The Promotion Effect of Low-Molecular Hydroxyl Compounds on the Nano-Photoelectrocatalytic Degradation of Fulvic Acid and Mechanism
Corresponding Author: Baoxue Zhou
Nano-Micro Letters,
Vol. 8 No. 4 (2016), Article Number: 320-327
Abstract
A significant promotion effect of low-molecular hydroxyl compounds (LMHCs) was found in the nano-photoelectrocatalytic (NPEC) degradation of fulvic acid (FA), which is a typical kind of humic acid existing widely in natural water bodies, and its influence mechanism was proposed. A TiO2 nanotube arrays (TNAs) material is served as the photoanode. Methanol, ethanediol, and glycerol were chosen as the representative of LMHCs in this study. The adsorption performance of organics on the surface of TNAs was investigated by using the instantaneous photocurrent value. The adsorption constants of FA, methanol, ethanediol, and glycerol were 43.44, 19.32, 7.00, and 1.30, respectively, which indicates that FA has the strongest adsorption property. The degradation performance of these organics and their mixture were observed in a thin-layer reactor. It shows that FA could hardly achieve exhausted mineralization alone, while LMHCs could be easily oxidized completely in the same condition. The degradation degree of FA, which is added LMHCs, improves significantly and the best promotion effect is achieved by glycerol. The promotion effect of LMHCs in the degradation of FA could be contributed to the formation of a tremendous amount of hydroxyl radicals in the NPEC process. The hydroxyl radicals could facilitate the complete degradation of both FA and its intermediate products. Among the chosen LMHCs, glycerol molecule which has three hydroxyls could generate the most hydroxyl radicals and contribute the best effective promotion. This work provides a new way to promote the NPEC degradation of FA and a direction to remove humus from polluted water.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Odegaard, B. Eikebrokk, R. Storhaug, Processes for the removal of humic substances from water: an overview based on norwegian experiences. Water Sci. Technol. 40(9), 37–46 (1999). doi:10.1016/S0273-1223(99)00638-1
- B. Gao, Q. Yue, Natural organic matter (NOM) removal from surface water by coagulation. J. Environ. Sci. 17(1), 119–122 (2005)
- Y. Wang, R. Mao, Q. Wang, Z. Yang, B. Gao, Y. Zhao, Fulvic acid removal performance and control of disinfection by-product formation potential in coagulation–ultrafiltration process. Desalination 302(20), 55–64 (2012). doi:10.1016/j.desal.2012.06.024
- N.A. Klymenko, I.P. Kozyatnyk, L.A. Savchyna, Removing of fulvic acids by ozonation and biological active carbon filtration. Water Res. 44(18), 5316–5322 (2010). doi:10.1016/j.watres.2010.05.035
- S. Wang, X. Liu, W. Gong, W. Nie, B. Gao, Q. Yue, Adsorption of fulvic acids from aqueous solutions by carbon nanotubes. J. Chem. Technol. Biotechnol. 82(8), 698–704 (2007). doi:10.1002/jctb.1708
- Y. Liu, H. Zhou, J. Li, H. Chen, D. Li, B. Zhou, W. Cai, Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett. 2(4), 277–284 (2010). doi:10.1007/BF03353855
- Y. Zhang, B. Tang, Z. Wu, H. Shi, Y. Zhang, G. Zhao, Glucose oxidation over ultrathin carbon-coated perovskite modified TiO2 nanotube photonic crystals with high-efficiency electron generation and transfer for photoelectrocatalytic hydrogen production. Green Chem. (2016). doi:10.1039/C5GC02745D (in press)
- S. Sen Kavurmaci, M. Bekbolet, Tracing TiO2 photocatalytic degradation of humic acid in the presence of clay particles by excitation–emission matrix (EEM) fluorescence spectra. J. Photochem. Photobiol. A Chem. 282(15), 53–61 (2014). doi:10.1016/j.jphotochem.2014.03.011
- Q. Zhou, Y. Zhong, X. Chen, J. Liu, X. Huang, Y. Wu, Adsorption and photocatalysis removal of fulvic acid by TiO2-graphene composites. J. Mater. Sci. 49(3), 1066–1075 (2013). doi:10.1007/s10853-013-7784-9
- X. Cheng, H. Liu, Q. Chen, J. Li, X. Yu, Preparation and photoelectrocatalytic performance of TiO2 nano-tubes arrays electrode. Adv. Mater. Res. 661, 11–15 (2013). doi:10.4028/www.scientific.net/AMR.661.11
- Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, X. Zhu, Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Adv. Mater. 20(5), 1044–1049 (2008). doi:10.1002/adma.200701619
- X. Huangfu, Y. Wang, Y. Liu, X. Lu, X. Zhang, H. Cheng, J. Jiang, J. Ma, Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids. Front. Environ. Sci. Eng. 9(1), 105–111 (2015). doi:10.1007/s11783-014-0726-1
- M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue. Nano-Micro Lett. 3(4), 236–241 (2011). doi:10.1007/BF03353678
- X. Li, Y. Jiang, W. Cheng, Y. Li, X. Xu, K. Lin, Mesoporous TiO2/carbon beads: one-pot preparation and their application in visible-light-induced photodegradation. Nano-Micro Lett. 7(3), 243–254 (2015). doi:10.1007/s40820-015-0029-5
- S. Song, J. Tu, Z. He, F. Hong, W. Liu, J. Chen, Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination. Appl. Catal. A Gen. 378(2), 169–174 (2010). doi:10.1016/j.apcata.2010.02.014
- X. Li, H. Liu, P. Yue, Y. Sun, Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO2 mesh electrode. Environ. Sci. Technol. 34(20), 4401–4406 (2000). doi:10.1021/es000939k
- Y. Zhang, G. Zhao, Y. Zhang, X. Huang, Highly efficient visible-light-driven photoelectro-catalytic selective aerobic oxidation of biomass alcohols to aldehydes. Green Chem. 16(8), 3860–3869 (2014). doi:10.1039/C4GC00454J
- J. Chang, C. Liu, J. Liu, Y. Zhou, X. Gao, S. Wang, Green-chemistry compatible approach to Tio2-supported PdAu bimetallic nanoparticles for solvent-free 1-phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7(3), 307–315 (2015). doi:10.1007/s40820-015-0044-6
- H. Wei, L. Wang, Z. Li, S. Ni, Q. Zhao, Synthesis and photocatalytic activity of one-dimensional CdS@TiO2 core-shell heterostructures. Nano-Micro Lett. 3(1), 6–11 (2011). doi:10.1007/BF03353645
- S. Song, Z. Liu, Z. He, A. Zhang, J. Chen, Y. Yang, X. Xu, Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol. Environ. Sci. Technol. 44(10), 3913–3918 (2010). doi:10.1021/es100456n
- Z. Liu, X. Zhang, S. Nishimoto, T. Murakami, A. Fujishima, Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ. Sci. Technol. 42(22), 8547–8551 (2008). doi:10.1021/es8016842
- J. Staehelin, J. Hoigne, Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ. Sci. Technol. 19(12), 1206–1213 (1985). doi:10.1021/es00142a012
- Q. Cai, M. Paulose, O.K. Varghese, C.A. Grimes, The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20(1), 230–236 (2011). doi:10.1557/JMR.2005.0020
- X. Li, J. Li, J. Bai, Y. Dong, L. Li, B. Zhou, The inhibition effect of tert-butyl alcohol on the TiO2 nano assays photoelectrocatalytic degradation of different organics and its mechanism. Nano-Micro Lett. (2016). doi:10.1007/s40820-015-0080-2
- B. Liu, J. Li, B. Zhou, Q. Zheng, J. Bai, J. Zhang, Y. Liu, W. Cai, Kinetics and mechanisms for photoelectrochemical degradation of glucose on highly effective self-organized TiO2 nanotube arrays. Chin. J. Catal. 31(2), 163–170 (2010). doi:10.1016/S1872-2067(09)60042-5
- Y. Su, G. Wang, D.T.F. Kuo, M. Chang, Y. Shih, Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using TiO2/Ti photoanode. Appl. Catal. B Environ. 186, 184–192 (2016). doi:10.1016/j.apcatb.2016.01.003
- Y. Qin, M. Long, B. Tan, B. Zhou, RhB adsorption performance of magnetic adsorbent Fe3O4/RGO composite and its regeneration through a fenton-like reaction. Nano-Micro Lett. 6(2), 125–135 (2014). doi:10.1007/BF03353776
- N. Talebian, M.R. Nilforoushan, Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue. Thin Solid Films 518(8), 2210–2215 (2010). doi:10.1016/j.tsf.2009.07.135
References
H. Odegaard, B. Eikebrokk, R. Storhaug, Processes for the removal of humic substances from water: an overview based on norwegian experiences. Water Sci. Technol. 40(9), 37–46 (1999). doi:10.1016/S0273-1223(99)00638-1
B. Gao, Q. Yue, Natural organic matter (NOM) removal from surface water by coagulation. J. Environ. Sci. 17(1), 119–122 (2005)
Y. Wang, R. Mao, Q. Wang, Z. Yang, B. Gao, Y. Zhao, Fulvic acid removal performance and control of disinfection by-product formation potential in coagulation–ultrafiltration process. Desalination 302(20), 55–64 (2012). doi:10.1016/j.desal.2012.06.024
N.A. Klymenko, I.P. Kozyatnyk, L.A. Savchyna, Removing of fulvic acids by ozonation and biological active carbon filtration. Water Res. 44(18), 5316–5322 (2010). doi:10.1016/j.watres.2010.05.035
S. Wang, X. Liu, W. Gong, W. Nie, B. Gao, Q. Yue, Adsorption of fulvic acids from aqueous solutions by carbon nanotubes. J. Chem. Technol. Biotechnol. 82(8), 698–704 (2007). doi:10.1002/jctb.1708
Y. Liu, H. Zhou, J. Li, H. Chen, D. Li, B. Zhou, W. Cai, Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett. 2(4), 277–284 (2010). doi:10.1007/BF03353855
Y. Zhang, B. Tang, Z. Wu, H. Shi, Y. Zhang, G. Zhao, Glucose oxidation over ultrathin carbon-coated perovskite modified TiO2 nanotube photonic crystals with high-efficiency electron generation and transfer for photoelectrocatalytic hydrogen production. Green Chem. (2016). doi:10.1039/C5GC02745D (in press)
S. Sen Kavurmaci, M. Bekbolet, Tracing TiO2 photocatalytic degradation of humic acid in the presence of clay particles by excitation–emission matrix (EEM) fluorescence spectra. J. Photochem. Photobiol. A Chem. 282(15), 53–61 (2014). doi:10.1016/j.jphotochem.2014.03.011
Q. Zhou, Y. Zhong, X. Chen, J. Liu, X. Huang, Y. Wu, Adsorption and photocatalysis removal of fulvic acid by TiO2-graphene composites. J. Mater. Sci. 49(3), 1066–1075 (2013). doi:10.1007/s10853-013-7784-9
X. Cheng, H. Liu, Q. Chen, J. Li, X. Yu, Preparation and photoelectrocatalytic performance of TiO2 nano-tubes arrays electrode. Adv. Mater. Res. 661, 11–15 (2013). doi:10.4028/www.scientific.net/AMR.661.11
Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, X. Zhu, Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Adv. Mater. 20(5), 1044–1049 (2008). doi:10.1002/adma.200701619
X. Huangfu, Y. Wang, Y. Liu, X. Lu, X. Zhang, H. Cheng, J. Jiang, J. Ma, Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids. Front. Environ. Sci. Eng. 9(1), 105–111 (2015). doi:10.1007/s11783-014-0726-1
M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue. Nano-Micro Lett. 3(4), 236–241 (2011). doi:10.1007/BF03353678
X. Li, Y. Jiang, W. Cheng, Y. Li, X. Xu, K. Lin, Mesoporous TiO2/carbon beads: one-pot preparation and their application in visible-light-induced photodegradation. Nano-Micro Lett. 7(3), 243–254 (2015). doi:10.1007/s40820-015-0029-5
S. Song, J. Tu, Z. He, F. Hong, W. Liu, J. Chen, Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination. Appl. Catal. A Gen. 378(2), 169–174 (2010). doi:10.1016/j.apcata.2010.02.014
X. Li, H. Liu, P. Yue, Y. Sun, Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO2 mesh electrode. Environ. Sci. Technol. 34(20), 4401–4406 (2000). doi:10.1021/es000939k
Y. Zhang, G. Zhao, Y. Zhang, X. Huang, Highly efficient visible-light-driven photoelectro-catalytic selective aerobic oxidation of biomass alcohols to aldehydes. Green Chem. 16(8), 3860–3869 (2014). doi:10.1039/C4GC00454J
J. Chang, C. Liu, J. Liu, Y. Zhou, X. Gao, S. Wang, Green-chemistry compatible approach to Tio2-supported PdAu bimetallic nanoparticles for solvent-free 1-phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7(3), 307–315 (2015). doi:10.1007/s40820-015-0044-6
H. Wei, L. Wang, Z. Li, S. Ni, Q. Zhao, Synthesis and photocatalytic activity of one-dimensional CdS@TiO2 core-shell heterostructures. Nano-Micro Lett. 3(1), 6–11 (2011). doi:10.1007/BF03353645
S. Song, Z. Liu, Z. He, A. Zhang, J. Chen, Y. Yang, X. Xu, Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol. Environ. Sci. Technol. 44(10), 3913–3918 (2010). doi:10.1021/es100456n
Z. Liu, X. Zhang, S. Nishimoto, T. Murakami, A. Fujishima, Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ. Sci. Technol. 42(22), 8547–8551 (2008). doi:10.1021/es8016842
J. Staehelin, J. Hoigne, Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ. Sci. Technol. 19(12), 1206–1213 (1985). doi:10.1021/es00142a012
Q. Cai, M. Paulose, O.K. Varghese, C.A. Grimes, The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20(1), 230–236 (2011). doi:10.1557/JMR.2005.0020
X. Li, J. Li, J. Bai, Y. Dong, L. Li, B. Zhou, The inhibition effect of tert-butyl alcohol on the TiO2 nano assays photoelectrocatalytic degradation of different organics and its mechanism. Nano-Micro Lett. (2016). doi:10.1007/s40820-015-0080-2
B. Liu, J. Li, B. Zhou, Q. Zheng, J. Bai, J. Zhang, Y. Liu, W. Cai, Kinetics and mechanisms for photoelectrochemical degradation of glucose on highly effective self-organized TiO2 nanotube arrays. Chin. J. Catal. 31(2), 163–170 (2010). doi:10.1016/S1872-2067(09)60042-5
Y. Su, G. Wang, D.T.F. Kuo, M. Chang, Y. Shih, Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using TiO2/Ti photoanode. Appl. Catal. B Environ. 186, 184–192 (2016). doi:10.1016/j.apcatb.2016.01.003
Y. Qin, M. Long, B. Tan, B. Zhou, RhB adsorption performance of magnetic adsorbent Fe3O4/RGO composite and its regeneration through a fenton-like reaction. Nano-Micro Lett. 6(2), 125–135 (2014). doi:10.1007/BF03353776
N. Talebian, M.R. Nilforoushan, Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue. Thin Solid Films 518(8), 2210–2215 (2010). doi:10.1016/j.tsf.2009.07.135