Edge-Oriented Graphene on Carbon Nanofiber for High-Frequency Supercapacitors
Corresponding Author: Zhaoyang Fan
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 9
Abstract
High-frequency supercapacitors are being studied with the aim to replace the bulky electrolytic capacitors for current ripple filtering and other functions used in power systems. Here, 3D edge-oriented graphene (EOG) was grown encircling carbon nanofiber (CNF) framework to form a highly conductive electrode with a large surface area. Such EOG/CNF electrodes were tested in aqueous and organic electrolytes for high-frequency supercapacitor development. For the aqueous and the organic cell, the characteristic frequency at − 45° phase angle was found to be as high as 22 and 8.5 kHz, respectively. At 120 Hz, the electrode capacitance density was 0.37 and 0.16 mF cm−2 for the two cells. In particular, the 3 V high-frequency organic cell was successfully tested as filtering capacitor used in AC/DC converter, suggesting the promising potential of this technology for compact power supply design and other applications.
Highlights:
1 3D edge-oriented graphene (EOG) was grown encircling carbon nanofiber (CNF) framework to form a highly conductive electrode with a large surface area.
2 EOG/CNF-based supercapacitors in both aqueous and organic electrolytes can response at the kilohertz frequency.
3 3 V high-frequency organic supercapacitor was tested as filtering capacitor used in an AC/DC converter.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2), 213–234 (2013). doi:10.1016/j.nanoen.2012.10.006
- D. Li, Y. Gong, M. Wang, C. Pan, Preparation of sandwich-like NiCo2O4/rGO/NiO heterostructure on nickel foam for high-performance supercapacitor electrodes. Nano-Micro Lett. 9(2), 16 (2017). doi:10.1007/s40820-016-0117-1
- X. Pan, G. Ren, M.N.F. Hoque, S. Bayne, K. Zhu, Z. Fan, Fast supercapacitors based on graphene-bridged V2O3/VOx core-shell nanostructure electrodes with a power density of 1 MW kg−1. Adv. Mater. Interfaces 1(9), 1400398 (2014). doi:10.1002/admi.201400398
- B.C. Kim, J.Y. Hong, G.G. Wallace, H.S. Park, Recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions. Adv. Energy Mater. 5(22), 1500959 (2015). doi:10.1002/aenm.201500959
- S. Li, P. Cheng, J. Luo, D. Zhou, W. Xu, J. Li, R. Li, D. Yuan, High-performance flexible asymmetric supercapacitor based on CoAl-LDH and rGO electrodes. Nano-Micro Lett. 9(3), 31 (2017). doi:10.1007/s40820-017-0134-8
- Q. Zhou, J. Chang, Y. Jiang, T. Wei, L. Sheng, Z. Fan, Fast charge rate supercapacitors based on nitrogen-doped aligned carbon nanosheet networks. Electrochim. Acta (in press) (2017). doi:10.1016/j.electacta.2017.08.106
- F. Miao, C. Shao, X. Li, K. Wang, N. Lu, Y. Liu, Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. J. Power Sources 329, 516–524 (2016). doi:10.1016/j.jpowsour.2016.08.111
- X. Pan, Y. Zhao, G. Ren, Z. Fan, Highly conductive VO2 treated with hydrogen for supercapacitors. Chem. Commun. 49(38), 3943–3945 (2013). doi:10.1039/c3cc00044c
- J. Li, K. Liu, X. Gao, B. Yao, K. Huo et al., Oxygen- and nitrogen-enriched 3D porous carbon for supercapacitors of high volumetric capacity. ACS Appl. Mater. Interfaces 7(44), 24622–24628 (2015). doi:10.1021/acsami.5b06698
- J. Wu, X. Gao, H. Yu, T. Ding, Y. Yan et al., A scalable free-standing V2O5/CNT film electrode for supercapacitors with a wide operation voltage (1.6 V) in an aqueous electrolyte. Adv. Funct. Mater. 26(33), 6114–6120 (2016). doi:10.1002/adfm.201601811
- B. Duan, X. Gao, X. Yao, Y. Fang, L. Huang, J. Zhou, L. Zhang, Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27, 482–491 (2016). doi:10.1016/j.nanoen.2016.07.034
- J.R. Miller, R.A. Outlaw, B.C. Holloway, Graphene double-layer capacitor with ac line-filtering performance. Science 329(5999), 1637–1639 (2010). doi:10.1126/science.1194372
- Z. Fan, N. Islam, S.B. Bayne, Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting. Nano Energy 39, 306–320 (2017). doi:10.1016/j.nanoen.2017.06.048
- R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15–16), 2483–2498 (2000). doi:10.1016/S0013-4686(00)00354-6
- R. De Levie, On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim. Acta 8(10), 751–780 (1963). doi:10.1016/0013-4686(63)80042-0
- M. Cai, R.A. Outlaw, R.A. Quinlan, D. Premathilake, S.M. Butler, J.R. Miller, Fast response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C(2)H(2). ACS Nano 8(6), 5873–5882 (2014). doi:10.1021/nn5009319
- H. Yang, J. Yang, Z. Bo, S. Zhang, J. Yan, K. Cen, Edge effects in vertically-oriented graphene based electric double-layer capacitors. J. Power Sources 324, 309–316 (2016). doi:10.1016/j.jpowsour.2016.05.072
- G. Ren, X. Pan, S. Bayne, Z. Fan, Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon 71, 94–101 (2014). doi:10.1016/j.carbon.2014.01.017
- G. Ren, S. Li, Z.-X. Fan, M.N.F. Hoque, Z. Fan, Ultrahigh-rate supercapacitors with large capacitance based on edge oriented graphene coated carbonized cellulous paper as flexible freestanding electrodes. J. Power Sources 325, 152–160 (2016). doi:10.1016/j.jpowsour.2016.06.021
- Y. Yoo, S. Kim, B. Kim, W. Kim, 2.5 V compact supercapacitors based on ultrathin carbon nanotube films for AC line filtering. J. Mater. Chem. A 3(22), 11801–11806 (2015). doi:10.1039/C5TA02073E
- N. Islam, S. Li, G. Ren, Y. Zu, J. Warzywoda, S. Wang, Z. Fan, High-frequency electrochemical capacitors based on plasma pyrolyzed bacterial cellulose aerogel for current ripple filtering and pulse energy storage. Nano Energy 40, 107–114 (2017). doi:10.1016/j.nanoen.2017.08.015
- Z.S. Wu, Z. Liu, K. Parvez, X. Feng, K. Mullen, Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv. Mater. 27(24), 3669–3675 (2015). doi:10.1002/adma.201501208
- Y. Rangom, X.S. Tang, L.F. Nazar, Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance. ACS Nano 9(7), 7248–7255 (2015). doi:10.1021/acsnano.5b02075
- K. Sheng, Y. Sun, C. Li, W. Yuan, G. Shi, Ultrahigh-rate supercapacitors based on electrochemically reduced graphene oxide for ac line-filtering. Sci. Rep. 2(2), 247 (2012). doi:10.1038/srep00247
- J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, 3-Dimensional graphene carbon nanotube carpet-based micro-supercapacitors with high electrochemical performance. Nano Lett. 13(1), 72–78 (2013). doi:10.1021/nl3034976
- Y. Yoo, M.S. Kim, J.K. Kim, Y.S. Kim, W. Kim, Fast-response supercapacitors with graphitic ordered mesoporous carbons and carbon nanotubes for AC line filtering. J. Mater. Chem. A 4(14), 5062–5068 (2016). doi:10.1039/C6TA00921B
- H. Gao, J. Li, J.R. Miller, R.A. Outlaw, S. Butler, K. Lian, Solid-state electric double layer capacitors for ac line-filtering. Energy Storage Mater. 4, 66–70 (2016). doi:10.1016/j.ensm.2016.03.002
- G. Ren, M.N.F. Hoque, J. Liu, J. Warzywoda, Z. Fan, Perpendicular edge oriented graphene foam supporting orthogonal TiO2 (B) nanosheets as freestanding electrode for lithium ion battery. Nano Energy 21, 162–171 (2016). doi:10.1016/j.nanoen.2016.01.010
- Z. Bo, S. Mao, Z. Jun Han, K. Cen, J. Chen, K. Ostrikov, Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 44(8), 2108–2121 (2015). doi:10.1039/C4CS00352G
- A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhulsel, C. Van Haesendonck, Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19(30), 305604 (2008). doi:10.1088/0957-4484/19/30/305604
- R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108(7), 2646–2687 (2008). doi:10.1021/cr068076m
- X. Pan, K. Zhu, G. Ren, N. Islam, J. Warzywoda, Z. Fan, Electrocatalytic properties of a vertically oriented graphene film and its application as a catalytic counter electrode for dye-sensitized solar cells. J. Mater. Chem. A 2(32), 12746–12753 (2014). doi:10.1039/C4TA02028F
- J.-P. Randin, E. Yeager, Differential capacitance study on the edge orientation of pyrolytic graphite and glassy carbon electrodes. J. Electroanal. Chem. Interfacial Electrochem. 58(2), 313–322 (1975). doi:10.1016/S0022-0728(75)80089-1
- Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011). doi:10.1038/nmat3001
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). doi:10.1103/PhysRevLett.97.187401
- M. Cai, R.A. Outlaw, S.M. Butler, J.R. Miller, A high density of vertically-oriented graphenes for use in electric double layer capacitors. Carbon 50(15), 5481–5488 (2012). doi:10.1016/j.carbon.2012.07.035
- P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150(3), A292–A300 (2003). doi:10.1149/1.1543948
- H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L.L. Zhang, A.H. MacDonald, R.S. Ruoff, Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5(2), 3317 (2014). doi:10.1038/ncomms4317
- C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015). doi:10.1039/C5CS00303B
References
G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2), 213–234 (2013). doi:10.1016/j.nanoen.2012.10.006
D. Li, Y. Gong, M. Wang, C. Pan, Preparation of sandwich-like NiCo2O4/rGO/NiO heterostructure on nickel foam for high-performance supercapacitor electrodes. Nano-Micro Lett. 9(2), 16 (2017). doi:10.1007/s40820-016-0117-1
X. Pan, G. Ren, M.N.F. Hoque, S. Bayne, K. Zhu, Z. Fan, Fast supercapacitors based on graphene-bridged V2O3/VOx core-shell nanostructure electrodes with a power density of 1 MW kg−1. Adv. Mater. Interfaces 1(9), 1400398 (2014). doi:10.1002/admi.201400398
B.C. Kim, J.Y. Hong, G.G. Wallace, H.S. Park, Recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions. Adv. Energy Mater. 5(22), 1500959 (2015). doi:10.1002/aenm.201500959
S. Li, P. Cheng, J. Luo, D. Zhou, W. Xu, J. Li, R. Li, D. Yuan, High-performance flexible asymmetric supercapacitor based on CoAl-LDH and rGO electrodes. Nano-Micro Lett. 9(3), 31 (2017). doi:10.1007/s40820-017-0134-8
Q. Zhou, J. Chang, Y. Jiang, T. Wei, L. Sheng, Z. Fan, Fast charge rate supercapacitors based on nitrogen-doped aligned carbon nanosheet networks. Electrochim. Acta (in press) (2017). doi:10.1016/j.electacta.2017.08.106
F. Miao, C. Shao, X. Li, K. Wang, N. Lu, Y. Liu, Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. J. Power Sources 329, 516–524 (2016). doi:10.1016/j.jpowsour.2016.08.111
X. Pan, Y. Zhao, G. Ren, Z. Fan, Highly conductive VO2 treated with hydrogen for supercapacitors. Chem. Commun. 49(38), 3943–3945 (2013). doi:10.1039/c3cc00044c
J. Li, K. Liu, X. Gao, B. Yao, K. Huo et al., Oxygen- and nitrogen-enriched 3D porous carbon for supercapacitors of high volumetric capacity. ACS Appl. Mater. Interfaces 7(44), 24622–24628 (2015). doi:10.1021/acsami.5b06698
J. Wu, X. Gao, H. Yu, T. Ding, Y. Yan et al., A scalable free-standing V2O5/CNT film electrode for supercapacitors with a wide operation voltage (1.6 V) in an aqueous electrolyte. Adv. Funct. Mater. 26(33), 6114–6120 (2016). doi:10.1002/adfm.201601811
B. Duan, X. Gao, X. Yao, Y. Fang, L. Huang, J. Zhou, L. Zhang, Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27, 482–491 (2016). doi:10.1016/j.nanoen.2016.07.034
J.R. Miller, R.A. Outlaw, B.C. Holloway, Graphene double-layer capacitor with ac line-filtering performance. Science 329(5999), 1637–1639 (2010). doi:10.1126/science.1194372
Z. Fan, N. Islam, S.B. Bayne, Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting. Nano Energy 39, 306–320 (2017). doi:10.1016/j.nanoen.2017.06.048
R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15–16), 2483–2498 (2000). doi:10.1016/S0013-4686(00)00354-6
R. De Levie, On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim. Acta 8(10), 751–780 (1963). doi:10.1016/0013-4686(63)80042-0
M. Cai, R.A. Outlaw, R.A. Quinlan, D. Premathilake, S.M. Butler, J.R. Miller, Fast response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C(2)H(2). ACS Nano 8(6), 5873–5882 (2014). doi:10.1021/nn5009319
H. Yang, J. Yang, Z. Bo, S. Zhang, J. Yan, K. Cen, Edge effects in vertically-oriented graphene based electric double-layer capacitors. J. Power Sources 324, 309–316 (2016). doi:10.1016/j.jpowsour.2016.05.072
G. Ren, X. Pan, S. Bayne, Z. Fan, Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon 71, 94–101 (2014). doi:10.1016/j.carbon.2014.01.017
G. Ren, S. Li, Z.-X. Fan, M.N.F. Hoque, Z. Fan, Ultrahigh-rate supercapacitors with large capacitance based on edge oriented graphene coated carbonized cellulous paper as flexible freestanding electrodes. J. Power Sources 325, 152–160 (2016). doi:10.1016/j.jpowsour.2016.06.021
Y. Yoo, S. Kim, B. Kim, W. Kim, 2.5 V compact supercapacitors based on ultrathin carbon nanotube films for AC line filtering. J. Mater. Chem. A 3(22), 11801–11806 (2015). doi:10.1039/C5TA02073E
N. Islam, S. Li, G. Ren, Y. Zu, J. Warzywoda, S. Wang, Z. Fan, High-frequency electrochemical capacitors based on plasma pyrolyzed bacterial cellulose aerogel for current ripple filtering and pulse energy storage. Nano Energy 40, 107–114 (2017). doi:10.1016/j.nanoen.2017.08.015
Z.S. Wu, Z. Liu, K. Parvez, X. Feng, K. Mullen, Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv. Mater. 27(24), 3669–3675 (2015). doi:10.1002/adma.201501208
Y. Rangom, X.S. Tang, L.F. Nazar, Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance. ACS Nano 9(7), 7248–7255 (2015). doi:10.1021/acsnano.5b02075
K. Sheng, Y. Sun, C. Li, W. Yuan, G. Shi, Ultrahigh-rate supercapacitors based on electrochemically reduced graphene oxide for ac line-filtering. Sci. Rep. 2(2), 247 (2012). doi:10.1038/srep00247
J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, 3-Dimensional graphene carbon nanotube carpet-based micro-supercapacitors with high electrochemical performance. Nano Lett. 13(1), 72–78 (2013). doi:10.1021/nl3034976
Y. Yoo, M.S. Kim, J.K. Kim, Y.S. Kim, W. Kim, Fast-response supercapacitors with graphitic ordered mesoporous carbons and carbon nanotubes for AC line filtering. J. Mater. Chem. A 4(14), 5062–5068 (2016). doi:10.1039/C6TA00921B
H. Gao, J. Li, J.R. Miller, R.A. Outlaw, S. Butler, K. Lian, Solid-state electric double layer capacitors for ac line-filtering. Energy Storage Mater. 4, 66–70 (2016). doi:10.1016/j.ensm.2016.03.002
G. Ren, M.N.F. Hoque, J. Liu, J. Warzywoda, Z. Fan, Perpendicular edge oriented graphene foam supporting orthogonal TiO2 (B) nanosheets as freestanding electrode for lithium ion battery. Nano Energy 21, 162–171 (2016). doi:10.1016/j.nanoen.2016.01.010
Z. Bo, S. Mao, Z. Jun Han, K. Cen, J. Chen, K. Ostrikov, Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 44(8), 2108–2121 (2015). doi:10.1039/C4CS00352G
A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhulsel, C. Van Haesendonck, Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19(30), 305604 (2008). doi:10.1088/0957-4484/19/30/305604
R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108(7), 2646–2687 (2008). doi:10.1021/cr068076m
X. Pan, K. Zhu, G. Ren, N. Islam, J. Warzywoda, Z. Fan, Electrocatalytic properties of a vertically oriented graphene film and its application as a catalytic counter electrode for dye-sensitized solar cells. J. Mater. Chem. A 2(32), 12746–12753 (2014). doi:10.1039/C4TA02028F
J.-P. Randin, E. Yeager, Differential capacitance study on the edge orientation of pyrolytic graphite and glassy carbon electrodes. J. Electroanal. Chem. Interfacial Electrochem. 58(2), 313–322 (1975). doi:10.1016/S0022-0728(75)80089-1
Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011). doi:10.1038/nmat3001
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). doi:10.1103/PhysRevLett.97.187401
M. Cai, R.A. Outlaw, S.M. Butler, J.R. Miller, A high density of vertically-oriented graphenes for use in electric double layer capacitors. Carbon 50(15), 5481–5488 (2012). doi:10.1016/j.carbon.2012.07.035
P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150(3), A292–A300 (2003). doi:10.1149/1.1543948
H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L.L. Zhang, A.H. MacDonald, R.S. Ruoff, Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5(2), 3317 (2014). doi:10.1038/ncomms4317
C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015). doi:10.1039/C5CS00303B