In Situ Electrochemical Mn(III)/Mn(IV) Generation of Mn(II)O Electrocatalysts for High-Performance Oxygen Reduction
Corresponding Author: Jianlin Shi
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 161
Abstract
Among various earth-abundant and noble metal-free catalysts for oxygen reduction reaction (ORR), manganese-based oxides are promising candidates owing to the rich variety of manganese valence. Herein, an extremely facile method for the synthesis of cubic and orthorhombic phase coexisting Mn(II)O electrocatalyst as an efficient ORR catalyst was explored. The obtained MnO electrocatalyst with oxygen vacancies shows a significantly elevated ORR catalytic activity with a half-wave potential (E1/2) of as high as 0.895 V, in comparison with that of commercial Pt/C (E1/2 = 0.877 V). More impressively, the MnO electrocatalyst exhibits a marked activity enhancement after test under a constant applied potential for 1000 s thanks to the in situ generation and stable presence of high-valence manganese species (Mn3+ and Mn4+) during the electrochemical process, initiating a synergetic catalytic effect with oxygen vacancies, which is proved to largely accelerate the adsorption and reduction of O2 molecules favoring the ORR activity elevation. Such an excellent ORR catalytic performance of this MnO electrocatalyst is applied in Zn–air battery, which shows an extra-high peak power density of 63.2 mW cm−2 in comparison with that (47.4 mW cm−2) of commercial Pt/C under identical test conditions.
Highlights:
1 MnO rich in oxygen vacancies has been synthesized.
2 The synthesized MnO demonstrates excellent oxygen reduction reaction performance and high output power in Zn–air battery.
3 The high catalytic activity is attributed to the synergetic catalytic effect between oxygen vacancies and in situ generated Mn3+/Mn4+.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Chong, J. Wen, J. Kubal, F. Sen, J. Zou et al., Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362(6420), 1276–1281 (2018). https://doi.org/10.1126/science.aau0630
- X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019)
- J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotech. 10, 444–452 (2015). https://doi.org/10.1038/NNANO.2015.48
- F. Kong, X. Fan, A. Kong, Z. Zhou, X. Zhang, Y. Shan, Covalent phenanthroline framework derived FeS@Fe3C composite nanoparticles embedding in N-S-codoped carbons as highly efficient trifunctional electrocatalysts. Adv. Funct. Mater. 28(51), 1803973 (2018). https://doi.org/10.1002/adfm.201803973
- M. Xiao, J. Zhu, L. Feng, C. Liu, W. Xing, Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 27(15), 2521–2527 (2015). https://doi.org/10.1002/adma.201500262
- P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu et al., Co Nanoislands rooted on Co–N–C nanosheets as efficient oxygen electrocatalyst for Zn–air batteries. Adv. Mater. 31, 1901666 (2019). https://doi.org/10.1002/adma.201901666
- X. Liu, L. Wang, P. Yu, C. Tian, F. Sun et al., A stable bifunctional catalyst for rechargeable zinc–air batteries: iron–cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem. Int. Ed. 57(49), 16166–16170 (2018). https://doi.org/10.1002/anie.201809009
- X. Tian, X. Zhao, Y. Su, L. Wang, H. Wang et al., Engineering bunched Pt–Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366(6467), 850–856 (2019). https://doi.org/10.1126/science.aaw7493
- Q. Qin, H. Jang, P. Li, B. Yuan, X. Liu, J. Cho, A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc–air batteries. Adv. Energy Mater. 9(5), 1803312 (2019). https://doi.org/10.1002/aenm.201803312
- P. Li, H. Jang, J. Zhang, M. Tian, S. Chen et al., A metal-free N and P-codoped carbon nanosphere as bifunctional electrocatalyst for rechargeable zinc–air batteries. ChemElectroChem 6(2), 393–397 (2019). https://doi.org/10.1002/celc.201801419
- Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44(8), 2168–2201 (2015). https://doi.org/10.1039/c4cs00484a
- A. Bhargava, C. Chen, K. Dhaka, Y. Yao, A. Nelson et al., Mn cations control electronic transport in spinel CoxMn3–xO4 nanoparticles. Chem. Mater. 31(11), 4228–4233 (2019). https://doi.org/10.1021/acs.chemmater.9b01198
- X. Ge, A. Sumboja, D. Wuu, T. An, B. Li et al., Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal. 5(8), 4643–4667 (2015). https://doi.org/10.1021/acscatal.5b00524
- S. Lee, G. Nam, J. Sun, J.S. Lee, H.W. Lee et al., Enhanced intrinsic catalytic activity of λ-MnO2 by electrochemical tuning and oxygen vacancy generation. Angew. Chem. Int. Ed. 55(30), 8599–8604 (2016). https://doi.org/10.1002/anie.201602851
- Y. Huang, J. Mou, W. Liu, X. Wang, L. Dong, F. Kang, C. Xu, Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+. Nano-Micro Lett. 11, 49 (2019). https://doi.org/10.1007/s40820-019-0278-9
- D.M. Robinson, Y.B. Go, M. Mui, G. Gardner, Z. Zhang et al., Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J. Am. Chem. Soc. 135, 3494–3501 (2013). https://doi.org/10.1021/ja310286h
- M. Asif, A. Aziz, A. Dao, A. Hakeem, H. Wang et al., Real-time tracking of hydrogen peroxide secreted by live cells using MnO2 nanoparticles intercalated layered doubled hydroxide nanohybrids. Anal. Chim. Acta 898, 34–41 (2015). https://doi.org/10.1016/j.aca.2015.09.053
- S. Geller, Structures of α-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering. Acta Crystallogr. B 21, 821–828 (1971). https://doi.org/10.1107/S0567740871002966
- K.A. Stoerzinger, M. Risch, B. Han, Y. Shao-Horn, Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal. 5(10), 6021–6031 (2015). https://doi.org/10.1021/acscatal.5b01444
- Y. Meng, W. Song, H. Huang, Z. Ren, S.Y. Chen, S.L. Suib, Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 136(32), 11452–11464 (2014). https://doi.org/10.1021/ja505186m
- H. Tian, X. Cui, L. Zeng, L. Su, Y. Song, J. Shi, Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst. J. Mater. Chem. A 7(11), 6285–6293 (2019). https://doi.org/10.1039/c8ta12219a
- A. Aziz, M. Asif, M. Azeem, G. Ashraf, Z. Wang, F. Xiao, H. Liu, Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Anal. Chim. Acta 1047, 197–207 (2019). https://doi.org/10.1016/j.aca.2018.10.008
- M. Asif, A. Aziz, G. Ashraf, Z. Wang, J. Wang et al., Facet-inspired core–shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids. ACS Appl. Mater. Interfaces 10, 36675–36685 (2018). https://doi.org/10.1021/acsami.8b12186
- Y. Liu, Y. Ying, L. Fei, Y. Liu, Q. Hu et al., Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis. J. Am. Chem. Soc. 141(20), 8136–8145 (2019). https://doi.org/10.1021/jacs.8b13701
- H.R. Oswald, Crystal data of Mn5O8 and Cd2Mn3O8. Nature 207, 72 (1965)
- Y. Gorlin, C.J. Chung, D. Nordlund, B.M. Clemens, T.F. Jaramillo, Mn3O4 supported on glassy carbon: an active non-precious metal catalyst for the oxygen reduction reaction. ACS Catal. 2(12), 2687–2694 (2012). https://doi.org/10.1021/cs3004352
- Y. Choi, D. Lim, E. Oh, C. Lim, S.H. Baeck, Effect of proton irradiation on electrocatalytic properties of MnO2 for oxygen reduction reaction. J. Mater. Chem. A 7(19), 11659–11664 (2019). https://doi.org/10.1039/C9TA03879E
- X. Shan, D.S. Charles, Y. Lei, R. Qiao, G. Wang et al., Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nat. Commun. 7, 13370 (2016). https://doi.org/10.1038/ncomms13370
- J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong et al., Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 30(11), 1705369 (2018). https://doi.org/10.1002/adma.201705369
- G. Er, S. Ishida, N. Takeuchi, Investigations of the electrical property, diffuse reflectance and ESR spectra of the La-(Fe, Mn)-codoped PTCR BaTiO3 annealed in reducing atmosphere. J. Mater. Sci. 34, 4265–4270 (1999). https://doi.org/10.1023/A:1004659004372
- B. Kang, X. Jin, S.M. Oh, S.S.B. Patil, M.G. Kim, S.H. Kim, S.J. Hwang, An effective way to improve bifunctional electrocatalyst activity of manganese oxide via control of bond competition. Appl. Catal. B 236, 107–116 (2018). https://doi.org/10.1016/j.apcatb.2018.05.010
- X. Cui, Z. Hua, L. Chen, X. Zhang, H. Chen, J. Shi, Manganese oxide nanorod-decorated mesoporous ZSM-5 composite as a precious-metal-free electrode catalyst for oxygen reduction. Chemsuschem 9(9), 1010–1019 (2016). https://doi.org/10.1002/cssc.201600012
- W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8(5), 1404–1427 (2015). https://doi.org/10.1039/c4ee03869j
- D.W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7(2), 576–591 (2014). https://doi.org/10.1039/c3ee43463j
- B. Zhang, H. Chen, Q. Daniel, B. Philippe, F. Yu et al., Defective and “c-disordered” hortensia-like layered MnOx as an efficient electrocatalyst for water oxidation at neutral pH. ACS Catal. 7(9), 6311–6322 (2017). https://doi.org/10.1021/acscatal.7b00420
- Q. Zhang, C. Didier, W.K. Pang, Y. Liu, Z. Wang et al., Structural insight into layer gliding and lattice distortion in layered manganese oxide electrodes for potassium-ion batteries. Adv. Energy Mater. 9(30), 1900568 (2019). https://doi.org/10.1002/aenm.201900568
- T. Takashima, K. Hashimoto, R. Nakamura, Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J. Am. Chem. Soc. 134(44), 18153–18156 (2012). https://doi.org/10.1021/ja306499n
- N. Sakai, T. Sasaki, Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light. J. Phys. Chem. B 109, 9651–9655 (2005). https://doi.org/10.1021/jp0500485
- J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 3(7), 546–550 (2011). https://doi.org/10.1038/NCHEM.1069
- D. Chinnadurai, M. Nallal, H. Kim, O. Li, K. Park, K. Prabakar, Mn3+ active surface site enriched manganese phosphate nano-polyhedrons for enhanced bifunctional oxygen electrocatalyst. Chemcatchem 12, 1–9 (2020). https://doi.org/10.1002/cctc.202000164
- J. Shi, On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 113(3), 2139–2181 (2013). https://doi.org/10.1021/cr3002752
References
L. Chong, J. Wen, J. Kubal, F. Sen, J. Zou et al., Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362(6420), 1276–1281 (2018). https://doi.org/10.1126/science.aau0630
X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019)
J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotech. 10, 444–452 (2015). https://doi.org/10.1038/NNANO.2015.48
F. Kong, X. Fan, A. Kong, Z. Zhou, X. Zhang, Y. Shan, Covalent phenanthroline framework derived FeS@Fe3C composite nanoparticles embedding in N-S-codoped carbons as highly efficient trifunctional electrocatalysts. Adv. Funct. Mater. 28(51), 1803973 (2018). https://doi.org/10.1002/adfm.201803973
M. Xiao, J. Zhu, L. Feng, C. Liu, W. Xing, Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 27(15), 2521–2527 (2015). https://doi.org/10.1002/adma.201500262
P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu et al., Co Nanoislands rooted on Co–N–C nanosheets as efficient oxygen electrocatalyst for Zn–air batteries. Adv. Mater. 31, 1901666 (2019). https://doi.org/10.1002/adma.201901666
X. Liu, L. Wang, P. Yu, C. Tian, F. Sun et al., A stable bifunctional catalyst for rechargeable zinc–air batteries: iron–cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem. Int. Ed. 57(49), 16166–16170 (2018). https://doi.org/10.1002/anie.201809009
X. Tian, X. Zhao, Y. Su, L. Wang, H. Wang et al., Engineering bunched Pt–Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366(6467), 850–856 (2019). https://doi.org/10.1126/science.aaw7493
Q. Qin, H. Jang, P. Li, B. Yuan, X. Liu, J. Cho, A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc–air batteries. Adv. Energy Mater. 9(5), 1803312 (2019). https://doi.org/10.1002/aenm.201803312
P. Li, H. Jang, J. Zhang, M. Tian, S. Chen et al., A metal-free N and P-codoped carbon nanosphere as bifunctional electrocatalyst for rechargeable zinc–air batteries. ChemElectroChem 6(2), 393–397 (2019). https://doi.org/10.1002/celc.201801419
Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44(8), 2168–2201 (2015). https://doi.org/10.1039/c4cs00484a
A. Bhargava, C. Chen, K. Dhaka, Y. Yao, A. Nelson et al., Mn cations control electronic transport in spinel CoxMn3–xO4 nanoparticles. Chem. Mater. 31(11), 4228–4233 (2019). https://doi.org/10.1021/acs.chemmater.9b01198
X. Ge, A. Sumboja, D. Wuu, T. An, B. Li et al., Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal. 5(8), 4643–4667 (2015). https://doi.org/10.1021/acscatal.5b00524
S. Lee, G. Nam, J. Sun, J.S. Lee, H.W. Lee et al., Enhanced intrinsic catalytic activity of λ-MnO2 by electrochemical tuning and oxygen vacancy generation. Angew. Chem. Int. Ed. 55(30), 8599–8604 (2016). https://doi.org/10.1002/anie.201602851
Y. Huang, J. Mou, W. Liu, X. Wang, L. Dong, F. Kang, C. Xu, Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+. Nano-Micro Lett. 11, 49 (2019). https://doi.org/10.1007/s40820-019-0278-9
D.M. Robinson, Y.B. Go, M. Mui, G. Gardner, Z. Zhang et al., Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J. Am. Chem. Soc. 135, 3494–3501 (2013). https://doi.org/10.1021/ja310286h
M. Asif, A. Aziz, A. Dao, A. Hakeem, H. Wang et al., Real-time tracking of hydrogen peroxide secreted by live cells using MnO2 nanoparticles intercalated layered doubled hydroxide nanohybrids. Anal. Chim. Acta 898, 34–41 (2015). https://doi.org/10.1016/j.aca.2015.09.053
S. Geller, Structures of α-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering. Acta Crystallogr. B 21, 821–828 (1971). https://doi.org/10.1107/S0567740871002966
K.A. Stoerzinger, M. Risch, B. Han, Y. Shao-Horn, Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal. 5(10), 6021–6031 (2015). https://doi.org/10.1021/acscatal.5b01444
Y. Meng, W. Song, H. Huang, Z. Ren, S.Y. Chen, S.L. Suib, Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 136(32), 11452–11464 (2014). https://doi.org/10.1021/ja505186m
H. Tian, X. Cui, L. Zeng, L. Su, Y. Song, J. Shi, Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst. J. Mater. Chem. A 7(11), 6285–6293 (2019). https://doi.org/10.1039/c8ta12219a
A. Aziz, M. Asif, M. Azeem, G. Ashraf, Z. Wang, F. Xiao, H. Liu, Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Anal. Chim. Acta 1047, 197–207 (2019). https://doi.org/10.1016/j.aca.2018.10.008
M. Asif, A. Aziz, G. Ashraf, Z. Wang, J. Wang et al., Facet-inspired core–shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids. ACS Appl. Mater. Interfaces 10, 36675–36685 (2018). https://doi.org/10.1021/acsami.8b12186
Y. Liu, Y. Ying, L. Fei, Y. Liu, Q. Hu et al., Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis. J. Am. Chem. Soc. 141(20), 8136–8145 (2019). https://doi.org/10.1021/jacs.8b13701
H.R. Oswald, Crystal data of Mn5O8 and Cd2Mn3O8. Nature 207, 72 (1965)
Y. Gorlin, C.J. Chung, D. Nordlund, B.M. Clemens, T.F. Jaramillo, Mn3O4 supported on glassy carbon: an active non-precious metal catalyst for the oxygen reduction reaction. ACS Catal. 2(12), 2687–2694 (2012). https://doi.org/10.1021/cs3004352
Y. Choi, D. Lim, E. Oh, C. Lim, S.H. Baeck, Effect of proton irradiation on electrocatalytic properties of MnO2 for oxygen reduction reaction. J. Mater. Chem. A 7(19), 11659–11664 (2019). https://doi.org/10.1039/C9TA03879E
X. Shan, D.S. Charles, Y. Lei, R. Qiao, G. Wang et al., Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nat. Commun. 7, 13370 (2016). https://doi.org/10.1038/ncomms13370
J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong et al., Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 30(11), 1705369 (2018). https://doi.org/10.1002/adma.201705369
G. Er, S. Ishida, N. Takeuchi, Investigations of the electrical property, diffuse reflectance and ESR spectra of the La-(Fe, Mn)-codoped PTCR BaTiO3 annealed in reducing atmosphere. J. Mater. Sci. 34, 4265–4270 (1999). https://doi.org/10.1023/A:1004659004372
B. Kang, X. Jin, S.M. Oh, S.S.B. Patil, M.G. Kim, S.H. Kim, S.J. Hwang, An effective way to improve bifunctional electrocatalyst activity of manganese oxide via control of bond competition. Appl. Catal. B 236, 107–116 (2018). https://doi.org/10.1016/j.apcatb.2018.05.010
X. Cui, Z. Hua, L. Chen, X. Zhang, H. Chen, J. Shi, Manganese oxide nanorod-decorated mesoporous ZSM-5 composite as a precious-metal-free electrode catalyst for oxygen reduction. Chemsuschem 9(9), 1010–1019 (2016). https://doi.org/10.1002/cssc.201600012
W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8(5), 1404–1427 (2015). https://doi.org/10.1039/c4ee03869j
D.W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7(2), 576–591 (2014). https://doi.org/10.1039/c3ee43463j
B. Zhang, H. Chen, Q. Daniel, B. Philippe, F. Yu et al., Defective and “c-disordered” hortensia-like layered MnOx as an efficient electrocatalyst for water oxidation at neutral pH. ACS Catal. 7(9), 6311–6322 (2017). https://doi.org/10.1021/acscatal.7b00420
Q. Zhang, C. Didier, W.K. Pang, Y. Liu, Z. Wang et al., Structural insight into layer gliding and lattice distortion in layered manganese oxide electrodes for potassium-ion batteries. Adv. Energy Mater. 9(30), 1900568 (2019). https://doi.org/10.1002/aenm.201900568
T. Takashima, K. Hashimoto, R. Nakamura, Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J. Am. Chem. Soc. 134(44), 18153–18156 (2012). https://doi.org/10.1021/ja306499n
N. Sakai, T. Sasaki, Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light. J. Phys. Chem. B 109, 9651–9655 (2005). https://doi.org/10.1021/jp0500485
J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 3(7), 546–550 (2011). https://doi.org/10.1038/NCHEM.1069
D. Chinnadurai, M. Nallal, H. Kim, O. Li, K. Park, K. Prabakar, Mn3+ active surface site enriched manganese phosphate nano-polyhedrons for enhanced bifunctional oxygen electrocatalyst. Chemcatchem 12, 1–9 (2020). https://doi.org/10.1002/cctc.202000164
J. Shi, On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 113(3), 2139–2181 (2013). https://doi.org/10.1021/cr3002752