Capacitive Control of Spontaneously Induced Electrical Charge of Droplet by Electric Field-Assisted Pipetting
Corresponding Author: Geunbae Lim
Nano-Micro Letters,
Vol. 7 No. 4 (2015), Article Number: 341-346
Abstract
The spontaneously generated electrical charge of a droplet dispensed from conventional pipetting is undesirable and unpredictable for most experiments that use pipetting. Hence, a method for controlling and removing the electrical charge needs to be developed. In this study, by using the electrode-deposited pipet tip (E-pipet tip), the charge-controlling system is newly developed and the electrical charge of a droplet is precisely controlled. The effect of electrolyte concentration and volume of the transferred solution to the electrical charge of a dispensed droplet is theoretically and experimentally investigated by using the equivalent capacitor model. Furthermore, a proof-of-concept example of the self-alignment and self-assembly of sequentially dispensed multiple droplets is demonstrated as one of the potential applications. Given that the electrical charge of the various aqueous droplets can be precisely and simply controlled, the fabricated E-pipet tip can be broadly utilized not only as a general charge-controlling platform of aqueous droplets but also as a powerful tool to explore fundamental scientific research regarding electrical charge of a droplet, such as the surface oscillation and evaporation of charged droplets.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Choi, H. Lee, D.J. Im, I.S. Kang, G. Lim, D.S. Kim, K.H. Kang, Spontaneous electrical charging of droplets by conventional pipetting. Sci. Rep. 3, 2037 (2013). doi:10.1038/srep02037
- Z.H. Lin, G. Cheng, L. Lin, S. Lee, Z.L. Wang, Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. Int. Ed. 52(48), 12545–12549 (2013). doi:10.1002/anie.201307249
- Z.H. Lin, G. Cheng, S. Lee, K.C. Pradel, Z.L. Wang, Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 26(27), 4690–4696 (2014). doi:10.1002/adma.201400373
- D. Choi, S. Lee, S.M. Park, H. Cho, W. Hwang, D.S. Kim, Energy harvesting model of moving water inside tubular system and its application of stick type compact triboelectric nanogenerator. Nano Res. (2015). doi:10.1007/s12274-015-0756-4
- E. Davis, M. Bridges, The Rayleigh limit of charge revisited: light scattering from exploding droplets. J. Aerosol Sci. 25(6), 1179–1199 (1994). doi:10.1016/0021-8502(94)90208-9
- X.-H.N. Xu, E.S. Yeung, Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface. Science 281(5383), 1650–1653 (1998). doi:10.1126/science.281.5383.1650
- S.J. Choi, E.A. Decker, L. Henson, L.M. Popplewell, D.J. McClements, Influence of droplet charge on the chemical stability of citral in oil-in-water emulsions. J. Food Sci. 75(6), C536–C540 (2010). doi:10.1111/j.1750-3841.2010.01693.x
- A. Doyle, D.R. Moffett, B. Vonnegut, Behavior of evaporating electrically charged droplets. J. Colloid Sci. 19(2), 136–143 (1964). doi:10.1016/0095-8522(64)90024-8
- B. Kim, I. Kim, S.W. Joo, G. Lim, Electrohydrodynamic repulsion of droplets falling on an insulating substrate in an electric field. Appl. Phys. Lett. 95(20), 204106 (2009). doi:10.1063/1.3262946
- J. Iribarne, B. Thomson, On the evaporation of small ions from charged droplets. J. Chem. Phys. 64(6), 2287–2294 (1976). doi:10.1063/1.432536
- J.A. Tsamopoulos, R.A. Brown, Resonant oscillations of inviscid charged drops. J. Fluid Mech. 147, 373–395 (1984). doi:10.1017/S0022112084002135
- D. Choi, D.S. Kim, A zeta (ζ)-pipette tip to reduce the spontaneously induced electrical charge of a dispensed aqueous droplet. Langmuir 30(7), 6644–6648 (2014). doi:10.1021/la5018196
- B.J. Kirby, E.F. Hasselbrink Jr., Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25(2), 191–202 (2004). doi:10.1002/elps.200305754
- B.J. Kirby, E.F. Hasselbrink Jr., Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25(2), 203–213 (2004). doi:10.1002/elps.200305755
- M.Z. Bazant, K. Thornton, A. Ajdari, Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70(2), 021506 (2004). doi:10.1103/PhysRevE.70.021506
- A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (Wiley, New York, 1980)
- H.S. Shin, M.S. Park, B.H. Kim, C.N. Chu, Recent researches in micro electrical machining. Int. J. Precis. Eng. Manuf. 12, 371–380 (2011). doi:10.1007/s12541-011-0049-0
- H.S. Shin, B.H. Kim, C.N. Chu, High frequency micro wire EDM for electrolytic corrosion prevention. Int. J. Precis. Eng. Manuf. 12, 1125–1128 (2011). doi:10.1007/s12541-011-0150-4
References
D. Choi, H. Lee, D.J. Im, I.S. Kang, G. Lim, D.S. Kim, K.H. Kang, Spontaneous electrical charging of droplets by conventional pipetting. Sci. Rep. 3, 2037 (2013). doi:10.1038/srep02037
Z.H. Lin, G. Cheng, L. Lin, S. Lee, Z.L. Wang, Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. Int. Ed. 52(48), 12545–12549 (2013). doi:10.1002/anie.201307249
Z.H. Lin, G. Cheng, S. Lee, K.C. Pradel, Z.L. Wang, Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 26(27), 4690–4696 (2014). doi:10.1002/adma.201400373
D. Choi, S. Lee, S.M. Park, H. Cho, W. Hwang, D.S. Kim, Energy harvesting model of moving water inside tubular system and its application of stick type compact triboelectric nanogenerator. Nano Res. (2015). doi:10.1007/s12274-015-0756-4
E. Davis, M. Bridges, The Rayleigh limit of charge revisited: light scattering from exploding droplets. J. Aerosol Sci. 25(6), 1179–1199 (1994). doi:10.1016/0021-8502(94)90208-9
X.-H.N. Xu, E.S. Yeung, Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface. Science 281(5383), 1650–1653 (1998). doi:10.1126/science.281.5383.1650
S.J. Choi, E.A. Decker, L. Henson, L.M. Popplewell, D.J. McClements, Influence of droplet charge on the chemical stability of citral in oil-in-water emulsions. J. Food Sci. 75(6), C536–C540 (2010). doi:10.1111/j.1750-3841.2010.01693.x
A. Doyle, D.R. Moffett, B. Vonnegut, Behavior of evaporating electrically charged droplets. J. Colloid Sci. 19(2), 136–143 (1964). doi:10.1016/0095-8522(64)90024-8
B. Kim, I. Kim, S.W. Joo, G. Lim, Electrohydrodynamic repulsion of droplets falling on an insulating substrate in an electric field. Appl. Phys. Lett. 95(20), 204106 (2009). doi:10.1063/1.3262946
J. Iribarne, B. Thomson, On the evaporation of small ions from charged droplets. J. Chem. Phys. 64(6), 2287–2294 (1976). doi:10.1063/1.432536
J.A. Tsamopoulos, R.A. Brown, Resonant oscillations of inviscid charged drops. J. Fluid Mech. 147, 373–395 (1984). doi:10.1017/S0022112084002135
D. Choi, D.S. Kim, A zeta (ζ)-pipette tip to reduce the spontaneously induced electrical charge of a dispensed aqueous droplet. Langmuir 30(7), 6644–6648 (2014). doi:10.1021/la5018196
B.J. Kirby, E.F. Hasselbrink Jr., Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25(2), 191–202 (2004). doi:10.1002/elps.200305754
B.J. Kirby, E.F. Hasselbrink Jr., Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25(2), 203–213 (2004). doi:10.1002/elps.200305755
M.Z. Bazant, K. Thornton, A. Ajdari, Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70(2), 021506 (2004). doi:10.1103/PhysRevE.70.021506
A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (Wiley, New York, 1980)
H.S. Shin, M.S. Park, B.H. Kim, C.N. Chu, Recent researches in micro electrical machining. Int. J. Precis. Eng. Manuf. 12, 371–380 (2011). doi:10.1007/s12541-011-0049-0
H.S. Shin, B.H. Kim, C.N. Chu, High frequency micro wire EDM for electrolytic corrosion prevention. Int. J. Precis. Eng. Manuf. 12, 1125–1128 (2011). doi:10.1007/s12541-011-0150-4