Thermo-Electrochemical Cells Based on Carbon Nanotube Electrodes by Electrophoretic Deposition
Corresponding Author: Changkun Dong
Nano-Micro Letters,
Vol. 8 No. 3 (2016), Article Number: 240-246
Abstract
Drawbacks of low efficiency and high cost of the electrode materials have restricted the wide applications of the thermo-electrochemical cells (TECs). Due to high specific areas and electrical conductivities, the low cost multi-walled carbon nanotubes (MWNTs) are promising alternative electrode materials. In this work, the MWNT films of up to 16 cm2 were synthesized on stainless steel substrates by the electrophoretic deposition (EPD) to make the thermo-electrochemical electrodes. MWNT electrodes based on TECs were characterized by cyclic voltammetry and the long-term stability tests with the potassium ferri/ferrocyanide electrolyte. The TECs reached the current density of 45.2 A m−2 and the maximum power density of 0.82 W m−2. The relative power conversion efficiency of the MWNT electrode is 50 % higher than that for the Pt electrode. Meanwhile, the TECs was operated continuously for 300 h without performance degradation. With the priorities of low cost and simple fabrication, EPD-based MWNT TECs may become commercially viable.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.B. Vining, An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83 (2009). doi:10.1038/nmat2361
- T. Mancini, P. Heller, B. Butler, Dish-stirling systems: an overview of development and status. J. Sol. Energy Eng. 125(2), 135–151 (2003). doi:10.1115/1.1562634
- M. Ujihara, G.P. Carman, D.G. Lee, Thermal energy harvesting device using ferromagnetic materials. Appl. Phys. Lett. 91(9), 093508 (2007). doi:10.1063/1.2775096
- D.A.W. Barton, S.G. Burrow, L.R. Clare, Energy harvesting from vibrations with a nonlinear oscillator. J. Vib. Acoust. 132(2), 021009 (2010). doi:10.1115/1.4000809
- H.G. Hertz, S.K. Ratkje, Theory of thermocells. J. Electrochem. Soc. 136(6), 1698–1704 (1989). doi:10.1149/1.2096995
- T.I. Quickenden, Y. Mua, A review of power generation in aqueous thermogalvanic cells. J. Electrochem. Soc. 142(11), 3985–3994 (1995). doi:10.1149/1.2048446
- T.J. Abraham, D.R. MacFarlane, J.M. Pringle, Seebeck coefficients in ionic liquids–prospects for thermo-electrochemical cells. Chem. Commun. 47(22), 6260 (2011). doi:10.1039/c1cc11501d
- R.C. Hu, B.A. Cola, N. Haram, J.N. Barisci, S. Lee et al., Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10(3), 838–846 (2010). doi:10.1021/nl903267n
- T.J. Kang, S.L. Fang, M.E. Kozlov, C.S. Haines, N. Li, Y.H. Kim, Y.S. Chen, R.H. Baughman, Electrical power from nanotube and graphene electrochemical thermal energy harvesters. Adv. Funct. Mater. 22(3), 477–489 (2012). doi:10.1002/adfm.201101639
- S. Iijima, Helical microtubules of graphitic carbon. Nature 35, 56–58 (1991). doi:10.1038/354056a0
- R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications. Science 29(5582), 787–792 (2002). doi:10.1126/science.1060928
- Q. Cao, J.A. Rogers, Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21(1), 29–53 (2009). doi:10.1002/adma.200801995
- Junjun Chen, Xu Xiangju, Lijie Zhang, Shaoming Huang, Controlling the diameter of single-walled carbon nanotubes by improving the dispersion of the uniform catalyst nanoparticles on substrate. Nano–Micro Lett. 7(4), 353–359 (2015). doi:10.1007/s40820-015-0050-8
- G.M. Zhou, F. Li, H.M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(12), 1307–1338 (2014). doi:10.1039/C3EE43182G
- B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2(12), 638–654 (2009). doi:10.1039/b904116h
- Xiaobing Zhang, Ji Ma, Kezheng Chen, Impact of morphology of conductive agent and anode material on lithium storage properties. Nano–Micro Lett. 7(4), 360–367 (2015). doi:10.1007/s40820-015-0051-7
- W. Xiong, F. Du, Y. Liu, A. Jr, M. Perez, T.S. Supp, L.M. Ramakrishnan, L.Jiang Dai, 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132(45), 15839–15841 (2010). doi:10.1021/ja104425h
- Y.P. Zhang, J. Sun, Y.Y. Hu, S.Z. Li, Q. Xu, Carbon nanotube-coated stainless steel mesh for enhanced oxygen reduction in biocathode microbial fuel cells. J. Power Sources 239, 169–174 (2013). doi:10.1016/j.jpowsour.2013.03.115
- T.J. Abraham, N. Tachikawa, D.R. MacFarlane, J.M. Pringle, Investigation of the kinetic and mass transport limitations in thermo electrochemical cells with different electrode materials. Phys. Chem. Chem. Phys. 16(48), 2527–2532 (2014). doi:10.1039/C3CP54577F
- P.F. Salazar, S. Kumar, B.A. Cola, Design and optimization of thermo-electrochemical cells. J. Appl. Electrochem. 44(2), 325–336 (2014). doi:10.1007/s10800-013-0638-y
- T.J. Abraham, D.R. MacFarlane, J.M. Pringle, Huge seebeck coefficients in nonaqueous electrolytes. J. Chem. Phys. 134(11), 114513 (2011). doi:10.1063/1.3561735
- S. Manda, A. Saini, S. Khaleeq, R. Patal, B. Usmani, S. Harinipriya, B. Pratiher, B. Roy, Thermocells of carbon material electrodes and its performance characteristics. J. Mater. Res. Technol. 2(2), 165–181 (2013). doi:10.1016/j.jmrt.2013.01.005
- H.D. Yang, L.T. Tufa, K.M. Bae, T.J. Kang, A tubing shaped, flexible thermal energy harvester based on a carbon nanotube sheet electrode. Carbon 86, 118–123 (2015). doi:10.1016/j.carbon.2015.01.037
- B.A.R. Occaccini, J. Cho, J.A. Roether, B.J.C. Thomas, E.J. Minay, M.S.P. Shaffer, Electrophoretic deposition of carbon nanotubes. Carbon 44(15), 3149–3160 (2006). doi:10.1016/j.carbon.2006.06.021
- A.A. Talin , K.A. Dean, S.M. O’Rourke, B.F. Coll, M. Stainer, R. Subrahmanya, FED cathode structure using electrophoretic deposition and method of fabrication, U.S. Patent 10/024,164, 7 June 2005
- S.G. Oh, J. Zhang, Y. Cheng, H. Shimoda, O. Zhou, Liquid-phase fabrication of patterned carbon nanotube field emission cathodes. Appl. Phys. Lett. 84(19), 3738 (2004). doi:10.1063/1.1737074
- J.S. Corneille, J.W. He, D.W. Goodman, XPS characterization of ultra-thin MgO films on a Mo (100) surface. Surf. Sci. 36(3), 269–278 (1994). doi:10.1016/0039-6028(94)90071-X
- X.B. Yan, T. Xu, S.R. Yang, H.W. Liu, Q.J. Xue, Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate. J. Phys. D 37(17), 2416–2424 (2004). doi:10.1088/0022-3727/37/17/012
- G. Carta, N.E. Habra, L. Crociani, G. Rossetto, P. Zanella, A. Zanella, G. Paolucci, D. Barreca, E. Tondello, CVD of MgO thin films from bis(methylcyclopentadienyl) magnesium. Chem. Vap. Depos. 13(4), 185–189 (2007). doi:10.1002/cvde.200606574
- A.J. Bard, L.R. Faulkner, Electrochamical methods-fundamentals and applications (Wiley, New York, 2001), pp. 1–814
- M.S. Romano, N. Li, D. Antiohos, J.M. Razal, A. Nattestad et al., Carbon nanotube–reduced graphene oxide composites for thermal energy harvesting applications. Adv. Mater. 25(45), 6602–6606 (2013). doi:10.1002/adma.201303295
- P.F. Salazar, S. Kumar, B.A. Cola, Nitrogen-and boron-doped carbon nanotube electrodes in a thermo-electrochemical cell. J. Electrochem. Soc. 159(5), B483–B488 (2012). doi:10.1149/2.043205jes
- J.M. Nugent, K.S.V. Santhanam, A. Rubio, P.M. Ajayan, Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. 1(2), 87–91 (2001). doi:10.1021/nl005521z
- C. Schonenberger, A. Bachtold, C. Strunk, J.P. Salvetat, L. Forro, Interference and interaction in multi-wall carbon nanotubes. Appl. Phys. A 69(3), 283–295 (1999). doi:10.1007/s003390051003
- T.I. Quickenden, C.F. Vernon, Thermogalvanic conversion of heat to electricity. Sol. Energy 36(1), 63–72 (1986). doi:10.1016/0038-092X(86)90061-7
- M.S. Romano, S. Gambhir, J.M. Razal, A. Gestos, G.G. Wallace, J. Chen, Novel carbon materials for thermal energy harvesting. J. Therm. Anal. Calorim. 109(3), 1229–1235 (2012). doi:10.1007/s10973-012-2311-9
- I. Corni, N. Neumann, D. Eifler, A.R. Boccaccini, Polyetheretherketone (PEEK) coatings on stainless steel by electrophoretic deposition. Adv. Eng. Mater. 10(6), 559–564 (2008). doi:10.1002/adem.200800010
- H. Im, H.G. Moon, J.S. Lee, I.Y. Chung, T.J. Kang, Y.H. Kim, Flexible thermocells for utilization of body heat. Nano Res. 7(4), 443–452 (2014). doi:10.1007/s12274-014-0410-6
References
C.B. Vining, An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83 (2009). doi:10.1038/nmat2361
T. Mancini, P. Heller, B. Butler, Dish-stirling systems: an overview of development and status. J. Sol. Energy Eng. 125(2), 135–151 (2003). doi:10.1115/1.1562634
M. Ujihara, G.P. Carman, D.G. Lee, Thermal energy harvesting device using ferromagnetic materials. Appl. Phys. Lett. 91(9), 093508 (2007). doi:10.1063/1.2775096
D.A.W. Barton, S.G. Burrow, L.R. Clare, Energy harvesting from vibrations with a nonlinear oscillator. J. Vib. Acoust. 132(2), 021009 (2010). doi:10.1115/1.4000809
H.G. Hertz, S.K. Ratkje, Theory of thermocells. J. Electrochem. Soc. 136(6), 1698–1704 (1989). doi:10.1149/1.2096995
T.I. Quickenden, Y. Mua, A review of power generation in aqueous thermogalvanic cells. J. Electrochem. Soc. 142(11), 3985–3994 (1995). doi:10.1149/1.2048446
T.J. Abraham, D.R. MacFarlane, J.M. Pringle, Seebeck coefficients in ionic liquids–prospects for thermo-electrochemical cells. Chem. Commun. 47(22), 6260 (2011). doi:10.1039/c1cc11501d
R.C. Hu, B.A. Cola, N. Haram, J.N. Barisci, S. Lee et al., Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10(3), 838–846 (2010). doi:10.1021/nl903267n
T.J. Kang, S.L. Fang, M.E. Kozlov, C.S. Haines, N. Li, Y.H. Kim, Y.S. Chen, R.H. Baughman, Electrical power from nanotube and graphene electrochemical thermal energy harvesters. Adv. Funct. Mater. 22(3), 477–489 (2012). doi:10.1002/adfm.201101639
S. Iijima, Helical microtubules of graphitic carbon. Nature 35, 56–58 (1991). doi:10.1038/354056a0
R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications. Science 29(5582), 787–792 (2002). doi:10.1126/science.1060928
Q. Cao, J.A. Rogers, Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21(1), 29–53 (2009). doi:10.1002/adma.200801995
Junjun Chen, Xu Xiangju, Lijie Zhang, Shaoming Huang, Controlling the diameter of single-walled carbon nanotubes by improving the dispersion of the uniform catalyst nanoparticles on substrate. Nano–Micro Lett. 7(4), 353–359 (2015). doi:10.1007/s40820-015-0050-8
G.M. Zhou, F. Li, H.M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(12), 1307–1338 (2014). doi:10.1039/C3EE43182G
B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2(12), 638–654 (2009). doi:10.1039/b904116h
Xiaobing Zhang, Ji Ma, Kezheng Chen, Impact of morphology of conductive agent and anode material on lithium storage properties. Nano–Micro Lett. 7(4), 360–367 (2015). doi:10.1007/s40820-015-0051-7
W. Xiong, F. Du, Y. Liu, A. Jr, M. Perez, T.S. Supp, L.M. Ramakrishnan, L.Jiang Dai, 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132(45), 15839–15841 (2010). doi:10.1021/ja104425h
Y.P. Zhang, J. Sun, Y.Y. Hu, S.Z. Li, Q. Xu, Carbon nanotube-coated stainless steel mesh for enhanced oxygen reduction in biocathode microbial fuel cells. J. Power Sources 239, 169–174 (2013). doi:10.1016/j.jpowsour.2013.03.115
T.J. Abraham, N. Tachikawa, D.R. MacFarlane, J.M. Pringle, Investigation of the kinetic and mass transport limitations in thermo electrochemical cells with different electrode materials. Phys. Chem. Chem. Phys. 16(48), 2527–2532 (2014). doi:10.1039/C3CP54577F
P.F. Salazar, S. Kumar, B.A. Cola, Design and optimization of thermo-electrochemical cells. J. Appl. Electrochem. 44(2), 325–336 (2014). doi:10.1007/s10800-013-0638-y
T.J. Abraham, D.R. MacFarlane, J.M. Pringle, Huge seebeck coefficients in nonaqueous electrolytes. J. Chem. Phys. 134(11), 114513 (2011). doi:10.1063/1.3561735
S. Manda, A. Saini, S. Khaleeq, R. Patal, B. Usmani, S. Harinipriya, B. Pratiher, B. Roy, Thermocells of carbon material electrodes and its performance characteristics. J. Mater. Res. Technol. 2(2), 165–181 (2013). doi:10.1016/j.jmrt.2013.01.005
H.D. Yang, L.T. Tufa, K.M. Bae, T.J. Kang, A tubing shaped, flexible thermal energy harvester based on a carbon nanotube sheet electrode. Carbon 86, 118–123 (2015). doi:10.1016/j.carbon.2015.01.037
B.A.R. Occaccini, J. Cho, J.A. Roether, B.J.C. Thomas, E.J. Minay, M.S.P. Shaffer, Electrophoretic deposition of carbon nanotubes. Carbon 44(15), 3149–3160 (2006). doi:10.1016/j.carbon.2006.06.021
A.A. Talin , K.A. Dean, S.M. O’Rourke, B.F. Coll, M. Stainer, R. Subrahmanya, FED cathode structure using electrophoretic deposition and method of fabrication, U.S. Patent 10/024,164, 7 June 2005
S.G. Oh, J. Zhang, Y. Cheng, H. Shimoda, O. Zhou, Liquid-phase fabrication of patterned carbon nanotube field emission cathodes. Appl. Phys. Lett. 84(19), 3738 (2004). doi:10.1063/1.1737074
J.S. Corneille, J.W. He, D.W. Goodman, XPS characterization of ultra-thin MgO films on a Mo (100) surface. Surf. Sci. 36(3), 269–278 (1994). doi:10.1016/0039-6028(94)90071-X
X.B. Yan, T. Xu, S.R. Yang, H.W. Liu, Q.J. Xue, Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate. J. Phys. D 37(17), 2416–2424 (2004). doi:10.1088/0022-3727/37/17/012
G. Carta, N.E. Habra, L. Crociani, G. Rossetto, P. Zanella, A. Zanella, G. Paolucci, D. Barreca, E. Tondello, CVD of MgO thin films from bis(methylcyclopentadienyl) magnesium. Chem. Vap. Depos. 13(4), 185–189 (2007). doi:10.1002/cvde.200606574
A.J. Bard, L.R. Faulkner, Electrochamical methods-fundamentals and applications (Wiley, New York, 2001), pp. 1–814
M.S. Romano, N. Li, D. Antiohos, J.M. Razal, A. Nattestad et al., Carbon nanotube–reduced graphene oxide composites for thermal energy harvesting applications. Adv. Mater. 25(45), 6602–6606 (2013). doi:10.1002/adma.201303295
P.F. Salazar, S. Kumar, B.A. Cola, Nitrogen-and boron-doped carbon nanotube electrodes in a thermo-electrochemical cell. J. Electrochem. Soc. 159(5), B483–B488 (2012). doi:10.1149/2.043205jes
J.M. Nugent, K.S.V. Santhanam, A. Rubio, P.M. Ajayan, Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. 1(2), 87–91 (2001). doi:10.1021/nl005521z
C. Schonenberger, A. Bachtold, C. Strunk, J.P. Salvetat, L. Forro, Interference and interaction in multi-wall carbon nanotubes. Appl. Phys. A 69(3), 283–295 (1999). doi:10.1007/s003390051003
T.I. Quickenden, C.F. Vernon, Thermogalvanic conversion of heat to electricity. Sol. Energy 36(1), 63–72 (1986). doi:10.1016/0038-092X(86)90061-7
M.S. Romano, S. Gambhir, J.M. Razal, A. Gestos, G.G. Wallace, J. Chen, Novel carbon materials for thermal energy harvesting. J. Therm. Anal. Calorim. 109(3), 1229–1235 (2012). doi:10.1007/s10973-012-2311-9
I. Corni, N. Neumann, D. Eifler, A.R. Boccaccini, Polyetheretherketone (PEEK) coatings on stainless steel by electrophoretic deposition. Adv. Eng. Mater. 10(6), 559–564 (2008). doi:10.1002/adem.200800010
H. Im, H.G. Moon, J.S. Lee, I.Y. Chung, T.J. Kang, Y.H. Kim, Flexible thermocells for utilization of body heat. Nano Res. 7(4), 443–452 (2014). doi:10.1007/s12274-014-0410-6