In Vivo Tumor-Targeted Dual-Modality PET/Optical Imaging with a Yolk/Shell-Structured Silica Nanosystem
Corresponding Author: Weibo Cai
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 65
Abstract
Silica nanoparticles have been one of the most promising nanosystems for biomedical applications due to their facile surface chemistry and non-toxic nature. However, it is still challenging to effectively deliver them into tumor sites and noninvasively visualize their in vivo biodistribution with excellent sensitivity and accuracy for effective cancer diagnosis. In this study, we design a yolk/shell-structured silica nanosystem 64Cu-NOTA-QD@HMSN-PEG-TRC105, which can be employed for tumor vasculature targeting and dual-modality PET/optical imaging, leading to superior targeting specificity, excellent imaging capability and more reliable diagnostic outcomes. By combining vasculature targeting, pH-sensitive drug delivery, and dual-modality imaging into a single platform, as-designed yolk/shell-structured silica nanosystems may be employed for the future image-guided tumor-targeted drug delivery, to further enable cancer theranostics.
Highlights:
1 A hybrid yolk/shell nanosystem was generated with quantum dot as the core and hollow mesoporous silica as the shell.
2 Dual-modality PET/optical imaging was conducted to achieve synergistic cancer diagnosis that combines the advantages of both PET and optical imaging.
3 Successful tumor vasculature targeting was achieved, which significantly enhanced tumor retention and targeting specificity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Cabral, N. Nishiyama, K. Kataoka, Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc. Chem. Res. 44(10), 999–1008 (2011). https://doi.org/10.1021/ar200094a
- X. Ma, Y. Zhao, X.-J. Liang, Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc. Chem. Res. 44(10), 1114–1122 (2011). https://doi.org/10.1021/ar2000056
- W. Cai, X. Chen, Nanoplatforms for targeted molecular imaging in living subjects. Small 3(11), 1840–1854 (2007). https://doi.org/10.1002/smll.200700351
- D.E. Lee, H. Koo, I.C. Sun, J.H. Ryu, K. Kim, I.C. Kwon, Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41(7), 2656–2672 (2012). https://doi.org/10.1039/c2cs15261d
- J. Rieffel, U. Chitgupi, J.F. Lovell, Recent advances in higher-order, multimodal, biomedical imaging agents. Small 11(35), 4445–4461 (2015). https://doi.org/10.1002/smll.201500735
- S. Shi, F. Chen, W. Cai, Biomedical applications of functionalized hollow mesoporous silica nanoparticles: focusing on molecular imaging. Nanomedicine 8(12), 2027–2039 (2013). https://doi.org/10.2217/nnm.13.177
- J.L. Vivero-Escoto, R.C. Huxford-Phillips, W. Lin, Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev. 41(7), 2673–2685 (2012). https://doi.org/10.1039/c2cs15229k
- F. Tang, L. Li, D. Chen, Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24(12), 1504–1534 (2012). https://doi.org/10.1002/adma.201104763
- X. Fang, X. Zhao, W. Fang, C. Chen, N. Zheng, Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 5(6), 2205–2218 (2013). https://doi.org/10.1039/c3nr34006f
- S.H. Wu, C.Y. Mou, H.P. Lin, Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 42(9), 3862–3875 (2013). https://doi.org/10.1039/c3cs35405a
- F. Chen, H. Hong, S. Shi, S. Goel, H.F. Valdovinos, R. Hernandez, C.P. Theuer, T.E. Barnhart, W. Cai, Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci. Rep. 4, 5080 (2014). https://doi.org/10.1038/srep05080
- R. Chakravarty, S. Goel, H. Hong, F. Chen, H.F. Valdovinos, R. Hernandez, T.E. Barnhart, W. Cai, Hollow mesoporous silica nanoparticles for tumor vasculature targeting and pet image-guided drug delivery. Nanomedicine 10(8), 1233–1246 (2015). https://doi.org/10.2217/nnm.14.226
- S. Goel, C.A. Ferreira, F. Chen, P.A. Ellison, C.M. Siamof, T.E. Barnhart, W. Cai, Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy. Adv. Mater. 30(6), 1704367 (2018). https://doi.org/10.1002/adma.201704367
- J. Culver, W. Akers, S. Achilefu, Multimodality molecular imaging with combined optical and spect/pet modalities. J. Nucl. Med. 49(2), 169–172 (2008). https://doi.org/10.2967/jnumed.107.043331
- W. Cai, X. Chen, Multimodality molecular imaging of tumor angiogenesis. J. Nucl. Med. 49, 113S–128S (2008). https://doi.org/10.2967/jnumed.107.045922
- S.N. Histed, M.L. Lindenberg, E. Mena, B. Turkbey, P.L. Choyke, K.A. Kurdziel, Review of functional/anatomical imaging in oncology. Nucl. Med. Commun. 33(4), 349–361 (2012). https://doi.org/10.1097/MNM.0b013e32834ec8a5
- T.F. Massoud, S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17(5), 545–580 (2003). https://doi.org/10.1101/gad.1047403
- R. Weissleder, M.J. Pittet, Imaging in the era of molecular oncology. Nature 452(7187), 580–589 (2008). https://doi.org/10.1038/nature06917
- S. Shi, C. Xu, K. Yang, S. Goel, H.F. Valdovinos et al., Chelator-free radiolabeling of nanographene: breaking the stereotype of chelation. Angew. Chem. Int. Edit. 56(11), 2889–2892 (2017). https://doi.org/10.1002/anie.201610649
- S. Goel, C.G. England, F. Chen, W. Cai, Positron emission tomography and nanotechnology: a dynamic duo for cancer theranostics. Adv. Drug Deliv. Rev. 113, 157–176 (2017). https://doi.org/10.1016/j.addr.2016.08.001
- K. Hu, H. Wang, G. Tang, T. Huang, X. Tang, X. Liang, S. Yao, D. Nie, In vivo cancer dual-targeting and dual-modality imaging with functionalized quantum dots. J. Nucl. Med. 56(8), 1278–1284 (2015). https://doi.org/10.2967/jnumed.115.158873
- S. Shi, K. Yang, H. Hong, H.F. Valdovinos, T.R. Nayak et al., Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials 34(12), 3002–3009 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.047
- B.K. Seon, A. Haba, F. Matsuno, N. Takahashi, M. Tsujie et al., Endoglin-targeted cancer therapy. Curr. Drug Deliv. 8(1), 135–143 (2011). https://doi.org/10.2174/156720111793663570
- E. Fonsatti, H.J. Nicolay, M. Altomonte, A. Covre, M. Maio, Targeting cancer vasculature via endoglin/cd105: a novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc. Res. 86(1), 12–19 (2010). https://doi.org/10.1093/cvr/cvp332
- L.S. Rosen, M.S. Gordon, F. Robert, D.E. Matei, Endoglin for targeted cancer treatment. Curr. Oncol. Rep. 16(2), 365 (2014). https://doi.org/10.1007/s11912-013-0365-x
- M. Paauwe, P. ten Dijke, L.J. Hawinkels, Endoglin for tumor imaging and targeted cancer therapy. Expert Opin. Ther. Targets 17(4), 421–435 (2013). https://doi.org/10.1517/14728222.2013.758716
- F. Chen, W. Bu, Y. Chen, Y. Fan, Q. He et al., A sub-50-nm monosized superparamagnetic Fe3O4@SiO2 T2-weighted MRI contrast agent: highly reproducible synthesis of uniform single-loaded core-shell nanostructures. Chem. Asian J. 4(12), 1809–1816 (2009). https://doi.org/10.1002/asia.200900276
- K.M. Taylor, J.S. Kim, W.J. Rieter, H. An, W. Lin, Mesoporous silica nanospheres as highly efficient mri contrast agents. J. Am. Chem. Soc. 130(7), 2154–2155 (2008). https://doi.org/10.1021/ja710193c
- F. Chen, H. Hong, Y. Zhang, H.F. Valdovinos, S. Shi, G.S. Kwon, C.P. Theuer, T.E. Barnhart, W. Cai, In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7(10), 9027–9039 (2013). https://doi.org/10.1021/nn403617j
- S.P. Hadipour Moghaddam, M. Yazdimamaghani, H. Ghandehari, Glutathione-sensitive hollow mesoporous silica nanoparticles for controlled drug delivery. J. Control. Release (2018). https://doi.org/10.1016/j.jconrel.2018.04.032. (Epub ahead of print)
- M. Kong, J. Tang, Q. Qiao, T. Wu, Y. Qi, S. Tan, X. Gao, Z. Zhang, Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics 7(13), 3276–3292 (2017). https://doi.org/10.7150/thno.19987
- M.S. Kang, R.K. Singh, T.H. Kim, J.H. Kim, K.D. Patel, H.W. Kim, Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles. Acta Biomater. 55, 466–480 (2017). https://doi.org/10.1016/j.actbio.2017.03.054
References
H. Cabral, N. Nishiyama, K. Kataoka, Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc. Chem. Res. 44(10), 999–1008 (2011). https://doi.org/10.1021/ar200094a
X. Ma, Y. Zhao, X.-J. Liang, Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc. Chem. Res. 44(10), 1114–1122 (2011). https://doi.org/10.1021/ar2000056
W. Cai, X. Chen, Nanoplatforms for targeted molecular imaging in living subjects. Small 3(11), 1840–1854 (2007). https://doi.org/10.1002/smll.200700351
D.E. Lee, H. Koo, I.C. Sun, J.H. Ryu, K. Kim, I.C. Kwon, Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41(7), 2656–2672 (2012). https://doi.org/10.1039/c2cs15261d
J. Rieffel, U. Chitgupi, J.F. Lovell, Recent advances in higher-order, multimodal, biomedical imaging agents. Small 11(35), 4445–4461 (2015). https://doi.org/10.1002/smll.201500735
S. Shi, F. Chen, W. Cai, Biomedical applications of functionalized hollow mesoporous silica nanoparticles: focusing on molecular imaging. Nanomedicine 8(12), 2027–2039 (2013). https://doi.org/10.2217/nnm.13.177
J.L. Vivero-Escoto, R.C. Huxford-Phillips, W. Lin, Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev. 41(7), 2673–2685 (2012). https://doi.org/10.1039/c2cs15229k
F. Tang, L. Li, D. Chen, Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24(12), 1504–1534 (2012). https://doi.org/10.1002/adma.201104763
X. Fang, X. Zhao, W. Fang, C. Chen, N. Zheng, Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 5(6), 2205–2218 (2013). https://doi.org/10.1039/c3nr34006f
S.H. Wu, C.Y. Mou, H.P. Lin, Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 42(9), 3862–3875 (2013). https://doi.org/10.1039/c3cs35405a
F. Chen, H. Hong, S. Shi, S. Goel, H.F. Valdovinos, R. Hernandez, C.P. Theuer, T.E. Barnhart, W. Cai, Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci. Rep. 4, 5080 (2014). https://doi.org/10.1038/srep05080
R. Chakravarty, S. Goel, H. Hong, F. Chen, H.F. Valdovinos, R. Hernandez, T.E. Barnhart, W. Cai, Hollow mesoporous silica nanoparticles for tumor vasculature targeting and pet image-guided drug delivery. Nanomedicine 10(8), 1233–1246 (2015). https://doi.org/10.2217/nnm.14.226
S. Goel, C.A. Ferreira, F. Chen, P.A. Ellison, C.M. Siamof, T.E. Barnhart, W. Cai, Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy. Adv. Mater. 30(6), 1704367 (2018). https://doi.org/10.1002/adma.201704367
J. Culver, W. Akers, S. Achilefu, Multimodality molecular imaging with combined optical and spect/pet modalities. J. Nucl. Med. 49(2), 169–172 (2008). https://doi.org/10.2967/jnumed.107.043331
W. Cai, X. Chen, Multimodality molecular imaging of tumor angiogenesis. J. Nucl. Med. 49, 113S–128S (2008). https://doi.org/10.2967/jnumed.107.045922
S.N. Histed, M.L. Lindenberg, E. Mena, B. Turkbey, P.L. Choyke, K.A. Kurdziel, Review of functional/anatomical imaging in oncology. Nucl. Med. Commun. 33(4), 349–361 (2012). https://doi.org/10.1097/MNM.0b013e32834ec8a5
T.F. Massoud, S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17(5), 545–580 (2003). https://doi.org/10.1101/gad.1047403
R. Weissleder, M.J. Pittet, Imaging in the era of molecular oncology. Nature 452(7187), 580–589 (2008). https://doi.org/10.1038/nature06917
S. Shi, C. Xu, K. Yang, S. Goel, H.F. Valdovinos et al., Chelator-free radiolabeling of nanographene: breaking the stereotype of chelation. Angew. Chem. Int. Edit. 56(11), 2889–2892 (2017). https://doi.org/10.1002/anie.201610649
S. Goel, C.G. England, F. Chen, W. Cai, Positron emission tomography and nanotechnology: a dynamic duo for cancer theranostics. Adv. Drug Deliv. Rev. 113, 157–176 (2017). https://doi.org/10.1016/j.addr.2016.08.001
K. Hu, H. Wang, G. Tang, T. Huang, X. Tang, X. Liang, S. Yao, D. Nie, In vivo cancer dual-targeting and dual-modality imaging with functionalized quantum dots. J. Nucl. Med. 56(8), 1278–1284 (2015). https://doi.org/10.2967/jnumed.115.158873
S. Shi, K. Yang, H. Hong, H.F. Valdovinos, T.R. Nayak et al., Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials 34(12), 3002–3009 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.047
B.K. Seon, A. Haba, F. Matsuno, N. Takahashi, M. Tsujie et al., Endoglin-targeted cancer therapy. Curr. Drug Deliv. 8(1), 135–143 (2011). https://doi.org/10.2174/156720111793663570
E. Fonsatti, H.J. Nicolay, M. Altomonte, A. Covre, M. Maio, Targeting cancer vasculature via endoglin/cd105: a novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc. Res. 86(1), 12–19 (2010). https://doi.org/10.1093/cvr/cvp332
L.S. Rosen, M.S. Gordon, F. Robert, D.E. Matei, Endoglin for targeted cancer treatment. Curr. Oncol. Rep. 16(2), 365 (2014). https://doi.org/10.1007/s11912-013-0365-x
M. Paauwe, P. ten Dijke, L.J. Hawinkels, Endoglin for tumor imaging and targeted cancer therapy. Expert Opin. Ther. Targets 17(4), 421–435 (2013). https://doi.org/10.1517/14728222.2013.758716
F. Chen, W. Bu, Y. Chen, Y. Fan, Q. He et al., A sub-50-nm monosized superparamagnetic Fe3O4@SiO2 T2-weighted MRI contrast agent: highly reproducible synthesis of uniform single-loaded core-shell nanostructures. Chem. Asian J. 4(12), 1809–1816 (2009). https://doi.org/10.1002/asia.200900276
K.M. Taylor, J.S. Kim, W.J. Rieter, H. An, W. Lin, Mesoporous silica nanospheres as highly efficient mri contrast agents. J. Am. Chem. Soc. 130(7), 2154–2155 (2008). https://doi.org/10.1021/ja710193c
F. Chen, H. Hong, Y. Zhang, H.F. Valdovinos, S. Shi, G.S. Kwon, C.P. Theuer, T.E. Barnhart, W. Cai, In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7(10), 9027–9039 (2013). https://doi.org/10.1021/nn403617j
S.P. Hadipour Moghaddam, M. Yazdimamaghani, H. Ghandehari, Glutathione-sensitive hollow mesoporous silica nanoparticles for controlled drug delivery. J. Control. Release (2018). https://doi.org/10.1016/j.jconrel.2018.04.032. (Epub ahead of print)
M. Kong, J. Tang, Q. Qiao, T. Wu, Y. Qi, S. Tan, X. Gao, Z. Zhang, Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics 7(13), 3276–3292 (2017). https://doi.org/10.7150/thno.19987
M.S. Kang, R.K. Singh, T.H. Kim, J.H. Kim, K.D. Patel, H.W. Kim, Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles. Acta Biomater. 55, 466–480 (2017). https://doi.org/10.1016/j.actbio.2017.03.054