Laser-Induced Graphene: En Route to Smart Sensing
Corresponding Author: Ruquan Ye
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 157
Abstract
The discovery of laser-induced graphene (LIG) from polymers in 2014 has aroused much attention in recent years. A broad range of applications, including batteries, catalysis, sterilization, and separation, have been explored. The advantages of LIG technology over conventional graphene synthesis methods are conspicuous, which include designable patterning, environmental friendliness, tunable compositions, and controllable morphologies. In addition, LIG possesses high porosity, great flexibility, and mechanical robustness, and excellent electric and thermal conductivity. The patternable and printable manufacturing process and the advantageous properties of LIG illuminate a new pathway for developing miniaturized graphene devices. Its use in sensing applications has grown swiftly from a single detection component to an integrated smart detection system. In this minireview, we start with the introduction of synthetic efforts related to the fabrication of LIG sensors. Then, we highlight the achievement of LIG sensors for the detection of a diversity of stimuli with a focus on the design principle and working mechanism. Future development of the techniques toward in situ and smart detection of multiple stimuli in widespread applications will be discussed.
Highlights:
1 Summarizing the strategies for the synthesis and engineering of laser-induced graphene, which is essential for the design of high-performance sensors.
2 Introducing LIG sensors for the detection of various stimuli with a focus on the design principle and working mechanism.
3 Discussing the integration of LIG sensors with signal transducers and conveying the prospects of smarting sensing systems to come.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- R. Ye, J.M. Tour, Graphene at fifteen. ACS Nano 13(10), 10872–10878 (2019). https://doi.org/10.1021/acsnano.9b06778
- J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5(1), 5714 (2014). https://doi.org/10.1038/ncomms6714
- Z. Zhang, M. Song, J. Hao, K. Wu, C. Li, C. Hu, Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127, 287–296 (2018). https://doi.org/10.1016/j.carbon.2017.11.014
- F. Romero, A. Salinas-Castillo, A. Rivadeneyra, A. Albrecht, A. Godoy, D. Morales, N. Rodriguez, In-depth study of laser diode ablation of Kapton polyimide for flexible conductive substrates. Nanomaterials 8(7), 517 (2018). https://doi.org/10.3390/nano8070517
- M.G. Stanford, C. Zhang, J.D. Fowlkes, A. Hoffman, I.N. Ivanov, P.D. Rack, J.M. Tour, High-resolution laser-induced graphene. Flexible electronics beyond the visible limit. ACS Appl. Mater. Interfaces 12(9), 10902–10907 (2020). https://doi.org/10.1021/acsami.0c01377
- L. Tao, H. Tian, Y. Liu, Z. Ju, Y. Pang et al., An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 8(1), 14579 (2017). https://doi.org/10.1038/ncomms14579
- M.R. Bobinger, F.J. Romero, A. Salinas-Castillo, M. Becherer, P. Lugli et al., Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon 144, 116–126 (2019). https://doi.org/10.1016/j.carbon.2018.12.010
- J. Cai, C. Lv, A. Watanabe, Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J. Mater. Chem. A 4(5), 1671–1679 (2016). https://doi.org/10.1039/C5TA09450J
- A.F. Carvalho, A.J.S. Fernandes, C. Leitão, J. Deuermeier, A.C. Marques et al., Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 28(52), 1805271 (2018). https://doi.org/10.1002/adfm.201805271
- M. Burke, C. Larrigy, E. Vaughan, G. Paterakis, L. Sygellou et al., Fabrication and electrochemical properties of three-dimensional (3D) porous graphitic and graphenelike electrodes obtained by low-cost direct laser writing methods. ACS Omega 5(3), 1540–1548 (2020). https://doi.org/10.1021/acsomega.9b03418
- R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han, C. Kittrell, J.M. Tour, Laser-induced graphene formation on wood. Adv. Mater. 29(37), 1702211 (2017). https://doi.org/10.1002/adma.201702211
- M. Qian, T. Feng, H. Ding, L. Lin, H. Li, Y. Chen, Z. Sun, Electron field emission from screen-printed graphene films. Nanotechnology 20(42), 425702 (2009). https://doi.org/10.1088/0957-4484/20/42/425702
- K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. De With, H. Friedrich, Conductive screen printing inks by gelation of graphene dispersions. Adv. Funct. Mater. 26(4), 586–593 (2016). https://doi.org/10.1002/adfm.201504030
- W.J. Hyun, E.B. Secor, M.C. Hersam, C.D. Frisbie, L.F. Francis, High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27(1), 109–115 (2015). https://doi.org/10.1002/adma.201404133
- J.H. Kim, W.S. Chang, D. Kim, J.R. Yang, J.T. Han et al., 3D printing of reduced graphene oxide nanowires. Adv. Mater. 27(1), 157–161 (2015). https://doi.org/10.1002/adma.201404380
- D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du, J. Guo, J. Wei, Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth. Met. 217, 79–86 (2016). https://doi.org/10.1016/j.synthmet.2016.03.014
- C. Zhu, T.Y.J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 1–8 (2015). https://doi.org/10.1038/ncomms7962
- X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, Z. Sun, 3D printable graphene composite. Sci. Rep. 5, 1–7 (2015). https://doi.org/10.1038/srep11181
- D. Lin, S. Jin, F. Zhang, C. Wang, Y. Wang, C. Zhou, G.J. Cheng, 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 26(43), 434003 (2015). https://doi.org/10.1088/09574484/26/43/434003
- Q. Zhang, F. Zhang, S.P. Medarametla, H. Li, C. Zhou, D. Lin, 3D printing of graphene aerogels. Small 12(13), 1702–1708 (2016). https://doi.org/10.1002/smll.201503524
- M.H. Gass, U. Bangert, A.L. Bleloch, P. Wang, R.R. Nair, A.K. Geim, Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3(11), 676–681 (2008). https://doi.org/10.1038/nnano.2008.280
- R. Shi, H. Xu, B. Chen, Z. Zhang, L.M. Peng, Scalable fabrication of graphene devices through photolithography. Appl. Phys. Lett. 102(11), 113102 (2013). https://doi.org/10.1063/1.4795332
- M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy et al., Scalable templated trowth of traphene nanoribbons on SiC. Nat. Nanotechnol. 5(10), 727–731 (2010). https://doi.org/10.1038/nnano.2010.192
- R. Ye, X. Han, D.V. Kosynkin, Y. Li, C. Zhang et al., Laser-induced conversion of teflon into fluorinated nanodiamonds or fluorinated graphene. ACS Nano 12(2), 1083–1088 (2018). https://doi.org/10.1021/acsnano.7b05877
- R. Ye, Z. Peng, T. Wang, Y. Xu, J. Zhang et al., In situ formation of metal oxide nanocrystals embedded in laser-induced graphene. ACS Nano 9(9), 9244–9251 (2015). https://doi.org/10.1021/acsnano.5b04138
- Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li et al., Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9(6), 5868–5875 (2015). https://doi.org/10.1021/acsnano.5b00436
- X. Han, R. Ye, Y. Chyan, T. Wang, C. Zhang et al., Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis. ACS Appl. Nano Mater. 1(9), 5053–5061 (2018). https://doi.org/10.1021/acsanm.8b01163
- A.K. Thakur, S.P. Singh, M.N. Kleinberg, A. Gupta, C.J. Arnusch, Laser-induced graphene-PVA composites as robust electrically conductive water treatment membranes. ACS Appl. Mater. Interfaces 11(11), 10914–10921 (2019). https://doi.org/10.1021/acsami.9b00510
- D.X. Luong, K. Yang, J. Yoon, S.P. Singh, T. Wang, C.J. Arnusch, J.M. Tour, Laser-induced graphene composites as multifunctional surfaces. ACS Nano 13, 8b09626 (2019). https://doi.org/10.1021/acsnano.8b09626
- J. Sha, Y. Li, R. Villegas Salvatierra, T. Wang, P. Dong et al., Three-dimensional printed graphene foams. ACS Nano 11(7), 6860–6867 (2017). https://doi.org/10.1021/acsnano.7b01987
- R. Ye, D.K. James, J.M. Tour, Laser-induced graphene. Acc. Chem. Res. 51(7), 1609–1620 (2018). https://doi.org/10.1021/acs.accounts.8b00084
- R. Ye, D.K. James, J.M. Tour, Laser-induced graphene: from discovery to translation. Adv. Mater. 31(1), 1803621 (2019). https://doi.org/10.1002/adma.201803621
- S. Wang, Y. Yu, R. Li, G. Feng, Z. Wu et al., High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D Direct writing on polyimide sheets. Electrochim. Acta 241, 153–161 (2017). https://doi.org/10.1016/j.electacta.2017.04.138
- M. Ren, J. Zhang, J.M. Tour, Laser-induced graphene synthesis of Co3O4 in graphene for oxygen electrocatalysis and metal-air batteries. Carbon 139, 880–887 (2018). https://doi.org/10.1016/j.carbon.2018.07.051
- L. Ge, Q. Hong, H. Li, C. Liu, F. Li, Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv. Funct. Mater. 29(38), 1904000 (2019). https://doi.org/10.1002/adfm.201904000
- S.P. Singh, Y. Li, J. Zhang, J.M. Tour, C.J. Arnusch, Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Nano 12(1), 289–297 (2018). https://doi.org/10.1021/acsnano.7b06263
- S.P. Singh, Y. Li, A. Be’er, Y. Oren, J.M. Tour, C.J. Arnusch, Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action. ACS Appl. Mater. Interfaces 9(21), 18238–18247 (2017). https://doi.org/10.1021/acsami.7b04863
- WHO, Naming the coronavirus disease (COVID-19) and the virus that causes it. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Accessed 3 Apr 2020
- M. Ali, A.R. Nelson, A.L. Lopez, D.A. Sack, Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 9(6), e0003832 (2015). https://doi.org/10.1371/journal.pntd.0003832
- Y. Li, D.X. Luong, J. Zhang, Y.R. Tarkunde, C. Kittrell et al., Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv. Mater. 29(27), 1700496 (2017). https://doi.org/10.1002/adma.201700496
- L.X. Duy, Z. Peng, Y. Li, J. Zhang, Y. Ji, J.M. Tour, Laser-induced graphene fibers. Carbon 126, 472–479 (2018). https://doi.org/10.1016/j.carbon.2017.10.036
- A. Tiliakos, C. Ceaus, S.M. Iordache, E. Vasile, I. Stamatin, Morphic transitions of nanocarbons via laser pyrolysis of polyimide Films. J. Anal. Appl. Pyrolysis 121, 275–286 (2016). https://doi.org/10.1016/j.jaap.2016.08.007
- Y. Chyan, R. Ye, Y. Li, S.P. Singh, C.J. Arnusch, J.M. Tour, Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12(3), 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539
- L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao et al., High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 28(5), 838–845 (2016). https://doi.org/10.1002/adma.201503333
- F. Tehrani, M. Beltrán-Gastélum, K. Sheth, A. Karajic, L. Yin et al., Laser-induced graphene composites for printed, stretchable, and wearable electronics. Adv. Mater. Technol. 4(8), 1900162 (2019). https://doi.org/10.1002/admt.201900162
- M.G. Stanford, K. Yang, Y. Chyan, C. Kittrell, J.M. Tour, Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano 13(3), 3474–3482 (2019). https://doi.org/10.1021/acsnano.8b09622
- A.R. Cardoso, A.C. Marques, L. Santos, A.F. Carvalho, F.M. Costa et al., Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosens. Bioelectron. 124–125, 167–175 (2019). https://doi.org/10.1016/j.bios.2018.10.015
- G. Xu, Z.A. Jarjes, V. Desprez, P.A. Kilmartin, J. Travas-Sejdic, Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens. Bioelectron. 107, 184–191 (2018). https://doi.org/10.1016/j.bios.2018.02.031
- C. Fenzl, P. Nayak, T. Hirsch, O.S. Wolfbeis, H.N. Alshareef, A.J. Baeumner, Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sens. 2(5), 616–620 (2017). https://doi.org/10.1021/acssensors.7b00066
- C. Cheng, S. Wang, J. Wu, Y. Yu, R. Li et al., Bisphenol A sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl. Mater. Interfaces 8(28), 17784–17792 (2016). https://doi.org/10.1021/acsami.6b03743
- X. Xuan, J.Y. Kim, X. Hui, P.S. Das, H.S. Yoon, J.Y. Park, A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical–physiological hybrid biosensor. Biosens. Bioelectron. 120, 160–167 (2018). https://doi.org/10.1016/j.bios.2018.07.071
- D. Vanegas, L. Patiño, C. Mendez, D. Oliveira, A. Torres, C. Gomes, E. McLamore, Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors 8(2), 42 (2018). https://doi.org/10.3390/bios8020042
- E.R. Mamleyev, S. Heissler, A. Nefedov, P.G. Weidler, N. Nordin et al., Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors. NPJ Flex. Electron. 3(1), 2 (2019). https://doi.org/10.1038/s41528-018-0047-8
- N.T. Garland, E.S. McLamore, N.D. Cavallaro, D. Mendivelso-Perez, E.A. Smith, D. Jing, J.C. Claussen, Flexible laser-induced graphene for nitrogen sensing in soil. ACS Appl. Mater. Interfaces 10(45), 39124–39133 (2018). https://doi.org/10.1021/acsami.8b10991
- K. Griffiths, C. Dale, J. Hedley, M.D. Kowal, R.B. Kaner, N. Keegan, Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale 6(22), 13613–13622 (2014). https://doi.org/10.1039/c4nr04221b
- P. Nayak, N. Kurra, C. Xia, H.N. Alshareef, Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Adv. Electron. Mater. 2(10), 1600185 (2016). https://doi.org/10.1002/aelm.201600185
- X. Xuan, H.S. Yoon, J.Y. Park, A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 109, 75–82 (2018). https://doi.org/10.1016/j.bios.2018.02.054
- Y. Liu, C. Deng, L. Tang, A. Qin, R. Hu, J.Z. Sun, B.Z. Tang, Specific detection of d-glucose by a tetraphenylethene-based fluorescent sensor. J. Am. Chem. Soc. 133(4), 660–663 (2011). https://doi.org/10.1021/ja107086y
- Z. You, Q. Qiu, H. Chen, Y. Feng, X. Wang, Y. Wang, Y. Ying, Laser-induced noble metal nanoparticle-graphene composites enabled flexible biosensor for pathogen detection. Biosens. Bioelectron. 150, 111896 (2020). https://doi.org/10.1016/j.bios.2019.111896
- Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38(2), 217–224 (2020). https://doi.org/10.1038/s41587-019-0321-x
- F. Tehrani, B. Bavarian, Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose. Sci. Rep. 6(1), 27975 (2016). https://doi.org/10.1038/srep27975
- Y. Zhang, H. Zhu, P. Sun, C.K. Sun, H. Huang et al., Laser-induced graphene-based non-enzymatic sensor for detection of hydrogen peroxide. Electroanalysis 31(7), 1334–1341 (2019). https://doi.org/10.1002/elan.201900043
- X. Hui, X. Xuan, J. Kim, J.Y. Park, A Highly flexible and selective dopamine sensor based on Pt-Au nanoparticle-modified laser-induced graphene. Electrochim. Acta 328, 135066 (2019). https://doi.org/10.1016/j.electacta.2019.135066
- J. Zhu, M. Cho, Y. Li, I. Cho, J.H. Suh et al., Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl. Mater. Interfaces 11(27), 24386–24394 (2019). https://doi.org/10.1021/acsami.9b04495
- W. Yan, W. Yan, T. Chen, J. Xu, Q. Tian, D. Ho, Size-tunable flowerlike MoS2 nanospheres combined with laser-induced graphene electrodes for NO2 sensing. ACS Appl. Nano Mater. 3(3), 2545–2553 (2020). https://doi.org/10.1021/acsanm.9b02614
- A. Nag, S.C. Mukhopadhyay, J. Kosel, Sensing system for salinity testing using laser-induced graphene sensors. Sens. Actuators A Phys. 264, 107–116 (2017). https://doi.org/10.1016/j.sna.2017.08.008
- M.E.E. Alahi, A. Nag, S.C. Mukhopadhyay, L. Burkitt, A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators A Phys. 269, 79–90 (2018). https://doi.org/10.1016/j.sna.2017.11.022
- J. Nie, Y. Wu, Q. Huang, N. Joshi, N. Li et al., Dew point measurement using a carbon-based capacitive sensor with active temperature control. ACS Appl. Mater. Interfaces. 11(1), 1699–1705 (2019). https://doi.org/10.1021/acsami.8b18538
- K.K. Adhikari, C. Wang, T. Qiang, Q. Wu, Polyimide-derived laser-induced porous graphene-incorporated microwave resonator for high-performance humidity sensing. Appl. Phys. Express 12(10), 106501 (2019). https://doi.org/10.7567/1882-0786/ab3c7a
- W. Yang, W. Zhao, Q. Li, H. Li, Y. Wang, Y. Li, G. Wang, Fabrication of smart components by 3D printing and laser-scribing technologies. ACS Appl. Mater. Interfaces 12(3), 3928–3935 (2020). https://doi.org/10.1021/acsami.9b17467
- B. Sun, R.N. McCay, S. Goswami, Y. Xu, C. Zhang et al., Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 30(50), 1804327 (2018). https://doi.org/10.1002/adma.201804327
- L. Tao, Y. Liu, Z. Ju, H. Tian, Q. Xie, Y. Yang, T.L. Ren, A flexible 360-degree thermal sound source based on laser induced graphene. Nanomaterials 6(6), 112 (2016). https://doi.org/10.3390/nano6060112
- P. La Torraca, L. Larcher, P. Lugli, M. Bobinger, F.J. Romero, et al., Acoustic characterization of laser-induced graphene film thermoacoustic loudspeakers, in 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO); IEEE; (2019), pp. 5–8. https://doi.org/10.1109/NANO46743.2019.8993681
- S. Luo, P.T. Hoang, T. Liu, Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 96, 522–531 (2016). https://doi.org/10.1016/j.carbon.2015.09.076
- A. Chhetry, M. Sharifuzzaman, H. Yoon, S. Sharma, X. Xuan, J.Y. Park, MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Appl. Mater. Interfaces 11(25), 22531–22542 (2019). https://doi.org/10.1021/acsami.9b04915
- Y. Wang, Y. Wang, P. Zhang, F. Liu, S. Luo, Laser-induced freestanding graphene papers: a new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures. Small 14(36), 1802350 (2018). https://doi.org/10.1002/smll.201802350
- X. Chen, F. Luo, M. Yuan, D. Xie, L. Shen et al., A dual-functional graphene-based self-alarm health-monitoring E-skin. Adv. Funct. Mater. 29(51), 1904706 (2019). https://doi.org/10.1002/adfm.201904706
- R. Rahimi, M. Ochoa, B. Ziaie, Direct laser writing of porous-carbon/silver nanocomposite for flexible electronics. ACS Appl. Mater. Interfaces 8(26), 16907–16913 (2016). https://doi.org/10.1021/acsami.6b02952
References
K.S. Novoselov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
R. Ye, J.M. Tour, Graphene at fifteen. ACS Nano 13(10), 10872–10878 (2019). https://doi.org/10.1021/acsnano.9b06778
J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5(1), 5714 (2014). https://doi.org/10.1038/ncomms6714
Z. Zhang, M. Song, J. Hao, K. Wu, C. Li, C. Hu, Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127, 287–296 (2018). https://doi.org/10.1016/j.carbon.2017.11.014
F. Romero, A. Salinas-Castillo, A. Rivadeneyra, A. Albrecht, A. Godoy, D. Morales, N. Rodriguez, In-depth study of laser diode ablation of Kapton polyimide for flexible conductive substrates. Nanomaterials 8(7), 517 (2018). https://doi.org/10.3390/nano8070517
M.G. Stanford, C. Zhang, J.D. Fowlkes, A. Hoffman, I.N. Ivanov, P.D. Rack, J.M. Tour, High-resolution laser-induced graphene. Flexible electronics beyond the visible limit. ACS Appl. Mater. Interfaces 12(9), 10902–10907 (2020). https://doi.org/10.1021/acsami.0c01377
L. Tao, H. Tian, Y. Liu, Z. Ju, Y. Pang et al., An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 8(1), 14579 (2017). https://doi.org/10.1038/ncomms14579
M.R. Bobinger, F.J. Romero, A. Salinas-Castillo, M. Becherer, P. Lugli et al., Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon 144, 116–126 (2019). https://doi.org/10.1016/j.carbon.2018.12.010
J. Cai, C. Lv, A. Watanabe, Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J. Mater. Chem. A 4(5), 1671–1679 (2016). https://doi.org/10.1039/C5TA09450J
A.F. Carvalho, A.J.S. Fernandes, C. Leitão, J. Deuermeier, A.C. Marques et al., Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 28(52), 1805271 (2018). https://doi.org/10.1002/adfm.201805271
M. Burke, C. Larrigy, E. Vaughan, G. Paterakis, L. Sygellou et al., Fabrication and electrochemical properties of three-dimensional (3D) porous graphitic and graphenelike electrodes obtained by low-cost direct laser writing methods. ACS Omega 5(3), 1540–1548 (2020). https://doi.org/10.1021/acsomega.9b03418
R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han, C. Kittrell, J.M. Tour, Laser-induced graphene formation on wood. Adv. Mater. 29(37), 1702211 (2017). https://doi.org/10.1002/adma.201702211
M. Qian, T. Feng, H. Ding, L. Lin, H. Li, Y. Chen, Z. Sun, Electron field emission from screen-printed graphene films. Nanotechnology 20(42), 425702 (2009). https://doi.org/10.1088/0957-4484/20/42/425702
K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. De With, H. Friedrich, Conductive screen printing inks by gelation of graphene dispersions. Adv. Funct. Mater. 26(4), 586–593 (2016). https://doi.org/10.1002/adfm.201504030
W.J. Hyun, E.B. Secor, M.C. Hersam, C.D. Frisbie, L.F. Francis, High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27(1), 109–115 (2015). https://doi.org/10.1002/adma.201404133
J.H. Kim, W.S. Chang, D. Kim, J.R. Yang, J.T. Han et al., 3D printing of reduced graphene oxide nanowires. Adv. Mater. 27(1), 157–161 (2015). https://doi.org/10.1002/adma.201404380
D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du, J. Guo, J. Wei, Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth. Met. 217, 79–86 (2016). https://doi.org/10.1016/j.synthmet.2016.03.014
C. Zhu, T.Y.J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 1–8 (2015). https://doi.org/10.1038/ncomms7962
X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, Z. Sun, 3D printable graphene composite. Sci. Rep. 5, 1–7 (2015). https://doi.org/10.1038/srep11181
D. Lin, S. Jin, F. Zhang, C. Wang, Y. Wang, C. Zhou, G.J. Cheng, 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 26(43), 434003 (2015). https://doi.org/10.1088/09574484/26/43/434003
Q. Zhang, F. Zhang, S.P. Medarametla, H. Li, C. Zhou, D. Lin, 3D printing of graphene aerogels. Small 12(13), 1702–1708 (2016). https://doi.org/10.1002/smll.201503524
M.H. Gass, U. Bangert, A.L. Bleloch, P. Wang, R.R. Nair, A.K. Geim, Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3(11), 676–681 (2008). https://doi.org/10.1038/nnano.2008.280
R. Shi, H. Xu, B. Chen, Z. Zhang, L.M. Peng, Scalable fabrication of graphene devices through photolithography. Appl. Phys. Lett. 102(11), 113102 (2013). https://doi.org/10.1063/1.4795332
M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy et al., Scalable templated trowth of traphene nanoribbons on SiC. Nat. Nanotechnol. 5(10), 727–731 (2010). https://doi.org/10.1038/nnano.2010.192
R. Ye, X. Han, D.V. Kosynkin, Y. Li, C. Zhang et al., Laser-induced conversion of teflon into fluorinated nanodiamonds or fluorinated graphene. ACS Nano 12(2), 1083–1088 (2018). https://doi.org/10.1021/acsnano.7b05877
R. Ye, Z. Peng, T. Wang, Y. Xu, J. Zhang et al., In situ formation of metal oxide nanocrystals embedded in laser-induced graphene. ACS Nano 9(9), 9244–9251 (2015). https://doi.org/10.1021/acsnano.5b04138
Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li et al., Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9(6), 5868–5875 (2015). https://doi.org/10.1021/acsnano.5b00436
X. Han, R. Ye, Y. Chyan, T. Wang, C. Zhang et al., Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis. ACS Appl. Nano Mater. 1(9), 5053–5061 (2018). https://doi.org/10.1021/acsanm.8b01163
A.K. Thakur, S.P. Singh, M.N. Kleinberg, A. Gupta, C.J. Arnusch, Laser-induced graphene-PVA composites as robust electrically conductive water treatment membranes. ACS Appl. Mater. Interfaces 11(11), 10914–10921 (2019). https://doi.org/10.1021/acsami.9b00510
D.X. Luong, K. Yang, J. Yoon, S.P. Singh, T. Wang, C.J. Arnusch, J.M. Tour, Laser-induced graphene composites as multifunctional surfaces. ACS Nano 13, 8b09626 (2019). https://doi.org/10.1021/acsnano.8b09626
J. Sha, Y. Li, R. Villegas Salvatierra, T. Wang, P. Dong et al., Three-dimensional printed graphene foams. ACS Nano 11(7), 6860–6867 (2017). https://doi.org/10.1021/acsnano.7b01987
R. Ye, D.K. James, J.M. Tour, Laser-induced graphene. Acc. Chem. Res. 51(7), 1609–1620 (2018). https://doi.org/10.1021/acs.accounts.8b00084
R. Ye, D.K. James, J.M. Tour, Laser-induced graphene: from discovery to translation. Adv. Mater. 31(1), 1803621 (2019). https://doi.org/10.1002/adma.201803621
S. Wang, Y. Yu, R. Li, G. Feng, Z. Wu et al., High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D Direct writing on polyimide sheets. Electrochim. Acta 241, 153–161 (2017). https://doi.org/10.1016/j.electacta.2017.04.138
M. Ren, J. Zhang, J.M. Tour, Laser-induced graphene synthesis of Co3O4 in graphene for oxygen electrocatalysis and metal-air batteries. Carbon 139, 880–887 (2018). https://doi.org/10.1016/j.carbon.2018.07.051
L. Ge, Q. Hong, H. Li, C. Liu, F. Li, Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv. Funct. Mater. 29(38), 1904000 (2019). https://doi.org/10.1002/adfm.201904000
S.P. Singh, Y. Li, J. Zhang, J.M. Tour, C.J. Arnusch, Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Nano 12(1), 289–297 (2018). https://doi.org/10.1021/acsnano.7b06263
S.P. Singh, Y. Li, A. Be’er, Y. Oren, J.M. Tour, C.J. Arnusch, Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action. ACS Appl. Mater. Interfaces 9(21), 18238–18247 (2017). https://doi.org/10.1021/acsami.7b04863
WHO, Naming the coronavirus disease (COVID-19) and the virus that causes it. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Accessed 3 Apr 2020
M. Ali, A.R. Nelson, A.L. Lopez, D.A. Sack, Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 9(6), e0003832 (2015). https://doi.org/10.1371/journal.pntd.0003832
Y. Li, D.X. Luong, J. Zhang, Y.R. Tarkunde, C. Kittrell et al., Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv. Mater. 29(27), 1700496 (2017). https://doi.org/10.1002/adma.201700496
L.X. Duy, Z. Peng, Y. Li, J. Zhang, Y. Ji, J.M. Tour, Laser-induced graphene fibers. Carbon 126, 472–479 (2018). https://doi.org/10.1016/j.carbon.2017.10.036
A. Tiliakos, C. Ceaus, S.M. Iordache, E. Vasile, I. Stamatin, Morphic transitions of nanocarbons via laser pyrolysis of polyimide Films. J. Anal. Appl. Pyrolysis 121, 275–286 (2016). https://doi.org/10.1016/j.jaap.2016.08.007
Y. Chyan, R. Ye, Y. Li, S.P. Singh, C.J. Arnusch, J.M. Tour, Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12(3), 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539
L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao et al., High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 28(5), 838–845 (2016). https://doi.org/10.1002/adma.201503333
F. Tehrani, M. Beltrán-Gastélum, K. Sheth, A. Karajic, L. Yin et al., Laser-induced graphene composites for printed, stretchable, and wearable electronics. Adv. Mater. Technol. 4(8), 1900162 (2019). https://doi.org/10.1002/admt.201900162
M.G. Stanford, K. Yang, Y. Chyan, C. Kittrell, J.M. Tour, Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano 13(3), 3474–3482 (2019). https://doi.org/10.1021/acsnano.8b09622
A.R. Cardoso, A.C. Marques, L. Santos, A.F. Carvalho, F.M. Costa et al., Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosens. Bioelectron. 124–125, 167–175 (2019). https://doi.org/10.1016/j.bios.2018.10.015
G. Xu, Z.A. Jarjes, V. Desprez, P.A. Kilmartin, J. Travas-Sejdic, Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens. Bioelectron. 107, 184–191 (2018). https://doi.org/10.1016/j.bios.2018.02.031
C. Fenzl, P. Nayak, T. Hirsch, O.S. Wolfbeis, H.N. Alshareef, A.J. Baeumner, Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sens. 2(5), 616–620 (2017). https://doi.org/10.1021/acssensors.7b00066
C. Cheng, S. Wang, J. Wu, Y. Yu, R. Li et al., Bisphenol A sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl. Mater. Interfaces 8(28), 17784–17792 (2016). https://doi.org/10.1021/acsami.6b03743
X. Xuan, J.Y. Kim, X. Hui, P.S. Das, H.S. Yoon, J.Y. Park, A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical–physiological hybrid biosensor. Biosens. Bioelectron. 120, 160–167 (2018). https://doi.org/10.1016/j.bios.2018.07.071
D. Vanegas, L. Patiño, C. Mendez, D. Oliveira, A. Torres, C. Gomes, E. McLamore, Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors 8(2), 42 (2018). https://doi.org/10.3390/bios8020042
E.R. Mamleyev, S. Heissler, A. Nefedov, P.G. Weidler, N. Nordin et al., Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors. NPJ Flex. Electron. 3(1), 2 (2019). https://doi.org/10.1038/s41528-018-0047-8
N.T. Garland, E.S. McLamore, N.D. Cavallaro, D. Mendivelso-Perez, E.A. Smith, D. Jing, J.C. Claussen, Flexible laser-induced graphene for nitrogen sensing in soil. ACS Appl. Mater. Interfaces 10(45), 39124–39133 (2018). https://doi.org/10.1021/acsami.8b10991
K. Griffiths, C. Dale, J. Hedley, M.D. Kowal, R.B. Kaner, N. Keegan, Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale 6(22), 13613–13622 (2014). https://doi.org/10.1039/c4nr04221b
P. Nayak, N. Kurra, C. Xia, H.N. Alshareef, Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Adv. Electron. Mater. 2(10), 1600185 (2016). https://doi.org/10.1002/aelm.201600185
X. Xuan, H.S. Yoon, J.Y. Park, A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 109, 75–82 (2018). https://doi.org/10.1016/j.bios.2018.02.054
Y. Liu, C. Deng, L. Tang, A. Qin, R. Hu, J.Z. Sun, B.Z. Tang, Specific detection of d-glucose by a tetraphenylethene-based fluorescent sensor. J. Am. Chem. Soc. 133(4), 660–663 (2011). https://doi.org/10.1021/ja107086y
Z. You, Q. Qiu, H. Chen, Y. Feng, X. Wang, Y. Wang, Y. Ying, Laser-induced noble metal nanoparticle-graphene composites enabled flexible biosensor for pathogen detection. Biosens. Bioelectron. 150, 111896 (2020). https://doi.org/10.1016/j.bios.2019.111896
Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38(2), 217–224 (2020). https://doi.org/10.1038/s41587-019-0321-x
F. Tehrani, B. Bavarian, Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose. Sci. Rep. 6(1), 27975 (2016). https://doi.org/10.1038/srep27975
Y. Zhang, H. Zhu, P. Sun, C.K. Sun, H. Huang et al., Laser-induced graphene-based non-enzymatic sensor for detection of hydrogen peroxide. Electroanalysis 31(7), 1334–1341 (2019). https://doi.org/10.1002/elan.201900043
X. Hui, X. Xuan, J. Kim, J.Y. Park, A Highly flexible and selective dopamine sensor based on Pt-Au nanoparticle-modified laser-induced graphene. Electrochim. Acta 328, 135066 (2019). https://doi.org/10.1016/j.electacta.2019.135066
J. Zhu, M. Cho, Y. Li, I. Cho, J.H. Suh et al., Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl. Mater. Interfaces 11(27), 24386–24394 (2019). https://doi.org/10.1021/acsami.9b04495
W. Yan, W. Yan, T. Chen, J. Xu, Q. Tian, D. Ho, Size-tunable flowerlike MoS2 nanospheres combined with laser-induced graphene electrodes for NO2 sensing. ACS Appl. Nano Mater. 3(3), 2545–2553 (2020). https://doi.org/10.1021/acsanm.9b02614
A. Nag, S.C. Mukhopadhyay, J. Kosel, Sensing system for salinity testing using laser-induced graphene sensors. Sens. Actuators A Phys. 264, 107–116 (2017). https://doi.org/10.1016/j.sna.2017.08.008
M.E.E. Alahi, A. Nag, S.C. Mukhopadhyay, L. Burkitt, A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators A Phys. 269, 79–90 (2018). https://doi.org/10.1016/j.sna.2017.11.022
J. Nie, Y. Wu, Q. Huang, N. Joshi, N. Li et al., Dew point measurement using a carbon-based capacitive sensor with active temperature control. ACS Appl. Mater. Interfaces. 11(1), 1699–1705 (2019). https://doi.org/10.1021/acsami.8b18538
K.K. Adhikari, C. Wang, T. Qiang, Q. Wu, Polyimide-derived laser-induced porous graphene-incorporated microwave resonator for high-performance humidity sensing. Appl. Phys. Express 12(10), 106501 (2019). https://doi.org/10.7567/1882-0786/ab3c7a
W. Yang, W. Zhao, Q. Li, H. Li, Y. Wang, Y. Li, G. Wang, Fabrication of smart components by 3D printing and laser-scribing technologies. ACS Appl. Mater. Interfaces 12(3), 3928–3935 (2020). https://doi.org/10.1021/acsami.9b17467
B. Sun, R.N. McCay, S. Goswami, Y. Xu, C. Zhang et al., Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 30(50), 1804327 (2018). https://doi.org/10.1002/adma.201804327
L. Tao, Y. Liu, Z. Ju, H. Tian, Q. Xie, Y. Yang, T.L. Ren, A flexible 360-degree thermal sound source based on laser induced graphene. Nanomaterials 6(6), 112 (2016). https://doi.org/10.3390/nano6060112
P. La Torraca, L. Larcher, P. Lugli, M. Bobinger, F.J. Romero, et al., Acoustic characterization of laser-induced graphene film thermoacoustic loudspeakers, in 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO); IEEE; (2019), pp. 5–8. https://doi.org/10.1109/NANO46743.2019.8993681
S. Luo, P.T. Hoang, T. Liu, Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 96, 522–531 (2016). https://doi.org/10.1016/j.carbon.2015.09.076
A. Chhetry, M. Sharifuzzaman, H. Yoon, S. Sharma, X. Xuan, J.Y. Park, MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Appl. Mater. Interfaces 11(25), 22531–22542 (2019). https://doi.org/10.1021/acsami.9b04915
Y. Wang, Y. Wang, P. Zhang, F. Liu, S. Luo, Laser-induced freestanding graphene papers: a new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures. Small 14(36), 1802350 (2018). https://doi.org/10.1002/smll.201802350
X. Chen, F. Luo, M. Yuan, D. Xie, L. Shen et al., A dual-functional graphene-based self-alarm health-monitoring E-skin. Adv. Funct. Mater. 29(51), 1904706 (2019). https://doi.org/10.1002/adfm.201904706
R. Rahimi, M. Ochoa, B. Ziaie, Direct laser writing of porous-carbon/silver nanocomposite for flexible electronics. ACS Appl. Mater. Interfaces 8(26), 16907–16913 (2016). https://doi.org/10.1021/acsami.6b02952