Inorganic and Organic Solution-Processed Thin Film Devices
Corresponding Author: Morteza Eslamian
Nano-Micro Letters,
Vol. 9 No. 1 (2017), Article Number: 3
Abstract
Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials, conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Eslamian, Spray-on thin film PV solar cells: advances, potentials and challenges. Coatings 4(1), 60–84 (2014). doi:10.3390/coatings4010060
- S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15(6), 3164–3185 (2015). doi:10.1109/JSEN.2014.2375203
- Q. Wang, Y. Xie, F. Soltani-Kordshuli, M. Eslamian, Progress in emerging solution-processed thin film solar cells—Part I: polymer solar cells. Renew. Sustain. Energy Rev. 56, 347–361 (2016). doi:10.1016/j.rser.2015.11.063
- F.C. Krebs, Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol. Energy Mater. Sol. Cells 93(4), 465–475 (2009). doi:10.1016/j.solmat.2008.12.012
- F. Zabihi, Y. Xie, S. Gao, M. Eslamian, Morphology, conductivity and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating. Appl. Surf. Sci. 338, 163–177 (2015). doi:10.1016/j.apsusc.2015.02.128
- M. Eslamian, F. Zabihi, Ultrasonic substrate vibration-assisted drop casting (SVADC) for the fabrication of photovoltaic solar cell arrays and thin-film devices. Nanoscale Res. Lett. 10(1), 1–5 (2015). doi:10.1186/s11671-015-1168-9
- M. Eslamian, A mathematical model for the design and fabrication of polymer solar cells by spray coating. Dry. Technol. 31(4), 405–413 (2013). doi:10.1080/07373937.2012.737397
- MathSciNet
- F. Jiao, C.A. Di, Y. Sun, P. Sheng, W. Xu, D. Zhu, Inkjet-printed flexible organic thin-film thermoelectric devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling. Philos. Trans. R. Soc. Lond. A-Math. Phys. Eng. Sci. 372(2013), 20130008 (2014). doi:10.1098/rsta.2013.0008
- Z. Lu, M. Layani, X. Zhao, L.P. Tan, T. Sun, S. Fan, Q. Yan, S. Magdassi, H.H. Hng, Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small 10(17), 3551–3554 (2014). doi:10.1002/smll.201303126
- F. Soltani-Kordshuli, F. Zabihi, M. Eslamian, Graphene-doped PEDOT:PSS nanocomposite thin films fabricated by conventional and substrate vibration-assisted spray coating (SVASC). Eng. Sci. Technol. 19(3), 1216–1223 (2016). doi:10.1016/j.jestch.2016.02.003
- L. Petti, H. Faber, N. Münzenrieder, G. Cantarella, P.A. Patsalas, G. Tröster, T.D. Anthopoulos, Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits. Appl. Phys. Lett. 106(9), 397–420 (2015). doi:10.1063/1.4914085
- D.S. Montgomery, C.A. Hewitt, R. Barbalace, T. Jones, D.L. Carroll, Spray doping method to create a low-profile high-density carbon nanotube thermoelectric generator. Carbon 96, 778–781 (2016). doi:10.1016/j.carbon.2015.09.029
- Y. Xie, S. Gao, M. Eslamian, Fundamental study on the effect of spray parameters on characteristics of P3HT:PCBM active layers made by spray coating. Coatings 5(3), 488–510 (2015). doi:10.3390/coatings5030488
- F. Zabihi, M.R. Ahmadian-Yazdi, M. Eslamian, Fundamental study on the fabrication of inverted planar perovskite solar cells using two-step sequential substrate vibration-assisted spray coating (2S-SVASC). Nanoscale Res. Lett. 11, 71 (2016). doi:10.1186/s11671-016-1259-2
- Y. Rong, Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A.M. Guloy, Y. Yao, Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale 7(24), 10595–10599 (2015). doi:10.1039/C5NR02866C
- Z. Ku, N.H. Tiep, B. Wu, T.C. Sum, D. Fichou, H.J. Fan, Solvent engineering for fast growth of centimetric high-quality CH3NH3PbI3 perovskite single crystal. New J. Chem. (2016). doi:10.1039/C6NJ00188B
- F. Zabihi, M. Eslamian, Substrate vibration-assisted spray coating (SVASC): significant improvement in nano-structure, uniformity, and conductivity of PEDOT:PSS thin films for organic solar cells. J. Coat. Technol. Res. 12(4), 711–719 (2015). doi:10.1007/s11998-015-9682-3
- M. Habibi, M. Eslamian, F. Soltani-Kordshuli, F. Zabihi, Controlled wetting/dewetting through substrate vibration-assisted spray coating (SVASC). J. Coat. Technol. Res. 13(2), 211–225 (2016). doi:10.1007/s11998-015-9748-2
- Q. Wang, M. Eslamian, Improving uniformity and nanostructure of solution-processed thin films using ultrasonic substrate vibration post treatment (SVPT). Ultrasonics 67, 55–64 (2016). doi:10.1016/j.ultras.2015.12.012
- R.K. Jamal, K.A. Aadim, Q.G. Al-Zaidi, I.N. Taaban, Hydrogen gas sensors based on electrostatically spray deposited nickel oxide thin film structures. Photonic Sens. 5(3), 235–240 (2015). doi:10.1007/s13320-015-0253-0
- https://en.wikipedia.org/wiki/Konarka_Technologies. Accessed June 2016
- J.G. Labram, Y.-H. Lin, K. Zhao, R. Li, S.R. Thomas et al., Signatures of quantized energy states in solution-processed ultrathin layers of metal-oxide semiconductors and their devices. Adv. Funct. Mater. 25(11), 1727–1736 (2015). doi:10.1002/adfm.201403862
- A. Afzali, C.D. Dimitrakopoulos, T.L. Breen, High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. J. Am. Chem. Soc. 124(30), 8812–8813 (2002). doi:10.1021/ja0266621
- J.-S. Park, W.-J. Maeng, H.-S. Kim, J.-S. Park, Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 520(6), 1679–1693 (2012). doi:10.1016/j.tsf.2011.07.018
- G. Horowitz, Organic thin film transistors: from theory to real devices. J. Mater. Res. 19(7), 1946–1962 (2004). doi:10.1557/JMR.2004.0266
- MathSciNet
- K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat. Mater. 10(1), 45–50 (2011). doi:10.1038/nmat2914
- Y. Yuan, G. Giri, A.L. Ayzner, A.P. Zoombelt, S.C.B. Mannsfeld et al., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014). doi:10.1038/ncomms4005
- N.A. Azarova, J.W. Owen, C.A. McLellan, M.A. Grimminger, E.K. Chapman, J.E. Anthony, O.D. Jurchescu, Fabrication of organic thin-film transistors by spray-deposition for low-cost, large-area electronics. Org. Electron. 11(12), 1960–1965 (2010). doi:10.1016/j.orgel.2010.09.008
- K. Fukuda, Y. Takeda, Y. Yoshimura, R. Shiwaku, L.T. Tran, T. Sekine, M. Mizukami, D. Kumaki, S. Tokito, Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun. 5, 4147 (2014). doi:10.1038/ncomms5147
- K. Fukuda, T. Sekine, Y. Kobayashi, D. Kumaki, M. Itoh et al., Stable organic thin-film transistors using full solution-processing and low-temperature sintering silver nanoparticle inks. Org. Electron. 13(9), 1660–1664 (2012). doi:10.1016/j.orgel.2012.05.016
- X. Yu, L. Zeng, N. Zhou, P. Guo, F. Shi et al., Ultra-flexible, “invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends. Adv. Mater. 27(14), 2390–2399 (2015). doi:10.1002/adma.201405400
- P.H. Lau, K. Takei, C. Wang, Y. Ju, J. Kim, Z. Yu, T. Takahashi, G. Cho, A. Javey, Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 13(8), 3864–3869 (2013). doi:10.1021/nl401934a
- M. Irimia-Vladu, P.A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah et al., Environmentally sustainable organic field effect transistors. Org. Electron. 11(12), 1974–1990 (2010). doi:10.1016/j.orgel.2010.09.007
- Y. Mei, C. Zhang, Z.V. Vardeny, O.D. Jurchescu, Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature. MRS Commun. 5(2), 303 (2015). doi:10.1557/mrc.2015.33
- Y. Fujisaki, Review of emerging new solid-state non-volatile memories. Jpn. J. Appl. Phys. 52, 040001 (2013). doi:10.7567/JJAP.52.040001
- Y.-H. Chou, H.-C. Chang, C.-L. Liu, W.-C. Chen, Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polym. Chem. 6(3), 341–352 (2015). doi:10.1039/C4PY01213E
- L. Dong, Y.-C. Chiu, C.-C. Chueh, A.-D. Yu, W.-C. Chen, Semi-conjugated acceptor-based polyimides as electrets for nonvolatile transistor memory devices. Polym. Chem. 5(23), 6834–6846 (2014). doi:10.1039/C4PY00988F
- G. Darlinski, U. Böttger, R. Waser, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Mechanical force sensors using organic thin-film transistors. J. Appl. Phys. 97(9), 093708 (2005). doi:10.1063/1.1888046
- N. Thejokalyani, S.J. Dhoble, Novel approaches for energy efficient solid state lighting by RGB organic light emitting diodes—a review. Renew. Sustain. Energy Rev. 32(5), 448–467 (2014). doi:10.1016/j.rser.2014.01.013
- J.-H. Jou, S. Kumar, A. Agrawal, T.-H. Li, S. Sahoo, Approaches for fabricating high efficiency organic light emitting diodes. J. Mater. Chem. C 3, 2974–3002 (2015). doi:10.1039/C4TC02495H
- S. Ho, S. Liu, Y. Chen, F. So, Review of recent progress in multilayer solution-processed organic light-emitting diodes. J. Photon. Energy 5(1), 057611 (2015). doi:10.1117/1.JPE.5.057611
- http://www.makeuseof.com/tag/what-is-the-difference-between-an-lcd-and-an-led-backlit-lcd-display/. Accessed June 2016
- http://www.trustedreviews.com/opinions/oled-vs-led-lcd. Accessed June 2016
- T. Tsujimura, OLED manufacturing process, in OLED displays: fundamentals and applications (Wiley, Hoboken, 2012). doi:10.1002/9781118173053.ch3
- http://www.tomsguide.com/us/OLED-Printing-Display-dupont-HDTV,news-6818.html
- T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8(6), 494–499 (2009). doi:10.1038/nmat2459
- C. Lee, M. Park, J. Lim, H. Jung, J. Kwak, W.K. Bae, K. Char, S. Lee, Invited paper: recent progress of light-emitting diodes based on colloidal quantum dots. SID Symp. Dig. Tech. Pap. 46(1), 685–687 (2015). doi:10.1002/sdtp.10265
- G. Li, Z.-K. Tan, D. Di, M.L. Lai, L. Jiang, J.H.-W. Lim, R.H. Friend, N.C. Greenham, Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15(4), 2640–2644 (2015). doi:10.1021/acs.nanolett.5b00235
- R.S. Deol, H.W. Choi, M. Singh, G.E. Jabbour, Printable displays and light sources for sensor applications: a review. IEEE Sens. J. 15(6), 3186–3195 (2015). doi:10.1109/JSEN.2014.2378144
- N. Ali, A. Hussain, R. Ahmed, M.K. Wang, C. Zhao, B.U. Haq, Y.Q. Fu, Advances in nanostructured thin film materials for solar cell applications. Renew. Sustain. Energy Rev. 59, 726–737 (2016). doi:10.1016/j.rser.2015.12.268
- M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18(3), 155–162 (2015). doi:10.1016/j.mattod.2014.09.001
- M. Habibi, F. Zabihi, M.R. Ahmadian Yazdi, M. Eslamian, Progress in emerging solution-processed thin film solar cells- Part II: perovskite solar cells. Renew. Sustain. Energy Rev. 62, 10–12 (2016). doi:10.1016/j.rser.2016.05.042
- I.J. Kramer, J.C. Minor, G. Moreno-Bautista, L. Rollny, P. Kanjanaboos et al., Efficient spray-coated colloidal quantum dot solar cells. Adv. Mater. 27(1), 116–121 (2015). doi:10.1002/adma.201403281
- http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. Accessed June 2016
- A. Harris, A silver lining in declining solar prices, Renew. Energy World, http://www.renewableenergyworld.com/articles/2011/08/a-silver-lining-in-declining-solar-prices.html
- Photovoltaic Report, Fraunhofer Institute for Solar Energy Systems ISE, July 28, 2014, http://www.webcitation.org/6SFRTUaBS
- J.G. Tait, S. Manghooli, W. Qiu, L. Rakocevic, L. Kootstra et al., Screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. J. Mater. Chem. A 4(10), 3792–3797 (2016). doi:10.1039/C6TA00739B
- A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, D.G. Lidzey, Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7(9), 2944–2950 (2014). doi:10.1039/C4EE01546K
- Z. Yang, C.-C. Chueh, F. Zuo, J.H. Kim, P.W. Liang, A.K.Y. Jen, High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 5(13), 00328 (2015). doi:10.1002/aenm.201500328
- K. Hwang, Y.-S. Jung, Y.-J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.-Y. Kim, D. Vak, Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27(7), 1241–1247 (2015). doi:10.1002/adma.201404598
- M. Habibi, A. Rahimzadeh, M. Eslamian, On dewetting of thin films due to crystallization (crystallization dewetting). Eur. Phys. J. E 39, 30 (2016). doi:10.1140/epje/i2016-16030-9
- X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D.B. Mitzi, M. Green, The current status and future prospects of kesterite solar cells: a brief review. Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016). doi:10.1002/pip.2741
- W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4(7), 403–410 (2013). doi:10.1002/aenm.201301465
- F. Liu, F. Zeng, N. Song, L. Jiang, Z. Han, Z. Su, C. Yan, X. Wen, X. Hao, Y. Liu, Kesterite Cu2ZnSn(S,Se)4 solar cells with beyond 8% efficiency by a sol–gel and selenization process. ACS Appl. Mater. Interfaces 7(26), 14376–14383 (2015). doi:10.1021/acsami.5b01151
- X. Lin, R. Klenk, L. Wang, T. Kohler, J. Albert, S. Fiechter, A. Ennaoui, M.C. Lux-Steiner, 11.3% efficiency Cu(In, Ga)(S, Se)2 thin film solar cells via drop-on-demand inkjet printing. Energy Environ. Sci. 9, 2037–2043 (2016). doi:10.1039/C6EE00587J
- T. Martini, C. Chubilleau, O. Poncelet, A. Ricaud, A. Blayo, C. Martin, K. Tarasov, Spray and inkjet fabrication of Cu2ZnSnS4 thin films using nanoparticles derived from a continuous-flow microwave-assisted synthesis. Sol. Energy Mater. Sol. Cells 144, 657–663 (2016). doi:10.1016/j.solmat.2015.09.046
- Y.K. Liao, M. Brossard, D.H. Hsieh, T.N. Lin, M.D.B. Charlton et al., Highly efficient flexible hybrid nanocrystal-Cu(In, Ga)Se2 (CIGS) solar cells. Adv. Energy Mater. 5(2), 1401280 (2015). doi:10.1002/aenm.201401280
- P.R. Ghediya, T.K. Chaudhuri, Doctor-blade printing of Cu2ZnSnS4 films from microwave-processed ink. J. Mater. Sci.: Mater. Electron. 26(3), 1908–1912 (2015). doi:10.1007/s10854-014-2628-1
- U. Berner, M. Widenmeyer, Solution-based processing of Cu(In, Ga)Se2 absorber layers for 11% efficiency solar cells via a metallic intermediate. Prog. Photovolt. 23(10), 1260–1266 (2015). doi:10.1002/pip.2546
- G. Larramona, S. Levcenko, S. Bourdais, A. Jacob, C. Choné et al., Fine-tuning the Sn content in CZTSSe thin films to achieve 10.8% solar cell efficiency from spray-deposited water–ethanol-based colloidal inks. Adv. Energy Mater. 5, 1501404 (2015). doi:10.1002/aenm.201501404
- A. Carrete, M. Placidi, A. Shavel, A. Pérez-Rodríguez, A. Cabot, Spray-deposited CuIn1-xGaxSe2 solar cell absorbers: Influence of spray deposition parameters and crystallization promoters. Phys. Status Solidi 212(1), 67–71 (2015). doi:10.1002/pssa.201431425
- S.K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Effect of deposition temperature on the structural and electrical properties of spray deposited kesterite (Cu2ZnSnS4) films. Sol. Energy 122, 508–516 (2015). doi:10.1016/j.solener.2015.09.027
- M.R. Golobostanfard, H. Abdizadeh, All solution processable graded CIGS solar cells fabricated using electrophoretic deposition. RSC Adv. 6(14), 11903–11910 (2016). doi:10.1039/C5RA26315H
- M.A. Hossain, T. Zhang, K.K. Lee, X. Li, R.R. Prabhakar, S.K. Batabyal, S.G. Mhaisalkar, L.H. Wong, Synthesis of Cu(In,Ga)(S,Se)2 thin films using an aqueous spray-pyrolysis approach, and their solar cell efficiency of 10.5%. J. Mater. Chem. A 3(8), 4147 (2015). doi:10.1039/C4TA05783J
- W. Septina, M. Kurihara, S. Ikeda, Y. Nakajima, T. Hirano, Y. Kawasaki, T. Harada, M. Matsumura, Cu(In, Ga)(S, Se)2 Thin film solar cell with 10.7% conversion efficiency obtained by selenization of the Na-doped spray-pyrolyzed sulfide precursor film. ACS Appl. Mater. Interfaces 7(12), 6472–6479 (2015). doi:10.1021/am507684x
- M. Kurihara, W. Septina, T. Hirano, Y. Nakajima, T. Harada, S. Ikeda, Fabrication of Cu(In, Ga)(S, Se)2 thin film solar cells via spray pyrolysis of thiourea and 1-methylthiourea-based aqueous precursor solution. Jpn. J. Appl. Phys. 54, 091203 (2015). doi:10.7567/JJAP.54.091203
- T.H. Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada, S. Ikeda, Cu2ZnSnS4 thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique. RSC Adv. 5(95), 77565–77571 (2015). doi:10.1039/C5RA13000J
- M. Espindola-Rodriguez, Y. Sanchez, S. López-Marino, D. Sylla, M. Placidi et al., Selenization of Cu2ZnSnS4 thin films obtained by pneumatic spray pyrolysis. J. Anal. Appl. Pyrolysis 120, 45–51 (2016). doi:10.1016/j.jaap.2016.04.008
- G. Altamura, M. Wang, K.L. Choy, Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells. Sci. Rep. 6, 22109 (2016). doi:10.1038/srep22109
- Y.E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A.R. Uhl et al., All solution-processed chalcogenide solar cells—from single functional layers towards a 13.8% efficient CIGS device. Adv. Funct. Mater. 25(1), 12–27 (2015). doi:10.1002/adfm.201402288
- R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001). doi:10.1038/35098012
- R.B. Balow, E.P. Tomlinson, M.M. Abu-Omar, B.W. Boudouris, R. Agrawal, Solution-based synthesis and characterization of earth abundant Cu3(As, Sb)Se4 nanocrystal alloys: towards scalable room-temperature thermoelectric devices. J. Mater. Chem. A 4(6), 2198–2204 (2016). doi:10.1039/C5TA07546G
- Y. Chen, Y. Zhao, Z. Liang, Solution-processed organic thermoelectrics: towards flexible thermoelectric modules. Energy Environ. Sci. 8(2), 401–422 (2015). doi:10.1039/C4EE03297G
- G.-H. Kim, L. Shao, K. Zhang, K.P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12(8), 719–723 (2013). doi:10.1038/nmat3635
- S. van Reenen, M. Kemerink, Correcting for contact geometry in Seebeck coefficient measurements of thin film devices. Org. Electron. 15(10), 2250–2255 (2014). doi:10.1016/j.orgel.2014.06.018
- Z. Zhang, J. Qiu, S. Wang, Roll-to-roll printing of flexible thin-film organic thermoelectric devices. Manuf. Lett. 8, 6–10 (2016). doi:10.1016/j.mfglet.2016.04.002
- K.J. Erickson, F. Léonard, V. Stavila, M.E. Foster, C.D. Spataru et al., Thin film thermoelectric metal–organic framework with high Seebeck coefficient and low thermal conductivity. Adv. Mater. 27, 3453–3459 (2015). doi:10.1002/adma.201501078
- Y. Sun, L. Qiu, L. Tang, H. Geng, H. Wang et al., Flexible n-type high-performance thermoelectric thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method. Adv. Mater. 28, 3351–3358 (2016). doi:10.1002/adma.201505922
- P. Fan, Z. Zheng, Y. Li, Q. Lin, J. Luo, G. Liang, X. Cai, D. Zhang, F. Ye, Low-cost flexible thin film thermoelectric generator on zinc based thermoelectric materials. Appl. Phys. Lett. 106, 073901 (2015). doi:10.1063/1.4909531
- E.A. Mondarte, V. Copa, A. Tuico, C.J. Vergara, E. Estacio, A. Salvador, A. Somintac, Al-doped ZnO and N-doped CuxO thermoelectric thin films for self-powering integrated devices. Mater. Sci. Semicond. Process 45, 27–31 (2016). doi:10.1016/j.mssp.2016.01.013
- B. Kim, H. Shin, T. Park, H. Lim, E. Kim, NIR-sensitive poly(3,4-ethylenedioxyselenophene) derivatives for transparent photo-thermo-electric converters. Adv. Mater. 25, 5483–5489 (2013). doi:10.1002/adma.201301834
- Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, J.-H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610–2631 (2012). doi:10.3390/s120302610
- K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford, A review of gas sensors employed in electronic nose applications. Sens. Rev. 24(2), 181–198 (2004). doi:10.1108/02602280410525977
- J.W. Han, T. Rim, C.K. Baek, M. Meyyappan, Chemical gated field effect transistor by hybrid integration of one dimensional silicon nanowire and two-dimensional tin oxide thin film for low power gas sensor. ACS Appl. Mater. Interfaces 7(38), 21263–21269 (2015). doi:10.1021/acsami.5b05479
- L. Torsi, A. Dodabalapur, L. Sabbatini, P.G. Zambonin, Multi-parameter gas sensors based on organic thin-film-transistors. Sens. Actuators B 67(3), 312–316 (2000). doi:10.1016/S0925-4005(00)00541-4
- Q. Wang, M.R. Ahmadian-Yazdi, M. Eslamian, Investigation of morphology and physical properties of modified PEDOT:PSS films made via in situ grafting method. Synth. Met. 209, 521–527 (2015). doi:10.1016/j.synthmet.2015.09.003
- H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors 7(3), 267–307 (2007). doi:10.3390/s7030267
- M. Ates, A review study of (bio)sensor systems based on conducting polymers. Mater. Sci. Eng. C 33(4), 1853–1859 (2013). doi:10.1016/j.msec.2013.01.035
- B. Lakard, S. Carquigny, O. Segut, T. Patois, S. Lakard, Gas sensors based on electrodeposited polymers. Metals 5(3), 1371–1386 (2015). doi:10.3390/met5031371
- Y. Zhou, Y. Jiang, G. Xie, X. Du, H. Tai, Gas sensors based on multiple-walled carbon nanotubes-polyethylene oxide films for toluene vapor detection. Sens. Actuators B 191(2), 24–30 (2014). doi:10.1016/j.snb.2013.09.079
- H. Tai, Y. Jiang, C. Duan, W. Dan, X. Li, Development of a novel formaldehyde OTFT sensor based on P3HT/Fe2O3 nanocomposite thin film. Integr. Ferroelectr. 144(1), 15–21 (2013). doi:10.1080/10584587.2013.786938
- S.K. Pandey, K.-H. Kim, K.-T. Tang, A review of sensor-based methods for monitoring hydrogen sulfide. Trend. Anal. Chem. 32(1), 87–99 (2012). doi:10.1016/j.trac.2011.08.008
- S. Prakash, T. Chakrabarty, A.K. Singh, V.K. Shahi, Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens. Bioelectron. 41(1), 43–53 (2013). doi:10.1016/j.bios.2012.09.031
- S. Wang, Y. Kang, L. Wang, H. Zhang, Y. Wang, Y. Wang, Organic/inorganic hybrid sensors: a review. Sens. Actuators B 182(1), 467–481 (2013). doi:10.1016/j.snb.2013.03.042
- Q. He, S. Wu, Z. Yin, H. Zhang, Graphene-based electronic sensors. Chem. Sci. 3(6), 1764–1772 (2012). doi:10.1039/c2sc20205k
- P. Lin, F. Yan, Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 24(1), 34–51 (2012). doi:10.1002/adma.201103334
- MathSciNet
- G.K. Mani, J.B.B. Rayappan, A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens. Actuators B 183(7), 459–466 (2013). doi:10.1016/j.snb.2013.03.132
- T. Xie, G. Xie, Y. Su, D. Hongfei, Z. Ye, Y. Jiang, Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors. Nanotechnology 27(6), 065502 (2016). doi:10.1088/0957-4484/27/6/065502
- P.S. Shewale, V.B. Patil, S.W. Shin, J.H. Kim, M.D. Uplane, H2S gas sensing properties of nanocrystalline Cu-doped ZnO thin films prepared by advanced spray pyrolysis. Sens. Actuators B 186, 226–234 (2013). doi:10.1016/j.snb.2013.05.073
- R. Pandeeswari, B.G. Jeyaprakash, High sensing response of -Ga2O3 thin film towards ammonia vapours: Influencing factors at room temperature. Sens. Actuators B 195, 206–214 (2014). doi:10.1016/j.snb.2014.01.025
- C. Zhang, X. Geng, H. Li, P.-J. He, M.-P. Planche, H. Liao, M.-G. Olivier, M. Debliquy, Microstructure and gas sensing properties of solution precursor plasma-sprayed zinc oxide coatings. Mater. Res. Bull. 63, 67–71 (2015). doi:10.1016/j.materresbull.2014.11.044
- M. Eslamian, M. Ahmed, N. Ashgriz, Modeling of solution droplet evaporation and particle evolution in droplet-to-particle spray methods. Dry. Technol. 27(1), 3–13 (2009). doi:10.1080/07373930802565665
- M. Eslamian, M.C. Heine, Characteristics of spray flames and the effect of group combustion on the morphology of flame-made nanoparticles. Nanotechnology 19(4), 045712 (2008). doi:10.1088/0957-4484/19/04/045712
- M. Rieu, M. Camara, G. Tournier, J.P. Viricelle, C. Pijolat, N.F. de Rooij, D. Briand, Fully inkjet printed SnO2 gas sensor on plastic substrate. Procedia Eng. 120, 75–78 (2015). doi:10.1016/j.proeng.2015.08.569
- S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali et al., CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5, 17374 (2015). doi:10.1038/srep17374
- P. Teerapanich, K. Luang, M.T.Z. Myint, C.M. Joseph, G.L. Hornyak, Development and improvement of carbon nanotube-based ammonia gas sensors using ink-jet printed interdigitated electrodes. IEEE Trans. Nanotechnol. 12(2), 255–262 (2013). doi:10.1109/TNANO.2013.2242203
- A. Rivadeneyra, J. Fernández-Salmerón, M. Agudo, J.A. López-Villanueva, L.F. Capitan-Vallvey, A.J. Palma, Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing. Sens. Actuators B 195, 123–131 (2014). doi:10.1016/j.snb.2013.12.117
- N. Choudhary, D. Kaur, Shape memory alloy thin films and heterostructures for MEMS applications: a review. Sens. Actuators A 242, 162–181 (2016). doi:10.1016/j.sna.2016.02.026
- J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities. Mater. Des. 56(4), 1078–1113 (2014). doi:10.1016/j.matdes.2013.11.084
- J. Hu, Y. Zhu, H. Huang, J. Lu, Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37(12), 1720–1763 (2012). doi:10.1016/j.progpolymsci.2012.06.001
- M.D. Hager, S. Bode, C. Weber, U.S. Schubert, Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49–50, 3–33 (2015). doi:10.1016/j.progpolymsci.2015.04.002
- M. Lei, B. Xu, Y. Pei, H. Lu, Y.Q. Fu, Micro-mechanics of nanostructured carbon/shape memory polymer hybrid thin film. Soft Matter 12(1), 106–114 (2016). doi:10.1039/C5SM01269D
- D.L. Polla, L.F. Francis, Processing and characterization of piezoelectric materials and integration into microelectromechanical systems. Ann. Rev. Mater. Sci. 28(1), 563–597 (1998). doi:10.1146/annurev.matsci.28.1.563
- P. Muralt, PZT thin films for microsensors and actuators: where do we stand? IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(4), 903–915 (2000). doi:10.1109/58.852073
- K. Park, J.H. Son, G. Hwang, C.K. Jeong, J. Ryu et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26(16), 2514–2520 (2014). doi:10.1002/adma.201305659
- W.J. Choi, Y. Jeon, J.-H. Jeong, R. Sood, S.G. Kim, Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J. Electroceram. 17(2), 543–548 (2006). doi:10.1007/s10832-006-6287-3
- J. Biggs, K. Danielmeier, J. Hitzbleck, J. Krause, T. Kridl et al., ChemInform abstract: electroactive polymers: developments of and perspectives for dielectric elastomers. Angew. Chem. Int. Ed. 52(36), 9409–9421 (2013). doi:10.1002/anie.201301918
- A. Khaldia, A. Maziza, G. Alici, G.M. Spinks, E.W.H. Jager, Bottom-up microfabrication process for individually controlled conjugated polymer actuators. Sens. Actuators B 230, 818–824 (2016). doi:10.1016/j.snb.2016.02.140
- C. Jo, D. Pugal, I.-K. Oh, K.J. Kim, K. Asaka, Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog. Polym. Sci. 38(7), 1037–1066 (2013). doi:10.1016/j.progpolymsci.2013.04.003
- I. Bretos, R. Jiménez, A. Wu, A.I. Kingon, P.M. Vilarinho, M.L. Calzada, Activated solutions enabling low-temperature processing of functional ferroelectric oxides for flexible electronics. Adv. Mater. 26(9), 1405–1409 (2014). doi:10.1002/adma.201304308
- D.H. Minh, N.V. Loi, N.H. Duc, B.N.Q. Trinh, Low-temperature PZT thin-film ferroelectric memories fabricated on SiO2/Si and glass substrates. J. Sci. Adv. Mater. Devices 1(1), 75–79 (2016). doi:10.1016/j.jsamd.2016.03.004
- J. Liang, L. Huang, N. Li, Y. Huang, Y. Wu et al., Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene. ACS Nano 6(5), 4508–4519 (2012). doi:10.1021/nn3006812
References
M. Eslamian, Spray-on thin film PV solar cells: advances, potentials and challenges. Coatings 4(1), 60–84 (2014). doi:10.3390/coatings4010060
S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15(6), 3164–3185 (2015). doi:10.1109/JSEN.2014.2375203
Q. Wang, Y. Xie, F. Soltani-Kordshuli, M. Eslamian, Progress in emerging solution-processed thin film solar cells—Part I: polymer solar cells. Renew. Sustain. Energy Rev. 56, 347–361 (2016). doi:10.1016/j.rser.2015.11.063
F.C. Krebs, Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol. Energy Mater. Sol. Cells 93(4), 465–475 (2009). doi:10.1016/j.solmat.2008.12.012
F. Zabihi, Y. Xie, S. Gao, M. Eslamian, Morphology, conductivity and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating. Appl. Surf. Sci. 338, 163–177 (2015). doi:10.1016/j.apsusc.2015.02.128
M. Eslamian, F. Zabihi, Ultrasonic substrate vibration-assisted drop casting (SVADC) for the fabrication of photovoltaic solar cell arrays and thin-film devices. Nanoscale Res. Lett. 10(1), 1–5 (2015). doi:10.1186/s11671-015-1168-9
M. Eslamian, A mathematical model for the design and fabrication of polymer solar cells by spray coating. Dry. Technol. 31(4), 405–413 (2013). doi:10.1080/07373937.2012.737397
MathSciNet
F. Jiao, C.A. Di, Y. Sun, P. Sheng, W. Xu, D. Zhu, Inkjet-printed flexible organic thin-film thermoelectric devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling. Philos. Trans. R. Soc. Lond. A-Math. Phys. Eng. Sci. 372(2013), 20130008 (2014). doi:10.1098/rsta.2013.0008
Z. Lu, M. Layani, X. Zhao, L.P. Tan, T. Sun, S. Fan, Q. Yan, S. Magdassi, H.H. Hng, Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small 10(17), 3551–3554 (2014). doi:10.1002/smll.201303126
F. Soltani-Kordshuli, F. Zabihi, M. Eslamian, Graphene-doped PEDOT:PSS nanocomposite thin films fabricated by conventional and substrate vibration-assisted spray coating (SVASC). Eng. Sci. Technol. 19(3), 1216–1223 (2016). doi:10.1016/j.jestch.2016.02.003
L. Petti, H. Faber, N. Münzenrieder, G. Cantarella, P.A. Patsalas, G. Tröster, T.D. Anthopoulos, Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits. Appl. Phys. Lett. 106(9), 397–420 (2015). doi:10.1063/1.4914085
D.S. Montgomery, C.A. Hewitt, R. Barbalace, T. Jones, D.L. Carroll, Spray doping method to create a low-profile high-density carbon nanotube thermoelectric generator. Carbon 96, 778–781 (2016). doi:10.1016/j.carbon.2015.09.029
Y. Xie, S. Gao, M. Eslamian, Fundamental study on the effect of spray parameters on characteristics of P3HT:PCBM active layers made by spray coating. Coatings 5(3), 488–510 (2015). doi:10.3390/coatings5030488
F. Zabihi, M.R. Ahmadian-Yazdi, M. Eslamian, Fundamental study on the fabrication of inverted planar perovskite solar cells using two-step sequential substrate vibration-assisted spray coating (2S-SVASC). Nanoscale Res. Lett. 11, 71 (2016). doi:10.1186/s11671-016-1259-2
Y. Rong, Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A.M. Guloy, Y. Yao, Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale 7(24), 10595–10599 (2015). doi:10.1039/C5NR02866C
Z. Ku, N.H. Tiep, B. Wu, T.C. Sum, D. Fichou, H.J. Fan, Solvent engineering for fast growth of centimetric high-quality CH3NH3PbI3 perovskite single crystal. New J. Chem. (2016). doi:10.1039/C6NJ00188B
F. Zabihi, M. Eslamian, Substrate vibration-assisted spray coating (SVASC): significant improvement in nano-structure, uniformity, and conductivity of PEDOT:PSS thin films for organic solar cells. J. Coat. Technol. Res. 12(4), 711–719 (2015). doi:10.1007/s11998-015-9682-3
M. Habibi, M. Eslamian, F. Soltani-Kordshuli, F. Zabihi, Controlled wetting/dewetting through substrate vibration-assisted spray coating (SVASC). J. Coat. Technol. Res. 13(2), 211–225 (2016). doi:10.1007/s11998-015-9748-2
Q. Wang, M. Eslamian, Improving uniformity and nanostructure of solution-processed thin films using ultrasonic substrate vibration post treatment (SVPT). Ultrasonics 67, 55–64 (2016). doi:10.1016/j.ultras.2015.12.012
R.K. Jamal, K.A. Aadim, Q.G. Al-Zaidi, I.N. Taaban, Hydrogen gas sensors based on electrostatically spray deposited nickel oxide thin film structures. Photonic Sens. 5(3), 235–240 (2015). doi:10.1007/s13320-015-0253-0
https://en.wikipedia.org/wiki/Konarka_Technologies. Accessed June 2016
J.G. Labram, Y.-H. Lin, K. Zhao, R. Li, S.R. Thomas et al., Signatures of quantized energy states in solution-processed ultrathin layers of metal-oxide semiconductors and their devices. Adv. Funct. Mater. 25(11), 1727–1736 (2015). doi:10.1002/adfm.201403862
A. Afzali, C.D. Dimitrakopoulos, T.L. Breen, High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. J. Am. Chem. Soc. 124(30), 8812–8813 (2002). doi:10.1021/ja0266621
J.-S. Park, W.-J. Maeng, H.-S. Kim, J.-S. Park, Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 520(6), 1679–1693 (2012). doi:10.1016/j.tsf.2011.07.018
G. Horowitz, Organic thin film transistors: from theory to real devices. J. Mater. Res. 19(7), 1946–1962 (2004). doi:10.1557/JMR.2004.0266
MathSciNet
K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat. Mater. 10(1), 45–50 (2011). doi:10.1038/nmat2914
Y. Yuan, G. Giri, A.L. Ayzner, A.P. Zoombelt, S.C.B. Mannsfeld et al., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014). doi:10.1038/ncomms4005
N.A. Azarova, J.W. Owen, C.A. McLellan, M.A. Grimminger, E.K. Chapman, J.E. Anthony, O.D. Jurchescu, Fabrication of organic thin-film transistors by spray-deposition for low-cost, large-area electronics. Org. Electron. 11(12), 1960–1965 (2010). doi:10.1016/j.orgel.2010.09.008
K. Fukuda, Y. Takeda, Y. Yoshimura, R. Shiwaku, L.T. Tran, T. Sekine, M. Mizukami, D. Kumaki, S. Tokito, Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun. 5, 4147 (2014). doi:10.1038/ncomms5147
K. Fukuda, T. Sekine, Y. Kobayashi, D. Kumaki, M. Itoh et al., Stable organic thin-film transistors using full solution-processing and low-temperature sintering silver nanoparticle inks. Org. Electron. 13(9), 1660–1664 (2012). doi:10.1016/j.orgel.2012.05.016
X. Yu, L. Zeng, N. Zhou, P. Guo, F. Shi et al., Ultra-flexible, “invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends. Adv. Mater. 27(14), 2390–2399 (2015). doi:10.1002/adma.201405400
P.H. Lau, K. Takei, C. Wang, Y. Ju, J. Kim, Z. Yu, T. Takahashi, G. Cho, A. Javey, Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 13(8), 3864–3869 (2013). doi:10.1021/nl401934a
M. Irimia-Vladu, P.A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah et al., Environmentally sustainable organic field effect transistors. Org. Electron. 11(12), 1974–1990 (2010). doi:10.1016/j.orgel.2010.09.007
Y. Mei, C. Zhang, Z.V. Vardeny, O.D. Jurchescu, Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature. MRS Commun. 5(2), 303 (2015). doi:10.1557/mrc.2015.33
Y. Fujisaki, Review of emerging new solid-state non-volatile memories. Jpn. J. Appl. Phys. 52, 040001 (2013). doi:10.7567/JJAP.52.040001
Y.-H. Chou, H.-C. Chang, C.-L. Liu, W.-C. Chen, Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polym. Chem. 6(3), 341–352 (2015). doi:10.1039/C4PY01213E
L. Dong, Y.-C. Chiu, C.-C. Chueh, A.-D. Yu, W.-C. Chen, Semi-conjugated acceptor-based polyimides as electrets for nonvolatile transistor memory devices. Polym. Chem. 5(23), 6834–6846 (2014). doi:10.1039/C4PY00988F
G. Darlinski, U. Böttger, R. Waser, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Mechanical force sensors using organic thin-film transistors. J. Appl. Phys. 97(9), 093708 (2005). doi:10.1063/1.1888046
N. Thejokalyani, S.J. Dhoble, Novel approaches for energy efficient solid state lighting by RGB organic light emitting diodes—a review. Renew. Sustain. Energy Rev. 32(5), 448–467 (2014). doi:10.1016/j.rser.2014.01.013
J.-H. Jou, S. Kumar, A. Agrawal, T.-H. Li, S. Sahoo, Approaches for fabricating high efficiency organic light emitting diodes. J. Mater. Chem. C 3, 2974–3002 (2015). doi:10.1039/C4TC02495H
S. Ho, S. Liu, Y. Chen, F. So, Review of recent progress in multilayer solution-processed organic light-emitting diodes. J. Photon. Energy 5(1), 057611 (2015). doi:10.1117/1.JPE.5.057611
http://www.makeuseof.com/tag/what-is-the-difference-between-an-lcd-and-an-led-backlit-lcd-display/. Accessed June 2016
http://www.trustedreviews.com/opinions/oled-vs-led-lcd. Accessed June 2016
T. Tsujimura, OLED manufacturing process, in OLED displays: fundamentals and applications (Wiley, Hoboken, 2012). doi:10.1002/9781118173053.ch3
http://www.tomsguide.com/us/OLED-Printing-Display-dupont-HDTV,news-6818.html
T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8(6), 494–499 (2009). doi:10.1038/nmat2459
C. Lee, M. Park, J. Lim, H. Jung, J. Kwak, W.K. Bae, K. Char, S. Lee, Invited paper: recent progress of light-emitting diodes based on colloidal quantum dots. SID Symp. Dig. Tech. Pap. 46(1), 685–687 (2015). doi:10.1002/sdtp.10265
G. Li, Z.-K. Tan, D. Di, M.L. Lai, L. Jiang, J.H.-W. Lim, R.H. Friend, N.C. Greenham, Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15(4), 2640–2644 (2015). doi:10.1021/acs.nanolett.5b00235
R.S. Deol, H.W. Choi, M. Singh, G.E. Jabbour, Printable displays and light sources for sensor applications: a review. IEEE Sens. J. 15(6), 3186–3195 (2015). doi:10.1109/JSEN.2014.2378144
N. Ali, A. Hussain, R. Ahmed, M.K. Wang, C. Zhao, B.U. Haq, Y.Q. Fu, Advances in nanostructured thin film materials for solar cell applications. Renew. Sustain. Energy Rev. 59, 726–737 (2016). doi:10.1016/j.rser.2015.12.268
M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18(3), 155–162 (2015). doi:10.1016/j.mattod.2014.09.001
M. Habibi, F. Zabihi, M.R. Ahmadian Yazdi, M. Eslamian, Progress in emerging solution-processed thin film solar cells- Part II: perovskite solar cells. Renew. Sustain. Energy Rev. 62, 10–12 (2016). doi:10.1016/j.rser.2016.05.042
I.J. Kramer, J.C. Minor, G. Moreno-Bautista, L. Rollny, P. Kanjanaboos et al., Efficient spray-coated colloidal quantum dot solar cells. Adv. Mater. 27(1), 116–121 (2015). doi:10.1002/adma.201403281
http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. Accessed June 2016
A. Harris, A silver lining in declining solar prices, Renew. Energy World, http://www.renewableenergyworld.com/articles/2011/08/a-silver-lining-in-declining-solar-prices.html
Photovoltaic Report, Fraunhofer Institute for Solar Energy Systems ISE, July 28, 2014, http://www.webcitation.org/6SFRTUaBS
J.G. Tait, S. Manghooli, W. Qiu, L. Rakocevic, L. Kootstra et al., Screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. J. Mater. Chem. A 4(10), 3792–3797 (2016). doi:10.1039/C6TA00739B
A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, D.G. Lidzey, Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7(9), 2944–2950 (2014). doi:10.1039/C4EE01546K
Z. Yang, C.-C. Chueh, F. Zuo, J.H. Kim, P.W. Liang, A.K.Y. Jen, High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 5(13), 00328 (2015). doi:10.1002/aenm.201500328
K. Hwang, Y.-S. Jung, Y.-J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.-Y. Kim, D. Vak, Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27(7), 1241–1247 (2015). doi:10.1002/adma.201404598
M. Habibi, A. Rahimzadeh, M. Eslamian, On dewetting of thin films due to crystallization (crystallization dewetting). Eur. Phys. J. E 39, 30 (2016). doi:10.1140/epje/i2016-16030-9
X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D.B. Mitzi, M. Green, The current status and future prospects of kesterite solar cells: a brief review. Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016). doi:10.1002/pip.2741
W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4(7), 403–410 (2013). doi:10.1002/aenm.201301465
F. Liu, F. Zeng, N. Song, L. Jiang, Z. Han, Z. Su, C. Yan, X. Wen, X. Hao, Y. Liu, Kesterite Cu2ZnSn(S,Se)4 solar cells with beyond 8% efficiency by a sol–gel and selenization process. ACS Appl. Mater. Interfaces 7(26), 14376–14383 (2015). doi:10.1021/acsami.5b01151
X. Lin, R. Klenk, L. Wang, T. Kohler, J. Albert, S. Fiechter, A. Ennaoui, M.C. Lux-Steiner, 11.3% efficiency Cu(In, Ga)(S, Se)2 thin film solar cells via drop-on-demand inkjet printing. Energy Environ. Sci. 9, 2037–2043 (2016). doi:10.1039/C6EE00587J
T. Martini, C. Chubilleau, O. Poncelet, A. Ricaud, A. Blayo, C. Martin, K. Tarasov, Spray and inkjet fabrication of Cu2ZnSnS4 thin films using nanoparticles derived from a continuous-flow microwave-assisted synthesis. Sol. Energy Mater. Sol. Cells 144, 657–663 (2016). doi:10.1016/j.solmat.2015.09.046
Y.K. Liao, M. Brossard, D.H. Hsieh, T.N. Lin, M.D.B. Charlton et al., Highly efficient flexible hybrid nanocrystal-Cu(In, Ga)Se2 (CIGS) solar cells. Adv. Energy Mater. 5(2), 1401280 (2015). doi:10.1002/aenm.201401280
P.R. Ghediya, T.K. Chaudhuri, Doctor-blade printing of Cu2ZnSnS4 films from microwave-processed ink. J. Mater. Sci.: Mater. Electron. 26(3), 1908–1912 (2015). doi:10.1007/s10854-014-2628-1
U. Berner, M. Widenmeyer, Solution-based processing of Cu(In, Ga)Se2 absorber layers for 11% efficiency solar cells via a metallic intermediate. Prog. Photovolt. 23(10), 1260–1266 (2015). doi:10.1002/pip.2546
G. Larramona, S. Levcenko, S. Bourdais, A. Jacob, C. Choné et al., Fine-tuning the Sn content in CZTSSe thin films to achieve 10.8% solar cell efficiency from spray-deposited water–ethanol-based colloidal inks. Adv. Energy Mater. 5, 1501404 (2015). doi:10.1002/aenm.201501404
A. Carrete, M. Placidi, A. Shavel, A. Pérez-Rodríguez, A. Cabot, Spray-deposited CuIn1-xGaxSe2 solar cell absorbers: Influence of spray deposition parameters and crystallization promoters. Phys. Status Solidi 212(1), 67–71 (2015). doi:10.1002/pssa.201431425
S.K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Effect of deposition temperature on the structural and electrical properties of spray deposited kesterite (Cu2ZnSnS4) films. Sol. Energy 122, 508–516 (2015). doi:10.1016/j.solener.2015.09.027
M.R. Golobostanfard, H. Abdizadeh, All solution processable graded CIGS solar cells fabricated using electrophoretic deposition. RSC Adv. 6(14), 11903–11910 (2016). doi:10.1039/C5RA26315H
M.A. Hossain, T. Zhang, K.K. Lee, X. Li, R.R. Prabhakar, S.K. Batabyal, S.G. Mhaisalkar, L.H. Wong, Synthesis of Cu(In,Ga)(S,Se)2 thin films using an aqueous spray-pyrolysis approach, and their solar cell efficiency of 10.5%. J. Mater. Chem. A 3(8), 4147 (2015). doi:10.1039/C4TA05783J
W. Septina, M. Kurihara, S. Ikeda, Y. Nakajima, T. Hirano, Y. Kawasaki, T. Harada, M. Matsumura, Cu(In, Ga)(S, Se)2 Thin film solar cell with 10.7% conversion efficiency obtained by selenization of the Na-doped spray-pyrolyzed sulfide precursor film. ACS Appl. Mater. Interfaces 7(12), 6472–6479 (2015). doi:10.1021/am507684x
M. Kurihara, W. Septina, T. Hirano, Y. Nakajima, T. Harada, S. Ikeda, Fabrication of Cu(In, Ga)(S, Se)2 thin film solar cells via spray pyrolysis of thiourea and 1-methylthiourea-based aqueous precursor solution. Jpn. J. Appl. Phys. 54, 091203 (2015). doi:10.7567/JJAP.54.091203
T.H. Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada, S. Ikeda, Cu2ZnSnS4 thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique. RSC Adv. 5(95), 77565–77571 (2015). doi:10.1039/C5RA13000J
M. Espindola-Rodriguez, Y. Sanchez, S. López-Marino, D. Sylla, M. Placidi et al., Selenization of Cu2ZnSnS4 thin films obtained by pneumatic spray pyrolysis. J. Anal. Appl. Pyrolysis 120, 45–51 (2016). doi:10.1016/j.jaap.2016.04.008
G. Altamura, M. Wang, K.L. Choy, Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells. Sci. Rep. 6, 22109 (2016). doi:10.1038/srep22109
Y.E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A.R. Uhl et al., All solution-processed chalcogenide solar cells—from single functional layers towards a 13.8% efficient CIGS device. Adv. Funct. Mater. 25(1), 12–27 (2015). doi:10.1002/adfm.201402288
R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001). doi:10.1038/35098012
R.B. Balow, E.P. Tomlinson, M.M. Abu-Omar, B.W. Boudouris, R. Agrawal, Solution-based synthesis and characterization of earth abundant Cu3(As, Sb)Se4 nanocrystal alloys: towards scalable room-temperature thermoelectric devices. J. Mater. Chem. A 4(6), 2198–2204 (2016). doi:10.1039/C5TA07546G
Y. Chen, Y. Zhao, Z. Liang, Solution-processed organic thermoelectrics: towards flexible thermoelectric modules. Energy Environ. Sci. 8(2), 401–422 (2015). doi:10.1039/C4EE03297G
G.-H. Kim, L. Shao, K. Zhang, K.P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12(8), 719–723 (2013). doi:10.1038/nmat3635
S. van Reenen, M. Kemerink, Correcting for contact geometry in Seebeck coefficient measurements of thin film devices. Org. Electron. 15(10), 2250–2255 (2014). doi:10.1016/j.orgel.2014.06.018
Z. Zhang, J. Qiu, S. Wang, Roll-to-roll printing of flexible thin-film organic thermoelectric devices. Manuf. Lett. 8, 6–10 (2016). doi:10.1016/j.mfglet.2016.04.002
K.J. Erickson, F. Léonard, V. Stavila, M.E. Foster, C.D. Spataru et al., Thin film thermoelectric metal–organic framework with high Seebeck coefficient and low thermal conductivity. Adv. Mater. 27, 3453–3459 (2015). doi:10.1002/adma.201501078
Y. Sun, L. Qiu, L. Tang, H. Geng, H. Wang et al., Flexible n-type high-performance thermoelectric thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method. Adv. Mater. 28, 3351–3358 (2016). doi:10.1002/adma.201505922
P. Fan, Z. Zheng, Y. Li, Q. Lin, J. Luo, G. Liang, X. Cai, D. Zhang, F. Ye, Low-cost flexible thin film thermoelectric generator on zinc based thermoelectric materials. Appl. Phys. Lett. 106, 073901 (2015). doi:10.1063/1.4909531
E.A. Mondarte, V. Copa, A. Tuico, C.J. Vergara, E. Estacio, A. Salvador, A. Somintac, Al-doped ZnO and N-doped CuxO thermoelectric thin films for self-powering integrated devices. Mater. Sci. Semicond. Process 45, 27–31 (2016). doi:10.1016/j.mssp.2016.01.013
B. Kim, H. Shin, T. Park, H. Lim, E. Kim, NIR-sensitive poly(3,4-ethylenedioxyselenophene) derivatives for transparent photo-thermo-electric converters. Adv. Mater. 25, 5483–5489 (2013). doi:10.1002/adma.201301834
Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, J.-H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610–2631 (2012). doi:10.3390/s120302610
K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford, A review of gas sensors employed in electronic nose applications. Sens. Rev. 24(2), 181–198 (2004). doi:10.1108/02602280410525977
J.W. Han, T. Rim, C.K. Baek, M. Meyyappan, Chemical gated field effect transistor by hybrid integration of one dimensional silicon nanowire and two-dimensional tin oxide thin film for low power gas sensor. ACS Appl. Mater. Interfaces 7(38), 21263–21269 (2015). doi:10.1021/acsami.5b05479
L. Torsi, A. Dodabalapur, L. Sabbatini, P.G. Zambonin, Multi-parameter gas sensors based on organic thin-film-transistors. Sens. Actuators B 67(3), 312–316 (2000). doi:10.1016/S0925-4005(00)00541-4
Q. Wang, M.R. Ahmadian-Yazdi, M. Eslamian, Investigation of morphology and physical properties of modified PEDOT:PSS films made via in situ grafting method. Synth. Met. 209, 521–527 (2015). doi:10.1016/j.synthmet.2015.09.003
H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors 7(3), 267–307 (2007). doi:10.3390/s7030267
M. Ates, A review study of (bio)sensor systems based on conducting polymers. Mater. Sci. Eng. C 33(4), 1853–1859 (2013). doi:10.1016/j.msec.2013.01.035
B. Lakard, S. Carquigny, O. Segut, T. Patois, S. Lakard, Gas sensors based on electrodeposited polymers. Metals 5(3), 1371–1386 (2015). doi:10.3390/met5031371
Y. Zhou, Y. Jiang, G. Xie, X. Du, H. Tai, Gas sensors based on multiple-walled carbon nanotubes-polyethylene oxide films for toluene vapor detection. Sens. Actuators B 191(2), 24–30 (2014). doi:10.1016/j.snb.2013.09.079
H. Tai, Y. Jiang, C. Duan, W. Dan, X. Li, Development of a novel formaldehyde OTFT sensor based on P3HT/Fe2O3 nanocomposite thin film. Integr. Ferroelectr. 144(1), 15–21 (2013). doi:10.1080/10584587.2013.786938
S.K. Pandey, K.-H. Kim, K.-T. Tang, A review of sensor-based methods for monitoring hydrogen sulfide. Trend. Anal. Chem. 32(1), 87–99 (2012). doi:10.1016/j.trac.2011.08.008
S. Prakash, T. Chakrabarty, A.K. Singh, V.K. Shahi, Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens. Bioelectron. 41(1), 43–53 (2013). doi:10.1016/j.bios.2012.09.031
S. Wang, Y. Kang, L. Wang, H. Zhang, Y. Wang, Y. Wang, Organic/inorganic hybrid sensors: a review. Sens. Actuators B 182(1), 467–481 (2013). doi:10.1016/j.snb.2013.03.042
Q. He, S. Wu, Z. Yin, H. Zhang, Graphene-based electronic sensors. Chem. Sci. 3(6), 1764–1772 (2012). doi:10.1039/c2sc20205k
P. Lin, F. Yan, Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 24(1), 34–51 (2012). doi:10.1002/adma.201103334
MathSciNet
G.K. Mani, J.B.B. Rayappan, A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens. Actuators B 183(7), 459–466 (2013). doi:10.1016/j.snb.2013.03.132
T. Xie, G. Xie, Y. Su, D. Hongfei, Z. Ye, Y. Jiang, Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors. Nanotechnology 27(6), 065502 (2016). doi:10.1088/0957-4484/27/6/065502
P.S. Shewale, V.B. Patil, S.W. Shin, J.H. Kim, M.D. Uplane, H2S gas sensing properties of nanocrystalline Cu-doped ZnO thin films prepared by advanced spray pyrolysis. Sens. Actuators B 186, 226–234 (2013). doi:10.1016/j.snb.2013.05.073
R. Pandeeswari, B.G. Jeyaprakash, High sensing response of -Ga2O3 thin film towards ammonia vapours: Influencing factors at room temperature. Sens. Actuators B 195, 206–214 (2014). doi:10.1016/j.snb.2014.01.025
C. Zhang, X. Geng, H. Li, P.-J. He, M.-P. Planche, H. Liao, M.-G. Olivier, M. Debliquy, Microstructure and gas sensing properties of solution precursor plasma-sprayed zinc oxide coatings. Mater. Res. Bull. 63, 67–71 (2015). doi:10.1016/j.materresbull.2014.11.044
M. Eslamian, M. Ahmed, N. Ashgriz, Modeling of solution droplet evaporation and particle evolution in droplet-to-particle spray methods. Dry. Technol. 27(1), 3–13 (2009). doi:10.1080/07373930802565665
M. Eslamian, M.C. Heine, Characteristics of spray flames and the effect of group combustion on the morphology of flame-made nanoparticles. Nanotechnology 19(4), 045712 (2008). doi:10.1088/0957-4484/19/04/045712
M. Rieu, M. Camara, G. Tournier, J.P. Viricelle, C. Pijolat, N.F. de Rooij, D. Briand, Fully inkjet printed SnO2 gas sensor on plastic substrate. Procedia Eng. 120, 75–78 (2015). doi:10.1016/j.proeng.2015.08.569
S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali et al., CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5, 17374 (2015). doi:10.1038/srep17374
P. Teerapanich, K. Luang, M.T.Z. Myint, C.M. Joseph, G.L. Hornyak, Development and improvement of carbon nanotube-based ammonia gas sensors using ink-jet printed interdigitated electrodes. IEEE Trans. Nanotechnol. 12(2), 255–262 (2013). doi:10.1109/TNANO.2013.2242203
A. Rivadeneyra, J. Fernández-Salmerón, M. Agudo, J.A. López-Villanueva, L.F. Capitan-Vallvey, A.J. Palma, Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing. Sens. Actuators B 195, 123–131 (2014). doi:10.1016/j.snb.2013.12.117
N. Choudhary, D. Kaur, Shape memory alloy thin films and heterostructures for MEMS applications: a review. Sens. Actuators A 242, 162–181 (2016). doi:10.1016/j.sna.2016.02.026
J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities. Mater. Des. 56(4), 1078–1113 (2014). doi:10.1016/j.matdes.2013.11.084
J. Hu, Y. Zhu, H. Huang, J. Lu, Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37(12), 1720–1763 (2012). doi:10.1016/j.progpolymsci.2012.06.001
M.D. Hager, S. Bode, C. Weber, U.S. Schubert, Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49–50, 3–33 (2015). doi:10.1016/j.progpolymsci.2015.04.002
M. Lei, B. Xu, Y. Pei, H. Lu, Y.Q. Fu, Micro-mechanics of nanostructured carbon/shape memory polymer hybrid thin film. Soft Matter 12(1), 106–114 (2016). doi:10.1039/C5SM01269D
D.L. Polla, L.F. Francis, Processing and characterization of piezoelectric materials and integration into microelectromechanical systems. Ann. Rev. Mater. Sci. 28(1), 563–597 (1998). doi:10.1146/annurev.matsci.28.1.563
P. Muralt, PZT thin films for microsensors and actuators: where do we stand? IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(4), 903–915 (2000). doi:10.1109/58.852073
K. Park, J.H. Son, G. Hwang, C.K. Jeong, J. Ryu et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26(16), 2514–2520 (2014). doi:10.1002/adma.201305659
W.J. Choi, Y. Jeon, J.-H. Jeong, R. Sood, S.G. Kim, Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J. Electroceram. 17(2), 543–548 (2006). doi:10.1007/s10832-006-6287-3
J. Biggs, K. Danielmeier, J. Hitzbleck, J. Krause, T. Kridl et al., ChemInform abstract: electroactive polymers: developments of and perspectives for dielectric elastomers. Angew. Chem. Int. Ed. 52(36), 9409–9421 (2013). doi:10.1002/anie.201301918
A. Khaldia, A. Maziza, G. Alici, G.M. Spinks, E.W.H. Jager, Bottom-up microfabrication process for individually controlled conjugated polymer actuators. Sens. Actuators B 230, 818–824 (2016). doi:10.1016/j.snb.2016.02.140
C. Jo, D. Pugal, I.-K. Oh, K.J. Kim, K. Asaka, Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog. Polym. Sci. 38(7), 1037–1066 (2013). doi:10.1016/j.progpolymsci.2013.04.003
I. Bretos, R. Jiménez, A. Wu, A.I. Kingon, P.M. Vilarinho, M.L. Calzada, Activated solutions enabling low-temperature processing of functional ferroelectric oxides for flexible electronics. Adv. Mater. 26(9), 1405–1409 (2014). doi:10.1002/adma.201304308
D.H. Minh, N.V. Loi, N.H. Duc, B.N.Q. Trinh, Low-temperature PZT thin-film ferroelectric memories fabricated on SiO2/Si and glass substrates. J. Sci. Adv. Mater. Devices 1(1), 75–79 (2016). doi:10.1016/j.jsamd.2016.03.004
J. Liang, L. Huang, N. Li, Y. Huang, Y. Wu et al., Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene. ACS Nano 6(5), 4508–4519 (2012). doi:10.1021/nn3006812