Heterostructured ZnFe2O4/Fe2TiO5/TiO2 Composite Nanotube Arrays with an Improved Photocatalysis Degradation Efficiency Under Simulated Sunlight Irradiation
Corresponding Author: Minhao Yan
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 17
Abstract
To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL−1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight.
Highlights:
1 ZnFe2O4 nanocrystals were perfused into pristine TiO2 nanotube array pipelines using a novel bias voltage-assisted perfusion method.
2 Novel heterostructured ZnFe2O4/Fe2TiO5/TiO2 composite nanotube arrays were obtained with staggered type II band alignment at the ZnFe2O4/Fe2TiO5 interface and type I band alignment at the Fe2TiO5/TiO2 interface.
3 Visible light absorption and the photocatalytic degradation efficiency of methylene blue were significantly improved upon irradiation with simulated sunlight.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Li, F. Wang, L. Sun, Z. Jiang, T. Ye, M. Chen, Q. Bai, C. Wang, X. Han, Design and synthesis of Cu@CuS yolk–shell structures with enhanced photocatalytic activity. Nano-Micro Lett. 9(3), 35 (2017). https://doi.org/10.1007/s40820-017-0135-7
- X. Zhang, D. Xu, D. Huang, F. Liu, K. Xu, H. Wang, S. Zhang, Enhanced visible-light-driven photocatalytic activities of LiInO2 by Mo6+-doping strategy. J. Am. Ceram. Soc. 100(7), 2781–2789 (2017). https://doi.org/10.1111/jace.14799
- X. Han, X. He, F. Wang, J. Chen, J. Xu, X. Wang, X. Han, Engineering an n-doped Cu2O@N–C interface with long-lived photo-generated carriers for efficient photoredox catalysts. J. Mater. Chem. A 5(21), 10220–10226 (2017). https://doi.org/10.1039/C7TA01909B
- L. Sun, X. Han, Z. Jiang, T. Ye, R. Li, X. Zhao, X. Han, Fabrication of cubic Zn2SnO4/SnO2 complex hollow structures and their sunlight-driven photocatalytic activity. Nanoscale 8(26), 12858–12862 (2016). https://doi.org/10.1039/C5NR08004E
- Y.J. Gu, Y.J. Su, D. Chen, H.J. Geng, Z.L. Li, L.Y. Zhang, Y.F. Zhang, Hydrothermal synthesis of hexagonal CuSe nanoflakes with excellent sunlight-driven photocatalytic activity. CrystEngComm 16, 9185–9190 (2014). https://doi.org/10.1039/c4ce01470g
- K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7(1), 69–74 (2007). https://doi.org/10.1021/nl062000o
- M.Z. Ge, S.H. Li, J.Y. Huang, K.Q. Zhang, S.S. Al-Deyab, Y.K. Lai, TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application. J. Mater. Chem. A 3(7), 3491–3499 (2015). https://doi.org/10.1039/C4TA06354F
- I.S. Cho, J. Choi, K. Zhang, S.J. Kim, M.J. Jeong, L.L. Cai, T. Park, X.L. Zheng, J.H. Park, Highly efficient solar water splitting from transferred TiO2 nanotube arrays. Nano Lett. 15(9), 5709–5715 (2015). https://doi.org/10.1021/acs.nanolett.5b01406
- S.Z. Liang, J.F. He, Z.H. Sun, Q.H. Liu, Y. Jiang, H. Cheng, B. He, Z. Xie, S.Q. Wei, Improving photoelectrochemical water splitting activity of TiO2 nanotube arrays by tuning geometrical parameters. J. Phys. Chem. C 116(16), 9049–9053 (2012). https://doi.org/10.1021/jp300552s
- J.S. Yang, W.P. Liao, J.J. Wu, Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 5(15), 7425–7431 (2013). https://doi.org/10.1021/am401746b
- M.Z. Ge, C.Y. Cao, J.Y. Huang, S.H. Li, Z. Chen, K.Q. Zhang, S.S. Al-Deyabd, Y.K. Lai, A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 4(18), 6772–6801 (2016). https://doi.org/10.1039/C5TA09323F
- X.L. He, Y.Y. Cai, H.M. Zhang, C.H. Liang, Photocatalytic degradation of organic pollutants with ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J. Mater. Chem. 21(2), 475–480 (2011). https://doi.org/10.1039/C0JM02404J
- Z.Y. Liu, X.T. Zhang, S. Nishimoto, T. Murakami, A. Fujishima, Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ. Sci. Technol. 42(22), 8547–8551 (2008). https://doi.org/10.1021/es8016842
- J. Choi, S. Song, G. Kang, T. Park, Dye-sensitized solar cells employing doubly or singly open-ended TiO2 nanotube arrays: structural geometry and charge transport. ACS Appl. Mater. Interfaces 6(17), 15388–15394 (2014). https://doi.org/10.1021/am503934s
- X.F. Gao, D.S. Guan, J.W. Huo, J.H. Chen, C. Yuan, Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and ticl4 surface modification for highly efficient dye sensitized solar cells. Nanoscale 5(21), 10438–10446 (2013). https://doi.org/10.1039/c3nr03198e
- D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, M. Gratzel, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2(6), 1113–1116 (2008). https://doi.org/10.1021/nn800174y
- C.K. Xu, P.H. Shin, L.L. Cao, J.M. Wu, D. Gao, Ordered TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells. Chem. Mater. 22(1), 143–148 (2010). https://doi.org/10.1021/cm9027513
- P.T. Sheng, W.L. Li, J. Cai, X. Wang, X. Tong, Q.Y. Cai, C.A. Grimes, A novel method for the preparation of a photocorrosion stable core/shell cdte/cds quantum dot TiO2 nanotube array photoelectrode demonstrating an am 1.5 g photoconversion efficiency of 6.12%. J. Mater. Chem. A 1(26), 7806–7815 (2013). https://doi.org/10.1039/c3ta10255f
- C.Y. Zhai, M.S. Zhu, Y.T. Lu, F.F. Ren, C.Q. Wang, Y.K. Du, P. Yang, Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation. Phys. Chem. Chem. Phys. 16(28), 14800–14807 (2014). https://doi.org/10.1039/C4CP01401D
- J. Zhang, J.H. Bang, C.C. Tang, P.V. Kamat, Tailored TiO2–SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1), 387–395 (2010). https://doi.org/10.1021/nn901087c
- Y. Hou, X.Y. Li, Q.D. Zhao, X. Quan, G.H. Chen, Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv. Funct. Mater. 20(13), 2165–2174 (2010). https://doi.org/10.1002/adfm.200902390
- Z.C. Lian, W.C. Wang, S.N. Xiao, X. Li, Y.Y. Cui, D.Q. Zhang, G.S. Li, H.X. Li, Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution. Sci. Rep. 5, 10461 (2015). https://doi.org/10.1038/srep10461
- L.S. Hu, C.C. Fong, X.M. Zhang, L.L. Chan, P.K.S. Lam, P.K. Chu, K.Y. Wong, M.S. Yang, Au nanoparticles decorated TiO2 nanotube arrays as a recyclable sensor for photoenhanced electrochemical detection of bisphenol A. Environ. Sci. Technol. 50(8), 4430–4438 (2016). https://doi.org/10.1021/acs.est.5b05857
- Z.H. Zhang, L.B. Zhang, M.N. Hedhili, H.N. Zhang, P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 13(1), 14–20 (2013). https://doi.org/10.1021/nl3029202
- M.D. Ye, J.J. Gong, Y.K. Lai, C.J. Lin, Z.Q. Lin, High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J. Am. Chem. Soc. 134(38), 15720–15723 (2012). https://doi.org/10.1021/ja307449z
- S.A. Ansari, M.M. Khan, M.O. Ansaric, M.H. Cho, Nitrogen-doped titanium dioxide (n-doped TiO2) for visible light photocatalysis. New J. Chem. 40(4), 3000–3009 (2016). https://doi.org/10.1039/C5NJ03478G
- J.L. Zhang, Y.M. Wu, M.Y. Xing, S.A.K. Leghari, S. Sajjad, Development of modified n doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 3(6), 715–726 (2010). https://doi.org/10.1039/b927575d
- Q.F. Chen, H.J. Shi, W.M. Shi, Y. Xu, D. Wu, Enhanced visible photocatalytic activity of titania-silica photocatalysts: effect of carbon and silver doping. Catal. Sci. Technol. 2(6), 1213–1220 (2012). https://doi.org/10.1039/c2cy00545j
- D.Y. Qi, M.Y. Xing, J.L. Zhang, Hydrophobic carbon-doped TiO2/MCF-F composite as a high performance photocatalyst. J. Phys. Chem. C 118(14), 7329–7336 (2014). https://doi.org/10.1021/jp4123979
- W. Ho, J.C. Yu, S. Lee, Synthesis of hierarchical nanoporous f-doped TiO2 spheres with visible light photocatalytic activity. Chem. Commun. 111(10), 1115–1117 (2006). https://doi.org/10.1039/b515513d
- K.L. Lv, B. Cheng, J.G. Yu, G. Liu, Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Phys. Chem. Chem. Phys. 14(16), 5349–5362 (2012). https://doi.org/10.1039/c2cp23461k
- G.S. Wu, J.P. Wang, D.F. Thomas, A.C. Chen, Synthesis of f-doped flower-like TiO2 nanostructures with high photoelectrochemical activity. Langmuir 24(7), 3503–3509 (2008). https://doi.org/10.1021/la703098g
- S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M.S. Tikhov, D.S. Wright, R.M. Lambert, Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J. Am. Chem. Soc. 129(45), 13790–13791 (2007). https://doi.org/10.1021/ja0749237
- H.J. Tian, L.H. Hu, C.N. Zhang, S.H. Chen, J.A. Sheng, L. Mo, W.Q. Liu, S.Y. Dai, Enhanced photovoltaic performance of dye-sensitized solar cells using a highly crystallized mesoporous TiO2 electrode modified by boron doping. J. Mater. Chem. 21(3), 863–868 (2011). https://doi.org/10.1039/C0JM02941F
- S.C. Han, Y.C. Pu, L.X. Zheng, J.Z. Zhang, X.S. Fang, Shell-thickness dependent electron transfer and relaxation in type-ii core-shell CdS/TiO2 structures with optimized photoelectrochemical performance. J. Mater. Chem. A 3(45), 22627–22635 (2015). https://doi.org/10.1039/C5TA07100C
- G.S. Li, L. Wu, F. Li, P.P. Xu, D.Q. Zhang, H.X. Li, Photoelectrocatalytic degradation of organic pollutants via a cds quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation. Nanoscale 5(5), 2118–2125 (2013). https://doi.org/10.1039/c3nr34253k
- W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130(4), 1124–1125 (2008). https://doi.org/10.1021/ja0777741
- J.Y. Kim, S.B. Choi, J.H. Noh, S. HunYoon, S. Lee, T.H. Noh, A.J. Frank, K.S. Hong, Synthesis of CdSe-TiO2 nanocomposites and their applications to TiO2 sensitized solar cells. Langmuir 25(9), 5348–5351 (2009). https://doi.org/10.1021/la804310z
- B. Vercelli, G. Zotti, A. Berlin, M. Pasini, C. Botta, R. Gerbasi, T.L. Nelson, R.D. McCullough, Oligo(poly)thiophene sensitization of cdse nanocrystal and TiO2 polycrystalline electrodes: a photoelectrochemical investigation. J. Phys. Chem. C 116(2), 2033–2039 (2012). https://doi.org/10.1021/jp209042c
- S.J. Kim, Y.K. Cho, J. Seok, N.S. Lee, B. Son et al., Highly branched RuO2 nanoneedles on electrospun TiO2 nanofibers as an efficient electrocatalytic platform. ACS Appl. Mater. Interfaces 7(28), 15321–15330 (2015). https://doi.org/10.1021/acsami.5b03178
- M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, M.M. Muller et al., Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations. J. Phys. Chem. C 117(42), 22098–22110 (2013). https://doi.org/10.1021/jp407539c
- J.H. Kim, K. Zhu, Y.F. Yan, C.L. Perkins, A.J. Frank, Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO–TiO2 nanotube arrays. Nano Lett. 10(10), 4099–4104 (2010). https://doi.org/10.1021/nl102203s
- K. Nakamura, T. Oshikiri, K. Ueno, Y.M. Wang, Y. Kamata, Y. Kotake, H. Misawa, Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with au nanoparticles. J. Phys. Chem. Lett. 7(6), 1004–1009 (2016). https://doi.org/10.1021/acs.jpclett.6b00291
- G.L. Fan, J. Tong, F. Li, Visible-light-induced photocatalyst based on cobalt-doped zinc ferrite nanocrystals. Ind. Eng. Chem. Res. 51(42), 13639–13647 (2012). https://doi.org/10.1021/ie201933g
- A. Meidanchi, O. Akhavan, Superparamagnetic zinc ferrite spinel-graphene nanostructures for fast wastewater purification. Carbon 69, 230–238 (2014). https://doi.org/10.1016/j.carbon.2013.12.019
- S.H. Xu, D.L. Feng, W.F. Shangguan, Preparations and photocatalytic properties of visible-light-active zinc ferrite-doped TiO2 photocatalyst. J. Phys. Chem. C 113(6), 2463–2467 (2009). https://doi.org/10.1021/jp806704y
- L. Chen, S. Li, Z. Liu, Y. Lu, D. Wang, Y. Lin, T. Xie, Surface photovoltage phase spectra for analysing the photogenerated charge transfer and photocatalytic activity of ZnFe2O4–TiO2 nanotube arrays. Phys. Chem. Chem. Phys. 15(34), 14262–14269 (2013). https://doi.org/10.1039/c3cp51850g
- A. Sarkar, A.K. Singh, D. Sarkar, G.G. Khan, K. Mandal, Three-dimensional nanoarchitecture of BiFeO3 anchored TiO2 nanotube arrays for electrochemical energy storage and solar energy conversion. ACS Sustain. Chem. Eng. 3(9), 2254–2263 (2015). https://doi.org/10.1021/acssuschemeng.5b00519
- C.L. Zhu, H.L. Yu, Y. Zhang, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y.J. Chen, X.Y. Xue, Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. ACS Appl. Mater. Interfaces 4(2), 665–671 (2012). https://doi.org/10.1021/am201689x
- E. Courtin, G. Baldinozzi, M.T. Sougrati, L. Stievano, C. Sanchez, C. Laberty-Robert, New Fe2TiO5-based nanoheterostructured mesoporous photoanodes with improved visible light photoresponses. J. Mater. Chem. A 2(18), 6567–6577 (2014). https://doi.org/10.1039/C4TA00102H
- Q.H. Liu, J.F. He, T. Yao, Z.H. Sun, W.R. Cheng et al., Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat. Commun. 5(5), 5122 (2014). https://doi.org/10.1038/ncomms6122
- X.Q. Wang, L. Chen, Q.B. Fan, J.X. Fan, G.L. Xu, M.H. Yan, M.J. Henderson, J. Courtois, K. Xiong, Lactoferrin-assisted synthesis of zinc ferrite nanocrystal: its magnetic performance and photocatalytic activity. J. Alloys Compd. 652, 132–138 (2015). https://doi.org/10.1016/j.jallcom.2015.08.228
- O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32(1–2), 33–177 (2004). https://doi.org/10.1016/j.progsolidstchem.2004.08.001
- D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 134(14), 6309–6315 (2012). https://doi.org/10.1021/ja2120647
- Y. Liu, Y. Luo, A.A. Elzatahry, W. Luo, R. Che et al., Mesoporous TiO2 mesocrystals: remarkable defects-induced crystallite-interface reactivity and their in situ conversion to single crystals. ACS Cent. Sci. 1(7), 400–408 (2015). https://doi.org/10.1021/acscentsci.5b00256
- B. Santara, P.K. Giri, K. Imakita, M. Fujii, Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale 5(12), 5476–5488 (2013). https://doi.org/10.1039/c3nr00799e
- F. Zuo, L. Wang, T. Wu, Z.Y. Zhang, D. Borchardt, P.Y. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132(34), 11856–11857 (2010). https://doi.org/10.1021/ja103843d
- H. Gupta, P. Paul, N. Kumar, S. Baxi, D.P. Das, One pot synthesis of water-dispersible dehydroascorbic acid coated Fe3O4 nanoparticles under atmospheric air: blood cell compatibility and enhanced magnetic resonance imaging. J. Colloid Interface Sci. 430, 221–228 (2014). https://doi.org/10.1016/j.jcis.2014.05.043
- Z.H. Wang, M. Chen, J.X. Shu, Y. Li, One-step solvothermal synthesis of Fe3O4@Cu@Cu2O nanocomposite as magnetically recyclable mimetic peroxidase. J. Alloys Compd. 682, 432–440 (2016). https://doi.org/10.1016/j.jallcom.2016.04.269
- C. Frandsen, S. Morup, S.A. McEnroe, P. Robinson, F. Langenhorst, Magnetic phases in hemo-ilmenite: insight from low-velocity and high-field Mossbauer spectroscopy. Geophys. Res. Lett. 34(7), L07306 (2007). https://doi.org/10.1029/2006GL029063
- X.J. Chen, Y.Z. Dai, J. Guo, T.H. Liu, X.Y. Wang, Novel magnetically separable reduced graphene oxide (RGO)/ZnFe2O4/Ag3PO4 nanocomposites for enhanced photocatalytic performance toward 2,4-dichlorophenol under visible light. Ind. Eng. Chem. Res. 55(3), 568–578 (2016). https://doi.org/10.1021/acs.iecr.5b03690
- Q. Li, R.C. Xie, Y.W. Ll, E.A. Mintz, J.K. Shang, Enhanced visible-light-induced photocatalytic disinfection of e-coli by carbon-sensitized nitrogen-doped titanium oxide. Environ. Sci. Technol. 41(14), 5050–5056 (2007). https://doi.org/10.1021/es062753c
- Z. Lou, Y. Li, H. Song, Z. Ye, L. Zhu, Fabrication of Fe2TiO5/TiO2 nanoheterostructures with enhanced visible-light photocatalytic activity. RSC Adv. 6(51), 45343–45348 (2016). https://doi.org/10.1039/C6RA06763H
- H. Song, L. Zhu, Y. Li, Z. Lou, M. Xiao, Z. Ye, Preparation of ZnFe2O4 nanostructures and highly efficient visible-light-driven hydrogen generation with the assistance of nanoheterostructures. J. Mater. Chem. A 3(16), 8353–8360 (2015). https://doi.org/10.1039/C5TA00737B
- X.J. Guan, L.J. Guo, Cocatalytic effect of SrTiO3 on Ag3PO4 toward enhanced photocatalytic water oxidation. ACS Catal. 4(9), 3020–3026 (2014). https://doi.org/10.1021/cs5005079
- S.Y. Cao, X.Q. Yan, Z. Kang, Q.J. Liang, X.Q. Liao, Y. Zhang, Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for pec water splitting. Nano Energy 24, 25–31 (2016). https://doi.org/10.1016/j.nanoen.2016.04.001
- F.K. Lotgering, A.M. Van Diepen, Electron exchange between Fe2+ and Fe3+ ions on octahedral sites in spinels studied by means of paramagnetic Mössbauer spectra and susceptibility measurements. J. Phys. Chem. Solids 38(6), 565–572 (1977). https://doi.org/10.1016/0038-1098(77)90861-4
References
Q. Li, F. Wang, L. Sun, Z. Jiang, T. Ye, M. Chen, Q. Bai, C. Wang, X. Han, Design and synthesis of Cu@CuS yolk–shell structures with enhanced photocatalytic activity. Nano-Micro Lett. 9(3), 35 (2017). https://doi.org/10.1007/s40820-017-0135-7
X. Zhang, D. Xu, D. Huang, F. Liu, K. Xu, H. Wang, S. Zhang, Enhanced visible-light-driven photocatalytic activities of LiInO2 by Mo6+-doping strategy. J. Am. Ceram. Soc. 100(7), 2781–2789 (2017). https://doi.org/10.1111/jace.14799
X. Han, X. He, F. Wang, J. Chen, J. Xu, X. Wang, X. Han, Engineering an n-doped Cu2O@N–C interface with long-lived photo-generated carriers for efficient photoredox catalysts. J. Mater. Chem. A 5(21), 10220–10226 (2017). https://doi.org/10.1039/C7TA01909B
L. Sun, X. Han, Z. Jiang, T. Ye, R. Li, X. Zhao, X. Han, Fabrication of cubic Zn2SnO4/SnO2 complex hollow structures and their sunlight-driven photocatalytic activity. Nanoscale 8(26), 12858–12862 (2016). https://doi.org/10.1039/C5NR08004E
Y.J. Gu, Y.J. Su, D. Chen, H.J. Geng, Z.L. Li, L.Y. Zhang, Y.F. Zhang, Hydrothermal synthesis of hexagonal CuSe nanoflakes with excellent sunlight-driven photocatalytic activity. CrystEngComm 16, 9185–9190 (2014). https://doi.org/10.1039/c4ce01470g
K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7(1), 69–74 (2007). https://doi.org/10.1021/nl062000o
M.Z. Ge, S.H. Li, J.Y. Huang, K.Q. Zhang, S.S. Al-Deyab, Y.K. Lai, TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application. J. Mater. Chem. A 3(7), 3491–3499 (2015). https://doi.org/10.1039/C4TA06354F
I.S. Cho, J. Choi, K. Zhang, S.J. Kim, M.J. Jeong, L.L. Cai, T. Park, X.L. Zheng, J.H. Park, Highly efficient solar water splitting from transferred TiO2 nanotube arrays. Nano Lett. 15(9), 5709–5715 (2015). https://doi.org/10.1021/acs.nanolett.5b01406
S.Z. Liang, J.F. He, Z.H. Sun, Q.H. Liu, Y. Jiang, H. Cheng, B. He, Z. Xie, S.Q. Wei, Improving photoelectrochemical water splitting activity of TiO2 nanotube arrays by tuning geometrical parameters. J. Phys. Chem. C 116(16), 9049–9053 (2012). https://doi.org/10.1021/jp300552s
J.S. Yang, W.P. Liao, J.J. Wu, Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 5(15), 7425–7431 (2013). https://doi.org/10.1021/am401746b
M.Z. Ge, C.Y. Cao, J.Y. Huang, S.H. Li, Z. Chen, K.Q. Zhang, S.S. Al-Deyabd, Y.K. Lai, A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 4(18), 6772–6801 (2016). https://doi.org/10.1039/C5TA09323F
X.L. He, Y.Y. Cai, H.M. Zhang, C.H. Liang, Photocatalytic degradation of organic pollutants with ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J. Mater. Chem. 21(2), 475–480 (2011). https://doi.org/10.1039/C0JM02404J
Z.Y. Liu, X.T. Zhang, S. Nishimoto, T. Murakami, A. Fujishima, Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ. Sci. Technol. 42(22), 8547–8551 (2008). https://doi.org/10.1021/es8016842
J. Choi, S. Song, G. Kang, T. Park, Dye-sensitized solar cells employing doubly or singly open-ended TiO2 nanotube arrays: structural geometry and charge transport. ACS Appl. Mater. Interfaces 6(17), 15388–15394 (2014). https://doi.org/10.1021/am503934s
X.F. Gao, D.S. Guan, J.W. Huo, J.H. Chen, C. Yuan, Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and ticl4 surface modification for highly efficient dye sensitized solar cells. Nanoscale 5(21), 10438–10446 (2013). https://doi.org/10.1039/c3nr03198e
D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, M. Gratzel, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2(6), 1113–1116 (2008). https://doi.org/10.1021/nn800174y
C.K. Xu, P.H. Shin, L.L. Cao, J.M. Wu, D. Gao, Ordered TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells. Chem. Mater. 22(1), 143–148 (2010). https://doi.org/10.1021/cm9027513
P.T. Sheng, W.L. Li, J. Cai, X. Wang, X. Tong, Q.Y. Cai, C.A. Grimes, A novel method for the preparation of a photocorrosion stable core/shell cdte/cds quantum dot TiO2 nanotube array photoelectrode demonstrating an am 1.5 g photoconversion efficiency of 6.12%. J. Mater. Chem. A 1(26), 7806–7815 (2013). https://doi.org/10.1039/c3ta10255f
C.Y. Zhai, M.S. Zhu, Y.T. Lu, F.F. Ren, C.Q. Wang, Y.K. Du, P. Yang, Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation. Phys. Chem. Chem. Phys. 16(28), 14800–14807 (2014). https://doi.org/10.1039/C4CP01401D
J. Zhang, J.H. Bang, C.C. Tang, P.V. Kamat, Tailored TiO2–SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1), 387–395 (2010). https://doi.org/10.1021/nn901087c
Y. Hou, X.Y. Li, Q.D. Zhao, X. Quan, G.H. Chen, Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv. Funct. Mater. 20(13), 2165–2174 (2010). https://doi.org/10.1002/adfm.200902390
Z.C. Lian, W.C. Wang, S.N. Xiao, X. Li, Y.Y. Cui, D.Q. Zhang, G.S. Li, H.X. Li, Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution. Sci. Rep. 5, 10461 (2015). https://doi.org/10.1038/srep10461
L.S. Hu, C.C. Fong, X.M. Zhang, L.L. Chan, P.K.S. Lam, P.K. Chu, K.Y. Wong, M.S. Yang, Au nanoparticles decorated TiO2 nanotube arrays as a recyclable sensor for photoenhanced electrochemical detection of bisphenol A. Environ. Sci. Technol. 50(8), 4430–4438 (2016). https://doi.org/10.1021/acs.est.5b05857
Z.H. Zhang, L.B. Zhang, M.N. Hedhili, H.N. Zhang, P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 13(1), 14–20 (2013). https://doi.org/10.1021/nl3029202
M.D. Ye, J.J. Gong, Y.K. Lai, C.J. Lin, Z.Q. Lin, High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J. Am. Chem. Soc. 134(38), 15720–15723 (2012). https://doi.org/10.1021/ja307449z
S.A. Ansari, M.M. Khan, M.O. Ansaric, M.H. Cho, Nitrogen-doped titanium dioxide (n-doped TiO2) for visible light photocatalysis. New J. Chem. 40(4), 3000–3009 (2016). https://doi.org/10.1039/C5NJ03478G
J.L. Zhang, Y.M. Wu, M.Y. Xing, S.A.K. Leghari, S. Sajjad, Development of modified n doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 3(6), 715–726 (2010). https://doi.org/10.1039/b927575d
Q.F. Chen, H.J. Shi, W.M. Shi, Y. Xu, D. Wu, Enhanced visible photocatalytic activity of titania-silica photocatalysts: effect of carbon and silver doping. Catal. Sci. Technol. 2(6), 1213–1220 (2012). https://doi.org/10.1039/c2cy00545j
D.Y. Qi, M.Y. Xing, J.L. Zhang, Hydrophobic carbon-doped TiO2/MCF-F composite as a high performance photocatalyst. J. Phys. Chem. C 118(14), 7329–7336 (2014). https://doi.org/10.1021/jp4123979
W. Ho, J.C. Yu, S. Lee, Synthesis of hierarchical nanoporous f-doped TiO2 spheres with visible light photocatalytic activity. Chem. Commun. 111(10), 1115–1117 (2006). https://doi.org/10.1039/b515513d
K.L. Lv, B. Cheng, J.G. Yu, G. Liu, Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Phys. Chem. Chem. Phys. 14(16), 5349–5362 (2012). https://doi.org/10.1039/c2cp23461k
G.S. Wu, J.P. Wang, D.F. Thomas, A.C. Chen, Synthesis of f-doped flower-like TiO2 nanostructures with high photoelectrochemical activity. Langmuir 24(7), 3503–3509 (2008). https://doi.org/10.1021/la703098g
S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M.S. Tikhov, D.S. Wright, R.M. Lambert, Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J. Am. Chem. Soc. 129(45), 13790–13791 (2007). https://doi.org/10.1021/ja0749237
H.J. Tian, L.H. Hu, C.N. Zhang, S.H. Chen, J.A. Sheng, L. Mo, W.Q. Liu, S.Y. Dai, Enhanced photovoltaic performance of dye-sensitized solar cells using a highly crystallized mesoporous TiO2 electrode modified by boron doping. J. Mater. Chem. 21(3), 863–868 (2011). https://doi.org/10.1039/C0JM02941F
S.C. Han, Y.C. Pu, L.X. Zheng, J.Z. Zhang, X.S. Fang, Shell-thickness dependent electron transfer and relaxation in type-ii core-shell CdS/TiO2 structures with optimized photoelectrochemical performance. J. Mater. Chem. A 3(45), 22627–22635 (2015). https://doi.org/10.1039/C5TA07100C
G.S. Li, L. Wu, F. Li, P.P. Xu, D.Q. Zhang, H.X. Li, Photoelectrocatalytic degradation of organic pollutants via a cds quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation. Nanoscale 5(5), 2118–2125 (2013). https://doi.org/10.1039/c3nr34253k
W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130(4), 1124–1125 (2008). https://doi.org/10.1021/ja0777741
J.Y. Kim, S.B. Choi, J.H. Noh, S. HunYoon, S. Lee, T.H. Noh, A.J. Frank, K.S. Hong, Synthesis of CdSe-TiO2 nanocomposites and their applications to TiO2 sensitized solar cells. Langmuir 25(9), 5348–5351 (2009). https://doi.org/10.1021/la804310z
B. Vercelli, G. Zotti, A. Berlin, M. Pasini, C. Botta, R. Gerbasi, T.L. Nelson, R.D. McCullough, Oligo(poly)thiophene sensitization of cdse nanocrystal and TiO2 polycrystalline electrodes: a photoelectrochemical investigation. J. Phys. Chem. C 116(2), 2033–2039 (2012). https://doi.org/10.1021/jp209042c
S.J. Kim, Y.K. Cho, J. Seok, N.S. Lee, B. Son et al., Highly branched RuO2 nanoneedles on electrospun TiO2 nanofibers as an efficient electrocatalytic platform. ACS Appl. Mater. Interfaces 7(28), 15321–15330 (2015). https://doi.org/10.1021/acsami.5b03178
M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, M.M. Muller et al., Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations. J. Phys. Chem. C 117(42), 22098–22110 (2013). https://doi.org/10.1021/jp407539c
J.H. Kim, K. Zhu, Y.F. Yan, C.L. Perkins, A.J. Frank, Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO–TiO2 nanotube arrays. Nano Lett. 10(10), 4099–4104 (2010). https://doi.org/10.1021/nl102203s
K. Nakamura, T. Oshikiri, K. Ueno, Y.M. Wang, Y. Kamata, Y. Kotake, H. Misawa, Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with au nanoparticles. J. Phys. Chem. Lett. 7(6), 1004–1009 (2016). https://doi.org/10.1021/acs.jpclett.6b00291
G.L. Fan, J. Tong, F. Li, Visible-light-induced photocatalyst based on cobalt-doped zinc ferrite nanocrystals. Ind. Eng. Chem. Res. 51(42), 13639–13647 (2012). https://doi.org/10.1021/ie201933g
A. Meidanchi, O. Akhavan, Superparamagnetic zinc ferrite spinel-graphene nanostructures for fast wastewater purification. Carbon 69, 230–238 (2014). https://doi.org/10.1016/j.carbon.2013.12.019
S.H. Xu, D.L. Feng, W.F. Shangguan, Preparations and photocatalytic properties of visible-light-active zinc ferrite-doped TiO2 photocatalyst. J. Phys. Chem. C 113(6), 2463–2467 (2009). https://doi.org/10.1021/jp806704y
L. Chen, S. Li, Z. Liu, Y. Lu, D. Wang, Y. Lin, T. Xie, Surface photovoltage phase spectra for analysing the photogenerated charge transfer and photocatalytic activity of ZnFe2O4–TiO2 nanotube arrays. Phys. Chem. Chem. Phys. 15(34), 14262–14269 (2013). https://doi.org/10.1039/c3cp51850g
A. Sarkar, A.K. Singh, D. Sarkar, G.G. Khan, K. Mandal, Three-dimensional nanoarchitecture of BiFeO3 anchored TiO2 nanotube arrays for electrochemical energy storage and solar energy conversion. ACS Sustain. Chem. Eng. 3(9), 2254–2263 (2015). https://doi.org/10.1021/acssuschemeng.5b00519
C.L. Zhu, H.L. Yu, Y. Zhang, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y.J. Chen, X.Y. Xue, Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. ACS Appl. Mater. Interfaces 4(2), 665–671 (2012). https://doi.org/10.1021/am201689x
E. Courtin, G. Baldinozzi, M.T. Sougrati, L. Stievano, C. Sanchez, C. Laberty-Robert, New Fe2TiO5-based nanoheterostructured mesoporous photoanodes with improved visible light photoresponses. J. Mater. Chem. A 2(18), 6567–6577 (2014). https://doi.org/10.1039/C4TA00102H
Q.H. Liu, J.F. He, T. Yao, Z.H. Sun, W.R. Cheng et al., Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat. Commun. 5(5), 5122 (2014). https://doi.org/10.1038/ncomms6122
X.Q. Wang, L. Chen, Q.B. Fan, J.X. Fan, G.L. Xu, M.H. Yan, M.J. Henderson, J. Courtois, K. Xiong, Lactoferrin-assisted synthesis of zinc ferrite nanocrystal: its magnetic performance and photocatalytic activity. J. Alloys Compd. 652, 132–138 (2015). https://doi.org/10.1016/j.jallcom.2015.08.228
O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32(1–2), 33–177 (2004). https://doi.org/10.1016/j.progsolidstchem.2004.08.001
D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 134(14), 6309–6315 (2012). https://doi.org/10.1021/ja2120647
Y. Liu, Y. Luo, A.A. Elzatahry, W. Luo, R. Che et al., Mesoporous TiO2 mesocrystals: remarkable defects-induced crystallite-interface reactivity and their in situ conversion to single crystals. ACS Cent. Sci. 1(7), 400–408 (2015). https://doi.org/10.1021/acscentsci.5b00256
B. Santara, P.K. Giri, K. Imakita, M. Fujii, Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale 5(12), 5476–5488 (2013). https://doi.org/10.1039/c3nr00799e
F. Zuo, L. Wang, T. Wu, Z.Y. Zhang, D. Borchardt, P.Y. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132(34), 11856–11857 (2010). https://doi.org/10.1021/ja103843d
H. Gupta, P. Paul, N. Kumar, S. Baxi, D.P. Das, One pot synthesis of water-dispersible dehydroascorbic acid coated Fe3O4 nanoparticles under atmospheric air: blood cell compatibility and enhanced magnetic resonance imaging. J. Colloid Interface Sci. 430, 221–228 (2014). https://doi.org/10.1016/j.jcis.2014.05.043
Z.H. Wang, M. Chen, J.X. Shu, Y. Li, One-step solvothermal synthesis of Fe3O4@Cu@Cu2O nanocomposite as magnetically recyclable mimetic peroxidase. J. Alloys Compd. 682, 432–440 (2016). https://doi.org/10.1016/j.jallcom.2016.04.269
C. Frandsen, S. Morup, S.A. McEnroe, P. Robinson, F. Langenhorst, Magnetic phases in hemo-ilmenite: insight from low-velocity and high-field Mossbauer spectroscopy. Geophys. Res. Lett. 34(7), L07306 (2007). https://doi.org/10.1029/2006GL029063
X.J. Chen, Y.Z. Dai, J. Guo, T.H. Liu, X.Y. Wang, Novel magnetically separable reduced graphene oxide (RGO)/ZnFe2O4/Ag3PO4 nanocomposites for enhanced photocatalytic performance toward 2,4-dichlorophenol under visible light. Ind. Eng. Chem. Res. 55(3), 568–578 (2016). https://doi.org/10.1021/acs.iecr.5b03690
Q. Li, R.C. Xie, Y.W. Ll, E.A. Mintz, J.K. Shang, Enhanced visible-light-induced photocatalytic disinfection of e-coli by carbon-sensitized nitrogen-doped titanium oxide. Environ. Sci. Technol. 41(14), 5050–5056 (2007). https://doi.org/10.1021/es062753c
Z. Lou, Y. Li, H. Song, Z. Ye, L. Zhu, Fabrication of Fe2TiO5/TiO2 nanoheterostructures with enhanced visible-light photocatalytic activity. RSC Adv. 6(51), 45343–45348 (2016). https://doi.org/10.1039/C6RA06763H
H. Song, L. Zhu, Y. Li, Z. Lou, M. Xiao, Z. Ye, Preparation of ZnFe2O4 nanostructures and highly efficient visible-light-driven hydrogen generation with the assistance of nanoheterostructures. J. Mater. Chem. A 3(16), 8353–8360 (2015). https://doi.org/10.1039/C5TA00737B
X.J. Guan, L.J. Guo, Cocatalytic effect of SrTiO3 on Ag3PO4 toward enhanced photocatalytic water oxidation. ACS Catal. 4(9), 3020–3026 (2014). https://doi.org/10.1021/cs5005079
S.Y. Cao, X.Q. Yan, Z. Kang, Q.J. Liang, X.Q. Liao, Y. Zhang, Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for pec water splitting. Nano Energy 24, 25–31 (2016). https://doi.org/10.1016/j.nanoen.2016.04.001
F.K. Lotgering, A.M. Van Diepen, Electron exchange between Fe2+ and Fe3+ ions on octahedral sites in spinels studied by means of paramagnetic Mössbauer spectra and susceptibility measurements. J. Phys. Chem. Solids 38(6), 565–572 (1977). https://doi.org/10.1016/0038-1098(77)90861-4