jeon, J. Kim, P. Moon, Y.H. Lee, E.J. Choi, Gate tunable optical absorption and band structure of twisted bilayer graphene. Phys. Rev. B 99, 241405(R) (2019). https://doi.org/10.1103/PhysRevB.99.241405
C.J. Tabert, E.J. Nicol, Optical conductivity of twisted bilayer graphene. Phys. Rev. B 87, 121402(R) (2013). https://doi.org/10.1103/PhysRevB.87.121402
P. Moon, M. Koshino, Optical absorption in twisted bilayer graphene. Phys. Rev. B 87, 205404 (2013). https://doi.org/10.1103/PhysRevB.87.205404
H. Patel, L. Huang, C.J. Kim, J. Park, M.W. Graham, Stacking angle-tunable photoluminescence from interlayer exciton states in twisted bilayer graphene. Nat. Commun. 10, 1445 (2019). https://doi.org/10.1038/s41467-019-09097-x
F. Xia, T. Mueller, R.G. Mojarad, M. Freitag, Y.M. Lin, J. Tsang, V. Perebeinos, P. Avouris, Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9(3), 1039–1044 (2009). https://doi.org/10.1021/nl8033812
T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris, Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B 79, 245430 (2009). https://doi.org/10.1103/PhysRevB.79.245430
U. Mogera, R. Dhanya, R. Pujar, C. Narayana, G.U. Kulkarni, Highly decoupled graphene multilayers: turbostraticity at its best. J. Phys. Chem. Lett. 6, 4437–4443 (2015). https://doi.org/10.1021/acs.jpclett.5b02145
U. Mogera, S. Walia, B. Bannur, M. Gedda, G.U. Kulkarni, Intrinsic nature of graphene revealed in temperature-dependent transport of twisted multilayer graphene. J. Phys. Chem. C 121, 13938–13943 (2017). https://doi.org/10.1021/acs.jpcc.7b04068
Z.W. Yu, A. Song, L.Z. Sun, Y. Li, L. Gao et al., Understanding interlayer contact conductance in twisted bilayer graphene. Small (2019). https://doi.org/10.1002/smll.201902844
L. Brown, R. Hovden, P. Huang, M. Wojcik, D.A. Muller, J. Park, Twinning and twisting of tri- and bilayer graphene. Nano Lett. 12, 1609–1615 (2012). https://doi.org/10.1021/nl204547v
H. Polshyn, M. Yankowitz, S.W. Chen, Y.X. Zhang, K. Watanabe, T. Taniguchi, C.R. Dean, A.F. Young, Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019). https://doi.org/10.1038/s41567-019-0596-3
L.J. Yin, J.B. Qiao, W.X. Wang, W.J. Zuo, W. Yan et al., Landau quantization and Fermi velocity renormalization in twisted graphene bilayers. Phys. Rev. B 92, 201408(R) (2015). https://doi.org/10.1103/PhysRevB.92.201408
J. Wang, X. Mu, L. Wang, M. Sun, Properties and applications of new superlattice: twisted bilayer graphene. Mater. Today Phys. 9, 100099 (2019). https://doi.org/10.1016/j.mtphys.2019.100099
B. Deng, B.B. Wang, N. Li, R. Li, Y. Wang et al., Interlayer decoupling in 30° twisted bilayer graphene quasicrystal. ACS Nano 14, 1656–1664 (2020). https://doi.org/10.1021/acsnano.9b07091
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P.J. Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). https://doi.org/10.1038/nature26160
Y. Cao, J.Y. Luo, V. Fatemi, S. Fang, J.D. Sanchez-Yamagishi et al., Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016). https://doi.org/10.1126/science.aav1910
M. Yankowitz, S.W. Chen, H. Polshyn, Y.X. Zhang, K. Watanabe et al., Tuning superconductivity in twisted bilayer graphene. Science 363(6431), 1059–1064 (2019). https://doi.org/10.1073/pnas.1108174108
E. Codecido, Q.Y. Wang, R. Koester, S. Che, H.D. Tian, Correlated insulating and superconducting states in twisted bilayer graphene below the magic. Sci. Adv. 5(9), eaaw9770 (2019). https://doi.org/10.1126/sciadv.aaw9770
F. Hu, S.R. Das, Y. Luan, T.F. Chung, Y.P. Chen, Z. Fei, Real-space imaging of the tailored plasmons in twisted bilayer graphene. Phys. Rev. Lett. 119, 247402 (2017). https://doi.org/10.1103/PhysRevLett.119.247402
Y. Cao, D. Chowdhury, D.R. Legrain, O.R. Bigorda, K. Watanabe et al., Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020). https://doi.org/10.1103/PhysRevLett.124.076801
L.A. Ponomarenko, R.V. Gorbachev, G.L. Yu, D.C. Elias, R. Jalil et al., Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013). https://doi.org/10.1038/nature12187
C.R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari et al., Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013). https://doi.org/10.1038/nature12186