A Mini Review: Can Graphene Be a Novel Material for Perovskite Solar Cell Applications?
Corresponding Author: Eng Liang Lim
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 27
Abstract
Perovskite solar cells (PSCs) have raised research interest in scientific community because their power conversion efficiency is comparable to that of traditional commercial solar cells (i.e., amorphous Si, GaAs, and CdTe). Apart from that, PSCs are lightweight, are flexible, and have low production costs. Recently, graphene has been used as a novel material for PSC applications due to its excellent optical, electrical, and mechanical properties. The hydrophobic nature of graphene surface can provide protection against air moisture from the surrounding medium, which can improve the lifetime of devices. Herein, we review recent developments in the use of graphene for PSC applications as a conductive electrode, carrier transporting material, and stabilizer material. By exploring the application of graphene in PSCs, a new class of strategies can be developed to improve the device performance and stability before it can be commercialized in the photovoltaic market in the near future.
Highlights:
1 Introduction of graphene improves photovoltaic properties of perovskite solar cells (PSCs).
2 Graphene can be used as a conductive electrode, carrier transporting material, or stabilizer material.
3 Graphene enhances the electrical properties and stability of PSCs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.-G. Kang, M.-S. Kim, J. Kim, L.J. Guo, Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 20(23), 4408–4413 (2008). https://doi.org/10.1002/adma.200800750
- E.L. Lim, C.C. Yap, M.A.M. Teridi, C.H. Teh, A.R.B.M. Yusoff, M.H.H. Jumali, A review of recent plasmonic nanops incorporated P3HT: PCBM organic thin film solar cells. Org. Electron. 36, 12–18 (2016). https://doi.org/10.1016/j.orgel.2016.05.029
- S. Albrecht, B. Rech, Perovskite solar cells: on top of commercial photovoltaics. Nat. Energy 2(1), 16196 (2017). https://doi.org/10.1038/nenergy.2016.196
- T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2(3), 96–102 (2010). https://doi.org/10.1038/asiamat.2010.82
- W.A. Badawy, A review on solar cells from Si-single crystals to porous materials and quantum dots. J. Adv. Res. 6(2), 123–132 (2015). https://doi.org/10.1016/j.jare.2013.10.001
- A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic technology: the case for thin-film solar cells. Science 285(5428), 692–698 (1999)
- J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, A. Hagfeldt, The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10(3), 710–727 (2017). https://doi.org/10.1039/C6EE03397K
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 65% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011). https://doi.org/10.1039/c1nr10867k
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Supporting material: efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604
- D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8(2), 133–138 (2013). https://doi.org/10.1038/nphoton.2013.342
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Solar cells, high-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
- M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J
- W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
- K. Hwang, Y.S. Jung, Y.J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.Y. Kim, D. Vak, Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27(7), 1241–1247 (2015). https://doi.org/10.1002/adma.201404598
- R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Roll-to-roll fabrication of polymer solar cells. Mater. Today 15(1–2), 36–49 (2012). https://doi.org/10.1016/S1369-7021(12)70019-6
- M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.H. Ho-Baillie, Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25, 668–676 (2017). https://doi.org/10.1002/pip.2909
- N. Cheng, P. Liu, F. Qi, Y. Xiao, W. Yu, Z. Yu, W. Liu, S.S. Guo, X.Z. Zhao, Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells. J. Power Sources 332, 24–29 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.104
- J.-I. Park, J.H. Heo, S.-H. Park, K. Il Hong, H.G. Jeong, S.H. Im, H.-K. Kim, Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells. J. Power Sources 341, 340–347 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.026
- W. Zhang, J. Xiong, S. Wang, W. Liu, J. Li, D. Wang, H. Gu, X. Wang, J. Li, Highly conductive and transparent silver grid/metal oxide hybrid electrodes for low-temperature planar perovskite solar cells. J. Power Sources 337, 118–124 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.101
- C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-Micro Lett. 8, 347–357 (2016). https://doi.org/10.1007/s40820-016-0094-4
- F. Giordano, A. Abate, J.P. Correa Baena, M. Saliba, T. Matsu et al., Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379 (2016). https://doi.org/10.1038/ncomms10379
- X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao et al., Aluminum-doped zinc oxide as highly stable electron collection layer for perovskite solar cells. ACS Appl. Mater. Interfaces. 8(12), 7826–7833 (2016). https://doi.org/10.1021/acsami.6b00520
- Y. Bai, Y. Fang, Y. Deng, Q. Wang, J. Zhao, X. Zheng, Y. Zhang, J. Huang, Low temperature solution-processed Sb: SnO2 nanocrystals for efficient planar perovskite solar cells. Chemsuschem 9(18), 2686–2691 (2016). https://doi.org/10.1002/cssc.201600944
- B.-X. Chen, H.-S. Rao, W.-G. Li, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction. J. Mater. Chem. A 4(15), 5647–5653 (2016). https://doi.org/10.1039/C6TA00989A
- X. Li, M.I. Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Han, M. Grätzel, Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7(9), 703–711 (2015). https://doi.org/10.1038/nchem.2324
- C. Liu, W. Ding, X. Zhou, J. Gao, C. Cheng, X.-Z. Zhao, B. Xu, Efficient and stable perovskite solar cells prepared in ambient air based on surface-modified perovskite layer. J. Phys. Chem. C 121(12), 6546–6553 (2017). https://doi.org/10.1021/acs.jpcc.7b00847
- Y. Zhang, J. Wang, J. Xu, W. Chen, D. Zhu, W. Zheng, X. Bao, Efficient inverted planar formamidinium lead iodide perovskite solar cells via post improve perovskite layer. RSC Adv. 6(83), 79952 (2016). https://doi.org/10.1039/C6RA15210D
- S.S. Mali, C.S. Shim, H. Kim, P.S. Patil, C.K. Hong, In situ processed gold nanop-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale 8(5), 2664–2677 (2016). https://doi.org/10.1039/C5NR07395B
- A.E. Shalan, T. Oshikiri, H. Sawayanagi, K. Nakamura, K. Ueno, Q. Sun, H.-P. Wu, E.W.-G. Diau, H. Misawa, Versatile plasmonic-effects at the interface of inverted perovskite solar cells. Nanoscale 9(3), 1229–1236 (2017). https://doi.org/10.1039/C6NR06741G
- M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, J. Xu, Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection. Nanoscale 8(12), 6290–6299 (2016). https://doi.org/10.1039/C5NR05042A
- K. Chan, M. Wright, N. Elumalai, A. Uddin, S. Pillai, Plasmonics in organic and perovskite solar cells: optical and electrical effects. Adv. Opt. Mater. 5(6), 1600698 (2017). https://doi.org/10.1002/adom.201600698
- J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung et al., Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12(12), 96–104 (2015). https://doi.org/10.1016/j.nanoen.2014.12.022
- A. Agresti, S. Pescetelli, L. Cinà, D. Konios, G. Kakavelakis, E. Kymakis, A. Di Carlo, Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer. Adv. Funct. Mater. 26(16), 2686–2694 (2016). https://doi.org/10.1002/adfm.201504949
- H. Sung, N. Ahn, M.S. Jang, J.-K. Lee, H. Yoon, N.-G. Park, M. Choi, Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6(3), 1501873 (2016). https://doi.org/10.1002/aenm.201501873
- Q.-D. Yang, J. Li, Y. Cheng, H.-W. Li, Z. Guan, B. Yu, S.-W. Tsang, Graphene oxide as an efficient hole-transporting material for high-performance perovskite solar cells with enhanced stability. J. Mater. Chem. A 5, 9852–9858 (2017). https://doi.org/10.1039/C7TA01752A
- H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer. Nano-Micro Lett. 9, 39 (2017). https://doi.org/10.1007/s40820-017-0140-x
- M. Batmunkh, C.J. Shearer, M.J. Biggs, J.G. Shapter, Nanocarbons for mesoscopic perovskite solar cells. J. Mater. Chem. A 3(17), 9020–9031 (2015). https://doi.org/10.1039/C5TA00873E
- A. Agresti, S. Pescetelli, B. Taheri, A.E. Del Rio Castillo, L. Cinà, F. Bonaccorso, A. Di Carlo, Graphene–perovskite solar cells exceed 18% efficiency: a stability study. Chemsuschem 9(18), 2609–2619 (2016). https://doi.org/10.1002/cssc.201600942
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
- X. Wan, Y. Huang, Y. Chen, Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Acc. Chem. Res. 45(4), 598–607 (2012). https://doi.org/10.1021/ar200229q
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
- K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
- R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). https://doi.org/10.1126/science.1156965
- M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). https://doi.org/10.1021/nl802558y
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
- Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10), 1027–1036 (2010). https://doi.org/10.1002/elan.200900571
- N.M. Julkapli, S. Bagheri, Graphene supported heterogeneous catalysts: an overview. Int. J. Hydrog. Energy 40(2), 948–979 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.129
- M. Liu, X. Yin, X. Zhang, Double-layer graphene optical modulator. Nano Lett. 12(3), 1482–1485 (2012). https://doi.org/10.1021/nl204202k
- W. Xu, N. Mao, J. Zhang, Graphene: a platform for surface-enhanced Raman spectroscopy. Small 9(8), 1206–1224 (2013). https://doi.org/10.1002/smll.201203097
- F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611–622 (2010). https://doi.org/10.1038/nphoton.2010.186
- H. Kim, J.H. Ahn, Graphene for flexible and wearable device applications. Carbon 120, 244–257 (2017). https://doi.org/10.1016/j.carbon.2017.05.041
- J. Zhang, X. Yang, H. Deng, K. Qiao, U. Farooq et al., Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Lett. 9, 36 (2017). https://doi.org/10.1007/s40820-017-0137-5
- J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138(49), 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227
- I. Borriello, G. Cantele, D. Ninno, Ab initio investigation of hybrid organic–inorganic perovskites based on tin halides. Phys. Rev. B 77(23), 235214 (2008). https://doi.org/10.1103/PhysRevB.77.235214
- Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. Berry, K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107
- C.H. Yoder, Ionic Compounds: Applications of Chemistry to Mineralogy. In Ionic Compounds. (Wiley, New York, 2006), p. 171. https://doi.org/10.1002/0470075104.app3
- Z. Fan, K. Sun, J. Wang, Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. J. Mater. Chem. A 3(37), 18809–18828 (2015). https://doi.org/10.1039/C5TA04235F
- C. Zheng, O. Rubel, Ionization energy as a stability criterion for halide perovskites. J. Phys. Chem. C 121(22), 11977–11984 (2017). https://doi.org/10.1021/acs.jpcc.7b00333
- M. Pandey, K.W. Jacobsen, K.S. Thygesen, Band gap tuning and defect tolerance of atomically thin two-dimensional organic–inorganic halide perovskites. J. Phys. Chem. Lett. 7(21), 4346–4352 (2016). https://doi.org/10.1021/acs.jpclett.6b01998
- A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J. Snaith, R.J. Nicholas, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11(7), 582–587 (2015). https://doi.org/10.1038/nphys3357
- K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall et al., Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9(3), 962–970 (2016). https://doi.org/10.1039/C5EE03435C
- V. Gonzalez-Pedro, E.J. Juarez-Perez, W.-S. Arsyad, E.M. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett. 14(2), 888–893 (2014). https://doi.org/10.1021/nl404252e
- J.H. Heo, D.H. Shin, S. Kim, M.H. Jang, M.H. Lee, S.W. Seo, S.-H. Choi, S.H. Im, Highly efficient CH3NH3PbI3 perovskite solar cells prepared by AuCl3-doped graphene transparent conducting electrodes. Chem. Eng. J. 323, 153–159 (2017). https://doi.org/10.1016/j.cej.2017.04.097
- P. You, Z. Liu, Q. Tai, S. Liu, F. Yan, Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 27(24), 3632–3638 (2015). https://doi.org/10.1002/adma.201501145
- Z. Liu, P. You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28, 151–157 (2016). https://doi.org/10.1016/j.nanoen.2016.08.038
- J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H.S. Jung, M. Choi, Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10(1), 337–345 (2017). https://doi.org/10.1039/C6EE02650H
- F. Guo, H. Azimi, Y. Hou, T. Przybilla, M. Hu et al., High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7(5), 1642–1649 (2015). https://doi.org/10.1039/C4NR06033D
- Z. Li, S.A. Kulkarni, P.P. Boix, E. Shi, A. Cao et al., Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8(7), 6797–6804 (2014). https://doi.org/10.1021/nn501096h
- B.J. Kim, D.H. Kim, Y.-Y. Lee, H.-W. Shin, G.S. Han et al., Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8(3), 916–921 (2015). https://doi.org/10.1039/C4EE02441A
- J.H. Heo, M.H. Lee, H.J. Han, B.R. Patil, J.S. Yu, S.H. Im, Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. J. Mater. Chem. A 4(5), 1572–1578 (2016). https://doi.org/10.1039/C5TA09520D
- H. Kim, K.-G. Lim, T.-W. Lee, Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ. Sci. 9(1), 12–30 (2016). https://doi.org/10.1039/C5EE02194D
- G.-W. Kim, G. Kang, M.M. Byranvand, G.-Y. Lee, T. Park, Gradated mixed hole transport layer in a perovskite solar cell: improving moisture stability and efficiency. ACS Appl. Mater. Interfaces. 9(33), 27720–27726 (2017). https://doi.org/10.1021/acsami.7b07071
- J. Xiao, J. Shi, H. Liu, Y. Xu, S. Lv, Y. Luo, D. Li, Q. Meng, Y. Li, Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 5(8), 1401943 (2015). https://doi.org/10.1002/aenm.201401943
- P.S. Chandrasekhar, V.K. Komarala, Graphene/ZnO nanocomposite as an electron transport layer for perovskite solar cells; the effect of graphene concentration on photovoltaic performance. RSC Adv. 7, 28610–28615 (2017). https://doi.org/10.1039/C7RA02036H
- C.-M. Liu, C.-M. Chen, Y.-W. Su, S.-M. Wang, K.-H. Wei, The dual localized surface plasmonic effects of gold nanodots and gold nanops enhance the performance of bulk heterojunction polymer solar cells. Org. Electron. 14(10), 2476–2483 (2013). https://doi.org/10.1016/j.orgel.2013.06.012
- J.T.-W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.-A. Webber et al., Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), 724–730 (2014). https://doi.org/10.1021/nl403997a
- C. Wang, Y. Tang, Y. Hu, L. Huang, J. Fu, J. Jin, W. Shi, L. Wang, W. Yang, Graphene/SrTiO3 nanocomposites used as an effective electron-transporting layer for high-performance perovskite solar cells. RSC Adv. 5(64), 52041–52047 (2015). https://doi.org/10.1039/C5RA09001F
- J. Zhao, B. Cai, Z. Luo, Y. Dong, Y. Zhang et al., Investigation of the hydrolysis of perovskite organometallic halide CH3NH3PbI3 in humidity environment. Sci. Rep. 6, 21976 (2016). https://doi.org/10.1038/srep21976
- X. Hu, H. Jiang, J. Li, J. Ma, D. Yang, Z. Liu, F. Gao, S.F. Liu, Air and thermally stable perovskite solar cells with CVD-graphene as the blocking layer. Nanoscale 9(24), 8274–8280 (2017). https://doi.org/10.1039/C7NR01186E
- E. Bi, H. Chen, F. Xie, Y. Wu, W. Chen et al., Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat. Commun. 8, 15330 (2017). https://doi.org/10.1038/ncomms15330
- J. Cao, Y.-M. Liu, X. Jing, J. Yin, J. Li, B. Xu, Y.-Z. Tan, N. Zheng, Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells. J. Am. Chem. Soc. 137(34), 10914–10917 (2015). https://doi.org/10.1021/jacs.5b06493
- T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313(5789), 951–954 (2006). https://doi.org/10.1126/science.1130681
- A. Guerrero, J. You, C. Aranda, Y.S. Kang, G. Garcia-Belmonte, H. Zhou, J. Bisquert, Y. Yang, Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10(1), 218–224 (2016). https://doi.org/10.1021/acsnano.5b03687
- K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Grätzel, Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10(6), 6306–6314 (2016). https://doi.org/10.1021/acsnano.6b02613
References
M.-G. Kang, M.-S. Kim, J. Kim, L.J. Guo, Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 20(23), 4408–4413 (2008). https://doi.org/10.1002/adma.200800750
E.L. Lim, C.C. Yap, M.A.M. Teridi, C.H. Teh, A.R.B.M. Yusoff, M.H.H. Jumali, A review of recent plasmonic nanops incorporated P3HT: PCBM organic thin film solar cells. Org. Electron. 36, 12–18 (2016). https://doi.org/10.1016/j.orgel.2016.05.029
S. Albrecht, B. Rech, Perovskite solar cells: on top of commercial photovoltaics. Nat. Energy 2(1), 16196 (2017). https://doi.org/10.1038/nenergy.2016.196
T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2(3), 96–102 (2010). https://doi.org/10.1038/asiamat.2010.82
W.A. Badawy, A review on solar cells from Si-single crystals to porous materials and quantum dots. J. Adv. Res. 6(2), 123–132 (2015). https://doi.org/10.1016/j.jare.2013.10.001
A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic technology: the case for thin-film solar cells. Science 285(5428), 692–698 (1999)
J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, A. Hagfeldt, The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10(3), 710–727 (2017). https://doi.org/10.1039/C6EE03397K
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 65% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011). https://doi.org/10.1039/c1nr10867k
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Supporting material: efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604
D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8(2), 133–138 (2013). https://doi.org/10.1038/nphoton.2013.342
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Solar cells, high-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J
W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
K. Hwang, Y.S. Jung, Y.J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.Y. Kim, D. Vak, Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27(7), 1241–1247 (2015). https://doi.org/10.1002/adma.201404598
R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Roll-to-roll fabrication of polymer solar cells. Mater. Today 15(1–2), 36–49 (2012). https://doi.org/10.1016/S1369-7021(12)70019-6
M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.H. Ho-Baillie, Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25, 668–676 (2017). https://doi.org/10.1002/pip.2909
N. Cheng, P. Liu, F. Qi, Y. Xiao, W. Yu, Z. Yu, W. Liu, S.S. Guo, X.Z. Zhao, Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells. J. Power Sources 332, 24–29 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.104
J.-I. Park, J.H. Heo, S.-H. Park, K. Il Hong, H.G. Jeong, S.H. Im, H.-K. Kim, Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells. J. Power Sources 341, 340–347 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.026
W. Zhang, J. Xiong, S. Wang, W. Liu, J. Li, D. Wang, H. Gu, X. Wang, J. Li, Highly conductive and transparent silver grid/metal oxide hybrid electrodes for low-temperature planar perovskite solar cells. J. Power Sources 337, 118–124 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.101
C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-Micro Lett. 8, 347–357 (2016). https://doi.org/10.1007/s40820-016-0094-4
F. Giordano, A. Abate, J.P. Correa Baena, M. Saliba, T. Matsu et al., Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379 (2016). https://doi.org/10.1038/ncomms10379
X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao et al., Aluminum-doped zinc oxide as highly stable electron collection layer for perovskite solar cells. ACS Appl. Mater. Interfaces. 8(12), 7826–7833 (2016). https://doi.org/10.1021/acsami.6b00520
Y. Bai, Y. Fang, Y. Deng, Q. Wang, J. Zhao, X. Zheng, Y. Zhang, J. Huang, Low temperature solution-processed Sb: SnO2 nanocrystals for efficient planar perovskite solar cells. Chemsuschem 9(18), 2686–2691 (2016). https://doi.org/10.1002/cssc.201600944
B.-X. Chen, H.-S. Rao, W.-G. Li, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction. J. Mater. Chem. A 4(15), 5647–5653 (2016). https://doi.org/10.1039/C6TA00989A
X. Li, M.I. Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Han, M. Grätzel, Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7(9), 703–711 (2015). https://doi.org/10.1038/nchem.2324
C. Liu, W. Ding, X. Zhou, J. Gao, C. Cheng, X.-Z. Zhao, B. Xu, Efficient and stable perovskite solar cells prepared in ambient air based on surface-modified perovskite layer. J. Phys. Chem. C 121(12), 6546–6553 (2017). https://doi.org/10.1021/acs.jpcc.7b00847
Y. Zhang, J. Wang, J. Xu, W. Chen, D. Zhu, W. Zheng, X. Bao, Efficient inverted planar formamidinium lead iodide perovskite solar cells via post improve perovskite layer. RSC Adv. 6(83), 79952 (2016). https://doi.org/10.1039/C6RA15210D
S.S. Mali, C.S. Shim, H. Kim, P.S. Patil, C.K. Hong, In situ processed gold nanop-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale 8(5), 2664–2677 (2016). https://doi.org/10.1039/C5NR07395B
A.E. Shalan, T. Oshikiri, H. Sawayanagi, K. Nakamura, K. Ueno, Q. Sun, H.-P. Wu, E.W.-G. Diau, H. Misawa, Versatile plasmonic-effects at the interface of inverted perovskite solar cells. Nanoscale 9(3), 1229–1236 (2017). https://doi.org/10.1039/C6NR06741G
M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, J. Xu, Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection. Nanoscale 8(12), 6290–6299 (2016). https://doi.org/10.1039/C5NR05042A
K. Chan, M. Wright, N. Elumalai, A. Uddin, S. Pillai, Plasmonics in organic and perovskite solar cells: optical and electrical effects. Adv. Opt. Mater. 5(6), 1600698 (2017). https://doi.org/10.1002/adom.201600698
J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung et al., Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12(12), 96–104 (2015). https://doi.org/10.1016/j.nanoen.2014.12.022
A. Agresti, S. Pescetelli, L. Cinà, D. Konios, G. Kakavelakis, E. Kymakis, A. Di Carlo, Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer. Adv. Funct. Mater. 26(16), 2686–2694 (2016). https://doi.org/10.1002/adfm.201504949
H. Sung, N. Ahn, M.S. Jang, J.-K. Lee, H. Yoon, N.-G. Park, M. Choi, Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6(3), 1501873 (2016). https://doi.org/10.1002/aenm.201501873
Q.-D. Yang, J. Li, Y. Cheng, H.-W. Li, Z. Guan, B. Yu, S.-W. Tsang, Graphene oxide as an efficient hole-transporting material for high-performance perovskite solar cells with enhanced stability. J. Mater. Chem. A 5, 9852–9858 (2017). https://doi.org/10.1039/C7TA01752A
H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer. Nano-Micro Lett. 9, 39 (2017). https://doi.org/10.1007/s40820-017-0140-x
M. Batmunkh, C.J. Shearer, M.J. Biggs, J.G. Shapter, Nanocarbons for mesoscopic perovskite solar cells. J. Mater. Chem. A 3(17), 9020–9031 (2015). https://doi.org/10.1039/C5TA00873E
A. Agresti, S. Pescetelli, B. Taheri, A.E. Del Rio Castillo, L. Cinà, F. Bonaccorso, A. Di Carlo, Graphene–perovskite solar cells exceed 18% efficiency: a stability study. Chemsuschem 9(18), 2609–2619 (2016). https://doi.org/10.1002/cssc.201600942
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
X. Wan, Y. Huang, Y. Chen, Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Acc. Chem. Res. 45(4), 598–607 (2012). https://doi.org/10.1021/ar200229q
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). https://doi.org/10.1126/science.1156965
M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). https://doi.org/10.1021/nl802558y
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10), 1027–1036 (2010). https://doi.org/10.1002/elan.200900571
N.M. Julkapli, S. Bagheri, Graphene supported heterogeneous catalysts: an overview. Int. J. Hydrog. Energy 40(2), 948–979 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.129
M. Liu, X. Yin, X. Zhang, Double-layer graphene optical modulator. Nano Lett. 12(3), 1482–1485 (2012). https://doi.org/10.1021/nl204202k
W. Xu, N. Mao, J. Zhang, Graphene: a platform for surface-enhanced Raman spectroscopy. Small 9(8), 1206–1224 (2013). https://doi.org/10.1002/smll.201203097
F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611–622 (2010). https://doi.org/10.1038/nphoton.2010.186
H. Kim, J.H. Ahn, Graphene for flexible and wearable device applications. Carbon 120, 244–257 (2017). https://doi.org/10.1016/j.carbon.2017.05.041
J. Zhang, X. Yang, H. Deng, K. Qiao, U. Farooq et al., Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Lett. 9, 36 (2017). https://doi.org/10.1007/s40820-017-0137-5
J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138(49), 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227
I. Borriello, G. Cantele, D. Ninno, Ab initio investigation of hybrid organic–inorganic perovskites based on tin halides. Phys. Rev. B 77(23), 235214 (2008). https://doi.org/10.1103/PhysRevB.77.235214
Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. Berry, K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107
C.H. Yoder, Ionic Compounds: Applications of Chemistry to Mineralogy. In Ionic Compounds. (Wiley, New York, 2006), p. 171. https://doi.org/10.1002/0470075104.app3
Z. Fan, K. Sun, J. Wang, Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. J. Mater. Chem. A 3(37), 18809–18828 (2015). https://doi.org/10.1039/C5TA04235F
C. Zheng, O. Rubel, Ionization energy as a stability criterion for halide perovskites. J. Phys. Chem. C 121(22), 11977–11984 (2017). https://doi.org/10.1021/acs.jpcc.7b00333
M. Pandey, K.W. Jacobsen, K.S. Thygesen, Band gap tuning and defect tolerance of atomically thin two-dimensional organic–inorganic halide perovskites. J. Phys. Chem. Lett. 7(21), 4346–4352 (2016). https://doi.org/10.1021/acs.jpclett.6b01998
A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J. Snaith, R.J. Nicholas, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11(7), 582–587 (2015). https://doi.org/10.1038/nphys3357
K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall et al., Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9(3), 962–970 (2016). https://doi.org/10.1039/C5EE03435C
V. Gonzalez-Pedro, E.J. Juarez-Perez, W.-S. Arsyad, E.M. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett. 14(2), 888–893 (2014). https://doi.org/10.1021/nl404252e
J.H. Heo, D.H. Shin, S. Kim, M.H. Jang, M.H. Lee, S.W. Seo, S.-H. Choi, S.H. Im, Highly efficient CH3NH3PbI3 perovskite solar cells prepared by AuCl3-doped graphene transparent conducting electrodes. Chem. Eng. J. 323, 153–159 (2017). https://doi.org/10.1016/j.cej.2017.04.097
P. You, Z. Liu, Q. Tai, S. Liu, F. Yan, Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 27(24), 3632–3638 (2015). https://doi.org/10.1002/adma.201501145
Z. Liu, P. You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28, 151–157 (2016). https://doi.org/10.1016/j.nanoen.2016.08.038
J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H.S. Jung, M. Choi, Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10(1), 337–345 (2017). https://doi.org/10.1039/C6EE02650H
F. Guo, H. Azimi, Y. Hou, T. Przybilla, M. Hu et al., High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7(5), 1642–1649 (2015). https://doi.org/10.1039/C4NR06033D
Z. Li, S.A. Kulkarni, P.P. Boix, E. Shi, A. Cao et al., Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8(7), 6797–6804 (2014). https://doi.org/10.1021/nn501096h
B.J. Kim, D.H. Kim, Y.-Y. Lee, H.-W. Shin, G.S. Han et al., Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8(3), 916–921 (2015). https://doi.org/10.1039/C4EE02441A
J.H. Heo, M.H. Lee, H.J. Han, B.R. Patil, J.S. Yu, S.H. Im, Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. J. Mater. Chem. A 4(5), 1572–1578 (2016). https://doi.org/10.1039/C5TA09520D
H. Kim, K.-G. Lim, T.-W. Lee, Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ. Sci. 9(1), 12–30 (2016). https://doi.org/10.1039/C5EE02194D
G.-W. Kim, G. Kang, M.M. Byranvand, G.-Y. Lee, T. Park, Gradated mixed hole transport layer in a perovskite solar cell: improving moisture stability and efficiency. ACS Appl. Mater. Interfaces. 9(33), 27720–27726 (2017). https://doi.org/10.1021/acsami.7b07071
J. Xiao, J. Shi, H. Liu, Y. Xu, S. Lv, Y. Luo, D. Li, Q. Meng, Y. Li, Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 5(8), 1401943 (2015). https://doi.org/10.1002/aenm.201401943
P.S. Chandrasekhar, V.K. Komarala, Graphene/ZnO nanocomposite as an electron transport layer for perovskite solar cells; the effect of graphene concentration on photovoltaic performance. RSC Adv. 7, 28610–28615 (2017). https://doi.org/10.1039/C7RA02036H
C.-M. Liu, C.-M. Chen, Y.-W. Su, S.-M. Wang, K.-H. Wei, The dual localized surface plasmonic effects of gold nanodots and gold nanops enhance the performance of bulk heterojunction polymer solar cells. Org. Electron. 14(10), 2476–2483 (2013). https://doi.org/10.1016/j.orgel.2013.06.012
J.T.-W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.-A. Webber et al., Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), 724–730 (2014). https://doi.org/10.1021/nl403997a
C. Wang, Y. Tang, Y. Hu, L. Huang, J. Fu, J. Jin, W. Shi, L. Wang, W. Yang, Graphene/SrTiO3 nanocomposites used as an effective electron-transporting layer for high-performance perovskite solar cells. RSC Adv. 5(64), 52041–52047 (2015). https://doi.org/10.1039/C5RA09001F
J. Zhao, B. Cai, Z. Luo, Y. Dong, Y. Zhang et al., Investigation of the hydrolysis of perovskite organometallic halide CH3NH3PbI3 in humidity environment. Sci. Rep. 6, 21976 (2016). https://doi.org/10.1038/srep21976
X. Hu, H. Jiang, J. Li, J. Ma, D. Yang, Z. Liu, F. Gao, S.F. Liu, Air and thermally stable perovskite solar cells with CVD-graphene as the blocking layer. Nanoscale 9(24), 8274–8280 (2017). https://doi.org/10.1039/C7NR01186E
E. Bi, H. Chen, F. Xie, Y. Wu, W. Chen et al., Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat. Commun. 8, 15330 (2017). https://doi.org/10.1038/ncomms15330
J. Cao, Y.-M. Liu, X. Jing, J. Yin, J. Li, B. Xu, Y.-Z. Tan, N. Zheng, Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells. J. Am. Chem. Soc. 137(34), 10914–10917 (2015). https://doi.org/10.1021/jacs.5b06493
T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313(5789), 951–954 (2006). https://doi.org/10.1126/science.1130681
A. Guerrero, J. You, C. Aranda, Y.S. Kang, G. Garcia-Belmonte, H. Zhou, J. Bisquert, Y. Yang, Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10(1), 218–224 (2016). https://doi.org/10.1021/acsnano.5b03687
K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Grätzel, Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10(6), 6306–6314 (2016). https://doi.org/10.1021/acsnano.6b02613