Surface Acoustic Wave Device with Reduced Insertion Loss by Electrospinning P(VDF–TrFE)/ZnO Nanocomposites
Corresponding Author: Didier Rouxel
Nano-Micro Letters,
Vol. 8 No. 3 (2016), Article Number: 282-290
Abstract
Surface acoustic wave (SAW) devices have been utilized for the sensing of chemical and biological phenomena in microscale for the past few decades. In this study, SAW device was fabricated by electrospinning poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF−TrFE)) incorporated with zinc oxide (ZnO) nanoparticles over the delay line area of the SAW device. The morphology, composition, and crystallinity of P(VDF−TrFE)/ZnO nanocomposites were investigated. After measurement of SAW frequency response, it was found that the insertion loss of the SAW devices incorporated with ZnO nanoparticles was much less than that of the neat polymer-deposited device. The fabricated device was expected to be used in acoustic biosensors to detect and quantify the cell proliferation in cell culture systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Janata, M. Josowicz, D.M. DeVaney, Chemical sensors. Anal. Chem. 66, 207R–228R (1994). doi:10.1021/ac00084a010
- R.M. Crooks, A.J. Ricco, New organic materials suitable for use in chemical sensor arrays. Acc. Chem. Res. 31, 219–227 (1998). doi:10.1021/ar970246h
- D. Mercier, G. Bordel, P. Brunet-Manquat, S. Verrun, O. Elmazria, F. Sarry, B. Belgacem, J. Bounoua, Characterization of a SAW-Pirani vacuum sensor for two different operating modes. Sens. Actuat. 188, 41–47 (2012). doi:10.1016/j.sna.2012.01.039
- B. Vincent, O. Elmazria, L. Bouvot, J. Mainka, R. Sanctuary, D. Rouxel, P. Alnot, Imaging of microwave-induced acoustic fields in LiNbO3 by high-performance Brillouin microscopy. J. Phys D-Appl. Phys. 38(12), 2026–2030 (2005). doi:10.1088/0022-3727/38/12/026
- B. Ding, J. Kim, Y. Miyazaki, S. Shiratori, Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sens. Actuat. B 101(3), 373–380 (2004). doi:10.1016/j.snb.2004.04.008
- X.F. Wang, B. Ding, J.Y. Yu, J.Y. He, G. Sun, Quartz crystal microbalance-based nanofibrous membranes for humidity detection: theoretical model and experimental verification. Int. J. Nonlinear Sci. 11(7), 509–516 (2010). doi:10.1515/IJNSNS.2010.11.7.509
- Y. Li, P. Li, M. Yang, S. Lei, Y. Chen, X. Guo, A surface acoustic wave humidity sensor based on electrosprayed silicon-containing polyelectrolyte. Sens. Actuat. B 145(1), 516–520 (2010). doi:10.1016/j.snb.2009.12.062
- R. Augustine, N. Kalarikkal, S. Thomas, Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Appl. Nanosci. (2015). doi:10.1007/s13204-015-0439-1
- R. Augustine, N. Kalarikkal, S. Thomas, Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. Int. J. Polym. Mater. 65(1), 28–37 (2016). doi:10.1080/00914037.2015.1055628
- R. Augustine, N. Kalarikkal, S. Thomas, Clogging free electrospinning of polycaprolactone using acetic acid/acetone mixture. Polym. Plast. Technol. Engin. (2015). doi:10.1080/03602559.2015.1036451
- R. Augustine, E.A. Dominic, I. Reju, B. Kaimal, N. Kalarikkal, S. Thomas, Electrospun poly (ε-caprolactone)-based skin substitutes: in vivo evaluation of wound healing and the mechanism of cell proliferation. J. Biomed. Mater. Res. B 103B, 1445–1454 (2015). doi:10.1002/jbm.b.33325
- R. Augustine, N. Kalarikkal, S. Thomas, An in vitro method for the determination of microbial barrier property (MBP) of porous polymeric membranes for skin substitute and wound dressing applications. Tissue Eng. Regen. Med. 12(1), 12–19 (2014). doi:10.1007/s13770-014-0032-9
- R. Augustine, A. Saha, V.P. Jayachandran, S. Thomas, N. Kalarikkal, Dose-dependent effects of gamma irradiation on the materials properties and cell proliferation of electrospun polycaprolactone tissue engineering scaffolds. Int. J. Polym. Mater. 64(10), 526–533 (2015). doi:10.1080/00914037.2014.977900
- B. Ding, M. Wang, X. Wang, J. Yu, G. Sun, Electrospun nanomaterials for ultrasensitive sensors. Mater. Today 13(11), 16–27 (2010). doi:10.1016/S1369-7021(10)70200-5
- N. Weber, Y.S. Lee, S. Shanmugasundaram, M. Jaffe, T.L. Arinzeh, Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomater. 6(9), 3550–3556 (2010). doi:10.1016/j.actbio.2010.03.035
- H.F. Guo, Z.S. Li, S.W. Dong, W.J. Chen, L. Deng, Y.F. Wang, D.J. Ying, Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Coll. Surf. B 96, 29–36 (2012). doi:10.1016/j.colsurfb.2012.03.014
- X. Li, D. Zhang, S. Chen, H. Zhang, Z. Sun, S. Huang, X. Yin, Dye-sensitized solar cells with higher J sc by using polyvinylidene fluoride membrane counter electrodes. Nano-Micro Lett. 3(3), 195–199 (2011). doi:10.1007/BF03353672
- N.H. Van, J.H. Lee, D. Whang, D.J. Kang, Low-programmable-voltage nonvolatile memory devices based on omega-shaped gate organic ferroelectric P(VDF–TrFE) field effect transistors using p-type silicon nanowire channels. Nano-Micro Lett. 7(1), 35–41 (2015). doi:10.1007/s40820-014-0016-2
- J. Cohen, S. Edelman, C.F. Vezzetti, Pyroelectric effect in polyvinylfluoride. Nature 233(36), 12–12 (1971). doi:10.1038/physci233012a0
- H. Gao, M.J. Guers, J.L. Rose, G.X. Zhao, C. Kwan, Ultrasonic guided wave annular array transducers for structural health monitoring. AIP Conf. Proc. 820, 1680–1686 (2006)
- V.S. Nguyen, L. Badie, E. Sénéchault, E. Blampain, B. Vincent, C. Venet, O. Elmazria, D. Rouxel, Flexible over-moded resonators based on P(VDF–TrFE) thin films with very high temperature coefficient. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(10), 2039–2043 (2013). doi:10.1109/TUFFC.2013.2794
- L.F. Brown, Design considerations for piezoelectric polymer ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1377–1396 (2000). doi:10.1109/58.883527
- D. Mandal, S. Yoon, K.J. Kim, Origin of piezoelectricity in an electrospun poly (vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol. Rapid Comm. 32(11), 831–837 (2011). doi:10.1002/marc.201100040
- R. Hadji, V.S. Nguyen, B. Vincent, D. Rouxel, F. Bauer, Preparation and characterization of P(VDF–TrFE)/Al2O3 nanocomposite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(1), 163–167 (2012). doi:10.1109/TUFFC.2012.2168
- V.S. Nguyen, L. Badie, E. Lamouroux, B. Vincent, F.D.D. Santos, M. Aufray, M.Y. Fort, D. Rouxel, Nanocomposite piezoelectric films of P(VDF–TrFE)/LiNbO3. J. Appl. Polym. Sci. 129(1), 391–396 (2013). doi:10.1002/app.38746
- V.S. Nguyen, D. Rouxel, B. Vincent, L. Badie, F.D.D. Santos, E. Lamouroux, Y. Fort, Influence of cluster size and surface functionalization of ZnO nanoparticles on the morphology, thermomechanical and piezoelectric properties of P(VDF–TrFE) nanocomposite films. Appl. Surf. Sci. 279, 204–211 (2013). doi:10.1016/j.apsusc.2013.04.070
- X.Y. Du, Y.Q. Fu, S.C. Tan, J.K. Luo, A.J. Flewitt, S. Maeng, S.H. Kim, Y.J. Choi, D.S. Lee, N.M. Park, J. Park, W.I. Milne, ZnO film for application in surface acoustic wave device. J. Phys D-Appl. Phys. 76, 1–6 (2007). doi:10.1088/1742-6596/76/1/012035
- L. Le Brizoual, J.K. Krueger, O. Elmazria, B. Vincent, L. Bouvot, M. Kolle, D. Rouxel, P. Alnot, Mapping of microwave-induced phonons by mu-Brillouin spectroscopy: hypersons in ZnO on silicon. J. Phys D-Appl. Phys. 41, 105502 (2008). doi:10.1088/0022-3727/41/10/105502
- A.Z. Sadek, W. Wlodarski, Y.X. Li, W. Yu, X. Li, X. Wu, K. Kalantar-Zadeh, A ZnO nanorod based layered ZnO/64 YX LiNbO3 SAW hydrogen gas sensor. Thin Solid Films 515(24), 8705–8708 (2007). doi:10.1016/j.tsf.2007.04.009
- D.A. Powell, K. Kalantar-zadeh, W. Wlodarski, Numerical calculation of SAW sensitivity: application to ZnO/LiTaO3 transducers. Sens. Actuat. A 115(2), 456–461 (2004). doi:10.1016/j.sna.2004.05.031
- R. Augustine, H.N. Malik, D.K. Singhal, A. Mukherjee, D. Malakar, N. Kalarikkal, S. Thomas, Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J. Polym. Res. 21(3), 1–17 (2014). doi:10.1007/s10965-013-0347-6
- R. Augustine, E.A. Dominic, I. Reju, B. Kaimal, N. Kalarikkal, S. Thomas, Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv. 4(47), 24777–24785 (2014). doi:10.1039/c4ra02450h
- R. Augustine, E.A. Dominic, I. Reju, B. Kaimal, N. Kalarikkal, S. Thomas, Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds. RSC Adv. 4(93), 51528–51536 (2014). doi:10.1039/C4RA07361D
- R. Gopikrishnan, K. Zhang, P. Ravichandran, S. Baluchamy, V. Ramesh et al., Synthesis, characterization and biocompatibility studies of zinc oxide (ZnO) nanorods for biomedical application. Nano-Micro Lett. 2(1), 31–36 (2010). doi:10.1007/BF03353614
- A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7(3), 219–242 (2015). doi:10.1007/s40820-015-0040-x
- X. Wang, X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6(12), 2768–2772 (2006). doi:10.1021/nl061802g
- L.N. Teixeira, G.E. Crippa, A.C. Trabuco, R. Gimenes, M.A. Zaghete, D.B. Palioto, P.T. De Oliveira, A.L. Rosa, M.M. Beloti, In vitro biocompatibility of poly (vinylidene fluoride–trifluoroethylene)/barium titanate composite using cultures of human periodontal ligament fibroblasts and keratinocytes. Acta Biomater. 6(3), 979–989 (2010). doi:10.1016/j.actbio.2009.08.024
- A.Z. Sadek, W. Wlodarski, K. Shin, R.B. Kaner, K. Kalantar-Zadeh, A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology 17(17), 4488–4492 (2006). doi:10.1088/0957-4484/17/17/034
- V.S. Nguyen, D. Rouxel, M. Meier, B. Vincent, A. Dahoun, S. Thomas, F.D.D. Santos, Effect of ultrasonication and other processing conditions on the morphology, thermomechanical, and piezoelectric properties of poly (vinylidene difluoride-trifluoroethylene) copolymer films. Polym. Eng. Sci. 54(6), 1280–1288 (2014). doi:10.1002/pen.23670
- S.K. Mahadeva, J. Berring, K. Walus, B. Stoeber, B. Stoeber, Effect of poling time and grid voltage on phase transition and piezoelectricity of poly(vinyledene fluoride) thin films using corona poling. J. Phys D-Appl. Phys. 46, 285–305 (2013)
- Y. Bormashenko, R. Pogreb, O. Stanevsky, E. Bormashenko, Vibrational spectrum of PVDF and its interpretation. Polym. Test 23(7), 791–796 (2004). doi:10.1016/j.polymertesting.2004.04.001
- M. Kobayashi, K. Tashiro, H. Tadokoro, Molecular vibrations of three crystal forms of poly (vinylidene fluoride). Macromolecules 8(2), 158–171 (1975). doi:10.1021/ma60044a013
- J.C. Li, C.L. Wang, W.L. Zhong, P.L. Zhang, Q.H. Wang, J.F. Webb, Vibrational mode analysis of beta-phase poly (vinylidene fluoride). Appl. Phys. Lett. 81, 2223–2225 (2002). doi:10.1063/1.1507356
- A. Lonjon, L. Laffont, P. Demont, E. Dantras, C. Lacabanne, Structural and electrical properties of gold nanowires/P(VDF–TrFE) nanocomposites. J. Phys D-Appl. Phys. 43(34), 345–401 (2010). doi:10.1088/0022-3727/43/34/345401
- C. Saujanya, S. Radhakrishnan, Structure development and crystallization behaviour of PP/nanoparticulate composite. Polymer 42(16), 6723–6731 (2001). doi:10.1016/S0032-3861(01)00140-9
- J.S. Andrew, D.R. Clarke, Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir 24(3), 670–672 (2008). doi:10.1021/la7035407
- T. Hattori, M. Hikosaka, H. Ohigashi, The crystallization behaviour and phase diagram of extended-chain crystals of poly (vinylidene fluoride) under high pressure. Polymer 37(1), 85–91 (1996). doi:10.1016/0032-3861(96)81602-8
References
J. Janata, M. Josowicz, D.M. DeVaney, Chemical sensors. Anal. Chem. 66, 207R–228R (1994). doi:10.1021/ac00084a010
R.M. Crooks, A.J. Ricco, New organic materials suitable for use in chemical sensor arrays. Acc. Chem. Res. 31, 219–227 (1998). doi:10.1021/ar970246h
D. Mercier, G. Bordel, P. Brunet-Manquat, S. Verrun, O. Elmazria, F. Sarry, B. Belgacem, J. Bounoua, Characterization of a SAW-Pirani vacuum sensor for two different operating modes. Sens. Actuat. 188, 41–47 (2012). doi:10.1016/j.sna.2012.01.039
B. Vincent, O. Elmazria, L. Bouvot, J. Mainka, R. Sanctuary, D. Rouxel, P. Alnot, Imaging of microwave-induced acoustic fields in LiNbO3 by high-performance Brillouin microscopy. J. Phys D-Appl. Phys. 38(12), 2026–2030 (2005). doi:10.1088/0022-3727/38/12/026
B. Ding, J. Kim, Y. Miyazaki, S. Shiratori, Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sens. Actuat. B 101(3), 373–380 (2004). doi:10.1016/j.snb.2004.04.008
X.F. Wang, B. Ding, J.Y. Yu, J.Y. He, G. Sun, Quartz crystal microbalance-based nanofibrous membranes for humidity detection: theoretical model and experimental verification. Int. J. Nonlinear Sci. 11(7), 509–516 (2010). doi:10.1515/IJNSNS.2010.11.7.509
Y. Li, P. Li, M. Yang, S. Lei, Y. Chen, X. Guo, A surface acoustic wave humidity sensor based on electrosprayed silicon-containing polyelectrolyte. Sens. Actuat. B 145(1), 516–520 (2010). doi:10.1016/j.snb.2009.12.062
R. Augustine, N. Kalarikkal, S. Thomas, Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Appl. Nanosci. (2015). doi:10.1007/s13204-015-0439-1
R. Augustine, N. Kalarikkal, S. Thomas, Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. Int. J. Polym. Mater. 65(1), 28–37 (2016). doi:10.1080/00914037.2015.1055628
R. Augustine, N. Kalarikkal, S. Thomas, Clogging free electrospinning of polycaprolactone using acetic acid/acetone mixture. Polym. Plast. Technol. Engin. (2015). doi:10.1080/03602559.2015.1036451
R. Augustine, E.A. Dominic, I. Reju, B. Kaimal, N. Kalarikkal, S. Thomas, Electrospun poly (ε-caprolactone)-based skin substitutes: in vivo evaluation of wound healing and the mechanism of cell proliferation. J. Biomed. Mater. Res. B 103B, 1445–1454 (2015). doi:10.1002/jbm.b.33325
R. Augustine, N. Kalarikkal, S. Thomas, An in vitro method for the determination of microbial barrier property (MBP) of porous polymeric membranes for skin substitute and wound dressing applications. Tissue Eng. Regen. Med. 12(1), 12–19 (2014). doi:10.1007/s13770-014-0032-9
R. Augustine, A. Saha, V.P. Jayachandran, S. Thomas, N. Kalarikkal, Dose-dependent effects of gamma irradiation on the materials properties and cell proliferation of electrospun polycaprolactone tissue engineering scaffolds. Int. J. Polym. Mater. 64(10), 526–533 (2015). doi:10.1080/00914037.2014.977900
B. Ding, M. Wang, X. Wang, J. Yu, G. Sun, Electrospun nanomaterials for ultrasensitive sensors. Mater. Today 13(11), 16–27 (2010). doi:10.1016/S1369-7021(10)70200-5
N. Weber, Y.S. Lee, S. Shanmugasundaram, M. Jaffe, T.L. Arinzeh, Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomater. 6(9), 3550–3556 (2010). doi:10.1016/j.actbio.2010.03.035
H.F. Guo, Z.S. Li, S.W. Dong, W.J. Chen, L. Deng, Y.F. Wang, D.J. Ying, Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Coll. Surf. B 96, 29–36 (2012). doi:10.1016/j.colsurfb.2012.03.014
X. Li, D. Zhang, S. Chen, H. Zhang, Z. Sun, S. Huang, X. Yin, Dye-sensitized solar cells with higher J sc by using polyvinylidene fluoride membrane counter electrodes. Nano-Micro Lett. 3(3), 195–199 (2011). doi:10.1007/BF03353672
N.H. Van, J.H. Lee, D. Whang, D.J. Kang, Low-programmable-voltage nonvolatile memory devices based on omega-shaped gate organic ferroelectric P(VDF–TrFE) field effect transistors using p-type silicon nanowire channels. Nano-Micro Lett. 7(1), 35–41 (2015). doi:10.1007/s40820-014-0016-2
J. Cohen, S. Edelman, C.F. Vezzetti, Pyroelectric effect in polyvinylfluoride. Nature 233(36), 12–12 (1971). doi:10.1038/physci233012a0
H. Gao, M.J. Guers, J.L. Rose, G.X. Zhao, C. Kwan, Ultrasonic guided wave annular array transducers for structural health monitoring. AIP Conf. Proc. 820, 1680–1686 (2006)
V.S. Nguyen, L. Badie, E. Sénéchault, E. Blampain, B. Vincent, C. Venet, O. Elmazria, D. Rouxel, Flexible over-moded resonators based on P(VDF–TrFE) thin films with very high temperature coefficient. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(10), 2039–2043 (2013). doi:10.1109/TUFFC.2013.2794
L.F. Brown, Design considerations for piezoelectric polymer ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1377–1396 (2000). doi:10.1109/58.883527
D. Mandal, S. Yoon, K.J. Kim, Origin of piezoelectricity in an electrospun poly (vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol. Rapid Comm. 32(11), 831–837 (2011). doi:10.1002/marc.201100040
R. Hadji, V.S. Nguyen, B. Vincent, D. Rouxel, F. Bauer, Preparation and characterization of P(VDF–TrFE)/Al2O3 nanocomposite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(1), 163–167 (2012). doi:10.1109/TUFFC.2012.2168
V.S. Nguyen, L. Badie, E. Lamouroux, B. Vincent, F.D.D. Santos, M. Aufray, M.Y. Fort, D. Rouxel, Nanocomposite piezoelectric films of P(VDF–TrFE)/LiNbO3. J. Appl. Polym. Sci. 129(1), 391–396 (2013). doi:10.1002/app.38746
V.S. Nguyen, D. Rouxel, B. Vincent, L. Badie, F.D.D. Santos, E. Lamouroux, Y. Fort, Influence of cluster size and surface functionalization of ZnO nanoparticles on the morphology, thermomechanical and piezoelectric properties of P(VDF–TrFE) nanocomposite films. Appl. Surf. Sci. 279, 204–211 (2013). doi:10.1016/j.apsusc.2013.04.070
X.Y. Du, Y.Q. Fu, S.C. Tan, J.K. Luo, A.J. Flewitt, S. Maeng, S.H. Kim, Y.J. Choi, D.S. Lee, N.M. Park, J. Park, W.I. Milne, ZnO film for application in surface acoustic wave device. J. Phys D-Appl. Phys. 76, 1–6 (2007). doi:10.1088/1742-6596/76/1/012035
L. Le Brizoual, J.K. Krueger, O. Elmazria, B. Vincent, L. Bouvot, M. Kolle, D. Rouxel, P. Alnot, Mapping of microwave-induced phonons by mu-Brillouin spectroscopy: hypersons in ZnO on silicon. J. Phys D-Appl. Phys. 41, 105502 (2008). doi:10.1088/0022-3727/41/10/105502
A.Z. Sadek, W. Wlodarski, Y.X. Li, W. Yu, X. Li, X. Wu, K. Kalantar-Zadeh, A ZnO nanorod based layered ZnO/64 YX LiNbO3 SAW hydrogen gas sensor. Thin Solid Films 515(24), 8705–8708 (2007). doi:10.1016/j.tsf.2007.04.009
D.A. Powell, K. Kalantar-zadeh, W. Wlodarski, Numerical calculation of SAW sensitivity: application to ZnO/LiTaO3 transducers. Sens. Actuat. A 115(2), 456–461 (2004). doi:10.1016/j.sna.2004.05.031
R. Augustine, H.N. Malik, D.K. Singhal, A. Mukherjee, D. Malakar, N. Kalarikkal, S. Thomas, Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J. Polym. Res. 21(3), 1–17 (2014). doi:10.1007/s10965-013-0347-6
R. Augustine, E.A. Dominic, I. Reju, B. Kaimal, N. Kalarikkal, S. Thomas, Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv. 4(47), 24777–24785 (2014). doi:10.1039/c4ra02450h
R. Augustine, E.A. Dominic, I. Reju, B. Kaimal, N. Kalarikkal, S. Thomas, Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds. RSC Adv. 4(93), 51528–51536 (2014). doi:10.1039/C4RA07361D
R. Gopikrishnan, K. Zhang, P. Ravichandran, S. Baluchamy, V. Ramesh et al., Synthesis, characterization and biocompatibility studies of zinc oxide (ZnO) nanorods for biomedical application. Nano-Micro Lett. 2(1), 31–36 (2010). doi:10.1007/BF03353614
A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7(3), 219–242 (2015). doi:10.1007/s40820-015-0040-x
X. Wang, X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6(12), 2768–2772 (2006). doi:10.1021/nl061802g
L.N. Teixeira, G.E. Crippa, A.C. Trabuco, R. Gimenes, M.A. Zaghete, D.B. Palioto, P.T. De Oliveira, A.L. Rosa, M.M. Beloti, In vitro biocompatibility of poly (vinylidene fluoride–trifluoroethylene)/barium titanate composite using cultures of human periodontal ligament fibroblasts and keratinocytes. Acta Biomater. 6(3), 979–989 (2010). doi:10.1016/j.actbio.2009.08.024
A.Z. Sadek, W. Wlodarski, K. Shin, R.B. Kaner, K. Kalantar-Zadeh, A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology 17(17), 4488–4492 (2006). doi:10.1088/0957-4484/17/17/034
V.S. Nguyen, D. Rouxel, M. Meier, B. Vincent, A. Dahoun, S. Thomas, F.D.D. Santos, Effect of ultrasonication and other processing conditions on the morphology, thermomechanical, and piezoelectric properties of poly (vinylidene difluoride-trifluoroethylene) copolymer films. Polym. Eng. Sci. 54(6), 1280–1288 (2014). doi:10.1002/pen.23670
S.K. Mahadeva, J. Berring, K. Walus, B. Stoeber, B. Stoeber, Effect of poling time and grid voltage on phase transition and piezoelectricity of poly(vinyledene fluoride) thin films using corona poling. J. Phys D-Appl. Phys. 46, 285–305 (2013)
Y. Bormashenko, R. Pogreb, O. Stanevsky, E. Bormashenko, Vibrational spectrum of PVDF and its interpretation. Polym. Test 23(7), 791–796 (2004). doi:10.1016/j.polymertesting.2004.04.001
M. Kobayashi, K. Tashiro, H. Tadokoro, Molecular vibrations of three crystal forms of poly (vinylidene fluoride). Macromolecules 8(2), 158–171 (1975). doi:10.1021/ma60044a013
J.C. Li, C.L. Wang, W.L. Zhong, P.L. Zhang, Q.H. Wang, J.F. Webb, Vibrational mode analysis of beta-phase poly (vinylidene fluoride). Appl. Phys. Lett. 81, 2223–2225 (2002). doi:10.1063/1.1507356
A. Lonjon, L. Laffont, P. Demont, E. Dantras, C. Lacabanne, Structural and electrical properties of gold nanowires/P(VDF–TrFE) nanocomposites. J. Phys D-Appl. Phys. 43(34), 345–401 (2010). doi:10.1088/0022-3727/43/34/345401
C. Saujanya, S. Radhakrishnan, Structure development and crystallization behaviour of PP/nanoparticulate composite. Polymer 42(16), 6723–6731 (2001). doi:10.1016/S0032-3861(01)00140-9
J.S. Andrew, D.R. Clarke, Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir 24(3), 670–672 (2008). doi:10.1021/la7035407
T. Hattori, M. Hikosaka, H. Ohigashi, The crystallization behaviour and phase diagram of extended-chain crystals of poly (vinylidene fluoride) under high pressure. Polymer 37(1), 85–91 (1996). doi:10.1016/0032-3861(96)81602-8