Recent Advances to Understand Morphology Stability of Organic Photovoltaics
Corresponding Author: Antonio Guerrero
Nano-Micro Letters,
Vol. 9 No. 1 (2017), Article Number: 10
Abstract
Organic photovoltaic devices are on the verge of commercialization with power conversion efficiencies exceeding 10 % in laboratory cells and above 8.5 % in modules. However, one of the main limitations hindering their mass scale production is the debatable inferior stability of organic photovoltaic devices in comparison to other technologies. Adequate donor/acceptor morphology of the active layer is required to provide carrier separation and transport to the electrodes. Unfortunately, the beneficial morphology for device performance is usually a kinetically frozen state which has not reached thermodynamic equilibrium. During the last 5 years, special efforts have been dedicated to isolate the effects related to morphology changes taking place within the active layer and compare to those affecting the interfaces with the external electrodes. The current review discusses some of the factors affecting the donor/acceptor morphology evolution as one of the major intrinsic degradation pathways. Special attention is paid to factors in the nano- and microscale domain. For example, phase segregation of the polymer and fullerene domains due to Ostwald ripening is a major factor in the microscale domain and is affected by the presence of additives, glass transition temperature of the polymers or use of crosslinkers in the active layer. Alternatively, the role of vertical segregation profile toward the external electrodes is key for device operation, being a clear case of nanoscale morphology evolution. For example, donor and acceptor molecules actually present at the external interfaces will determine the leakage current of the device, energy-level alignment, and interfacial recombination processes. Different techniques have been developed over the last few years to understand its relationship with the device efficiency. Of special interest are those techniques which enable in situ analysis being non-destructive as they can be used to study accelerated degradation experiments and some will be discussed here.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T.P. Russell, Y. Cao, Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photon. 9(3), 174–179 (2015). doi:10.1038/nphoton.2015.6
- K. Cnops, B.P. Rand, D. Cheyns, B. Verreet, M.A. Empl, P. Heremans, 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5(3), 319–333 (2014). doi:10.1038/ncomms4406
- M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92, 686–714 (2008). doi:10.1016/j.solmat.2008.01.005
- M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Stability of polymer solar cells. Adv. Mater. 24(5), 580–612 (2012). doi:10.1002/adma.201104187
- M.O. Reese, A.J. Morfa, M.S. White, N. Kopidakis, S.E. Shaheen, G. Rumbles, D.S. Ginley, Pathways for the degradation of organic photovoltaic P3HT: PCBM based devices. Sol. Energy Mater. Sol. Cells 92(7), 746–752 (2008). doi:10.1016/j.solmat.2008.01.020
- N. Grossiord, J.M. Kroon, R. Andriessen, P.W.M. Blom, Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13(3), 432–456 (2012). doi:10.1016/j.orgel.2011.11.027
- K. Norrman, S.A. Gevorgyan, F.C. Krebs, Water-induced degradation of polymer solar cells studied by (H2O)-O-18 labeling. ACS Appl. Mater. Interfaces 1(1), 102–112 (2009). doi:10.1021/am800039w
- A. Guerrero, P.P. Boix, L.F. Marchesi, T. Ripolles-Sanchis, E.C. Pereira, G. Garcia-Belmonte, Oxygen doping-induced photogeneration loss in P3HT:PCBM solar cells. Sol. Energy Mater. Sol. Cells 100(4), 185–191 (2012). doi:10.1016/j.solmat.2012.01.012
- A. Seemann, T. Sauermann, C. Lungenschmied, O. Armbruster, S. Bauer, H.J. Egelhaaf, J. Hauch, Reversible and irreversible degradation of organic solar cell performance by oxygen. Sol. Energy 85(6), 1238–1249 (2011). doi:10.1016/j.solener.2010.09.007
- M. Manceau, A. Rivaton, J.L. Gardette, S. Guillerez, N. Lemaitre, The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered. Polym. Degrad. Stabil. 94(6), 898–907 (2009). doi:10.1016/j.polymdegradstab.2009.03.005
- S. Ebadian, B. Gholamkhass, S. Shambayati, S. Holdcroft, P. Servati, Effects of annealing and degradation on regioregular polythiophene-based bulk heterojunction organic photovoltaic devices. Sol. Energy Mater. Sol. Cells 94(12), 2258–2264 (2010). doi:10.1016/j.solmat.2010.07.021
- A. Guerrero, M. Pfannmöller, A. Kovalenko, T.S. Ripolles, H. Heidari, S. Bals, L.-D. Kaufmann, J. Bisquert, G. Garcia-Belmonte, Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity. Org. Electron. 16, 227–233 (2015). doi:10.1016/j.orgel.2014.11.007
- A. Guerrero, H. Heidari, T.S. Ripolles, A. Kovalenko, M. Pfannmöller, S. Bals, L.-D. Kauffmann, J. Bisquert, G. Garcia-Belmonte, Shelf life degradation of bulk heterojunction solar cells: intrinsic evolution of charge transfer complex. Adv. Energy Mater. 5(7), 1401997 (2015). doi:10.1002/aenm.201401997
- B. Conings, S. Bertho, K. Vandewal, A. Senes, J. D’Haen, J. Manca, R.A.J. Janssen, Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells. Appl. Phys. Lett. 96(16), 163301 (2010). doi:10.1063/1.3391669
- H.J. Kim, H.H. Lee, J.J. Kim, Real time investigation of the interface between a P3HT:PCBM layer and an al electrode during thermal annealing. Macromol. Rapid Commun. 30, 1269–1273 (2009). doi:10.1002/marc.200900224
- G. Williams, Q. Wang, H. Aziz, The photo-stability of polymer solar cells: contact photo-degradation and the benefits of interfacial layers. Adv. Funct. Mater. 23, 2239–2247 (2013). doi:10.1002/adfm.201202567
- S.B. Dkhil, D. Duché, M. Gaceur, A.K. Thakur, F.B. Aboura et al., Interplay of optical, morphological, and electronic effects of ZnO optical spacers in highly efficient polymer solar cells. Adv. Energy Mater. 4(18), 1400805(2014). doi:10.1002/aenm.201400805
- M. Gaceur, S.B. Dkhil, D. Duché, F. Bencheikh, J.-J. Simon et al., Ligand-free synthesis of aluminum-doped zinc oxide nanocrystals and their use as optical spacers in color-tuned highly efficient organic solar cells. Adv. Funct. Mater. 26(2), 243–253 (2016). doi:10.1002/adfm.201502929
- S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107(4), 1324–1338 (2007). doi:10.1021/cr050149z
- M.A. Brady, G.M. Su, M.L. Chabinyc, Recent progress in the morphology of bulk heterojunction photovoltaics. Soft Matter 7(23), 11065–11077 (2011). doi:10.1039/C1SM06147J
- D. Credgington, F.C. Jamieson, B. Walker, T.-Q. Nguyen, J.R. Durrant, Quantification of geminate and non-geminate recombination losses within a solution-processed small-molecule bulk heterojunction solar cell. Adv. Mater. 24(16), 2135–2141 (2012). doi:10.1002/adma.201104738
- T. Ripolles-Sanchis, A. Guerrero, J. Bisquert, G. Garcia-Belmonte, Diffusion-recombination determines collected current and voltage in polymer:fullerene solar cells. J. Phys. Chem. C 116(32), 16925–16933 (2012). doi:10.1021/jp305941f
- J. Vandenbergh, B. Conings, S. Bertho, J. Kesters, D. Spoltore et al., Thermal stability of poly[2-methoxy-5-(20-phenylethoxy)-1,4- phenylenevinylene] (mpe-ppv):fullerene bulk heterojunction solar cells. Macromolecules 44(21), 8470–8478 (2011). doi:10.1021/ma201911a
- S. Bertho, I. Haeldermans, A. Swinnen, W. Moons, T. Martens et al., Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cells 91(5), 385–389 (2007). doi:10.1016/j.solmat.2006.10.008
- S. Bertho, G. Janssen, T.J. Cleij, B. Conings, W. Moons et al., Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells. Sol. Energy Mater. Sol. Cells 92(7), 753–760 (2008). doi:10.1016/j.solmat.2008.01.006
- H. Sirringhaus, N. Tessler, R.H. Friend, Integrated optoelectronic devices based on conjugated polymers. Science 280(5370), 1741–1744 (1998). doi:10.1126/science.280.5370.1741
- Y. Chen, X. Wan, G. Long, High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 46(11), 2645–2655 (2013). doi:10.1021/ar400088c
- T.S. Ripolles, A. Guerrero, G. Garcia-Belmonte, Polymer defect states modulate open-circuit voltage in bulk-heterojunction solar cells. Appl. Phys. Lett. 103(24), 243306 (2013). doi:10.1063/1.4841475
- M. Pfannmöller, H. Flügge, G. Benner, I. Wacker, C. Sommer et al., Visualizing a homogeneous blend in bulk heterojunction polymer solar cells by analytical electron microscopy. Nano Lett. 11, 3099–3107 (2011). doi:10.1021/nl201078t
- J. Bisquert, F. Fabregat-Santiago, Impedance Spectroscopy: A General Introduction and Application to Dye-synsitized Solar Cells (CRC Press, Boca Raton, 2010)
- A. Guerrero, S. Loser, G. Garcia-Belmonte, C.J. Bruns, J. Smith, H. Miyauchi, S.I. Stupp, J. Bisquert, T.J. Marks, Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors. Phys. Chem. Chem. Phys. 15(39), 16456–16462 (2013). doi:10.1039/c3cp52363b
- G. Garcia-Belmonte, A. Guerrero, J. Bisquert, Elucidating operating modes of bulk-heterojunction solar cells from impedance spectroscopy analysis. J. Phys. Chem. Lett. 4, 877–886 (2013). doi:10.1021/jz302064z
- G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy. Org. Electron. 9(5), 847–851 (2008). doi:10.1016/j.orgel.2008.06.007
- A. Guerrero, T. Ripolles-Sanchis, P.P. Boix, G. Garcia-Belmonte, Series resistance in organic bulk-heterojunction solar devices: modulating carrier transport with fullerene electron traps. Org. Electron. 13(11), 2326–2332 (2012). doi:10.1016/j.orgel.2012.06.043
- A. Guerrero, N.F. Montcada, J. Ajuria, I. Etxebarria, R. Pacios, G. Garcia-Belmonte, E. Palomares, Charge carrier transport and contact selectivity limit the operation of PTB7-based organic solar cells of varying active layer thickness. J. Mater. Chem. A 1(39), 12345–12354 (2013). doi:10.1039/c3ta12358h
- I. Cardinaletti, J. Kesters, S. Bertho, B. Conings, F. Piersimoni et al., Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology. J. Photon. Energy 4(1), 040997 (2014). doi:10.1117/1.jpe.4.040997
- T. Wang, A.J. Pearson, A.D.F. Dunbar, P.A. Staniec, D.C. Watters et al., Correlating structure with function in thermally annealed PCDTBT:PC70BM photovoltaic blends. Adv. Funct. Mater. 22(7), 1399–1408 (2012). doi:10.1002/adfm.201102510
- G. Garcia-Belmonte, P.P. Boix, J. Bisquert, M. Sessolo, H.J. Bolink, Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy. Sol. Energy Mater. Sol. Cells 94, 366–375 (2010). doi:10.1016/j.solmat.2009.10.015
- P.P. Boix, A. Guerrero, L.F. Marchesi, G. Garcia-Belmonte, J. Bisquert, Current-voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves. Adv. Energy Mater. 1(6), 1073–1078 (2011). doi:10.1002/Aenm.201100334
- T. Ripolles-Sanchis, S.R. Raga, A. Guerrero, M. Welker, M. Turbiez, J. Bisquert, G. Garcia-Belmonte, Molecular electronic coupling controls charge recombination kinetics in organic solar cells of low bandgap diketopyrrolopyrrole, carbazole, and thiophene polymers. J. Phys. Chem. C 117(17), 8719–8726 (2013). doi:10.1021/jp402751v
- J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes, Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl. Phys. Lett. 68(22), 3120–3122 (1996). doi:10.1063/1.115797
- L.A.A. Pettersson, L.S. Roman, O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86(1), 487–496 (1999). doi:10.1063/1.370757
- M.O. Reese, S.A. Gevorgyan, M. Jørgensen, E. Bundgaard, S.R. Kurtz et al., Consensus stability testing protocols for organic photovoltaic materials, devices. Sol. Energy Mater. Sol. Cells 95(5), 1253–1267 (2011). doi:10.1016/j.solmat.2011.01.036
- C.H. Peters, I.T. Sachs-Quintana, W.R. Mateker, T. Heumueller, J. Rivnay et al., The mechanism of burn-in loss in a high efficiency polymer solar cell. Adv. Mater. 24(5), 663–668 (2012). doi:10.1002/adma.201103010
- C. Renaud, S.-J. Mougnier, E. Pavlopoulou, C. Brochon, G. Fleury et al., Block copolymer as a nanostructuring agent for high-efficiency, annealing-free bulk heterojunction organic solar cells. Adv. Mater. 24(16), 2196–2201 (2012). doi:10.1002/adma.201104461
- Y. Zhang, H.-L. Yip, O. Acton, S.K. Hau, F. Huang, A.K.Y. Jen, A simple, effective way of achieving highly efficient, thermally stable bulk-heterojunction polymer solar cells using amorphous fullerene derivatives as electron acceptor. Chem. Mater. 21(13), 2598–2600 (2009). doi:10.1021/cm9009282
- M.-H. Liao, C.-E. Tsai, Y.-Y. Lai, F.-Y. Cao, J.-S. Wu, C.-L. Wang, C.-S. Hsu, I. Liau, Y.-J. Cheng, Morphological stabilization by supramolecular perfluorophenyl-c60 interactions leading to efficient, thermally stable organic photovoltaics. Adv. Funct. Mater. 24(10), 1418–1429 (2014). doi:10.1002/adfm.201300437
- S. Bertho, B. Campo, F. Piersimoni, D. Spoltore, J. D’Haen, L. Lutsen, W. Maes, D. Vanderzande, J. Manca, Improved thermal stability of bulk heterojunctions based on side-chain functionalized poly(3-alkylthiophene) copolymers, PCBM. Sol. Energy Mater. Sol. Cells 110(3), 69–76 (2013). doi:10.1016/j.solmat.2012.12.007
- M.H. Petersen, S.A. Gevorgyan, F.C. Krebs, Thermocleavable low band gap polymers, solar cells therefrom with remarkable stability toward oxygen. Macromolecules 41(23), 8986–8994 (2008). doi:10.1021/ma801932a
- M. Hermenau, M. Riede, K. Leo, Stability, Degradation of Organic, Polymer Solar Cells (John Wiley & Sons, Ltd, 2012), pp. 109–142. doi:10.1002/9781119942436.ch5
- S. Miyanishi, Y. Zhang, K. Tajima, K. Hashimoto, Fullerene attached all-semiconducting diblock copolymers for stable single-component polymer solar cells. Chem. Commun. 46(36), 6723–6725 (2010). doi:10.1039/c0cc01819h
- G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4(11), 864–868 (2005). doi:10.1038/nmat1500
- Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22(20), E135–E138 (2010). doi:10.1002/adma.200903528
- L. Chang, H.W.A. Lademann, J.-B. Bonekamp, K. Meerholz, A.J. Moulé, Effect of trace solvent on the morphology of P3HT:PCBM bulk heterojunction solar cells. Adv. Funct. Mater. 21(10), 1779–1787 (2011). doi:10.1002/adfm.201002372
- H.-C. Liao, C.-C. Ho, C.-Y. Chang, M.-H. Jao, S.B. Darling, W.-F. Su, Additives for morphology control in high-efficiency organic solar cells. Mater. Today 16(9), 326–336 (2013). doi:10.1016/j.mattod.2013.08.013
- W. Kim, J.K. Kim, E. Kim, T.K. Ahn, D.H. Wang, J.H. Park, Conflicted effects of a solvent additive on PTB7:PC71BM bulk heterojunction solar cells. J. Phys. Chem. C 119(11), 5954–5961 (2015). doi:10.1021/jp510996w
- L. Ye, Y. Jing, X. Guo, H. Sun, S. Zhang, M. Zhang, L. Huo, J. Hou, Remove the residual additives toward enhanced efficiency with higher reproducibility in polymer solar cells. J. Phys. Chem. C 117(29), 14920–14928 (2013). doi:10.1021/jp404395q
- S. Guo, B. Cao, W. Wang, J.-F. Moulin, P. Müller-Buschbaum, Effect of alcohol treatment on the performance of PTB7:PC71BM bulk heterojunction solar cells. ACS Appl. Mater. Interfaces 7(8), 4641–4649 (2015). doi:10.1021/am5079418
- G. Wantz, L. Derue, O. Dautel, A. Rivaton, P. Hudhomme, C. Dagron-lartigau, Stabilizing polymer-based bulk heterojunction solar cells via crosslinking. Polym. Intern. 63(8), 1346–1361 (2014). doi:10.1002/pi.4712
- Z. Li, H.C. Wong, Z. Huang, H. Zhong, C.H. Tan, W.C. Tsoi, J.S. Kim, J.R. Durrant, J.T. Cabral, performance enhancement of fullerene-based solar cells by light processing. Nat. Commun. 4(7), 2227 (2013). doi:10.1038/ncomms3227
- W.-W. Liang, C.-Y. Chang, Y.-Y. Lai, S.-W. Cheng, H.-H. Chang, Y.-Y. Lai, Y.-J. Cheng, C.-L. Wang, C.-S. Hsu, Formation of nanostructured fullerene interlayer through accelerated self-assembly, cross-linking of trichlorosilane moieties leading to enhanced efficiency of photovoltaic cells. Macromolecules 46(12), 4781–4789 (2013). doi:10.1021/ma400290x
- C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, C.-S. Hsu, Highly efficient, stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. J. Am. Chem. Soc. 132(13), 4887–4893 (2010). doi:10.1021/ja100236b
- J.W. Rumer, R.S. Ashraf, N.D. Eisenmenger, Z. Huang, I. Meager, C.B. Nielsen, B.C. Schroeder, M.L. Chabinyc, I. McCulloch, Dual function additives: a small molecule crosslinker for enhanced efficiency, stability in organic solar cells. Adv. Energy Mater. 5(9), 1401426 (2015). doi:10.1002/aenm.201401426
- M. Tessarolo, A. Guerrero, D. Gedefaw, M. Bolognesi, M. Prosa et al., Predicting thermal stability of organic solar cells through an easy, fast capacitance measurement. Sol. Energy Mater. Sol. Cells 141, 240–247 (2015). doi:10.1016/j.solmat.2015.05.041
- F.C. Jamieson, E.B. Domingo, T. McCarthy-Ward, M. Heeney, N. Stingelin, J.R. Durrant, Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem. Sci. 3(2), 485–492 (2012). doi:10.1039/c1sc00674f
- I.T. Sachs-Quintana, T. Heumüller, W.R. Mateker, D.E. Orozco, R. Cheacharoen, S. Sweetnam, C.J. Brabec, M.D. McGehee, Electron barrier formation at the organic-back contact interface is the first step in thermal degradation of polymer solar cells. Adv. Funct. Mater. 24, 3978–3985 (2014). doi:10.1002/adfm.201304166
- T. Heumueller, W.R. Mateker, I.T. Sachs-Quintana, K. Vandewal, J.A. Bartelt, T.M. Burke, T. Ameri, C.J. Brabec, M.D. McGehee, Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity. Energy Environ. Sci. 7(9), 2974–2980 (2014). doi:10.1039/c4ee01842g
- A. Guerrero, M. Pfannmöller, A. Kovalenko, T.S. Ripolles, H. Heidari, S. Bals, L.-D. Kaufmann, J. Bisquert, G. Garcia-belmonte, Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity. Org. Electron. 16, 227–233 (2014). doi:10.1016/j.orgel.2014.11.007
- I. Etxebarria, A. Guerrero, J. Albero, G. Garcia-Belmonte, E. Palomares, R. Pacios, Inverted vs standard PTB7:PC70BM organic photovoltaic devices. The benefit of highly selective, extracting contacts in device performance. Org. Electron. 15(11), 2756–2762 (2014). doi:10.1016/j.orgel.2014.08.008
- A. Guerrero, B. Dörling, T. Ripolles-Sanchis, M. Aghamohammadi, E. Barrena, M. Campoy-Quiles, G. Garcia-Belmonte, Interplay between fullerene surface coverage and contact selectivity of cathode interfaces in organic solar cells. ACS Nano 7(5), 4637–4646 (2013). doi:10.1021/nn4014593
- M. Pfannmöller, H. Heidari, L. Nanson, O.R. Lozman, M. Chrapa, T. Offermans, G. Nisato, S. Bals, Quantitative tomography of organic photovoltaic blends at the nanoscale. Nano Lett. 15(10), 6634–6642 (2015). doi:10.1021/acs.nanolett.5b02437
- A. Guerrero, S. Chambon, L. Hirsch, G. Garcia-Belmonte, Light-modulated TiOx interlayer dipole, contact activation in organic solar cell cathodes. Adv. Funct. Mater. 24(39), 6234–6240 (2014). doi:10.1002/adfm.201401233
- A. Guerrero, L.F. Marchesi, P.P. Boix, S. Ruiz-Raga, T. Ripolles-Sanchis, G. Garcia-Belmonte, J. Bisquert, How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells. ACS Nano 6(4), 3453–3460 (2012). doi:10.1021/nn300486a
- A. Kovalenko, A. Guerrero, G. Garcia-Belmonte, Role of vertical segregation in semitransparent organic photovoltaics. ACS Appl. Mater. Interfaces 7(2), 1234–1239 (2015). doi:10.1021/am5071859
- M. Pfannmöller, W. Kowalsky, R.R. Schröder, Visualizing physical, electronic, optical properties of organic photovoltaic cells. Energy Environ. Sci. 6, 2871–2891 (2013). doi:10.1039/C3EE41773E
- A.J. Pearson, S.A. Boden, D.M. Bagnall, D.G. Lidzey, C. Rodenburg, imaging the bulk nanoscale morphology of organic solar cell blends using helium ion microscopy. Nano Lett. 11(10), 4275–4281 (2011). doi:10.1021/nl202269n
- B. Pettinger, P. Schambach, C.J. Villagómez, N. Scott, Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Ann. Rev. Phys. Chem. 63(1), 379–399 (2012). doi:10.1146/annurev-physchem-032511-143807
- K.F. Domke, B. Pettinger, Studying surface chemistry beyond the diffraction limit: 10 years of TERS. Chem. Phys. Chem. 11(7), 1365–1373 (2010). doi:10.1002/cphc.200900975
- B.-S. Yeo, E. Amstad, T. Schmid, J. Stadler, R. Zenobi, Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small 5(8), 952–960 (2009). doi:10.1002/smll.200801101
- X. Wang, D. Zhang, K. Braun, H.-J. Egelhaaf, C.J. Brabec, A.J. Meixner, High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT:PCBM organic blend films for solar-cell applications. Adv. Funct. Mater. 20(3), 492–499 (2010). doi:10.1002/adfm.200901930
References
Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T.P. Russell, Y. Cao, Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photon. 9(3), 174–179 (2015). doi:10.1038/nphoton.2015.6
K. Cnops, B.P. Rand, D. Cheyns, B. Verreet, M.A. Empl, P. Heremans, 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5(3), 319–333 (2014). doi:10.1038/ncomms4406
M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92, 686–714 (2008). doi:10.1016/j.solmat.2008.01.005
M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Stability of polymer solar cells. Adv. Mater. 24(5), 580–612 (2012). doi:10.1002/adma.201104187
M.O. Reese, A.J. Morfa, M.S. White, N. Kopidakis, S.E. Shaheen, G. Rumbles, D.S. Ginley, Pathways for the degradation of organic photovoltaic P3HT: PCBM based devices. Sol. Energy Mater. Sol. Cells 92(7), 746–752 (2008). doi:10.1016/j.solmat.2008.01.020
N. Grossiord, J.M. Kroon, R. Andriessen, P.W.M. Blom, Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13(3), 432–456 (2012). doi:10.1016/j.orgel.2011.11.027
K. Norrman, S.A. Gevorgyan, F.C. Krebs, Water-induced degradation of polymer solar cells studied by (H2O)-O-18 labeling. ACS Appl. Mater. Interfaces 1(1), 102–112 (2009). doi:10.1021/am800039w
A. Guerrero, P.P. Boix, L.F. Marchesi, T. Ripolles-Sanchis, E.C. Pereira, G. Garcia-Belmonte, Oxygen doping-induced photogeneration loss in P3HT:PCBM solar cells. Sol. Energy Mater. Sol. Cells 100(4), 185–191 (2012). doi:10.1016/j.solmat.2012.01.012
A. Seemann, T. Sauermann, C. Lungenschmied, O. Armbruster, S. Bauer, H.J. Egelhaaf, J. Hauch, Reversible and irreversible degradation of organic solar cell performance by oxygen. Sol. Energy 85(6), 1238–1249 (2011). doi:10.1016/j.solener.2010.09.007
M. Manceau, A. Rivaton, J.L. Gardette, S. Guillerez, N. Lemaitre, The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered. Polym. Degrad. Stabil. 94(6), 898–907 (2009). doi:10.1016/j.polymdegradstab.2009.03.005
S. Ebadian, B. Gholamkhass, S. Shambayati, S. Holdcroft, P. Servati, Effects of annealing and degradation on regioregular polythiophene-based bulk heterojunction organic photovoltaic devices. Sol. Energy Mater. Sol. Cells 94(12), 2258–2264 (2010). doi:10.1016/j.solmat.2010.07.021
A. Guerrero, M. Pfannmöller, A. Kovalenko, T.S. Ripolles, H. Heidari, S. Bals, L.-D. Kaufmann, J. Bisquert, G. Garcia-Belmonte, Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity. Org. Electron. 16, 227–233 (2015). doi:10.1016/j.orgel.2014.11.007
A. Guerrero, H. Heidari, T.S. Ripolles, A. Kovalenko, M. Pfannmöller, S. Bals, L.-D. Kauffmann, J. Bisquert, G. Garcia-Belmonte, Shelf life degradation of bulk heterojunction solar cells: intrinsic evolution of charge transfer complex. Adv. Energy Mater. 5(7), 1401997 (2015). doi:10.1002/aenm.201401997
B. Conings, S. Bertho, K. Vandewal, A. Senes, J. D’Haen, J. Manca, R.A.J. Janssen, Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells. Appl. Phys. Lett. 96(16), 163301 (2010). doi:10.1063/1.3391669
H.J. Kim, H.H. Lee, J.J. Kim, Real time investigation of the interface between a P3HT:PCBM layer and an al electrode during thermal annealing. Macromol. Rapid Commun. 30, 1269–1273 (2009). doi:10.1002/marc.200900224
G. Williams, Q. Wang, H. Aziz, The photo-stability of polymer solar cells: contact photo-degradation and the benefits of interfacial layers. Adv. Funct. Mater. 23, 2239–2247 (2013). doi:10.1002/adfm.201202567
S.B. Dkhil, D. Duché, M. Gaceur, A.K. Thakur, F.B. Aboura et al., Interplay of optical, morphological, and electronic effects of ZnO optical spacers in highly efficient polymer solar cells. Adv. Energy Mater. 4(18), 1400805(2014). doi:10.1002/aenm.201400805
M. Gaceur, S.B. Dkhil, D. Duché, F. Bencheikh, J.-J. Simon et al., Ligand-free synthesis of aluminum-doped zinc oxide nanocrystals and their use as optical spacers in color-tuned highly efficient organic solar cells. Adv. Funct. Mater. 26(2), 243–253 (2016). doi:10.1002/adfm.201502929
S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107(4), 1324–1338 (2007). doi:10.1021/cr050149z
M.A. Brady, G.M. Su, M.L. Chabinyc, Recent progress in the morphology of bulk heterojunction photovoltaics. Soft Matter 7(23), 11065–11077 (2011). doi:10.1039/C1SM06147J
D. Credgington, F.C. Jamieson, B. Walker, T.-Q. Nguyen, J.R. Durrant, Quantification of geminate and non-geminate recombination losses within a solution-processed small-molecule bulk heterojunction solar cell. Adv. Mater. 24(16), 2135–2141 (2012). doi:10.1002/adma.201104738
T. Ripolles-Sanchis, A. Guerrero, J. Bisquert, G. Garcia-Belmonte, Diffusion-recombination determines collected current and voltage in polymer:fullerene solar cells. J. Phys. Chem. C 116(32), 16925–16933 (2012). doi:10.1021/jp305941f
J. Vandenbergh, B. Conings, S. Bertho, J. Kesters, D. Spoltore et al., Thermal stability of poly[2-methoxy-5-(20-phenylethoxy)-1,4- phenylenevinylene] (mpe-ppv):fullerene bulk heterojunction solar cells. Macromolecules 44(21), 8470–8478 (2011). doi:10.1021/ma201911a
S. Bertho, I. Haeldermans, A. Swinnen, W. Moons, T. Martens et al., Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cells 91(5), 385–389 (2007). doi:10.1016/j.solmat.2006.10.008
S. Bertho, G. Janssen, T.J. Cleij, B. Conings, W. Moons et al., Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells. Sol. Energy Mater. Sol. Cells 92(7), 753–760 (2008). doi:10.1016/j.solmat.2008.01.006
H. Sirringhaus, N. Tessler, R.H. Friend, Integrated optoelectronic devices based on conjugated polymers. Science 280(5370), 1741–1744 (1998). doi:10.1126/science.280.5370.1741
Y. Chen, X. Wan, G. Long, High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 46(11), 2645–2655 (2013). doi:10.1021/ar400088c
T.S. Ripolles, A. Guerrero, G. Garcia-Belmonte, Polymer defect states modulate open-circuit voltage in bulk-heterojunction solar cells. Appl. Phys. Lett. 103(24), 243306 (2013). doi:10.1063/1.4841475
M. Pfannmöller, H. Flügge, G. Benner, I. Wacker, C. Sommer et al., Visualizing a homogeneous blend in bulk heterojunction polymer solar cells by analytical electron microscopy. Nano Lett. 11, 3099–3107 (2011). doi:10.1021/nl201078t
J. Bisquert, F. Fabregat-Santiago, Impedance Spectroscopy: A General Introduction and Application to Dye-synsitized Solar Cells (CRC Press, Boca Raton, 2010)
A. Guerrero, S. Loser, G. Garcia-Belmonte, C.J. Bruns, J. Smith, H. Miyauchi, S.I. Stupp, J. Bisquert, T.J. Marks, Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors. Phys. Chem. Chem. Phys. 15(39), 16456–16462 (2013). doi:10.1039/c3cp52363b
G. Garcia-Belmonte, A. Guerrero, J. Bisquert, Elucidating operating modes of bulk-heterojunction solar cells from impedance spectroscopy analysis. J. Phys. Chem. Lett. 4, 877–886 (2013). doi:10.1021/jz302064z
G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy. Org. Electron. 9(5), 847–851 (2008). doi:10.1016/j.orgel.2008.06.007
A. Guerrero, T. Ripolles-Sanchis, P.P. Boix, G. Garcia-Belmonte, Series resistance in organic bulk-heterojunction solar devices: modulating carrier transport with fullerene electron traps. Org. Electron. 13(11), 2326–2332 (2012). doi:10.1016/j.orgel.2012.06.043
A. Guerrero, N.F. Montcada, J. Ajuria, I. Etxebarria, R. Pacios, G. Garcia-Belmonte, E. Palomares, Charge carrier transport and contact selectivity limit the operation of PTB7-based organic solar cells of varying active layer thickness. J. Mater. Chem. A 1(39), 12345–12354 (2013). doi:10.1039/c3ta12358h
I. Cardinaletti, J. Kesters, S. Bertho, B. Conings, F. Piersimoni et al., Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology. J. Photon. Energy 4(1), 040997 (2014). doi:10.1117/1.jpe.4.040997
T. Wang, A.J. Pearson, A.D.F. Dunbar, P.A. Staniec, D.C. Watters et al., Correlating structure with function in thermally annealed PCDTBT:PC70BM photovoltaic blends. Adv. Funct. Mater. 22(7), 1399–1408 (2012). doi:10.1002/adfm.201102510
G. Garcia-Belmonte, P.P. Boix, J. Bisquert, M. Sessolo, H.J. Bolink, Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy. Sol. Energy Mater. Sol. Cells 94, 366–375 (2010). doi:10.1016/j.solmat.2009.10.015
P.P. Boix, A. Guerrero, L.F. Marchesi, G. Garcia-Belmonte, J. Bisquert, Current-voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves. Adv. Energy Mater. 1(6), 1073–1078 (2011). doi:10.1002/Aenm.201100334
T. Ripolles-Sanchis, S.R. Raga, A. Guerrero, M. Welker, M. Turbiez, J. Bisquert, G. Garcia-Belmonte, Molecular electronic coupling controls charge recombination kinetics in organic solar cells of low bandgap diketopyrrolopyrrole, carbazole, and thiophene polymers. J. Phys. Chem. C 117(17), 8719–8726 (2013). doi:10.1021/jp402751v
J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes, Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl. Phys. Lett. 68(22), 3120–3122 (1996). doi:10.1063/1.115797
L.A.A. Pettersson, L.S. Roman, O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86(1), 487–496 (1999). doi:10.1063/1.370757
M.O. Reese, S.A. Gevorgyan, M. Jørgensen, E. Bundgaard, S.R. Kurtz et al., Consensus stability testing protocols for organic photovoltaic materials, devices. Sol. Energy Mater. Sol. Cells 95(5), 1253–1267 (2011). doi:10.1016/j.solmat.2011.01.036
C.H. Peters, I.T. Sachs-Quintana, W.R. Mateker, T. Heumueller, J. Rivnay et al., The mechanism of burn-in loss in a high efficiency polymer solar cell. Adv. Mater. 24(5), 663–668 (2012). doi:10.1002/adma.201103010
C. Renaud, S.-J. Mougnier, E. Pavlopoulou, C. Brochon, G. Fleury et al., Block copolymer as a nanostructuring agent for high-efficiency, annealing-free bulk heterojunction organic solar cells. Adv. Mater. 24(16), 2196–2201 (2012). doi:10.1002/adma.201104461
Y. Zhang, H.-L. Yip, O. Acton, S.K. Hau, F. Huang, A.K.Y. Jen, A simple, effective way of achieving highly efficient, thermally stable bulk-heterojunction polymer solar cells using amorphous fullerene derivatives as electron acceptor. Chem. Mater. 21(13), 2598–2600 (2009). doi:10.1021/cm9009282
M.-H. Liao, C.-E. Tsai, Y.-Y. Lai, F.-Y. Cao, J.-S. Wu, C.-L. Wang, C.-S. Hsu, I. Liau, Y.-J. Cheng, Morphological stabilization by supramolecular perfluorophenyl-c60 interactions leading to efficient, thermally stable organic photovoltaics. Adv. Funct. Mater. 24(10), 1418–1429 (2014). doi:10.1002/adfm.201300437
S. Bertho, B. Campo, F. Piersimoni, D. Spoltore, J. D’Haen, L. Lutsen, W. Maes, D. Vanderzande, J. Manca, Improved thermal stability of bulk heterojunctions based on side-chain functionalized poly(3-alkylthiophene) copolymers, PCBM. Sol. Energy Mater. Sol. Cells 110(3), 69–76 (2013). doi:10.1016/j.solmat.2012.12.007
M.H. Petersen, S.A. Gevorgyan, F.C. Krebs, Thermocleavable low band gap polymers, solar cells therefrom with remarkable stability toward oxygen. Macromolecules 41(23), 8986–8994 (2008). doi:10.1021/ma801932a
M. Hermenau, M. Riede, K. Leo, Stability, Degradation of Organic, Polymer Solar Cells (John Wiley & Sons, Ltd, 2012), pp. 109–142. doi:10.1002/9781119942436.ch5
S. Miyanishi, Y. Zhang, K. Tajima, K. Hashimoto, Fullerene attached all-semiconducting diblock copolymers for stable single-component polymer solar cells. Chem. Commun. 46(36), 6723–6725 (2010). doi:10.1039/c0cc01819h
G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4(11), 864–868 (2005). doi:10.1038/nmat1500
Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22(20), E135–E138 (2010). doi:10.1002/adma.200903528
L. Chang, H.W.A. Lademann, J.-B. Bonekamp, K. Meerholz, A.J. Moulé, Effect of trace solvent on the morphology of P3HT:PCBM bulk heterojunction solar cells. Adv. Funct. Mater. 21(10), 1779–1787 (2011). doi:10.1002/adfm.201002372
H.-C. Liao, C.-C. Ho, C.-Y. Chang, M.-H. Jao, S.B. Darling, W.-F. Su, Additives for morphology control in high-efficiency organic solar cells. Mater. Today 16(9), 326–336 (2013). doi:10.1016/j.mattod.2013.08.013
W. Kim, J.K. Kim, E. Kim, T.K. Ahn, D.H. Wang, J.H. Park, Conflicted effects of a solvent additive on PTB7:PC71BM bulk heterojunction solar cells. J. Phys. Chem. C 119(11), 5954–5961 (2015). doi:10.1021/jp510996w
L. Ye, Y. Jing, X. Guo, H. Sun, S. Zhang, M. Zhang, L. Huo, J. Hou, Remove the residual additives toward enhanced efficiency with higher reproducibility in polymer solar cells. J. Phys. Chem. C 117(29), 14920–14928 (2013). doi:10.1021/jp404395q
S. Guo, B. Cao, W. Wang, J.-F. Moulin, P. Müller-Buschbaum, Effect of alcohol treatment on the performance of PTB7:PC71BM bulk heterojunction solar cells. ACS Appl. Mater. Interfaces 7(8), 4641–4649 (2015). doi:10.1021/am5079418
G. Wantz, L. Derue, O. Dautel, A. Rivaton, P. Hudhomme, C. Dagron-lartigau, Stabilizing polymer-based bulk heterojunction solar cells via crosslinking. Polym. Intern. 63(8), 1346–1361 (2014). doi:10.1002/pi.4712
Z. Li, H.C. Wong, Z. Huang, H. Zhong, C.H. Tan, W.C. Tsoi, J.S. Kim, J.R. Durrant, J.T. Cabral, performance enhancement of fullerene-based solar cells by light processing. Nat. Commun. 4(7), 2227 (2013). doi:10.1038/ncomms3227
W.-W. Liang, C.-Y. Chang, Y.-Y. Lai, S.-W. Cheng, H.-H. Chang, Y.-Y. Lai, Y.-J. Cheng, C.-L. Wang, C.-S. Hsu, Formation of nanostructured fullerene interlayer through accelerated self-assembly, cross-linking of trichlorosilane moieties leading to enhanced efficiency of photovoltaic cells. Macromolecules 46(12), 4781–4789 (2013). doi:10.1021/ma400290x
C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, C.-S. Hsu, Highly efficient, stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. J. Am. Chem. Soc. 132(13), 4887–4893 (2010). doi:10.1021/ja100236b
J.W. Rumer, R.S. Ashraf, N.D. Eisenmenger, Z. Huang, I. Meager, C.B. Nielsen, B.C. Schroeder, M.L. Chabinyc, I. McCulloch, Dual function additives: a small molecule crosslinker for enhanced efficiency, stability in organic solar cells. Adv. Energy Mater. 5(9), 1401426 (2015). doi:10.1002/aenm.201401426
M. Tessarolo, A. Guerrero, D. Gedefaw, M. Bolognesi, M. Prosa et al., Predicting thermal stability of organic solar cells through an easy, fast capacitance measurement. Sol. Energy Mater. Sol. Cells 141, 240–247 (2015). doi:10.1016/j.solmat.2015.05.041
F.C. Jamieson, E.B. Domingo, T. McCarthy-Ward, M. Heeney, N. Stingelin, J.R. Durrant, Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem. Sci. 3(2), 485–492 (2012). doi:10.1039/c1sc00674f
I.T. Sachs-Quintana, T. Heumüller, W.R. Mateker, D.E. Orozco, R. Cheacharoen, S. Sweetnam, C.J. Brabec, M.D. McGehee, Electron barrier formation at the organic-back contact interface is the first step in thermal degradation of polymer solar cells. Adv. Funct. Mater. 24, 3978–3985 (2014). doi:10.1002/adfm.201304166
T. Heumueller, W.R. Mateker, I.T. Sachs-Quintana, K. Vandewal, J.A. Bartelt, T.M. Burke, T. Ameri, C.J. Brabec, M.D. McGehee, Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity. Energy Environ. Sci. 7(9), 2974–2980 (2014). doi:10.1039/c4ee01842g
A. Guerrero, M. Pfannmöller, A. Kovalenko, T.S. Ripolles, H. Heidari, S. Bals, L.-D. Kaufmann, J. Bisquert, G. Garcia-belmonte, Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity. Org. Electron. 16, 227–233 (2014). doi:10.1016/j.orgel.2014.11.007
I. Etxebarria, A. Guerrero, J. Albero, G. Garcia-Belmonte, E. Palomares, R. Pacios, Inverted vs standard PTB7:PC70BM organic photovoltaic devices. The benefit of highly selective, extracting contacts in device performance. Org. Electron. 15(11), 2756–2762 (2014). doi:10.1016/j.orgel.2014.08.008
A. Guerrero, B. Dörling, T. Ripolles-Sanchis, M. Aghamohammadi, E. Barrena, M. Campoy-Quiles, G. Garcia-Belmonte, Interplay between fullerene surface coverage and contact selectivity of cathode interfaces in organic solar cells. ACS Nano 7(5), 4637–4646 (2013). doi:10.1021/nn4014593
M. Pfannmöller, H. Heidari, L. Nanson, O.R. Lozman, M. Chrapa, T. Offermans, G. Nisato, S. Bals, Quantitative tomography of organic photovoltaic blends at the nanoscale. Nano Lett. 15(10), 6634–6642 (2015). doi:10.1021/acs.nanolett.5b02437
A. Guerrero, S. Chambon, L. Hirsch, G. Garcia-Belmonte, Light-modulated TiOx interlayer dipole, contact activation in organic solar cell cathodes. Adv. Funct. Mater. 24(39), 6234–6240 (2014). doi:10.1002/adfm.201401233
A. Guerrero, L.F. Marchesi, P.P. Boix, S. Ruiz-Raga, T. Ripolles-Sanchis, G. Garcia-Belmonte, J. Bisquert, How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells. ACS Nano 6(4), 3453–3460 (2012). doi:10.1021/nn300486a
A. Kovalenko, A. Guerrero, G. Garcia-Belmonte, Role of vertical segregation in semitransparent organic photovoltaics. ACS Appl. Mater. Interfaces 7(2), 1234–1239 (2015). doi:10.1021/am5071859
M. Pfannmöller, W. Kowalsky, R.R. Schröder, Visualizing physical, electronic, optical properties of organic photovoltaic cells. Energy Environ. Sci. 6, 2871–2891 (2013). doi:10.1039/C3EE41773E
A.J. Pearson, S.A. Boden, D.M. Bagnall, D.G. Lidzey, C. Rodenburg, imaging the bulk nanoscale morphology of organic solar cell blends using helium ion microscopy. Nano Lett. 11(10), 4275–4281 (2011). doi:10.1021/nl202269n
B. Pettinger, P. Schambach, C.J. Villagómez, N. Scott, Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Ann. Rev. Phys. Chem. 63(1), 379–399 (2012). doi:10.1146/annurev-physchem-032511-143807
K.F. Domke, B. Pettinger, Studying surface chemistry beyond the diffraction limit: 10 years of TERS. Chem. Phys. Chem. 11(7), 1365–1373 (2010). doi:10.1002/cphc.200900975
B.-S. Yeo, E. Amstad, T. Schmid, J. Stadler, R. Zenobi, Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small 5(8), 952–960 (2009). doi:10.1002/smll.200801101
X. Wang, D. Zhang, K. Braun, H.-J. Egelhaaf, C.J. Brabec, A.J. Meixner, High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT:PCBM organic blend films for solar-cell applications. Adv. Funct. Mater. 20(3), 492–499 (2010). doi:10.1002/adfm.200901930