One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide (LDH) Nanohybrids
Corresponding Author: Sunil P. Lonkar
Nano-Micro Letters,
Vol. 7 No. 4 (2015), Article Number: 332-340
Abstract
A facile and rapid method to synthesize graphene/layered double hydroxide (LDH) nanohybrids by a microwave technique is demonstrated. The synthesis procedure involves hydrothermal crystallization of Zn–Al LDH at the same time in situ reduction of graphene oxide (GO) to graphene. The microstructure, composition, and morphology of the resulting graphene/LDH nanohybrids were characterized. The results confirmed the formation of nanohybrids and the reduction of graphene oxide. The growth mechanism of LDH and in situ reduction of GO were discussed. The LDH sheet growth was found to prevent the scrolling of graphene layers in resulting hybrids. The electrochemical properties exhibit superior performance for graphene/Zn–Al LDH hybrids over pristine graphene. The present approach may open a strategy in hybridizing graphene with multimetallic nano-oxides and hydroxides using microwave method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.Q. Zhao, Q. Zhang, J.Q. Huang, F. Wei, Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides—properties, synthesis, and applications. Adv. Funct. Mater. 22(4), 675–694 (2012). doi:10.1002/adfm.201102222
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). doi:10.1038/nmat1849
- C.Y. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4), 2891–2897 (2013). doi:10.1021/nn401196a
- C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Edit. 48(42), 7752–7777 (2009). doi:10.1002/anie.200901678
- Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). doi:10.1002/adma.201001068
- H.Y. Mao, S. Laurent, W. Chen, O. Akhavan, M. Imani, A.A. Ashkarran, M. Mahmoudi, Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev. 113(5), 3407–3424 (2013). doi:10.1021/cr300335p
- Q.Q. Zhuo, Y.Y. Ma, J. Gao, P.P. Zhang, Y.J. Xia, Y.M. Tian, X.X. Sun, J. Zhong, X.H. Sun, Facile synthesis of graphene/metal nanoparticle composites via self-catalysis reduction at room temperature. Inorg. Chem. 52(6), 3141–3147 (2013). doi:10.1021/ic302608g
- H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 6(4), 1185–1191 (2013). doi:10.1039/c2ee24203f
- H.J. Li, G. Zhu, Z.H. Liu, Z.P. Yang, Z.L. Wang, Fabrication of a hybrid graphene/layered double hydroxide material. Carbon 48(15), 4391–4396 (2010). doi:10.1016/j.carbon.2010.07.053
- S. Huang, G.N. Zhu, C. Zhang, W.W. Tjiu, Y.Y. Xia, T.X. Liu, Immobilization of Co–Al layered double hydroxides on graphene oxide nanosheets: growth mechanism and supercapacitor studies. ACS Appl. Mater. Interface 4(4), 2242–2249 (2012). doi:10.1021/am300247x
- V. Rives (ed.), Layered Double Hydroxides: Present and Future Nova Science, NewYork, 2011
- L. Feng, X. Duan, Applications of layered double hydroxides. Layered Double Hydroxides. 119, 193–223 (2006). doi:10.1007/430_007
- Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112(7), 4124–4155 (2012). doi:10.1021/cr200434v
- J. Wang, Y.C. Song, Z.S. Li, Q. Liu, J.D. Zhou, X.Y. Jing, M.L. Zhang, Z.H. Jiang, In situ Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuels 24, 6463–6467 (2010). doi:10.1021/ef101150b
- D. Tonelli, E. Scavetta, M. Giorgetti, Layered-double-hydroxide-modified electrodes: electroanalytical applications. Anal. Bioanal. Chem. 405(2–3), 603–614 (2013). doi:10.1007/s00216-012-6586-2
- J. Memon, J.H. Sun, D.L. Meng, W.Z. Ouyang, M.A. Memon, Y. Huang, S.K. Yan, J.X. Geng, Synthesis of graphene/Ni–Al layered double hydroxide nanowires and their application as an electrode material for supercapacitors. J. Mater. Chem. A 2(14), 5060–5067 (2014). doi:10.1039/c3ta14613h
- X. Wang, S. Zhou, W.Y. Xing, B. Yu, X.M. Feng, L. Song, Y. Hu, Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J. Mater. Chem. A 1(13), 4383–4390 (2013). doi:10.1039/c3ta00035d
- K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan, Synthesis of inorganic solids using microwaves. Chem. Mater. 11(4), 882–895 (1999). doi:10.1021/cm9803859
- P. Lidstrom, J. Tierney, B. Wathey, J. Westman, Microwave assisted organic synthesis—a review. Tetrahedron 57(45), 9225–9283 (2001). doi:10.1016/S0040-4020(01)00906-1
- P. Benito, F.M. Labajos, V. Rives, Microwaves and layered double hydroxides: a smooth understanding. Pure Appl. Chem. 81(8), 1459–1471 (2009). doi:10.1351/PAC-CON-08-07-01
- Z.W. Xu, H.J. Li, W. Li, G.X. Cao, Q.L. Zhang, K.Z. Li, Q.G. Fu, J. Wang, Large-scale production of graphene by microwave synthesis and rapid cooling. Chem. Commun. 47(4), 1166–1168 (2011). doi:10.1039/C0CC03520C
- Z. Li, Y.G. Yao, Z.Y. Lin, K.S. Moon, W. Lin, C.P. Wong, Ultrafast, dry microwave synthesis of graphene sheets. J. Mater. Chem. 20(23), 4781–4783 (2010). doi:10.1039/c0jm00168f
- S.P. Lonkar, A. Bobenrieth, J. De Winter, P. Gerbaux, J.M. Raquez, P. Dubois, A supramolecular approach toward organo-dispersible graphene and its straightforward polymer nanocomposites. J. Mater. Chem. 22(35), 18124–18126 (2012). doi:10.1039/c2jm34234k
- A. Inayat, M. Klumpp, W. Schwieger, The urea method for the direct synthesis of ZnAl layered double hydroxides with nitrate as the interlayer anion. Appl. Clay Sci. 51(4), 452–459 (2011). doi:10.1016/j.clay.2011.01.008
- S.F. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012). doi:10.1016/j.carbon.2011.11.010
- U. Costantino, F. Marmottini, M. Nocchetti, R. Vivani, New synthetic routes to hydrotalcite-like compounds - Characterisation and properties of the obtained materials. Eur. J. Inorg. Chem. 10, 1439–1446 (1998). doi:10.1002/(SICI)1099-0682(199810)1998:10<1439:AID-EJIC1439>3.0.CO;2-1
- B. Lesiak, L. Stobinski, A. Malolepszy, M. Mazurkiewicz, L. Kover, J. Toth, Preparation of graphene oxide and characterisation using electron spectroscopy. J. Electron Spectrosc. 193, 92–99 (2014). doi:10.1016/j.elspec.2014.03.015
- A. Kaniyoor, S. Ramaprabhu, A Raman spectroscopic investigation of graphite oxide derived graphene. Aip Adv. 2(3), 032183 (2012). doi:10.1063/1.4756995
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
- R. Xie, G. Fan, Q. Ma, L. Yang, F. Li, Facile synthesis and enhanced catalytic performance of graphene-supported Ni nanocatalyst from a layered double hydroxide-based composite precursor. J. Mater. Chem. A 2(21), 7880–7889 (2014). doi:10.1039/c4ta00395k
- C. Barriga, W. Jones, P. Malet, V. Rives, M.A. Ulibarri, Synthesis and characterization of polyoxovanadate-pillared Zn-Al layered double hydroxides: an X-ray absorption and diffraction study. Inorg. Chem. 37(8), 1812–1820 (1998). doi:10.1021/ic9709133
- F. Theiss, G. Ayoko, R. Frost, Thermogravimetric analysis of selected layered double hydroxides. J. Therm. Anal. Calorim. 112(2), 649–657 (2013). doi:10.1007/s10973-012-2584-z
References
M.Q. Zhao, Q. Zhang, J.Q. Huang, F. Wei, Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides—properties, synthesis, and applications. Adv. Funct. Mater. 22(4), 675–694 (2012). doi:10.1002/adfm.201102222
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). doi:10.1038/nmat1849
C.Y. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4), 2891–2897 (2013). doi:10.1021/nn401196a
C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Edit. 48(42), 7752–7777 (2009). doi:10.1002/anie.200901678
Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). doi:10.1002/adma.201001068
H.Y. Mao, S. Laurent, W. Chen, O. Akhavan, M. Imani, A.A. Ashkarran, M. Mahmoudi, Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev. 113(5), 3407–3424 (2013). doi:10.1021/cr300335p
Q.Q. Zhuo, Y.Y. Ma, J. Gao, P.P. Zhang, Y.J. Xia, Y.M. Tian, X.X. Sun, J. Zhong, X.H. Sun, Facile synthesis of graphene/metal nanoparticle composites via self-catalysis reduction at room temperature. Inorg. Chem. 52(6), 3141–3147 (2013). doi:10.1021/ic302608g
H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 6(4), 1185–1191 (2013). doi:10.1039/c2ee24203f
H.J. Li, G. Zhu, Z.H. Liu, Z.P. Yang, Z.L. Wang, Fabrication of a hybrid graphene/layered double hydroxide material. Carbon 48(15), 4391–4396 (2010). doi:10.1016/j.carbon.2010.07.053
S. Huang, G.N. Zhu, C. Zhang, W.W. Tjiu, Y.Y. Xia, T.X. Liu, Immobilization of Co–Al layered double hydroxides on graphene oxide nanosheets: growth mechanism and supercapacitor studies. ACS Appl. Mater. Interface 4(4), 2242–2249 (2012). doi:10.1021/am300247x
V. Rives (ed.), Layered Double Hydroxides: Present and Future Nova Science, NewYork, 2011
L. Feng, X. Duan, Applications of layered double hydroxides. Layered Double Hydroxides. 119, 193–223 (2006). doi:10.1007/430_007
Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112(7), 4124–4155 (2012). doi:10.1021/cr200434v
J. Wang, Y.C. Song, Z.S. Li, Q. Liu, J.D. Zhou, X.Y. Jing, M.L. Zhang, Z.H. Jiang, In situ Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuels 24, 6463–6467 (2010). doi:10.1021/ef101150b
D. Tonelli, E. Scavetta, M. Giorgetti, Layered-double-hydroxide-modified electrodes: electroanalytical applications. Anal. Bioanal. Chem. 405(2–3), 603–614 (2013). doi:10.1007/s00216-012-6586-2
J. Memon, J.H. Sun, D.L. Meng, W.Z. Ouyang, M.A. Memon, Y. Huang, S.K. Yan, J.X. Geng, Synthesis of graphene/Ni–Al layered double hydroxide nanowires and their application as an electrode material for supercapacitors. J. Mater. Chem. A 2(14), 5060–5067 (2014). doi:10.1039/c3ta14613h
X. Wang, S. Zhou, W.Y. Xing, B. Yu, X.M. Feng, L. Song, Y. Hu, Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J. Mater. Chem. A 1(13), 4383–4390 (2013). doi:10.1039/c3ta00035d
K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan, Synthesis of inorganic solids using microwaves. Chem. Mater. 11(4), 882–895 (1999). doi:10.1021/cm9803859
P. Lidstrom, J. Tierney, B. Wathey, J. Westman, Microwave assisted organic synthesis—a review. Tetrahedron 57(45), 9225–9283 (2001). doi:10.1016/S0040-4020(01)00906-1
P. Benito, F.M. Labajos, V. Rives, Microwaves and layered double hydroxides: a smooth understanding. Pure Appl. Chem. 81(8), 1459–1471 (2009). doi:10.1351/PAC-CON-08-07-01
Z.W. Xu, H.J. Li, W. Li, G.X. Cao, Q.L. Zhang, K.Z. Li, Q.G. Fu, J. Wang, Large-scale production of graphene by microwave synthesis and rapid cooling. Chem. Commun. 47(4), 1166–1168 (2011). doi:10.1039/C0CC03520C
Z. Li, Y.G. Yao, Z.Y. Lin, K.S. Moon, W. Lin, C.P. Wong, Ultrafast, dry microwave synthesis of graphene sheets. J. Mater. Chem. 20(23), 4781–4783 (2010). doi:10.1039/c0jm00168f
S.P. Lonkar, A. Bobenrieth, J. De Winter, P. Gerbaux, J.M. Raquez, P. Dubois, A supramolecular approach toward organo-dispersible graphene and its straightforward polymer nanocomposites. J. Mater. Chem. 22(35), 18124–18126 (2012). doi:10.1039/c2jm34234k
A. Inayat, M. Klumpp, W. Schwieger, The urea method for the direct synthesis of ZnAl layered double hydroxides with nitrate as the interlayer anion. Appl. Clay Sci. 51(4), 452–459 (2011). doi:10.1016/j.clay.2011.01.008
S.F. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012). doi:10.1016/j.carbon.2011.11.010
U. Costantino, F. Marmottini, M. Nocchetti, R. Vivani, New synthetic routes to hydrotalcite-like compounds - Characterisation and properties of the obtained materials. Eur. J. Inorg. Chem. 10, 1439–1446 (1998). doi:10.1002/(SICI)1099-0682(199810)1998:10<1439:AID-EJIC1439>3.0.CO;2-1
B. Lesiak, L. Stobinski, A. Malolepszy, M. Mazurkiewicz, L. Kover, J. Toth, Preparation of graphene oxide and characterisation using electron spectroscopy. J. Electron Spectrosc. 193, 92–99 (2014). doi:10.1016/j.elspec.2014.03.015
A. Kaniyoor, S. Ramaprabhu, A Raman spectroscopic investigation of graphite oxide derived graphene. Aip Adv. 2(3), 032183 (2012). doi:10.1063/1.4756995
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
R. Xie, G. Fan, Q. Ma, L. Yang, F. Li, Facile synthesis and enhanced catalytic performance of graphene-supported Ni nanocatalyst from a layered double hydroxide-based composite precursor. J. Mater. Chem. A 2(21), 7880–7889 (2014). doi:10.1039/c4ta00395k
C. Barriga, W. Jones, P. Malet, V. Rives, M.A. Ulibarri, Synthesis and characterization of polyoxovanadate-pillared Zn-Al layered double hydroxides: an X-ray absorption and diffraction study. Inorg. Chem. 37(8), 1812–1820 (1998). doi:10.1021/ic9709133
F. Theiss, G. Ayoko, R. Frost, Thermogravimetric analysis of selected layered double hydroxides. J. Therm. Anal. Calorim. 112(2), 649–657 (2013). doi:10.1007/s10973-012-2584-z