Edge-Dependent Electronic and Magnetic Characteristics of Freestanding β 12-Borophene Nanoribbons
Corresponding Author: Meysam Bagheri Tagani
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 14
Abstract
This work presents an investigation of nanoribbons cut from β 12-borophene sheets by applying the density functional theory. In particular, the electronic and magnetic properties of borophene nanoribbons (BNR) are studied. It is found that all the ribbons considered in this work behave as metals, which is in good agreement with the recent experimental results. β 12-BNR has significant diversity due to the existence of five boron atoms in a unit cell of the sheet. The magnetic properties of the ribbons are strongly dependent on the cutting direction and edge profile. It is interesting that a ribbon with a specific width can behave as a normal or a ferromagnetic metal with magnetization at just one edge or two edges. Spin anisotropy is observed in some ribbons, and the magnetic moment is not found to be the same in both edges in an antiferromagnetic configuration. This effect stems from the edge asymmetry of the ribbons and results in the breaking of spin degeneracy in the band structure. Our findings show that β 12 BNRs are potential candidates for next-generation spintronic devices.
Highlights:
1 Nanoribbons produced by cutting a β 12 borophene sheet (BNR) were studied using ab-initio calculations.
2 Charge accumulation was observed at the edge of X-BNRs, which make them good candidates for gas sensors.
3 Y-BNRs are potential candidates for spintronics due to strong spin anisotropy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin et al., Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350(6267), 1513–1516 (2015). doi:10.1126/science.aad1080
- B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li et al., Experimental realization of two-dimensional boron sheets. Nat. Chem. 8(6), 563–568 (2016). doi:10.1038/nchem.2491
- X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng, Two-dimensional boron monolayer sheets. ACS Nano 6(8), 7443–7453 (2012). doi:10.1021/nn302696v
- Z. Zhang, A.J. Mannix, Z. Hu, B. Kiraly, N.P. Guisinger, M.C. Hersam, B.I. Yakobson, Substrate-induced nanoscale undulations of borophene on silver. Nano Lett. 16(10), 6622–6627 (2016). doi:10.1021/acs.nanolett.6b03349
- B. Feng, J. Zhang, R.-Y. Liu, T. Iimori, C. Lian et al., Direct evidence of metallic bands in a monolayer boron sheet. Phys. Rev. B 94(4), 041408 (2016). doi:10.1103/PhysRevB.94.041408
- B. Feng, O. Sugino, R.-Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, Dirac fermions in Borophene. Phys. Rev. Lett. 118(9), 096401 (2017). doi:10.1103/PhysRevLett.118.096401
- M. Ezawa, Triplet fermions and Dirac fermions in borophene. Phys. Rev. B 96, 035425 (2017). doi:10.1103/PhysRevB.96.035425
- A. Lopez-Bezanilla, P.B. Littlewood, Electronic properties of 8-Pmmn borophene. Phys. Rev. B 93, 241405 (2016). doi:10.1103/PhysRevB.93.241405
- A. Garcia-Fuente, J. Carrete, A. Vega, L.J. Gallego, How will freestanding borophene nanoribbons look like? An analysis of their possible structures, magnetism and transport properties. Phys. Chem. Chem. Phys. 19(2), 1054–1061 (2017). doi:10.1039/C6CP07432D
- A.D. Zabolotskiy, Y.E. Lozovik, Strain-induced pseudomagnetic field in the Dirac semimetal borophene. Phys. Rev. B 94, 165403 (2016). doi:10.1103/PhysRevB.94.165403
- A. Lherbier, A.R. Botello-Méndez, J.-C. Charlier, Electronic and optical properties of pristine and oxidized borophene. 2D Mater. 3, 045006 (2016). doi:10.1088/2053-1583/3/4/045006/meta
- B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, H. Zhu, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. Mater. Chem. C 4(16), 3592–3598 (2016). doi:10.1039/C6TC00115G
- J. Carrete, W. Li, L. Lindsay, D.A. Broido, L.J. Gallego, N. Mingoa, Physically founded phonon dispersions of few-layer materials and the case of borophene. Mater. Res. Lett. 4(4), 204–211 (2016). doi:10.1080/21663831.2016.1174163
- F. Ma, Y. Jiao, G. Gao, Y.T. Gu, A. Bilic, Z. Chen, A. Du, Graphene-like two dimensional ionic boron with double Dirac cones at ambient condition. Nano Lett. 16(5), 3022–3028 (2016). doi:10.1021/acs.nanolett.5b05292
- H. Shu, F. Li, P. Liang, X. Chen, Unveiling the atomic structure and electronic properties in atomically thin boron sheets on Ag(111) surface. Nanoscale 8(36), 16284–16291 (2016). doi:10.1039/C6NR02871C
- M.Q. Le, B. Mortazavi, T. Rabczuk, Mechanical properties of borophene films: a reactive molecular dynamics investigation. Nanotechnology 27(44), 445709 (2016). doi:10.1088/0957-4484/27/44/445709
- T. Tsafack, B.I. Yakobson, Thermomechanical analysis of two-dimensional boron monolayers. Phys. Rev. B 93(16), 165434 (2016). doi:10.1103/PhysRevB.93.165434
- V. Wang, W.T. Geng, Lattice defects and the mechanical anisotropy of borophene. J. Phys. Chem. C 121(18), 10224–10232 (2017). doi:10.1021/acs.jpcc.7b02582
- H. Wang, Q. Li, Y. Gao, F. Miao, X.-F. Zhou, X.G. Wan, Strain effects on borophene: ideal strength, negative Possion’s ratio and phonon instability. New J. Phys. 18(7), 073016 (2016). doi:10.1088/1367-2630/18/7/073016
- G.I. Giannopoulos, Mechanical behavior of planar borophenes: a molecular mechanics study. Comput. Mater. Sci. 129, 304–310 (2017). doi:10.1016/j.commatsci.2016.12.045
- J. Yuan, N. Yu, K. Xue, X. Miao, Ideal strength and elastic instability in single-layer 8-Pmmn borophene. RSC Adv. 7(14), 8654–8660 (2017). doi:10.1039/C6RA28454J
- Z. Zhang, Y. Yang, E.S. Penev, B.I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater. 27(9), 1605059 (2017). doi:10.1002/adfm.201605059
- M. Gao, Q.-Z. Li, X.-W. Yan, J. Wang, Prediction of phonon-mediated superconductivity in borophene. Phys. Rev. B 95(2), 024505 (2017). doi:10.1103/PhysRevB.95.024505
- R.C. Xiao, D.F. Shao, W.J. Lu, H.Y. Lv, J.Y. Li, Y.P. Sun, Enhanced superconductivity by strain and carrier-doping in borophene: a first principles prediction. Appl. Phys. Lett. 109(12), 122604 (2016). doi:10.1063/1.4963179
- Y. Zhao, S. Zeng, J. Ni, Phonon-mediated superconductivity in borophenes. App. Phys. Lett. 108(24), 242601 (2016). doi:10.1063/1.4953775
- Y. Zhao, S. Zeng, J. Ni, Superconductivity in two-dimensional boron allotropes. Phys. Rev. B 93(1), 014502 (2016). doi:10.1103/PhysRevB.93.014502
- C. Cheng, J.-T. Sun, H. Liu, H.-X. Fu, J. Zhang, X.-R. Chen, S. Meng, Suppressed superconductivity in substrate-supported β12 borophene by tensile strain and electron doping. 2D Mater. 4(2), 025032 (2017). doi:10.1088/2053-1583/aa5e1b/meta
- G. Liu, H. Wang, Y. Gao, J. Zhou, H. Wang, Anisotropic intrinsic lattice thermal conductivity of borophene from first-principles calculations. Phys. Chem. Chem. Phys. 19(4), 2843–2849 (2017). doi:10.1039/C6CP07367K
- J.C. Alvarez-Quiceno, R.H. Miwa, G.M. Dalpian, A. Fazzio, Oxidation of free-standing and supported borophene. 2D Mater. 4(2), 025025 (2017). doi:10.1088/2053-1583/aa55b6/meta
- Y. Jiao, F. Ma, J. Bell, A. Bilic, A. Du, Two-dimensional boron hydride sheets: high stability, massless Dirac fermions, and excellent mechanical properties. Angew. Chem. Int. Ed. 55(35), 10292–10295 (2016). doi:10.1002/ange.201604369
- Z.-Q. Wang, T.-Y. Lu, H.-Q. Wang, Y.-P. Feng, J.-C. Zheng, High anisotropy of fully hydrogenated borophene. Phys. Chem. Chem. Phys. 18(46), 31424–31430 (2016). doi:10.1039/C6CP06164H
- Z.-Q. Wang, T.-Y. Lu, H.-Q. Wang, Y.P. Feng, J.-C. Zheng, New crystal structure prediction of fully hydrogenated borophene by first principles calculations. Sci. Rep. 7(1), 609 (2017). doi:10.1038/s41598-017-00667-x
- H.R. Jiang, Z. Lu, M.C. Wu, F. Ciucci, T.S. Zhao, Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23, 97–104 (2016). doi:10.1016/j.nanoen.2016.03.013
- B. Mortazavi, A. Dianat, O. Rahaman, G. Cuniberti, T. Rabczuk, Borophene as an anode material for Ca, Mg, Na or Li ion storage: a first-principle study. J. Power Sour. 329, 456–461 (2016). doi:10.1016/j.jpowsour.2016.08.109
- B. Mortazavi, O. Rahaman, S. Ahzi, T. Rabczukc, Flat borophene films as anode materials for Mg, Na or Li-ion batteries with ultrahigh capacities: a first-principles study. Appl. Mater. Today 8, 60–67 (2017). doi:10.1016/j.apmt.2017.04.010
- J.E. Padilha, R.H. Miwa, A. Fazzio, Directional dependence of the electronic and transport properties of 2D borophene and borophane. Phys. Chem. Chem. Phys. 18(36), 25491–25496 (2016). doi:10.1039/C6CP05092A
- S. Izadi Vishkayi, M. Bagheri Tagani, Current-voltage characteristics of borophene and borophane sheets. Phys. Chem. Chem. Phys. 19(32), 21461–21466 (2017). doi:10.1039/C7CP03873A
- Y.-W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444(7117), 347–349 (2006). doi:10.1038/nature05180
- X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008). doi:10.1126/science.1150878
- F. Meng, X. Chen, S. Sun, J. He, Electronic and magnetic properties of pristine and hydrogenated borophene nanoribbons. Physica E 91, 106–112 (2017). doi:10.1016/j.physe.2017.04.014
- Q. Zhong, L. Kong, J. Gou, W. Li, S. Sheng et al., Synthesis of borophene nanoribbons on Ag(110) surface. Phys. Rev. Mater. 1, 021001(R) (2017). doi:10.1103/PhysRevMaterials.1.021001
- Q. Zhong, J. Zhang, P. Cheng, B. Feng, W. Li et al., Metastable phases of 2D boron sheets on Ag(111). J. Phys. Condens. Matter 29(9), 095002 (2017). doi:10.1088/1361-648X/aa5165
- E. Artacho, D. Sanchez-Portal, P. Ordejon, A. Garcia, J.M. Soler, Density functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 65(5), 453–461 (1997). doi:10.1002/(SICI)1097-461X(1997)65:5<453:AID-QUA9>3.0.CO;2-V
- N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43(3), 1993–2006 (1991). doi:10.1103/PhysRevB.43.1993
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). doi:10.1103/PhysRevLett.77.3865
- Y. Liu, Y.-J. Dong, Z. Tang, X.-F. Wang, L. Wang, T. Hou, H. Lin, Y. Li, Stable and metallic borophene nanoribbons from first-principles calculations. J. Mater. Chem. C 4(26), 6380 (2016). doi:10.1039/C6TC01328G
References
A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin et al., Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350(6267), 1513–1516 (2015). doi:10.1126/science.aad1080
B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li et al., Experimental realization of two-dimensional boron sheets. Nat. Chem. 8(6), 563–568 (2016). doi:10.1038/nchem.2491
X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng, Two-dimensional boron monolayer sheets. ACS Nano 6(8), 7443–7453 (2012). doi:10.1021/nn302696v
Z. Zhang, A.J. Mannix, Z. Hu, B. Kiraly, N.P. Guisinger, M.C. Hersam, B.I. Yakobson, Substrate-induced nanoscale undulations of borophene on silver. Nano Lett. 16(10), 6622–6627 (2016). doi:10.1021/acs.nanolett.6b03349
B. Feng, J. Zhang, R.-Y. Liu, T. Iimori, C. Lian et al., Direct evidence of metallic bands in a monolayer boron sheet. Phys. Rev. B 94(4), 041408 (2016). doi:10.1103/PhysRevB.94.041408
B. Feng, O. Sugino, R.-Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, Dirac fermions in Borophene. Phys. Rev. Lett. 118(9), 096401 (2017). doi:10.1103/PhysRevLett.118.096401
M. Ezawa, Triplet fermions and Dirac fermions in borophene. Phys. Rev. B 96, 035425 (2017). doi:10.1103/PhysRevB.96.035425
A. Lopez-Bezanilla, P.B. Littlewood, Electronic properties of 8-Pmmn borophene. Phys. Rev. B 93, 241405 (2016). doi:10.1103/PhysRevB.93.241405
A. Garcia-Fuente, J. Carrete, A. Vega, L.J. Gallego, How will freestanding borophene nanoribbons look like? An analysis of their possible structures, magnetism and transport properties. Phys. Chem. Chem. Phys. 19(2), 1054–1061 (2017). doi:10.1039/C6CP07432D
A.D. Zabolotskiy, Y.E. Lozovik, Strain-induced pseudomagnetic field in the Dirac semimetal borophene. Phys. Rev. B 94, 165403 (2016). doi:10.1103/PhysRevB.94.165403
A. Lherbier, A.R. Botello-Méndez, J.-C. Charlier, Electronic and optical properties of pristine and oxidized borophene. 2D Mater. 3, 045006 (2016). doi:10.1088/2053-1583/3/4/045006/meta
B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, H. Zhu, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. Mater. Chem. C 4(16), 3592–3598 (2016). doi:10.1039/C6TC00115G
J. Carrete, W. Li, L. Lindsay, D.A. Broido, L.J. Gallego, N. Mingoa, Physically founded phonon dispersions of few-layer materials and the case of borophene. Mater. Res. Lett. 4(4), 204–211 (2016). doi:10.1080/21663831.2016.1174163
F. Ma, Y. Jiao, G. Gao, Y.T. Gu, A. Bilic, Z. Chen, A. Du, Graphene-like two dimensional ionic boron with double Dirac cones at ambient condition. Nano Lett. 16(5), 3022–3028 (2016). doi:10.1021/acs.nanolett.5b05292
H. Shu, F. Li, P. Liang, X. Chen, Unveiling the atomic structure and electronic properties in atomically thin boron sheets on Ag(111) surface. Nanoscale 8(36), 16284–16291 (2016). doi:10.1039/C6NR02871C
M.Q. Le, B. Mortazavi, T. Rabczuk, Mechanical properties of borophene films: a reactive molecular dynamics investigation. Nanotechnology 27(44), 445709 (2016). doi:10.1088/0957-4484/27/44/445709
T. Tsafack, B.I. Yakobson, Thermomechanical analysis of two-dimensional boron monolayers. Phys. Rev. B 93(16), 165434 (2016). doi:10.1103/PhysRevB.93.165434
V. Wang, W.T. Geng, Lattice defects and the mechanical anisotropy of borophene. J. Phys. Chem. C 121(18), 10224–10232 (2017). doi:10.1021/acs.jpcc.7b02582
H. Wang, Q. Li, Y. Gao, F. Miao, X.-F. Zhou, X.G. Wan, Strain effects on borophene: ideal strength, negative Possion’s ratio and phonon instability. New J. Phys. 18(7), 073016 (2016). doi:10.1088/1367-2630/18/7/073016
G.I. Giannopoulos, Mechanical behavior of planar borophenes: a molecular mechanics study. Comput. Mater. Sci. 129, 304–310 (2017). doi:10.1016/j.commatsci.2016.12.045
J. Yuan, N. Yu, K. Xue, X. Miao, Ideal strength and elastic instability in single-layer 8-Pmmn borophene. RSC Adv. 7(14), 8654–8660 (2017). doi:10.1039/C6RA28454J
Z. Zhang, Y. Yang, E.S. Penev, B.I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater. 27(9), 1605059 (2017). doi:10.1002/adfm.201605059
M. Gao, Q.-Z. Li, X.-W. Yan, J. Wang, Prediction of phonon-mediated superconductivity in borophene. Phys. Rev. B 95(2), 024505 (2017). doi:10.1103/PhysRevB.95.024505
R.C. Xiao, D.F. Shao, W.J. Lu, H.Y. Lv, J.Y. Li, Y.P. Sun, Enhanced superconductivity by strain and carrier-doping in borophene: a first principles prediction. Appl. Phys. Lett. 109(12), 122604 (2016). doi:10.1063/1.4963179
Y. Zhao, S. Zeng, J. Ni, Phonon-mediated superconductivity in borophenes. App. Phys. Lett. 108(24), 242601 (2016). doi:10.1063/1.4953775
Y. Zhao, S. Zeng, J. Ni, Superconductivity in two-dimensional boron allotropes. Phys. Rev. B 93(1), 014502 (2016). doi:10.1103/PhysRevB.93.014502
C. Cheng, J.-T. Sun, H. Liu, H.-X. Fu, J. Zhang, X.-R. Chen, S. Meng, Suppressed superconductivity in substrate-supported β12 borophene by tensile strain and electron doping. 2D Mater. 4(2), 025032 (2017). doi:10.1088/2053-1583/aa5e1b/meta
G. Liu, H. Wang, Y. Gao, J. Zhou, H. Wang, Anisotropic intrinsic lattice thermal conductivity of borophene from first-principles calculations. Phys. Chem. Chem. Phys. 19(4), 2843–2849 (2017). doi:10.1039/C6CP07367K
J.C. Alvarez-Quiceno, R.H. Miwa, G.M. Dalpian, A. Fazzio, Oxidation of free-standing and supported borophene. 2D Mater. 4(2), 025025 (2017). doi:10.1088/2053-1583/aa55b6/meta
Y. Jiao, F. Ma, J. Bell, A. Bilic, A. Du, Two-dimensional boron hydride sheets: high stability, massless Dirac fermions, and excellent mechanical properties. Angew. Chem. Int. Ed. 55(35), 10292–10295 (2016). doi:10.1002/ange.201604369
Z.-Q. Wang, T.-Y. Lu, H.-Q. Wang, Y.-P. Feng, J.-C. Zheng, High anisotropy of fully hydrogenated borophene. Phys. Chem. Chem. Phys. 18(46), 31424–31430 (2016). doi:10.1039/C6CP06164H
Z.-Q. Wang, T.-Y. Lu, H.-Q. Wang, Y.P. Feng, J.-C. Zheng, New crystal structure prediction of fully hydrogenated borophene by first principles calculations. Sci. Rep. 7(1), 609 (2017). doi:10.1038/s41598-017-00667-x
H.R. Jiang, Z. Lu, M.C. Wu, F. Ciucci, T.S. Zhao, Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23, 97–104 (2016). doi:10.1016/j.nanoen.2016.03.013
B. Mortazavi, A. Dianat, O. Rahaman, G. Cuniberti, T. Rabczuk, Borophene as an anode material for Ca, Mg, Na or Li ion storage: a first-principle study. J. Power Sour. 329, 456–461 (2016). doi:10.1016/j.jpowsour.2016.08.109
B. Mortazavi, O. Rahaman, S. Ahzi, T. Rabczukc, Flat borophene films as anode materials for Mg, Na or Li-ion batteries with ultrahigh capacities: a first-principles study. Appl. Mater. Today 8, 60–67 (2017). doi:10.1016/j.apmt.2017.04.010
J.E. Padilha, R.H. Miwa, A. Fazzio, Directional dependence of the electronic and transport properties of 2D borophene and borophane. Phys. Chem. Chem. Phys. 18(36), 25491–25496 (2016). doi:10.1039/C6CP05092A
S. Izadi Vishkayi, M. Bagheri Tagani, Current-voltage characteristics of borophene and borophane sheets. Phys. Chem. Chem. Phys. 19(32), 21461–21466 (2017). doi:10.1039/C7CP03873A
Y.-W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444(7117), 347–349 (2006). doi:10.1038/nature05180
X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008). doi:10.1126/science.1150878
F. Meng, X. Chen, S. Sun, J. He, Electronic and magnetic properties of pristine and hydrogenated borophene nanoribbons. Physica E 91, 106–112 (2017). doi:10.1016/j.physe.2017.04.014
Q. Zhong, L. Kong, J. Gou, W. Li, S. Sheng et al., Synthesis of borophene nanoribbons on Ag(110) surface. Phys. Rev. Mater. 1, 021001(R) (2017). doi:10.1103/PhysRevMaterials.1.021001
Q. Zhong, J. Zhang, P. Cheng, B. Feng, W. Li et al., Metastable phases of 2D boron sheets on Ag(111). J. Phys. Condens. Matter 29(9), 095002 (2017). doi:10.1088/1361-648X/aa5165
E. Artacho, D. Sanchez-Portal, P. Ordejon, A. Garcia, J.M. Soler, Density functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 65(5), 453–461 (1997). doi:10.1002/(SICI)1097-461X(1997)65:5<453:AID-QUA9>3.0.CO;2-V
N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43(3), 1993–2006 (1991). doi:10.1103/PhysRevB.43.1993
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). doi:10.1103/PhysRevLett.77.3865
Y. Liu, Y.-J. Dong, Z. Tang, X.-F. Wang, L. Wang, T. Hou, H. Lin, Y. Li, Stable and metallic borophene nanoribbons from first-principles calculations. J. Mater. Chem. C 4(26), 6380 (2016). doi:10.1039/C6TC01328G