Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics
Corresponding Author: Vı´ctor M. Jime´nez Pe´rez
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 68
Abstract
The progress made by the scientific community in emerging photovoltaic technologies over the past two decades has been outstanding. Numerous methods have been developed for the preparation of hybrid organic–inorganic perovskite solar cells. The power conversion efficiency has been up to 14% by a one-step vacuum deposition technique. A serious concern is the toxicity of the materials. In this review, several methods aimed at resolving these problems to some extent have been compiled, including eco-friendly synthesis. Further efficiency enhancements are expected following optimization, and a better fundamental understanding of the internal electron charge transfer, electron–hole diffusion to the corresponding layers, flexibility, and stability-dependent bandgaps is reported. This paper explores the green synthesis of organic–inorganic perovskites for industrialization. Concerning the above facts, a simple low-cost model called “dispersed photovoltaic cells” is presented.
Highlights:
1 Fourth-generation perovskite materials prevail in terms of efficiency (21%) and low-cost green synthetic routes.
2 A serious concern is the toxicity of materials. Lead-free, highly efficient, relatively moisture stable, and environmentally friendly synthetic routes could be performed.
3 Highly mobile charge carriers, low exciton binding energy, low rate of recombination, and charge transportation make perovskites a more challenging field.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Murugadoss, S. Tanaka, G. Mizuta, S. Kanaya, H. Nishino, T. Umeyama, H. Imahori, S. Ito, Light stability tests of methylammonium and formamidinium Pb-halide perovskites for solar cell applications. Jpn. J. Appl. Phys. 54, 8–12 (2015). https://doi.org/10.7567/JJAP.54.08KF08
- C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). https://doi.org/10.1021/ic401215x
- Y. Takahashi, R. Obara, Z.Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, K. Terakura, Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563–5568 (2011). https://doi.org/10.1039/C0DT01601B
- J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013). https://doi.org/10.1021/nl400349b
- T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong, P.P. Boix, A.C. Grimsdale, S.G. Mhaisalkar, N. Mathews, Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3, 14996–15000 (2015). https://doi.org/10.1039/C5TA00190K
- S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014). https://doi.org/10.1039/C3EE43161D
- S.D. Stranks, V.M. Burlakov, T. Leijtens, J.M. Ball, A. Goriely, H.J. Snaith, Recombination kinetics in organic–inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014). https://doi.org/10.1103/PhysRevApplied.2.034007
- G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013). https://doi.org/10.1126/science.1243167
- W.Q. Wu, F. Huang, D. Chen, Y.B. Cheng, R.A. Caruso, Thin films of dendritic anatase titania nanowires enable effective hole-blocking and efficient light-harvesting for high-performance mesoscopic perovskite solar cells. Adv. Funct. Mater. 25, 3264–3272 (2015). https://doi.org/10.1002/adfm.201500616
- J. Sachs, M. Kmec, S. Wöckel, P. Peyerl, R. Zetik, Combined frequency and time domain moisture sensing by an ultra wideband IQ-M-Sequence approach, in ISEMA, Electromagnetic Wave Interaction with Water and Moist Substances (2005), pp. 1–8
- C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999). https://doi.org/10.1126/science.286.5441.945
- F. Zuo, S.T. Williams, P.W. Liang, C.C. Chueh, C.Y. Liao, A.K.Y. Jen, Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater. 26, 6454–6460 (2014). https://doi.org/10.1002/adma.201401641
- H. Kim, S.P. Surwade, A. Powell, C. O’Donnell, H. Liu, Stability of DNA origami nanostructure under diverse chemical environments. Chem. Mater. 26, 5265–5273 (2014). https://doi.org/10.1021/cm5019663
- A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M.Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011). https://doi.org/10.1126/science.1209688
- H. Shen, T. Duong, J. Peng, D. Jacobs, N. Wu, J. Gong, Y. Wu, S.K. Karuturi, X. Fu, K. Weber, X. Xiao, T.P. White, K. Catchpole, Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy Environ. Sci. 11, 394–406 (2018). https://doi.org/10.1039/C7EE02627G
- K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen, 23.6%-efficiency monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009–17013 (2017). https://doi.org/10.1038/nenergy.2017.9
- C.C. Vidyasagar, Y.A. Naik, T.G. Venkatesh, R. Viswanatha, Solid-state synthesis and effect of temperature on optical properties of Cu–ZnO, Cu–CdO and CuO nanoparticles. Powder Technol. 214, 337–343 (2011). https://doi.org/10.1016/j.powtec.2011.08.025
- T. Miyasaka, Y. Kijitori, T.N. Murakami, M. Kimura, S. Uegusa, Efficient nonsintering type dye-sensitized photocells based on electrophoretically deposited TiO2 layers. Chem. Lett. 31, 1250–1251 (2002). https://doi.org/10.1246/cl.2002.1250
- H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2 (2012). https://doi.org/10.1038/srep00591
- F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, Y. Zhou, A.Gray-Weale, J. Etheridge, C.R. McNeill, R.A. Caruso, U. Bach, L. Spiccia, Y.B. Cheng, Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy 10, 10–18 (2014). https://doi.org/10.1016/j.nanoen.2014.08.015
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S. Il Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014
- W. Nie, H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015). https://doi.org/10.1126/science.aaa0472
- Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014). https://doi.org/10.1002/adma.201401685
- F. Hao, C.C. Stoumpos, Z. Liu, R.P.H. Chang, M.G. Kanatzidis, Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 136, 16411–16419 (2014). https://doi.org/10.1021/ja509245x
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
- P.-S. Shen, C.-M. Tseng, T.-C. Kuo, C.-K. Shih, M.-H. Li, P. Chen, Microwave-assisted synthesis of titanium dioxide nanocrystalline for efficient dye-sensitized and perovskite solar cells. Sol. Energy 120, 345–356 (2015). https://doi.org/10.1016/j.solener.2015.07.036
- Q. Cao, S. Yang, Q. Gao, L. Lei, Y. Yu, J. Shao, Y. Liu, Fast and controllable crystallization of perovskite films by microwave irradiation process. ACS Appl. Mater. Interfaces 8, 7854–7861 (2016). https://doi.org/10.1021/acsami.6b01558
- J.W. Lee, D.J. Seol, A.N. Cho, N.G. Park, High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26, 4991–4998 (2014). https://doi.org/10.1002/adma.201401137
- D. Prochowicz, M. Franckevičius, A.M. Cieślak, S.M. Zakeeruddin, M. Grätzel, J. Lewiński, Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency. J. Mater. Chem. A 3, 20772–20777 (2015). https://doi.org/10.1039/C5TA04904K
- M.A. Islam, J.M. Rondinelli, J.E. Spanier, Normal mode determination of perovskite crystal structures with octahedral rotations: theory and applications. J. Phys. Condens. Matter 25 (2013). https://doi.org/10.1088/0953-8984/25/17/175902
- H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014). https://doi.org/10.1126/science.1254050
- S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S. Il Seok, Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2–pyrazine complex. J. Am. Chem. Soc. 138, 3974–3977 (2016). https://doi.org/10.1021/jacs.6b00142
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
- C.C. Vidyasagar, Y. Arthoba Naik, T.G. Venkatesha, R. Viswanatha, Solid-state synthesis and effect of temperature on optical properties of CuO nanoparticles. Nano-Micro Lett. 4, 73–77 (2012). https://doi.org/10.3786/nml.v4i2.p73-77
- M.T. Weller, O.J. Weber, J.M. Frost, A. Walsh, Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015). https://doi.org/10.1021/acs.jpclett.5b01432
- H.S. Ko, J.W. Lee, N.G. Park, 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J. Mater. Chem. A 3, 8808–8815 (2015). https://doi.org/10.1039/C5TA00658A
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). https://doi.org/10.1038/nature14133
- M.I. Hoffert, K. Caldeira, A.K. Jain, E.F. Haites, L.D.D. Harvey, S.D. Potter, M.E. Schlesinger, S.H. Schneider, R.G. Watts, T.M.L. Wigley, D.J. Wuebbles, Energy implications of future stabilization of atmospheric CO2 content. Nature 395, 881–884 (1998). https://doi.org/10.1038/27638
- J.R. Petit, J. Jouzel, D. Raynaud, N.I. Barkov, J.M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotiyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, M. Stievenard, Climate and atmospheric history of the past 420,000 years from the Vostok ice core Antarctica. Nature 399, 429–436 (1999). https://doi.org/10.1038/20859
- M. Maslin, Global Warming: A Very Short Introduction (Oxford University Press, New York, 2008), pp. 150–176. http://www.ucl.ac.uk/news/news-articles/0811/08112702
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- R. Zhang, H. Alamdari, S. Kaliaguine, Fe-based perovskites substituted by copper and palladium for NO + CO reaction. J. Catal. 242, 241–253 (2006). https://doi.org/10.1016/j.jcat.2006.05.033
- C.C. Vidyasagar, H.B. Muralidhara, Y.A. Naik, G. Hosamani, M.S. Ilango, Effect of annealing on structural, crystallinity and optical properties of anatase Cr–TiO2 nanoparticles. Energy Environ. Focus 4, 54–63 (2015). https://doi.org/10.1166/eef.2015.1156
- C.C. Vidyasagar, Y.A. Naik, T.G. Venkatesha, P. Manjunatha, Sol–gel synthesis using glacial acetic acid and optical properties of anatase Cu–TiO2 nanoparticles. J. Nanoeng. Nanomanufact. 2, 91–98 (2012). https://doi.org/10.1166/jnan.2012.1058
- A. Perveen, M. Rahman, Y.S. Wong, Modeling and simulation of cutting forces generated during vertical micro-grinding. Int. J. Adv. Manuf. Technol. 71, 1539–1548 (2014). https://doi.org/10.1007/s00170-013-5572-y
- M.L. Zhang, K.Q. Peng, X. Fan, J.S. Jie, R.Q. Zhang, S.T. Lee, N.B. Wong, Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 112, 4444–4450 (2008). https://doi.org/10.1021/jp077053o
- A. Goetzberger, C. Hebling, H.-W. Schock, Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep. 40, 1–46 (2003). https://doi.org/10.1016/S0927-796X(02)00092-X
- F. Bella, C. Gerbaldi, C. Barolo, M. Gratzel, Aqueous dye-sensitized solar cells. Chem. Soc. Rev. 44, 3431–3473 (2015). https://doi.org/10.1039/C4CS00456F
- Y. Tachibana, H.Y. Akiyama, Y. Ohtsuka, T. Torimoto, S. Kuwabata, CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells. Chem. Lett. 36, 88–89 (2007). https://doi.org/10.1246/cl.2007.88
- I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006). https://doi.org/10.1021/ja056494n
- O. Niitsoo, S.K. Sarkar, C. Pejoux, S. Rühle, D. Cahen, G. Hodes, Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. J. Photochem. Photobiol. A Chem. 181, 306–313 (2006). https://doi.org/10.1016/j.jphotochem.2005.12.012
- L.J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 91, 23116 (2007). https://doi.org/10.1063/1.2757130
- R. Plass, S. Pelet, J. Krueger, M. Grätzel, U. Bach, Quantum dot sensitization of organic–inorganic hybrid solar cells. J. Phys. Chem. B 106, 7578–7580 (2002). https://doi.org/10.1021/jp020453l
- P. Hoyer, R. Könenkamp, Photoconduction in porous TiO2 sensitized by PbS quantum dots. Appl. Phys. Lett. 66, 349–351 (1995). https://doi.org/10.1063/1.114209
- A. Zaban, O. Micic, B.A. Gregg, A.J. Nozik, Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14, 3153–3156 (1998). https://doi.org/10.1021/la9713863
- P. Yu, K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank, A.J. Nozik, Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J. Phys. Chem. B 110, 25451–25454 (2006). https://doi.org/10.1021/jp064817b
- J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991–1993 (1998). https://doi.org/10.1063/1.122345
- C. Zuo, L. Ding, Lead-free perovskite materials (NH4)3Sb2Ix Br9-x. Angew. Chem. 129, 6628–6632 (2017). https://doi.org/10.1002/ange.201702265
- U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998). https://doi.org/10.1038/26936
- B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0
- G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-EREPORTS polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Source Sci. New Ser. 270, 1789–1791 (1995). https://doi.org/10.1126/science.270.5243.1789
- G. Li, T. Zhang, N. Guo, F. Xu, X. Qian, Y. Zhao, Ion-exchange-induced 2d-3d conversion of HMA1−xFAxPbI3Cl perovskite into a high-quality MA1−xFAxPbI3 perovskite. Angew. Chem. Int. Ed. 55, 13460–13464 (2016). https://doi.org/10.1002/anie.201606801
- T. Zhang, M. Ibrahim Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3, e1700841 (2017). https://doi.org/10.1126/sciadv.1700841
- J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
- J.H. Kim, Z. Lee, Silicene on other two-dimensional materials: formation of heterostructure. Appl. Microsc. 44, 123–132 (2014). https://doi.org/10.9729/AM.2014.44.4.123
- N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, N.G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015). https://doi.org/10.1021/jacs.5b04930
- Y. Chen, J. Peng, D. Su, X. Chen, Z. Liang, Efficient and balanced charge transport revealed in planar perovskite solar cells. ACS Appl. Mater. Interfaces 7, 4471–4475 (2015). https://doi.org/10.1021/acsami.5b00077
- J.-W. Lee, H.-S. Kim, N.-G. Park, Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016). https://doi.org/10.1021/acs.accounts.5b00440
- C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, H.-W. Lin, Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv. Mater. 26, 6647–6652 (2014). https://doi.org/10.1002/adma.201402461
- J. Teuscher, A. Ulianov, O. Müntener, M. Grätzel, N. Tétreault, Control and study of the stoichiometry in evaporated perovskite solar cells. ChemSusChem 8, 3847–3852 (2015). https://doi.org/10.1002/cssc.201500972
- K.C. Patil, S.T. Aruna, T. Mimani, Combustion synthesis: an update. Curr. Opin. Solid State Mater. Sci. 6, 507–512 (2002). https://doi.org/10.1016/S1359-0286(02)00123-7
- A.R. West, Solid state chemistry. Solid State Commun. 453 (2013). https://doi.org/10.1007/978-1-4899-6830-2
- S.E. Dann, D.B. Currie, M.T. Weller, M.F. Thomas, A.D. Al-Rawwas, The effect of oxygen stoichiometry on phase relations and structure in the system La1−xSrxFeO3−δ (0 ≤ x ≤ 1, 0 ≤ δ ≤ 0.5). J. Solid State Chem. 109, 134–144 (1994). https://doi.org/10.1006/jssc.1994.1083
- A. Ecija, K. Vidal, A. Larrañaga, A. Martínez-Amesti, L. Ortega-San-Martín, M.I. Arriortua, Characterization of Ln0.5M0.5FeO3−δ (Ln = La, Nd, Sm; M = Ba, Sr) perovskites as SOFC cathodes. Solid State Ion. 201, 35–41 (2011). https://doi.org/10.1016/j.ssi.2011.07.019
- N. Yosuke, T. Masumi, N. Jun, Nomenclature of [60] fullerene derivatives by edge labeling. Chem. Lett. 24, 703–704 (1995). https://doi.org/10.1246/cl.1995.703
- D.W. Johnson Jr, P.K. Gallagher, F. Schrey, W.W. Rhodes, Preparation of high surface area substituted LaMnO3 catalysts. United States Web. (1976)
- C. Matei, D. Berger, P. Marote, S. Stoleriu, J.P. Deloume, Lanthanum-based perovskites obtained in molten nitrates or nitrites. Prog. Solid State Chem. 35, 203–209 (2007). https://doi.org/10.1016/j.progsolidstchem.2007.01.002
- J.G. McCarty, H. Wise, Perovskite catalysts for methane combustion. Catal. Today 8, 231–248 (2007). https://doi.org/10.1016/0920-5861(90)87020-4
- D. Berger, C. Matei, F. Papa, D. Macovei, V. Fruth, J.P. Deloume, Pure and doped lanthanum manganites obtained by combustion method. J. Eur. Ceram. Soc. 27, 4395–4398 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.164
- M. Niederberger, N. Pinna, J. Polleux, M. Antonietti, A general soft-chemistry route to perovskites and related materials: synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles. Angew. Chem. Int. Ed. 43, 2270–2273 (2004). https://doi.org/10.1002/anie.200353300
- N.P. Bansal, Z. Zhong, Combustion synthesis of Sm0.5Sr0.5CoO3−X and La0.6Sr0.4CoO3−X nanopowders for solid oxide fuel cell cathodes. J. Power Sources 158, 148–153 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.057
- J. Blasco, B. Aznar, J. García, G. Subías, J. Herrero-Martín, J. Stankiewicz, Charge disproportionation in La1−xSrxFeO3 probed by diffraction and spectroscopic experiments. Phys. Rev. B Condens. Matter Mater. Phys. 77 (2008). https://doi.org/10.1103/PhysRevB.77.054107
- O. Carp, L. Patron, A. Ianculescu, J. Pasuk, R. Olar, New synthesis routes for obtaining dysprosium manganese perovskites. J. Alloys Compd. 351, 314–318 (2003). https://doi.org/10.1016/S0925-8388(02)01079-4
- B. Liu, Y. Zhang, Ba0.5Sr0.5Co0.8Fe0.2O3 nanopowders prepared by glycine-nitrate process for solid oxide fuel cell cathode. J. Alloys Compd. 453, 418–422 (2008). https://doi.org/10.1016/j.jallcom.2006.11.142
- R. Rosa, P. Veronesi, C. Leonelli, A review on combustion synthesis intensification by means of microwave energy. Chem. Eng. Process. Process Intensif. 71, 2–18 (2013). https://doi.org/10.1016/j.cep.2013.02.007
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604
- L. Chen, F. Tang, Y. Wang, S. Gao, W. Cao, J. Cai, L. Chen, Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry. Nano Res. 8, 263–270 (2015). https://doi.org/10.1007/s12274-014-0662-1
- A. Poglitsch, D. Weber, Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987). https://doi.org/10.1063/1.453467
- H.R. Xia, W.T. Sun, L.M. Peng, Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries. Chem. Commun. 51, 13787–13790 (2015). https://doi.org/10.1039/C5CC05053G
- X. Dong, X. Fang, M. Lv, B. Lin, S. Zhang, J. Ding, N. Yuan, Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J. Mater. Chem. A 3, 5360–5367 (2015). https://doi.org/10.1039/C4TA06128D
- Y.S. Kwon, J. Lim, H.J. Yun, Y.H. Kim, T. Park, A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energy Environ. Sci. 7, 1454–1460 (2014). https://doi.org/10.1039/C3EE44174A
- S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014). https://doi.org/10.1021/nl501982b
- Y. Mao, S. Banerjee, S.S. Wong, Hydrothermal synthesis of perovskite nanotubes. Chem. Commun. 408–409 (2003). https://doi.org/10.1039/B210633G
- D.R. Modeshia, R.I. Walton, Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 39, 4303–4325 (2010). https://doi.org/10.1039/B904702F
- C.N.R. Rao, Novel materials, materials design and synthetic strategies: recent advances and new directions. J. Mater. Chem. 9, 1–14 (1999). https://doi.org/10.1039/A804467H
- H. Tsubornura, H. Kobayashi, Solar cells. Crit. Rev. Solid State Mater. Sci. 18, 261–326 (1993). https://doi.org/10.1080/10408439308242562
- L.N. Demianets, A.N. Lobachev, Hydrothermal synthesis of crystals. Krist. Und Tech. 14, 509–525 (1979). https://doi.org/10.1002/crat.19790140503
- K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology (Noyes Publications, Park Ridge, 2001). https://doi.org/10.1016/C2009-0-20354-0
- G. Demazeau, Solvothermal processes: a route to the stabilization of new material. J. Mater. Chem. 9, 15–18 (1999). https://doi.org/10.1039/A805536J
- R.E. Riman, W.L. Suchanek, M.M. Lencka, Hydrothermal crystallization of ceramics. Ann. Chim. Sci. Mater. 27, 15–36 (2002). https://doi.org/10.1016/S0151-9107(02)90012-7
- R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 31, 230–238 (2002). https://doi.org/10.1039/B105762F
- X. Wei, G. Xu, Z. Ren, C. Xu, G. Shen, G. Han, PVA-assisted hydrothermal synthesis of SrTiO3 nanoparticles with enhanced photocatalytic activity for degradation of RhB. J. Am. Ceram. Soc. 91, 3795–3799 (2008). https://doi.org/10.1111/j.1551-2916.2008.02716.x
- Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, Formation of single-crystal SrTiO3 dendritic nanostructures via a simple hydrothermal method. J. Cryst. Growth 311, 2519–2523 (2009). https://doi.org/10.1016/j.jcrysgro.2009.01.103
- X. Han, D. Zhang, Z. Zhong, F. Yang, N. Wei, K. Zheng, Z. Li, Y. Gao, Theoretical design and experimental study of hydrothermal synthesis of KNbO3. J. Phys. Chem. Solids 69, 193–198 (2008). https://doi.org/10.1016/j.jpcs.2007.08.053
- L.S. Schadler, Polymer-based and polymer-filled nanocomposites. J. Am. Chem. Soc. 136, 850–853 (2014). (2003). https://doi.org/10.1002/3527602127.ch2
- D.M. Jang, K. Park, D.H. Kim, J. Park, F. Shojaei, H.S. Kang, J.P. Ahn, J.W. Lee, J.K. Song, Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 15, 5191–5199 (2015). https://doi.org/10.1021/acs.nanolett.5b01430
- V. D’Innocenzo, A.R. Srimath Kandada, M. De Bastiani, M. Gandini, A. Petrozza, Tuning the light emission properties by band gap engineering in hybrid lead-halide perovskite. J. Am. Chem. Soc. 136, 17730–17733 (2014). https://doi.org/10.1021/ja511198f
- Y. Kesari, A. Athawale, Ultrasound assisted bulk synthesis of CH3NH3PbI3 perovskite at room temperature. Mater. Lett. 159, 87–89 (2015). https://doi.org/10.1016/j.matlet.2015.05.176
- V. Bhooshan Kumar, L. Gouda, Z. Porat, A. Gedanken, Sonochemical synthesis of CH3NH3PbI3 perovskite ultrafine nanocrystal sensitizers for solar energy applications. Ultrason Sonochem. 32, 54–59 (2016). https://doi.org/10.1016/j.ultsonch.2016.02.012
- B. Yang, O. Dyck, J. Poplawsky, J. Keum, A. Puretzky, S. Das, I. Ivanov, C. Rouleau, G. Duscher, D. Geohegan, K. Xiao, Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions. J. Am. Chem. Soc. 137, 9210–9213 (2015). https://doi.org/10.1021/jacs.5b03144
- J.A. Christians, P.A. Miranda Herrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015). https://doi.org/10.1021/ja511132a
- Y.C. Zheng, S. Yang, X. Chen, Y. Chen, Y. Hou, H.G. Yang, Thermal-induced Volmer–Weber growth behavior for planar heterojunction perovskites solar cells. Chem. Mater. 27, 5116–5121 (2015). https://doi.org/10.1021/acs.chemmater.5b01924
- J.S. Manser, M.I. Saidaminov, J.A. Christians, O.M. Bakr, P.V. Kamat, Making and breaking of lead halide perovskites. Acc. Chem. Res. 49, 330–338 (2016). https://doi.org/10.1021/acs.accounts.5b00455
- Y. Guo, K. Shoyama, W. Sato, Y. Matsuo, K. Inoue, K. Harano, C. Liu, H. Tanaka, E. Nakamura, Chemical pathways connecting lead(II) iodide and perovskite via polymeric plumbate(II) fiber. J. Am. Chem. Soc. 137, 15907–15914 (2015). https://doi.org/10.1021/jacs.5b10599
- I. Bilecka, M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2, 1358–1374 (2010). https://doi.org/10.1039/B9NR00377K
- J. Park, K. An, Y. Hwang, J.E.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004). https://doi.org/10.1038/nmat1251
- S. Polarz, Shape matters: anisotropy of the morphology of inorganic colloidal particles-synthesis and function. Adv. Funct. Mater. 21, 3214–3230 (2011). https://doi.org/10.1002/adfm.201101205
- S. Uchida, M. Tomiha, H. Takizawa, M. Kawaraya, Flexible dye-sensitized solar cells by 28 GHz microwave irradiation. J. Photochem. Photobiol. A Chem. 164, 93–96 (2004). https://doi.org/10.1016/j.jphotochem.2004.01.026
- J. Xie, Y. Liu, J. Liu, L. Lei, Q. Gao, J. Li, S. Yang, Study on the correlations between the structure and photoelectric properties of CH3NH3PbI3 perovskite light-harvesting material. J. Power Sources 285, 349–353 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.114
- C. Roldán-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel, M.K. Nazeeruddin, High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy Environ. Sci. 8, 3550–3556 (2015). https://doi.org/10.1039/C5EE02555A
- A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014). https://doi.org/10.1002/adfm.201304022
- N.S. Sharif, J.J. Mohamed, H.S. Derita, Z.A. Ahmad, M. Zulkifly Abdullah, H. Mohamad, W.A.W. Yusoff, The effect of sintering conditions on the microstructure and electrical properties of Pb(Zr0.52Ti0.48)O3 ceramic. J. Mech. Eng. Sci. 6, 901–906 (2014). https://doi.org/10.15282/jmes.6.2014.16.0086
- S. Kaliaguine, A. Van Neste, V. Szabo, J.E. Gallot, M. Bassir, R. Muzychuk, Perovskite-type oxides synthesized by reactive grinding. Part I. Preparation and characterization. Appl. Catal. A Gen. 209, 345–358 (2001). https://doi.org/10.1016/S0926-860X(00)00779-1
- A. Glisenti, M. Pacella, M. Guiotto, M.M. Natile, P. Canu, Largely Cu-doped LaCo1−xCuxO3 perovskites for TWC: toward new PGM-free catalysts. Appl. Catal. B Environ. 180, 94–105 (2016). https://doi.org/10.1016/j.apcatb.2015.06.017
- A.R.J. Kucernak, V.N. Naranammalpuram Sundaram, Nickel phosphide: the effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium. J. Mater. Chem. A 2, 17435–17445 (2014). https://doi.org/10.1039/C4TA03468F
- L.B. Kong, J. Ma, H. Huang, R.F. Zhang, Crystallization of magnesium niobate from mechanochemically derived amorphous phase. J. Alloys Compd. 340, L1–L4 (2002). https://doi.org/10.1016/S0925-8388(02)00003-8
- D. Grossin, S. Rollin-Martinet, C. Estournès, F. Rossignol, E. Champion, C. Combes, C. Rey, C. Geoffroy, C. Drouet, Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects. Acta Biomater. 6, 577–585 (2010). https://doi.org/10.1016/j.actbio.2009.08.021
- A.M. Glazer, The classification of tilted octahedra in perovskites. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 28, 3384–3392 (1972). https://doi.org/10.1107/S0567740872007976
- M. Kis-Varga, D.L. Beke, Phase transitions in Cu-Sb systems induced by ball milling. Mater. Sci. Forum. 225–227 (1996). http://dx.doi.org/10.4028/www.scientific.net/JMNM.15-16.733
- T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628 (2013). https://doi.org/10.1039/C3TA10518K
- K. Ganesan, L. Ratke, Facile preparation of monolithic k-carrageenan aerogels. Soft Matter 10, 3218–3224 (2014). https://doi.org/10.1039/c3sm52862f
- H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.W. Wang, K.Wojciechowski, W. Zhang, Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014). https://doi.org/10.1021/jz500113x
- W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015). https://doi.org/10.1039/C4EE03664F
- D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K.Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). https://doi.org/10.1126/science.aaa2725
- K.V. Manukyan, A.V. Yeghishyan, D.O. Moskovskikh, J. Kapaldo, A. Mintairov, A.S. Mukasyan, Mechanochemical synthesis of methylammonium lead iodide perovskite. J. Mater. Sci. 51, 9123–9130 (2016). https://doi.org/10.1007/s10853-016-0165-4
- D. Prochowicz, K. Sokołowski, I. Justyniak, A. Kornowicz, D. Fairen-Jimenez, T. Friščić, J. Lewiński, A mechanochemical strategy for IRMOF assembly based on pre-designed oxo-zinc precursors. Chem. Commun. 51, 4032–4035 (2015). https://doi.org/10.1039/C4CC09917F
- Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao et al., Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015). https://doi.org/10.1126/science.aaa5760
- J. Feng, Mechanical properties of hybrid organic–inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801 (2014). https://doi.org/10.1063/1.4885256
- F. Caruso, M. Komiyama, T. Takeuchi, T. Mukawa, H. Asanuma, G. Decher, J.B. Schlenoff, W. Krenkel, P. Gomez-Romero, C. Sanchez, M. Kohler, W. Fritzsche, Nanocomp. Sci. Technol. Nanocom. (2003). https://doi.org/10.1177/0954008312454310
- Y. Dang, D. Ju, L. Wang, X. Tao, Recent progress in the synthesis of hybrid halide perovskite single crystals. CrystEngComm 18, 4476–4484 (2016). https://doi.org/10.1039/c6ce00655h
- G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque, B. Murali, E. Alarousu, O.F. Mohammed, T. Wu, O.M. Bakr, CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 6, 3781–3786 (2015). https://doi.org/10.1021/acs.jpclett.5b01666
- M. Becker, T. Klüner, M. Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Trans. 46, 3500–3509 (2017). https://doi.org/10.1039/c6dt04796c
- L.-M. Chao, T.-Y. Tai, Y.-Y. Chen, P.-Y. Lin, Y.-S. Fu, Fabrication of CH3NH3PbI3/PVP composite fibers via electrospinning and deposition. Materials (Basel) 8, 5467–5478 (2015). https://doi.org/10.3390/ma8085256
- M. Chen, H. Qu, J. Zhu, Z. Luo, A. Khasanov, A.S. Kucknoor, N. Haldolaarachchige, D.P. Young, S. Wei, Z.Guo, Magnetic electrospun fluorescent polyvinylpyrrolidone nanocomposite fibers. Polymer (United Kingdom) 53, 4501–4511 (2012). https://doi.org/10.1016/j.polymer.2012.07.046
- S.H. Tan, R. Inai, M. Kotaki, S. Ramakrishna, Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer (Guildf) 46, 6128–6134 (2005). https://doi.org/10.1016/j.polymer.2005.05.068
- E. Edri, S. Kirmayer, D. Cahen, G. Hodes, High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. J. Phys. Chem. Lett. 4, 897–902 (2013). https://doi.org/10.1021/jz400348q
- L. Wang, G. Fan, X. Xu, D. Chen, L. Wang, W. Shi, P. Cheng, Detection of polychlorinated benzenes (persistent organic pollutants) by a luminescent sensor based on a lanthanide metal-organic framework. J. Mater. Chem. A 5, 5541–5549 (2017). https://doi.org/10.1039/c7ta00256d
- Y. Zhao, K. Zhu, Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia. Chem. Commun. 50, 1605–1607 (2014). https://doi.org/10.1039/c3cc48522f
- L.K. Ono, M.R. Leyden, S. Wang, Y. Qi, Organometal halide perovskite thin films and solar cells by vapor deposition. J. Mater. Chem. A 4, 6693–6713 (2016). https://doi.org/10.1039/C5TA08963H
- O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, H.J. Bolink, Perovskite solar cells employing organic charge-transport layers. Nat. Photonics. 8, 128–132 (2014). https://doi.org/10.1038/nphoton.2013.341
- M. Sessolo, C. Momblona, L. Gil-Escrig, H.J. Bolink, Photovoltaic devices employing vacuum-deposited perovskite layers. MRS Bull. 40, 660–666 (2015). https://doi.org/10.1557/mrs.2015.170
- T.W. Ng, C.Y. Chan, M.F. Lo, Z.Q. Guan, C.S. Lee, Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties. J. Mater. Chem. A 3, 9081–9085 (2015). https://doi.org/10.1039/C4TA05819D
- H. Ishihara, W. Chen, Y.C. Chen, S. Sarang, N. De Marco, O. Lin, S. Ghosh, V. Tung, Electrohydrodynamically assisted deposition of efficient perovskite photovoltaics. Adv. Mater. Interfaces 3 (2016). https://doi.org/10.1002/admi.201500762
- D. Zhao, W. Ke, C.R. Grice, A.J. Cimaroli, X. Tan, M. Yang, R.W. Collins, H. Zhang, K. Zhu, Y. Yan, Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers. Nano Energy 19, 88–97 (2016). https://doi.org/10.1016/j.nanoen.2015.11.008
- Y. Peng, G. Jing, T. Cui, High-performance perovskite solar cells fabricated by vapor deposition with optimized PbI2 precursor films. RSC Adv. 5, 95847–95853 (2015). https://doi.org/10.1039/C5RA19343E
- W. Zhu, C. Bao, B. Lv, F. Li, Y. Yi, Y. Wang, J. Yang, X. Wang, T. Yu, Z. Zou, Dramatically promoted crystallization control of organolead triiodide perovskite film by a homogeneous cap for high efficiency planar-heterojunction solar cells. J. Mater. Chem. A 4, 12535–12542 (2016). https://doi.org/10.1039/C6TA04332A
- Y. Li, X. Xu, C. Wang, C. Wang, F. Xie, J. Yang, Y. Gao, Degradation by exposure of coevaporated CH3NH3PbI3 thin films. J. Phys. Chem. C 119, 23996–24002 (2015). https://doi.org/10.1021/acs.jpcc.5b07676
- Q. Lin, A. Armin, P.L. Burn, P. Meredith, Filterless narrowband visible photodetectors. Nat. Photonics 9, 687–694 (2015). https://doi.org/10.1038/nphoton.2015.175
- P. Fan, D. Gu, G.-X. Liang, J.-T. Luo, J.-L. Chen, Z.-H. Zheng, D.-P. Zhang, High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci. Rep. 6, 29910 (2016). https://doi.org/10.1038/srep29910
- M.R. Leyden, L.K. Ono, S.R. Raga, Y. Kato, S. Wang, Y. Qi, High performance perovskite solar cells by hybrid chemical vapor deposition. J. Mater. Chem. A 2, 18742–18745 (2014). https://doi.org/10.1039/C4TA04385E
- J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995). https://doi.org/10.1038/376498a0
- M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 40). Prog. Photovolt. Res. Appl. 20, 606–614 (2012). https://doi.org/10.1002/pip.2267
- Q. Lin, A. Armin, R. Chandra, R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2014). https://doi.org/10.1038/nphoton.2014.284
- B.S. Kim, T.M. Kim, M.S. Choi, H.S. Shim, J.J. Kim, Fully vacuum-processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers. Org. Electron. Phys. Mater. Appl. 17, 102–106 (2015). https://doi.org/10.1016/j.orgel.2014.12.002
- F. Yang, M. Shtein, S.R. Forrest, Morphology control and material mixing by high-temperature organic vapor-phase deposition and its application to thin-film solar cells. J. Appl. Phys. 98 (2005). https://doi.org/10.1063/1.1941480
- M.R. Leyden, M.V. Lee, S.R. Raga, Y. Qi, Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations. J. Mater. Chem. A 3, 16097–16103 (2015). https://doi.org/10.1039/C5TA03577E
- P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, Y. Lu, Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. ACS Appl. Mater. Interfaces 7, 2708–2714 (2015). https://doi.org/10.1021/am5077588
- H.A. Abbas, R. Kottokkaran, B. Ganapathy, M. Samiee, L. Zhang, A. Kitahara, M. Noack, V.L. Dalal, High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Mater. 3 (2015). https://doi.org/10.1063/1.4905932
- D. Yang, Z. Yang, W. Qin, Y. Zhang, S. Liu, C. Li, Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition. J. Mater. Chem. A 3, 9401–9405 (2015). https://doi.org/10.1039/C5TA01824B
- G. Longo, L. Gil-Escrig, M.J. Degen, M. Sessolo, H.J. Bolink, Perovskite solar cells prepared by flash evaporation. Chem. Commun. 51, 7376–7378 (2015). https://doi.org/10.1039/C5CC01103E
- D. Liu, C. Liu, L. Wu, W. Li, F. Chen, B. Xiao, J. Zhang, L. Feng, Highly reproducible perovskite solar cells with excellent CH3NH3PbI3−xClx film morphology fabricated via high precursor concentration. RSC Adv. 6, 51279–51285 (2016). https://doi.org/10.1039/c6ra07359j
- J. Huang, K. Jiang, X. Cui, Q. Zhang, M. Gao, M. Su, L. Yang, Y. Song, Direct conversion of CH3NH3PbI3 from electrodeposited PbO for highly efficient planar perovskite solar cells. Sci. Rep. 5, 15889 (2015). https://doi.org/10.1038/srep15889
- X. Li, M. Ibrahim Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Han, M. Gratzel, Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703–711 (2015). https://doi.org/10.1038/nchem.2324
- Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou, D. Yu, Q. Zhao, A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7 (2016). https://doi.org/10.1038/ncomms10228
- J. He, C.F. Ng, K. Young Wong, W. Liu, T. Chen, Photostability and moisture stability of CH3NH3PbI3-based solar cells by ethyl cellulose. ChemPlusChem 81, 1292–1298 (2016). https://doi.org/10.1002/cplu.201600415
- Q. Jiang, D. Rebollar, J. Gong, E.L. Piacentino, C. Zheng, T. Xu, Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films. Angew. Chem. Int. Ed. 54, 7617–7620 (2015). https://doi.org/10.1002/anie.201503038
- Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H.L.W. Chan, F. Yan, Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun. 7 (2016). https://doi.org/10.1038/ncomms11105
- N.A. Manshor, Q. Wali, K.K. Wong, S.K. Muzakir, A. Fakharuddin, L. Schmidt-Mende, R. Jose, Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. Phys. Chem. Chem. Phys. 18, 21629–21639 (2016). https://doi.org/10.1039/C6CP03600G
- S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci. 6, 1443 (2013). https://doi.org/10.1039/C3EE24453A
- X. Wang, Z. Li, W. Xu, S.A. Kulkarni, S.K. Batabyal, S. Zhang, A. Cao, L.H. Wong, TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728–735 (2015). https://doi.org/10.1016/j.nanoen.2014.11.042
- B.J. Kim, D.H. Kim, Y.Y. Lee, H.W. Shin, G.S. Han, J.S. Hong, K. Mahmood, T.K. Ahn, Y.C. Joo, K.S. Hong, N.G. Park, S. Lee, H.S. Jung, Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8, 916–921 (2015). https://doi.org/10.1039/C4EE02441A
- K. Poorkazem, D. Liu, T.L. Kelly, Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell. J. Mater. Chem. A 3, 9241–9248 (2015). https://doi.org/10.1039/C5TA00084J
- S.S. Shin, W.S. Yang, J.H. Noh, J.H. Suk, N.J. Jeon, J.H. Park, J.S. Kim, W.M. Seong, S. Il Seok, High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C-supplementary infomation. Nat. Commun. 6, 7410 (2015). https://doi.org/10.1038/ncomms8410
- F. Di Giacomo, A. Fakharuddin, R. Jose, T.M. Brown, Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 9, 3007–3035 (2016). https://doi.org/10.1039/C6EE01137C
- F. Di Giacomo, V. Zardetto, A. D’Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W.M.M. Kessels, M. Creatore, T.M. Brown, Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv. Energy Mater. 5 (2015). https://doi.org/10.1002/aenm.201401808
- S. Ameen, M.S. Akhtar, H.K. Seo, M.K. Nazeeruddin, H.S. Shin, An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: optoelectronic transient and charge trapping studies. J. Phys. Chem. C 119, 10379–10390 (2015). https://doi.org/10.1021/acs.jpcc.5b00933
- S. Ameen, M.S. Akhtar, H.K. Seo, M.K. Nazeeruddin, H.S. Shin, Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer. Dalton Trans. 44, 6439–6448 (2015). https://doi.org/10.1039/c4dt03920c
- J. Troughton, D. Bryant, K. Wojciechowski, M.J. Carnie, H. Snaith, D.A. Worsley, T.M. Watson, Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. J. Mater. Chem. A 3, 9141–9145 (2015). https://doi.org/10.1039/C5TA01755F
- J.W. Jung, S.T. Williams, A.K.Y. Jen, Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. RSC Adv. 4, 62971–62977 (2014). https://doi.org/10.1039/C4RA13212B
- K.G. Lim, H.B. Kim, J. Jeong, H. Kim, J.Y. Kim, T.W. Lee, Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26, 6461–6466 (2014). https://doi.org/10.1002/adma.201401775
- M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D.H. Apaydin, H. Groiss, M.C. Scharber, M.S. White, N.S. Sariciftci, S. Bauer, Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015). https://doi.org/10.1038/nmat4388
- C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G. Mínguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M.I. Dar, M.K. Nazeeruddin, H.J. Bolink, Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 7, 994–998 (2014). https://doi.org/10.1039/C3EE43619E
- B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543–1547 (2015). https://doi.org/10.1021/acs.jpclett.5b00504
- Z. Liu, P. You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28, 151–157 (2016). https://doi.org/10.1016/j.nanoen.2016.08.038
- H.C. Weerasinghe, Y. Dkhissi, A.D. Scully, R.A. Caruso, Y.B. Cheng, Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy 18, 118–125 (2015). https://doi.org/10.1016/j.nanoen.2015.10.006
- J.H. Yun, I. Lee, T.S. Kim, M.J. Ko, J.Y. Kim, H.J. Son, Synergistic enhancement and mechanism study of mechanical and moisture stability of perovskite solar cells introducing polyethylene-imine into the CH3NH3PbI3/HTM interface. J. Mater. Chem. A 3, 22176–22182 (2015). https://doi.org/10.1039/c5ta06008g
- Y.H. Kim, H. Cho, J.H. Heo, T.S. Kim, N.S. Myoung, C.L. Lee, S.H. Im, T.W. Lee, Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015). https://doi.org/10.1002/adma.201403751
- A. Gheno, S. Vedraine, B. Ratier, J. Bouclé, π-Conjugated materials as the hole-transporting layer in perovskite solar cells. Metals (Basel) 6, 21–29 (2016). https://doi.org/10.3390/met6010021
- L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012). https://doi.org/10.1021/ja307789s
- Y. Jiang, C. Li, H. Liu, R. Qin, H. Ma, Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-molybdenum oxide composite films as hole conductors for efficient planar perovskite solar cells. J. Mater. Chem. A 4, 9958–9966 (2016). https://doi.org/10.1039/c6ta03658a
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). https://doi.org/10.1126/science.1243982
- Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 136, 11610–11613 (2014). https://doi.org/10.1021/ja506624n
- Y. Li, W. Yan, Y. Li, S. Wang, W. Wang, Z. Bian, L. Xiao, Q. Gong, Direct observation of long electron-hole diffusion distance in CH3NH3PbI3 perovskite thin film. Sci. Rep. 5 (2015). https://doi.org/10.1038/srep14485
- T.C. Jellicoe, J.M. Richter, H.F.J. Glass, M. Tabachnyk, R. Brady, S.E. Dutton, A. Rao, R.H. Friend, D.Credgington, N.C. Greenham, M.L. Böhm, Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138, 2941–2944 (2016). https://doi.org/10.1021/jacs.5b13470
- D. Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P.P. Boix, M. Gretzel, S. Mhaisalkar, C.Soci, N. Mathews, Lead-free MA2CuClxBr4−x hybrid perovskites. Inorg. Chem. 55, 1044–1052 (2016). https://doi.org/10.1021/acs.inorgchem.5b01896
- L. Ma, F. Hao, C.C. Stoumpos, B.T. Phelan, M.R. Wasielewski, M.G. Kanatzidis, Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138, 14750–14755 (2016). https://doi.org/10.1021/jacs.6b09257
- D. Wang, D. Dong, W. Chen, J. Hao, J. Qin, B. Xu, D. Wu, K. Wang, X. Sun, in Polarization fluorescence property observed in the CsPbX 3 perovskites quantum dots. Digest of Technical Papers-SID International Symposium (2016), pp. 1458–1461. http://dx.doi.org/10.1002/sdtp.10980
- T. Singh, A. Kulkarni, M. Ikegami, T. Miyasaka, Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3 BI2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces 8, 14542–14547 (2016). https://doi.org/10.1021/acsami.6b02843
- N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, H.J. Snaith, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014). https://doi.org/10.1039/c4ee01076k
- G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014). https://doi.org/10.1002/adfm.201302090
- B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, H.G. Boyen, Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 26, 2041–2046 (2014). https://doi.org/10.1002/adma.201304803
- D.B. Mitzi, C.A. Feild, Z. Schlesinger, R.B. Laibowitz, Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J. Solid State Chem. 114, 159–163 (1995). https://doi.org/10.1006/jssc.1995.1023
- Y. Takahashi, H. Hasegawa, Y. Takahashi, T. Inabe, Hall mobility in tin iodide perovskite CH3NH3SnI3: evidence for a doped semiconductor. J. Solid State Chem. 205, 39–43 (2013). https://doi.org/10.1016/j.jssc.2013.07.008
- B.W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M.J. Johansson, Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27, 6806–6813 (2015). https://doi.org/10.1002/adma.201501978
- R.E. Brandt, R.C. Kurchin, R.L.Z. Hoye, J.R. Poindexter, M.W.B. Wilson, S. Sulekar, F. Lenahan, P.X.T. Yen, V. Stevanović, J.C. Nino, M.G. Bawendi, T. Buonassisi, Investigation of bismuth triiodide (BiI3) for photovoltaic applications. J. Phys. Chem. Lett. 6, 4297–4302 (2015). https://doi.org/10.1021/acs.jpclett.5b02022
- P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, Y. Lu, Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J. Phys. Chem. Lett. 7, 3603–3608 (2016). https://doi.org/10.1021/acs.jpclett.6b01576
- F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82
- D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, E.M.J. Johansson, Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 4, 1532–1536 (2013). https://doi.org/10.1021/jz400638x
- T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S.G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3, 23829–23832 (2015). https://doi.org/10.1039/C5TA05741H
- F. Hao, C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks, R.P.H. Chang, M.G. Kanatzidis, Solvent-mediated crystallization Of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137, 11445–11452 (2015). https://doi.org/10.1021/jacs.5b06658
- X. Lu, Z. Zhao, K. Li, Z. Han, S. Wei, C. Guo, S. Zhou, Z. Wu, W. Guo, C.M.L. Wu, First-principles insight into the photoelectronic properties of Ge-based perovskites. RSC Adv. 6, 86976–86981 (2016). https://doi.org/10.1039/c6ra18534g
- M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S.G. Mhaisalkar, N. Mathews, Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122–7127 (2014). https://doi.org/10.1002/adma.201401991
- C. Gurnani, A.L. Hector, E. Jager, W. Levason, D. Pugh, G. Reid, Tin(II) fluoride vs. tin(II) chloride-a comparison of their coordination chemistry with neutral ligands. Dalton Trans. 42, 8364–8374 (2013). https://doi.org/10.1039/c3dt50743b
- H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013). https://doi.org/10.1021/jz4020162
- N.G. Park, Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013). https://doi.org/10.1021/jz400892a
- J. Bisquert, The swift surge of perovskite photovoltaics. J. Phys. Chem. Lett. 4, 2597–2598 (2013). https://doi.org/10.1021/jz401435d
- K.C. Gödel, Y.C. Choi, B. Roose, A. Sadhanala, H.J. Snaith, S. Il Seok, U. Steiner, S.K. Pathak, Efficient room temperature aqueous Sb2S3 synthesis for inorganic–organic sensitized solar cells with 5.1% efficiencies. Chem. Commun. 51, 8640–8643 (2015). https://doi.org/10.1039/C5CC01966D
- X.G. Zhao, J.H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.H. Wei, L. Zhang, Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139, 2630–2638 (2017). https://doi.org/10.1021/jacs.6b09645
- K. Eckhardt, V. Bon, J. Getzschmann, J. Grothe, F.M. Wisser, S. Kaskel, Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaics. Chem. Commun. 52, 3058–3060 (2016). https://doi.org/10.1039/C5CC10455F
- Y. Sun, C. Wang, D. Zhao, J. Yu, X. Yin, C.R. Grice, R.A. Awni, N. Shrestha, Y. Yu, L. Guan, R.J. Ellingson, W. Tang, Y. Yan, A new hole transport material for efficient perovskite solar cells with reduced device cost. Sol. RRL 1700175 (2017). https://doi.org/10.1002/solr.201700175
- Q. Zhou, T. Petit, H. Choi, B.J. Nelson, L. Zhang, Dumbbell fluidic tweezers for dynamical trapping and selective transport of microobjects. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201604571
- T. Li, Y. Hu, C.A. Morrison, W. Wu, H. Han, N. Robertson, Lead-free pseudo-three-dimensional organic–inorganic iodobismuthates for photovoltaic applications. Sustain. Energy Fuels 1, 308–316 (2017). https://doi.org/10.1039/C6SE00061D
- T. Yokoyama, D.H. Cao, C.C. Stoumpos, T. Bin Song, Y. Sato, S. Aramaki, M.G. Kanatzidis, Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas–solid reaction film fabrication process. J. Phys. Chem. Lett. 7, 776–782 (2016). https://doi.org/10.1021/acs.jpclett.6b00118
- P.C. Harikesh, H.K. Mulmudi, B. Ghosh, T.W. Goh, Y.T. Teng, K. Thirumal, M. Lockrey, K. Weber, T.M. Koh, S. Li, S. Mhaisalkar, N. Mathews, Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics. Chem. Mater. 28, 7496–7504 (2016). https://doi.org/10.1021/acs.chemmater.6b03310
- M. Saliba, M. Saliba, T. Matsui, K. Domanski, J. Seo, A. Ummadisingu, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 5557, 1–8 (2016). https://doi.org/10.1126/science.aah5557
- J.-C. Hebig, I. Kühn, J. Flohre, T. Kirchartz, Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett. 1, 309–314 (2016). https://doi.org/10.1021/acsenergylett.6b00170
- N.H. Tiep, Z. Ku, H.J. Fan, Recent advances in improving stability of PSCs. Adv. Energy Mater. 6, 1–19 (2016). https://doi.org/10.1002/aenm.201501420
References
G. Murugadoss, S. Tanaka, G. Mizuta, S. Kanaya, H. Nishino, T. Umeyama, H. Imahori, S. Ito, Light stability tests of methylammonium and formamidinium Pb-halide perovskites for solar cell applications. Jpn. J. Appl. Phys. 54, 8–12 (2015). https://doi.org/10.7567/JJAP.54.08KF08
C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). https://doi.org/10.1021/ic401215x
Y. Takahashi, R. Obara, Z.Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, K. Terakura, Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563–5568 (2011). https://doi.org/10.1039/C0DT01601B
J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013). https://doi.org/10.1021/nl400349b
T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong, P.P. Boix, A.C. Grimsdale, S.G. Mhaisalkar, N. Mathews, Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3, 14996–15000 (2015). https://doi.org/10.1039/C5TA00190K
S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014). https://doi.org/10.1039/C3EE43161D
S.D. Stranks, V.M. Burlakov, T. Leijtens, J.M. Ball, A. Goriely, H.J. Snaith, Recombination kinetics in organic–inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014). https://doi.org/10.1103/PhysRevApplied.2.034007
G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013). https://doi.org/10.1126/science.1243167
W.Q. Wu, F. Huang, D. Chen, Y.B. Cheng, R.A. Caruso, Thin films of dendritic anatase titania nanowires enable effective hole-blocking and efficient light-harvesting for high-performance mesoscopic perovskite solar cells. Adv. Funct. Mater. 25, 3264–3272 (2015). https://doi.org/10.1002/adfm.201500616
J. Sachs, M. Kmec, S. Wöckel, P. Peyerl, R. Zetik, Combined frequency and time domain moisture sensing by an ultra wideband IQ-M-Sequence approach, in ISEMA, Electromagnetic Wave Interaction with Water and Moist Substances (2005), pp. 1–8
C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999). https://doi.org/10.1126/science.286.5441.945
F. Zuo, S.T. Williams, P.W. Liang, C.C. Chueh, C.Y. Liao, A.K.Y. Jen, Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater. 26, 6454–6460 (2014). https://doi.org/10.1002/adma.201401641
H. Kim, S.P. Surwade, A. Powell, C. O’Donnell, H. Liu, Stability of DNA origami nanostructure under diverse chemical environments. Chem. Mater. 26, 5265–5273 (2014). https://doi.org/10.1021/cm5019663
A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M.Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011). https://doi.org/10.1126/science.1209688
H. Shen, T. Duong, J. Peng, D. Jacobs, N. Wu, J. Gong, Y. Wu, S.K. Karuturi, X. Fu, K. Weber, X. Xiao, T.P. White, K. Catchpole, Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy Environ. Sci. 11, 394–406 (2018). https://doi.org/10.1039/C7EE02627G
K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen, 23.6%-efficiency monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009–17013 (2017). https://doi.org/10.1038/nenergy.2017.9
C.C. Vidyasagar, Y.A. Naik, T.G. Venkatesh, R. Viswanatha, Solid-state synthesis and effect of temperature on optical properties of Cu–ZnO, Cu–CdO and CuO nanoparticles. Powder Technol. 214, 337–343 (2011). https://doi.org/10.1016/j.powtec.2011.08.025
T. Miyasaka, Y. Kijitori, T.N. Murakami, M. Kimura, S. Uegusa, Efficient nonsintering type dye-sensitized photocells based on electrophoretically deposited TiO2 layers. Chem. Lett. 31, 1250–1251 (2002). https://doi.org/10.1246/cl.2002.1250
H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2 (2012). https://doi.org/10.1038/srep00591
F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, Y. Zhou, A.Gray-Weale, J. Etheridge, C.R. McNeill, R.A. Caruso, U. Bach, L. Spiccia, Y.B. Cheng, Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy 10, 10–18 (2014). https://doi.org/10.1016/j.nanoen.2014.08.015
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S. Il Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014
W. Nie, H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015). https://doi.org/10.1126/science.aaa0472
Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014). https://doi.org/10.1002/adma.201401685
F. Hao, C.C. Stoumpos, Z. Liu, R.P.H. Chang, M.G. Kanatzidis, Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 136, 16411–16419 (2014). https://doi.org/10.1021/ja509245x
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
P.-S. Shen, C.-M. Tseng, T.-C. Kuo, C.-K. Shih, M.-H. Li, P. Chen, Microwave-assisted synthesis of titanium dioxide nanocrystalline for efficient dye-sensitized and perovskite solar cells. Sol. Energy 120, 345–356 (2015). https://doi.org/10.1016/j.solener.2015.07.036
Q. Cao, S. Yang, Q. Gao, L. Lei, Y. Yu, J. Shao, Y. Liu, Fast and controllable crystallization of perovskite films by microwave irradiation process. ACS Appl. Mater. Interfaces 8, 7854–7861 (2016). https://doi.org/10.1021/acsami.6b01558
J.W. Lee, D.J. Seol, A.N. Cho, N.G. Park, High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26, 4991–4998 (2014). https://doi.org/10.1002/adma.201401137
D. Prochowicz, M. Franckevičius, A.M. Cieślak, S.M. Zakeeruddin, M. Grätzel, J. Lewiński, Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency. J. Mater. Chem. A 3, 20772–20777 (2015). https://doi.org/10.1039/C5TA04904K
M.A. Islam, J.M. Rondinelli, J.E. Spanier, Normal mode determination of perovskite crystal structures with octahedral rotations: theory and applications. J. Phys. Condens. Matter 25 (2013). https://doi.org/10.1088/0953-8984/25/17/175902
H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014). https://doi.org/10.1126/science.1254050
S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S. Il Seok, Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2–pyrazine complex. J. Am. Chem. Soc. 138, 3974–3977 (2016). https://doi.org/10.1021/jacs.6b00142
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
C.C. Vidyasagar, Y. Arthoba Naik, T.G. Venkatesha, R. Viswanatha, Solid-state synthesis and effect of temperature on optical properties of CuO nanoparticles. Nano-Micro Lett. 4, 73–77 (2012). https://doi.org/10.3786/nml.v4i2.p73-77
M.T. Weller, O.J. Weber, J.M. Frost, A. Walsh, Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015). https://doi.org/10.1021/acs.jpclett.5b01432
H.S. Ko, J.W. Lee, N.G. Park, 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J. Mater. Chem. A 3, 8808–8815 (2015). https://doi.org/10.1039/C5TA00658A
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). https://doi.org/10.1038/nature14133
M.I. Hoffert, K. Caldeira, A.K. Jain, E.F. Haites, L.D.D. Harvey, S.D. Potter, M.E. Schlesinger, S.H. Schneider, R.G. Watts, T.M.L. Wigley, D.J. Wuebbles, Energy implications of future stabilization of atmospheric CO2 content. Nature 395, 881–884 (1998). https://doi.org/10.1038/27638
J.R. Petit, J. Jouzel, D. Raynaud, N.I. Barkov, J.M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotiyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, M. Stievenard, Climate and atmospheric history of the past 420,000 years from the Vostok ice core Antarctica. Nature 399, 429–436 (1999). https://doi.org/10.1038/20859
M. Maslin, Global Warming: A Very Short Introduction (Oxford University Press, New York, 2008), pp. 150–176. http://www.ucl.ac.uk/news/news-articles/0811/08112702
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
R. Zhang, H. Alamdari, S. Kaliaguine, Fe-based perovskites substituted by copper and palladium for NO + CO reaction. J. Catal. 242, 241–253 (2006). https://doi.org/10.1016/j.jcat.2006.05.033
C.C. Vidyasagar, H.B. Muralidhara, Y.A. Naik, G. Hosamani, M.S. Ilango, Effect of annealing on structural, crystallinity and optical properties of anatase Cr–TiO2 nanoparticles. Energy Environ. Focus 4, 54–63 (2015). https://doi.org/10.1166/eef.2015.1156
C.C. Vidyasagar, Y.A. Naik, T.G. Venkatesha, P. Manjunatha, Sol–gel synthesis using glacial acetic acid and optical properties of anatase Cu–TiO2 nanoparticles. J. Nanoeng. Nanomanufact. 2, 91–98 (2012). https://doi.org/10.1166/jnan.2012.1058
A. Perveen, M. Rahman, Y.S. Wong, Modeling and simulation of cutting forces generated during vertical micro-grinding. Int. J. Adv. Manuf. Technol. 71, 1539–1548 (2014). https://doi.org/10.1007/s00170-013-5572-y
M.L. Zhang, K.Q. Peng, X. Fan, J.S. Jie, R.Q. Zhang, S.T. Lee, N.B. Wong, Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 112, 4444–4450 (2008). https://doi.org/10.1021/jp077053o
A. Goetzberger, C. Hebling, H.-W. Schock, Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep. 40, 1–46 (2003). https://doi.org/10.1016/S0927-796X(02)00092-X
F. Bella, C. Gerbaldi, C. Barolo, M. Gratzel, Aqueous dye-sensitized solar cells. Chem. Soc. Rev. 44, 3431–3473 (2015). https://doi.org/10.1039/C4CS00456F
Y. Tachibana, H.Y. Akiyama, Y. Ohtsuka, T. Torimoto, S. Kuwabata, CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells. Chem. Lett. 36, 88–89 (2007). https://doi.org/10.1246/cl.2007.88
I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006). https://doi.org/10.1021/ja056494n
O. Niitsoo, S.K. Sarkar, C. Pejoux, S. Rühle, D. Cahen, G. Hodes, Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. J. Photochem. Photobiol. A Chem. 181, 306–313 (2006). https://doi.org/10.1016/j.jphotochem.2005.12.012
L.J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 91, 23116 (2007). https://doi.org/10.1063/1.2757130
R. Plass, S. Pelet, J. Krueger, M. Grätzel, U. Bach, Quantum dot sensitization of organic–inorganic hybrid solar cells. J. Phys. Chem. B 106, 7578–7580 (2002). https://doi.org/10.1021/jp020453l
P. Hoyer, R. Könenkamp, Photoconduction in porous TiO2 sensitized by PbS quantum dots. Appl. Phys. Lett. 66, 349–351 (1995). https://doi.org/10.1063/1.114209
A. Zaban, O. Micic, B.A. Gregg, A.J. Nozik, Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14, 3153–3156 (1998). https://doi.org/10.1021/la9713863
P. Yu, K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank, A.J. Nozik, Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J. Phys. Chem. B 110, 25451–25454 (2006). https://doi.org/10.1021/jp064817b
J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991–1993 (1998). https://doi.org/10.1063/1.122345
C. Zuo, L. Ding, Lead-free perovskite materials (NH4)3Sb2Ix Br9-x. Angew. Chem. 129, 6628–6632 (2017). https://doi.org/10.1002/ange.201702265
U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998). https://doi.org/10.1038/26936
B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0
G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-EREPORTS polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Source Sci. New Ser. 270, 1789–1791 (1995). https://doi.org/10.1126/science.270.5243.1789
G. Li, T. Zhang, N. Guo, F. Xu, X. Qian, Y. Zhao, Ion-exchange-induced 2d-3d conversion of HMA1−xFAxPbI3Cl perovskite into a high-quality MA1−xFAxPbI3 perovskite. Angew. Chem. Int. Ed. 55, 13460–13464 (2016). https://doi.org/10.1002/anie.201606801
T. Zhang, M. Ibrahim Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3, e1700841 (2017). https://doi.org/10.1126/sciadv.1700841
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
J.H. Kim, Z. Lee, Silicene on other two-dimensional materials: formation of heterostructure. Appl. Microsc. 44, 123–132 (2014). https://doi.org/10.9729/AM.2014.44.4.123
N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, N.G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015). https://doi.org/10.1021/jacs.5b04930
Y. Chen, J. Peng, D. Su, X. Chen, Z. Liang, Efficient and balanced charge transport revealed in planar perovskite solar cells. ACS Appl. Mater. Interfaces 7, 4471–4475 (2015). https://doi.org/10.1021/acsami.5b00077
J.-W. Lee, H.-S. Kim, N.-G. Park, Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016). https://doi.org/10.1021/acs.accounts.5b00440
C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, H.-W. Lin, Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv. Mater. 26, 6647–6652 (2014). https://doi.org/10.1002/adma.201402461
J. Teuscher, A. Ulianov, O. Müntener, M. Grätzel, N. Tétreault, Control and study of the stoichiometry in evaporated perovskite solar cells. ChemSusChem 8, 3847–3852 (2015). https://doi.org/10.1002/cssc.201500972
K.C. Patil, S.T. Aruna, T. Mimani, Combustion synthesis: an update. Curr. Opin. Solid State Mater. Sci. 6, 507–512 (2002). https://doi.org/10.1016/S1359-0286(02)00123-7
A.R. West, Solid state chemistry. Solid State Commun. 453 (2013). https://doi.org/10.1007/978-1-4899-6830-2
S.E. Dann, D.B. Currie, M.T. Weller, M.F. Thomas, A.D. Al-Rawwas, The effect of oxygen stoichiometry on phase relations and structure in the system La1−xSrxFeO3−δ (0 ≤ x ≤ 1, 0 ≤ δ ≤ 0.5). J. Solid State Chem. 109, 134–144 (1994). https://doi.org/10.1006/jssc.1994.1083
A. Ecija, K. Vidal, A. Larrañaga, A. Martínez-Amesti, L. Ortega-San-Martín, M.I. Arriortua, Characterization of Ln0.5M0.5FeO3−δ (Ln = La, Nd, Sm; M = Ba, Sr) perovskites as SOFC cathodes. Solid State Ion. 201, 35–41 (2011). https://doi.org/10.1016/j.ssi.2011.07.019
N. Yosuke, T. Masumi, N. Jun, Nomenclature of [60] fullerene derivatives by edge labeling. Chem. Lett. 24, 703–704 (1995). https://doi.org/10.1246/cl.1995.703
D.W. Johnson Jr, P.K. Gallagher, F. Schrey, W.W. Rhodes, Preparation of high surface area substituted LaMnO3 catalysts. United States Web. (1976)
C. Matei, D. Berger, P. Marote, S. Stoleriu, J.P. Deloume, Lanthanum-based perovskites obtained in molten nitrates or nitrites. Prog. Solid State Chem. 35, 203–209 (2007). https://doi.org/10.1016/j.progsolidstchem.2007.01.002
J.G. McCarty, H. Wise, Perovskite catalysts for methane combustion. Catal. Today 8, 231–248 (2007). https://doi.org/10.1016/0920-5861(90)87020-4
D. Berger, C. Matei, F. Papa, D. Macovei, V. Fruth, J.P. Deloume, Pure and doped lanthanum manganites obtained by combustion method. J. Eur. Ceram. Soc. 27, 4395–4398 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.164
M. Niederberger, N. Pinna, J. Polleux, M. Antonietti, A general soft-chemistry route to perovskites and related materials: synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles. Angew. Chem. Int. Ed. 43, 2270–2273 (2004). https://doi.org/10.1002/anie.200353300
N.P. Bansal, Z. Zhong, Combustion synthesis of Sm0.5Sr0.5CoO3−X and La0.6Sr0.4CoO3−X nanopowders for solid oxide fuel cell cathodes. J. Power Sources 158, 148–153 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.057
J. Blasco, B. Aznar, J. García, G. Subías, J. Herrero-Martín, J. Stankiewicz, Charge disproportionation in La1−xSrxFeO3 probed by diffraction and spectroscopic experiments. Phys. Rev. B Condens. Matter Mater. Phys. 77 (2008). https://doi.org/10.1103/PhysRevB.77.054107
O. Carp, L. Patron, A. Ianculescu, J. Pasuk, R. Olar, New synthesis routes for obtaining dysprosium manganese perovskites. J. Alloys Compd. 351, 314–318 (2003). https://doi.org/10.1016/S0925-8388(02)01079-4
B. Liu, Y. Zhang, Ba0.5Sr0.5Co0.8Fe0.2O3 nanopowders prepared by glycine-nitrate process for solid oxide fuel cell cathode. J. Alloys Compd. 453, 418–422 (2008). https://doi.org/10.1016/j.jallcom.2006.11.142
R. Rosa, P. Veronesi, C. Leonelli, A review on combustion synthesis intensification by means of microwave energy. Chem. Eng. Process. Process Intensif. 71, 2–18 (2013). https://doi.org/10.1016/j.cep.2013.02.007
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604
L. Chen, F. Tang, Y. Wang, S. Gao, W. Cao, J. Cai, L. Chen, Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry. Nano Res. 8, 263–270 (2015). https://doi.org/10.1007/s12274-014-0662-1
A. Poglitsch, D. Weber, Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987). https://doi.org/10.1063/1.453467
H.R. Xia, W.T. Sun, L.M. Peng, Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries. Chem. Commun. 51, 13787–13790 (2015). https://doi.org/10.1039/C5CC05053G
X. Dong, X. Fang, M. Lv, B. Lin, S. Zhang, J. Ding, N. Yuan, Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J. Mater. Chem. A 3, 5360–5367 (2015). https://doi.org/10.1039/C4TA06128D
Y.S. Kwon, J. Lim, H.J. Yun, Y.H. Kim, T. Park, A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energy Environ. Sci. 7, 1454–1460 (2014). https://doi.org/10.1039/C3EE44174A
S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014). https://doi.org/10.1021/nl501982b
Y. Mao, S. Banerjee, S.S. Wong, Hydrothermal synthesis of perovskite nanotubes. Chem. Commun. 408–409 (2003). https://doi.org/10.1039/B210633G
D.R. Modeshia, R.I. Walton, Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 39, 4303–4325 (2010). https://doi.org/10.1039/B904702F
C.N.R. Rao, Novel materials, materials design and synthetic strategies: recent advances and new directions. J. Mater. Chem. 9, 1–14 (1999). https://doi.org/10.1039/A804467H
H. Tsubornura, H. Kobayashi, Solar cells. Crit. Rev. Solid State Mater. Sci. 18, 261–326 (1993). https://doi.org/10.1080/10408439308242562
L.N. Demianets, A.N. Lobachev, Hydrothermal synthesis of crystals. Krist. Und Tech. 14, 509–525 (1979). https://doi.org/10.1002/crat.19790140503
K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology (Noyes Publications, Park Ridge, 2001). https://doi.org/10.1016/C2009-0-20354-0
G. Demazeau, Solvothermal processes: a route to the stabilization of new material. J. Mater. Chem. 9, 15–18 (1999). https://doi.org/10.1039/A805536J
R.E. Riman, W.L. Suchanek, M.M. Lencka, Hydrothermal crystallization of ceramics. Ann. Chim. Sci. Mater. 27, 15–36 (2002). https://doi.org/10.1016/S0151-9107(02)90012-7
R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 31, 230–238 (2002). https://doi.org/10.1039/B105762F
X. Wei, G. Xu, Z. Ren, C. Xu, G. Shen, G. Han, PVA-assisted hydrothermal synthesis of SrTiO3 nanoparticles with enhanced photocatalytic activity for degradation of RhB. J. Am. Ceram. Soc. 91, 3795–3799 (2008). https://doi.org/10.1111/j.1551-2916.2008.02716.x
Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, Formation of single-crystal SrTiO3 dendritic nanostructures via a simple hydrothermal method. J. Cryst. Growth 311, 2519–2523 (2009). https://doi.org/10.1016/j.jcrysgro.2009.01.103
X. Han, D. Zhang, Z. Zhong, F. Yang, N. Wei, K. Zheng, Z. Li, Y. Gao, Theoretical design and experimental study of hydrothermal synthesis of KNbO3. J. Phys. Chem. Solids 69, 193–198 (2008). https://doi.org/10.1016/j.jpcs.2007.08.053
L.S. Schadler, Polymer-based and polymer-filled nanocomposites. J. Am. Chem. Soc. 136, 850–853 (2014). (2003). https://doi.org/10.1002/3527602127.ch2
D.M. Jang, K. Park, D.H. Kim, J. Park, F. Shojaei, H.S. Kang, J.P. Ahn, J.W. Lee, J.K. Song, Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 15, 5191–5199 (2015). https://doi.org/10.1021/acs.nanolett.5b01430
V. D’Innocenzo, A.R. Srimath Kandada, M. De Bastiani, M. Gandini, A. Petrozza, Tuning the light emission properties by band gap engineering in hybrid lead-halide perovskite. J. Am. Chem. Soc. 136, 17730–17733 (2014). https://doi.org/10.1021/ja511198f
Y. Kesari, A. Athawale, Ultrasound assisted bulk synthesis of CH3NH3PbI3 perovskite at room temperature. Mater. Lett. 159, 87–89 (2015). https://doi.org/10.1016/j.matlet.2015.05.176
V. Bhooshan Kumar, L. Gouda, Z. Porat, A. Gedanken, Sonochemical synthesis of CH3NH3PbI3 perovskite ultrafine nanocrystal sensitizers for solar energy applications. Ultrason Sonochem. 32, 54–59 (2016). https://doi.org/10.1016/j.ultsonch.2016.02.012
B. Yang, O. Dyck, J. Poplawsky, J. Keum, A. Puretzky, S. Das, I. Ivanov, C. Rouleau, G. Duscher, D. Geohegan, K. Xiao, Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions. J. Am. Chem. Soc. 137, 9210–9213 (2015). https://doi.org/10.1021/jacs.5b03144
J.A. Christians, P.A. Miranda Herrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015). https://doi.org/10.1021/ja511132a
Y.C. Zheng, S. Yang, X. Chen, Y. Chen, Y. Hou, H.G. Yang, Thermal-induced Volmer–Weber growth behavior for planar heterojunction perovskites solar cells. Chem. Mater. 27, 5116–5121 (2015). https://doi.org/10.1021/acs.chemmater.5b01924
J.S. Manser, M.I. Saidaminov, J.A. Christians, O.M. Bakr, P.V. Kamat, Making and breaking of lead halide perovskites. Acc. Chem. Res. 49, 330–338 (2016). https://doi.org/10.1021/acs.accounts.5b00455
Y. Guo, K. Shoyama, W. Sato, Y. Matsuo, K. Inoue, K. Harano, C. Liu, H. Tanaka, E. Nakamura, Chemical pathways connecting lead(II) iodide and perovskite via polymeric plumbate(II) fiber. J. Am. Chem. Soc. 137, 15907–15914 (2015). https://doi.org/10.1021/jacs.5b10599
I. Bilecka, M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2, 1358–1374 (2010). https://doi.org/10.1039/B9NR00377K
J. Park, K. An, Y. Hwang, J.E.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004). https://doi.org/10.1038/nmat1251
S. Polarz, Shape matters: anisotropy of the morphology of inorganic colloidal particles-synthesis and function. Adv. Funct. Mater. 21, 3214–3230 (2011). https://doi.org/10.1002/adfm.201101205
S. Uchida, M. Tomiha, H. Takizawa, M. Kawaraya, Flexible dye-sensitized solar cells by 28 GHz microwave irradiation. J. Photochem. Photobiol. A Chem. 164, 93–96 (2004). https://doi.org/10.1016/j.jphotochem.2004.01.026
J. Xie, Y. Liu, J. Liu, L. Lei, Q. Gao, J. Li, S. Yang, Study on the correlations between the structure and photoelectric properties of CH3NH3PbI3 perovskite light-harvesting material. J. Power Sources 285, 349–353 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.114
C. Roldán-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel, M.K. Nazeeruddin, High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy Environ. Sci. 8, 3550–3556 (2015). https://doi.org/10.1039/C5EE02555A
A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014). https://doi.org/10.1002/adfm.201304022
N.S. Sharif, J.J. Mohamed, H.S. Derita, Z.A. Ahmad, M. Zulkifly Abdullah, H. Mohamad, W.A.W. Yusoff, The effect of sintering conditions on the microstructure and electrical properties of Pb(Zr0.52Ti0.48)O3 ceramic. J. Mech. Eng. Sci. 6, 901–906 (2014). https://doi.org/10.15282/jmes.6.2014.16.0086
S. Kaliaguine, A. Van Neste, V. Szabo, J.E. Gallot, M. Bassir, R. Muzychuk, Perovskite-type oxides synthesized by reactive grinding. Part I. Preparation and characterization. Appl. Catal. A Gen. 209, 345–358 (2001). https://doi.org/10.1016/S0926-860X(00)00779-1
A. Glisenti, M. Pacella, M. Guiotto, M.M. Natile, P. Canu, Largely Cu-doped LaCo1−xCuxO3 perovskites for TWC: toward new PGM-free catalysts. Appl. Catal. B Environ. 180, 94–105 (2016). https://doi.org/10.1016/j.apcatb.2015.06.017
A.R.J. Kucernak, V.N. Naranammalpuram Sundaram, Nickel phosphide: the effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium. J. Mater. Chem. A 2, 17435–17445 (2014). https://doi.org/10.1039/C4TA03468F
L.B. Kong, J. Ma, H. Huang, R.F. Zhang, Crystallization of magnesium niobate from mechanochemically derived amorphous phase. J. Alloys Compd. 340, L1–L4 (2002). https://doi.org/10.1016/S0925-8388(02)00003-8
D. Grossin, S. Rollin-Martinet, C. Estournès, F. Rossignol, E. Champion, C. Combes, C. Rey, C. Geoffroy, C. Drouet, Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects. Acta Biomater. 6, 577–585 (2010). https://doi.org/10.1016/j.actbio.2009.08.021
A.M. Glazer, The classification of tilted octahedra in perovskites. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 28, 3384–3392 (1972). https://doi.org/10.1107/S0567740872007976
M. Kis-Varga, D.L. Beke, Phase transitions in Cu-Sb systems induced by ball milling. Mater. Sci. Forum. 225–227 (1996). http://dx.doi.org/10.4028/www.scientific.net/JMNM.15-16.733
T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628 (2013). https://doi.org/10.1039/C3TA10518K
K. Ganesan, L. Ratke, Facile preparation of monolithic k-carrageenan aerogels. Soft Matter 10, 3218–3224 (2014). https://doi.org/10.1039/c3sm52862f
H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.W. Wang, K.Wojciechowski, W. Zhang, Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014). https://doi.org/10.1021/jz500113x
W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015). https://doi.org/10.1039/C4EE03664F
D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K.Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). https://doi.org/10.1126/science.aaa2725
K.V. Manukyan, A.V. Yeghishyan, D.O. Moskovskikh, J. Kapaldo, A. Mintairov, A.S. Mukasyan, Mechanochemical synthesis of methylammonium lead iodide perovskite. J. Mater. Sci. 51, 9123–9130 (2016). https://doi.org/10.1007/s10853-016-0165-4
D. Prochowicz, K. Sokołowski, I. Justyniak, A. Kornowicz, D. Fairen-Jimenez, T. Friščić, J. Lewiński, A mechanochemical strategy for IRMOF assembly based on pre-designed oxo-zinc precursors. Chem. Commun. 51, 4032–4035 (2015). https://doi.org/10.1039/C4CC09917F
Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao et al., Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015). https://doi.org/10.1126/science.aaa5760
J. Feng, Mechanical properties of hybrid organic–inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801 (2014). https://doi.org/10.1063/1.4885256
F. Caruso, M. Komiyama, T. Takeuchi, T. Mukawa, H. Asanuma, G. Decher, J.B. Schlenoff, W. Krenkel, P. Gomez-Romero, C. Sanchez, M. Kohler, W. Fritzsche, Nanocomp. Sci. Technol. Nanocom. (2003). https://doi.org/10.1177/0954008312454310
Y. Dang, D. Ju, L. Wang, X. Tao, Recent progress in the synthesis of hybrid halide perovskite single crystals. CrystEngComm 18, 4476–4484 (2016). https://doi.org/10.1039/c6ce00655h
G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque, B. Murali, E. Alarousu, O.F. Mohammed, T. Wu, O.M. Bakr, CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 6, 3781–3786 (2015). https://doi.org/10.1021/acs.jpclett.5b01666
M. Becker, T. Klüner, M. Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Trans. 46, 3500–3509 (2017). https://doi.org/10.1039/c6dt04796c
L.-M. Chao, T.-Y. Tai, Y.-Y. Chen, P.-Y. Lin, Y.-S. Fu, Fabrication of CH3NH3PbI3/PVP composite fibers via electrospinning and deposition. Materials (Basel) 8, 5467–5478 (2015). https://doi.org/10.3390/ma8085256
M. Chen, H. Qu, J. Zhu, Z. Luo, A. Khasanov, A.S. Kucknoor, N. Haldolaarachchige, D.P. Young, S. Wei, Z.Guo, Magnetic electrospun fluorescent polyvinylpyrrolidone nanocomposite fibers. Polymer (United Kingdom) 53, 4501–4511 (2012). https://doi.org/10.1016/j.polymer.2012.07.046
S.H. Tan, R. Inai, M. Kotaki, S. Ramakrishna, Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer (Guildf) 46, 6128–6134 (2005). https://doi.org/10.1016/j.polymer.2005.05.068
E. Edri, S. Kirmayer, D. Cahen, G. Hodes, High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. J. Phys. Chem. Lett. 4, 897–902 (2013). https://doi.org/10.1021/jz400348q
L. Wang, G. Fan, X. Xu, D. Chen, L. Wang, W. Shi, P. Cheng, Detection of polychlorinated benzenes (persistent organic pollutants) by a luminescent sensor based on a lanthanide metal-organic framework. J. Mater. Chem. A 5, 5541–5549 (2017). https://doi.org/10.1039/c7ta00256d
Y. Zhao, K. Zhu, Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia. Chem. Commun. 50, 1605–1607 (2014). https://doi.org/10.1039/c3cc48522f
L.K. Ono, M.R. Leyden, S. Wang, Y. Qi, Organometal halide perovskite thin films and solar cells by vapor deposition. J. Mater. Chem. A 4, 6693–6713 (2016). https://doi.org/10.1039/C5TA08963H
O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, H.J. Bolink, Perovskite solar cells employing organic charge-transport layers. Nat. Photonics. 8, 128–132 (2014). https://doi.org/10.1038/nphoton.2013.341
M. Sessolo, C. Momblona, L. Gil-Escrig, H.J. Bolink, Photovoltaic devices employing vacuum-deposited perovskite layers. MRS Bull. 40, 660–666 (2015). https://doi.org/10.1557/mrs.2015.170
T.W. Ng, C.Y. Chan, M.F. Lo, Z.Q. Guan, C.S. Lee, Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties. J. Mater. Chem. A 3, 9081–9085 (2015). https://doi.org/10.1039/C4TA05819D
H. Ishihara, W. Chen, Y.C. Chen, S. Sarang, N. De Marco, O. Lin, S. Ghosh, V. Tung, Electrohydrodynamically assisted deposition of efficient perovskite photovoltaics. Adv. Mater. Interfaces 3 (2016). https://doi.org/10.1002/admi.201500762
D. Zhao, W. Ke, C.R. Grice, A.J. Cimaroli, X. Tan, M. Yang, R.W. Collins, H. Zhang, K. Zhu, Y. Yan, Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers. Nano Energy 19, 88–97 (2016). https://doi.org/10.1016/j.nanoen.2015.11.008
Y. Peng, G. Jing, T. Cui, High-performance perovskite solar cells fabricated by vapor deposition with optimized PbI2 precursor films. RSC Adv. 5, 95847–95853 (2015). https://doi.org/10.1039/C5RA19343E
W. Zhu, C. Bao, B. Lv, F. Li, Y. Yi, Y. Wang, J. Yang, X. Wang, T. Yu, Z. Zou, Dramatically promoted crystallization control of organolead triiodide perovskite film by a homogeneous cap for high efficiency planar-heterojunction solar cells. J. Mater. Chem. A 4, 12535–12542 (2016). https://doi.org/10.1039/C6TA04332A
Y. Li, X. Xu, C. Wang, C. Wang, F. Xie, J. Yang, Y. Gao, Degradation by exposure of coevaporated CH3NH3PbI3 thin films. J. Phys. Chem. C 119, 23996–24002 (2015). https://doi.org/10.1021/acs.jpcc.5b07676
Q. Lin, A. Armin, P.L. Burn, P. Meredith, Filterless narrowband visible photodetectors. Nat. Photonics 9, 687–694 (2015). https://doi.org/10.1038/nphoton.2015.175
P. Fan, D. Gu, G.-X. Liang, J.-T. Luo, J.-L. Chen, Z.-H. Zheng, D.-P. Zhang, High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci. Rep. 6, 29910 (2016). https://doi.org/10.1038/srep29910
M.R. Leyden, L.K. Ono, S.R. Raga, Y. Kato, S. Wang, Y. Qi, High performance perovskite solar cells by hybrid chemical vapor deposition. J. Mater. Chem. A 2, 18742–18745 (2014). https://doi.org/10.1039/C4TA04385E
J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995). https://doi.org/10.1038/376498a0
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 40). Prog. Photovolt. Res. Appl. 20, 606–614 (2012). https://doi.org/10.1002/pip.2267
Q. Lin, A. Armin, R. Chandra, R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2014). https://doi.org/10.1038/nphoton.2014.284
B.S. Kim, T.M. Kim, M.S. Choi, H.S. Shim, J.J. Kim, Fully vacuum-processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers. Org. Electron. Phys. Mater. Appl. 17, 102–106 (2015). https://doi.org/10.1016/j.orgel.2014.12.002
F. Yang, M. Shtein, S.R. Forrest, Morphology control and material mixing by high-temperature organic vapor-phase deposition and its application to thin-film solar cells. J. Appl. Phys. 98 (2005). https://doi.org/10.1063/1.1941480
M.R. Leyden, M.V. Lee, S.R. Raga, Y. Qi, Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations. J. Mater. Chem. A 3, 16097–16103 (2015). https://doi.org/10.1039/C5TA03577E
P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, Y. Lu, Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. ACS Appl. Mater. Interfaces 7, 2708–2714 (2015). https://doi.org/10.1021/am5077588
H.A. Abbas, R. Kottokkaran, B. Ganapathy, M. Samiee, L. Zhang, A. Kitahara, M. Noack, V.L. Dalal, High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Mater. 3 (2015). https://doi.org/10.1063/1.4905932
D. Yang, Z. Yang, W. Qin, Y. Zhang, S. Liu, C. Li, Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition. J. Mater. Chem. A 3, 9401–9405 (2015). https://doi.org/10.1039/C5TA01824B
G. Longo, L. Gil-Escrig, M.J. Degen, M. Sessolo, H.J. Bolink, Perovskite solar cells prepared by flash evaporation. Chem. Commun. 51, 7376–7378 (2015). https://doi.org/10.1039/C5CC01103E
D. Liu, C. Liu, L. Wu, W. Li, F. Chen, B. Xiao, J. Zhang, L. Feng, Highly reproducible perovskite solar cells with excellent CH3NH3PbI3−xClx film morphology fabricated via high precursor concentration. RSC Adv. 6, 51279–51285 (2016). https://doi.org/10.1039/c6ra07359j
J. Huang, K. Jiang, X. Cui, Q. Zhang, M. Gao, M. Su, L. Yang, Y. Song, Direct conversion of CH3NH3PbI3 from electrodeposited PbO for highly efficient planar perovskite solar cells. Sci. Rep. 5, 15889 (2015). https://doi.org/10.1038/srep15889
X. Li, M. Ibrahim Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Han, M. Gratzel, Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703–711 (2015). https://doi.org/10.1038/nchem.2324
Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou, D. Yu, Q. Zhao, A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7 (2016). https://doi.org/10.1038/ncomms10228
J. He, C.F. Ng, K. Young Wong, W. Liu, T. Chen, Photostability and moisture stability of CH3NH3PbI3-based solar cells by ethyl cellulose. ChemPlusChem 81, 1292–1298 (2016). https://doi.org/10.1002/cplu.201600415
Q. Jiang, D. Rebollar, J. Gong, E.L. Piacentino, C. Zheng, T. Xu, Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films. Angew. Chem. Int. Ed. 54, 7617–7620 (2015). https://doi.org/10.1002/anie.201503038
Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H.L.W. Chan, F. Yan, Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun. 7 (2016). https://doi.org/10.1038/ncomms11105
N.A. Manshor, Q. Wali, K.K. Wong, S.K. Muzakir, A. Fakharuddin, L. Schmidt-Mende, R. Jose, Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. Phys. Chem. Chem. Phys. 18, 21629–21639 (2016). https://doi.org/10.1039/C6CP03600G
S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci. 6, 1443 (2013). https://doi.org/10.1039/C3EE24453A
X. Wang, Z. Li, W. Xu, S.A. Kulkarni, S.K. Batabyal, S. Zhang, A. Cao, L.H. Wong, TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728–735 (2015). https://doi.org/10.1016/j.nanoen.2014.11.042
B.J. Kim, D.H. Kim, Y.Y. Lee, H.W. Shin, G.S. Han, J.S. Hong, K. Mahmood, T.K. Ahn, Y.C. Joo, K.S. Hong, N.G. Park, S. Lee, H.S. Jung, Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8, 916–921 (2015). https://doi.org/10.1039/C4EE02441A
K. Poorkazem, D. Liu, T.L. Kelly, Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell. J. Mater. Chem. A 3, 9241–9248 (2015). https://doi.org/10.1039/C5TA00084J
S.S. Shin, W.S. Yang, J.H. Noh, J.H. Suk, N.J. Jeon, J.H. Park, J.S. Kim, W.M. Seong, S. Il Seok, High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C-supplementary infomation. Nat. Commun. 6, 7410 (2015). https://doi.org/10.1038/ncomms8410
F. Di Giacomo, A. Fakharuddin, R. Jose, T.M. Brown, Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 9, 3007–3035 (2016). https://doi.org/10.1039/C6EE01137C
F. Di Giacomo, V. Zardetto, A. D’Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W.M.M. Kessels, M. Creatore, T.M. Brown, Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv. Energy Mater. 5 (2015). https://doi.org/10.1002/aenm.201401808
S. Ameen, M.S. Akhtar, H.K. Seo, M.K. Nazeeruddin, H.S. Shin, An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: optoelectronic transient and charge trapping studies. J. Phys. Chem. C 119, 10379–10390 (2015). https://doi.org/10.1021/acs.jpcc.5b00933
S. Ameen, M.S. Akhtar, H.K. Seo, M.K. Nazeeruddin, H.S. Shin, Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer. Dalton Trans. 44, 6439–6448 (2015). https://doi.org/10.1039/c4dt03920c
J. Troughton, D. Bryant, K. Wojciechowski, M.J. Carnie, H. Snaith, D.A. Worsley, T.M. Watson, Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. J. Mater. Chem. A 3, 9141–9145 (2015). https://doi.org/10.1039/C5TA01755F
J.W. Jung, S.T. Williams, A.K.Y. Jen, Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. RSC Adv. 4, 62971–62977 (2014). https://doi.org/10.1039/C4RA13212B
K.G. Lim, H.B. Kim, J. Jeong, H. Kim, J.Y. Kim, T.W. Lee, Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26, 6461–6466 (2014). https://doi.org/10.1002/adma.201401775
M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D.H. Apaydin, H. Groiss, M.C. Scharber, M.S. White, N.S. Sariciftci, S. Bauer, Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015). https://doi.org/10.1038/nmat4388
C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G. Mínguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M.I. Dar, M.K. Nazeeruddin, H.J. Bolink, Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 7, 994–998 (2014). https://doi.org/10.1039/C3EE43619E
B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543–1547 (2015). https://doi.org/10.1021/acs.jpclett.5b00504
Z. Liu, P. You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28, 151–157 (2016). https://doi.org/10.1016/j.nanoen.2016.08.038
H.C. Weerasinghe, Y. Dkhissi, A.D. Scully, R.A. Caruso, Y.B. Cheng, Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy 18, 118–125 (2015). https://doi.org/10.1016/j.nanoen.2015.10.006
J.H. Yun, I. Lee, T.S. Kim, M.J. Ko, J.Y. Kim, H.J. Son, Synergistic enhancement and mechanism study of mechanical and moisture stability of perovskite solar cells introducing polyethylene-imine into the CH3NH3PbI3/HTM interface. J. Mater. Chem. A 3, 22176–22182 (2015). https://doi.org/10.1039/c5ta06008g
Y.H. Kim, H. Cho, J.H. Heo, T.S. Kim, N.S. Myoung, C.L. Lee, S.H. Im, T.W. Lee, Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015). https://doi.org/10.1002/adma.201403751
A. Gheno, S. Vedraine, B. Ratier, J. Bouclé, π-Conjugated materials as the hole-transporting layer in perovskite solar cells. Metals (Basel) 6, 21–29 (2016). https://doi.org/10.3390/met6010021
L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012). https://doi.org/10.1021/ja307789s
Y. Jiang, C. Li, H. Liu, R. Qin, H. Ma, Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-molybdenum oxide composite films as hole conductors for efficient planar perovskite solar cells. J. Mater. Chem. A 4, 9958–9966 (2016). https://doi.org/10.1039/c6ta03658a
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). https://doi.org/10.1126/science.1243982
Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 136, 11610–11613 (2014). https://doi.org/10.1021/ja506624n
Y. Li, W. Yan, Y. Li, S. Wang, W. Wang, Z. Bian, L. Xiao, Q. Gong, Direct observation of long electron-hole diffusion distance in CH3NH3PbI3 perovskite thin film. Sci. Rep. 5 (2015). https://doi.org/10.1038/srep14485
T.C. Jellicoe, J.M. Richter, H.F.J. Glass, M. Tabachnyk, R. Brady, S.E. Dutton, A. Rao, R.H. Friend, D.Credgington, N.C. Greenham, M.L. Böhm, Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138, 2941–2944 (2016). https://doi.org/10.1021/jacs.5b13470
D. Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P.P. Boix, M. Gretzel, S. Mhaisalkar, C.Soci, N. Mathews, Lead-free MA2CuClxBr4−x hybrid perovskites. Inorg. Chem. 55, 1044–1052 (2016). https://doi.org/10.1021/acs.inorgchem.5b01896
L. Ma, F. Hao, C.C. Stoumpos, B.T. Phelan, M.R. Wasielewski, M.G. Kanatzidis, Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138, 14750–14755 (2016). https://doi.org/10.1021/jacs.6b09257
D. Wang, D. Dong, W. Chen, J. Hao, J. Qin, B. Xu, D. Wu, K. Wang, X. Sun, in Polarization fluorescence property observed in the CsPbX 3 perovskites quantum dots. Digest of Technical Papers-SID International Symposium (2016), pp. 1458–1461. http://dx.doi.org/10.1002/sdtp.10980
T. Singh, A. Kulkarni, M. Ikegami, T. Miyasaka, Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3 BI2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces 8, 14542–14547 (2016). https://doi.org/10.1021/acsami.6b02843
N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, H.J. Snaith, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014). https://doi.org/10.1039/c4ee01076k
G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014). https://doi.org/10.1002/adfm.201302090
B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, H.G. Boyen, Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 26, 2041–2046 (2014). https://doi.org/10.1002/adma.201304803
D.B. Mitzi, C.A. Feild, Z. Schlesinger, R.B. Laibowitz, Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J. Solid State Chem. 114, 159–163 (1995). https://doi.org/10.1006/jssc.1995.1023
Y. Takahashi, H. Hasegawa, Y. Takahashi, T. Inabe, Hall mobility in tin iodide perovskite CH3NH3SnI3: evidence for a doped semiconductor. J. Solid State Chem. 205, 39–43 (2013). https://doi.org/10.1016/j.jssc.2013.07.008
B.W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M.J. Johansson, Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27, 6806–6813 (2015). https://doi.org/10.1002/adma.201501978
R.E. Brandt, R.C. Kurchin, R.L.Z. Hoye, J.R. Poindexter, M.W.B. Wilson, S. Sulekar, F. Lenahan, P.X.T. Yen, V. Stevanović, J.C. Nino, M.G. Bawendi, T. Buonassisi, Investigation of bismuth triiodide (BiI3) for photovoltaic applications. J. Phys. Chem. Lett. 6, 4297–4302 (2015). https://doi.org/10.1021/acs.jpclett.5b02022
P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, Y. Lu, Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J. Phys. Chem. Lett. 7, 3603–3608 (2016). https://doi.org/10.1021/acs.jpclett.6b01576
F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82
D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, E.M.J. Johansson, Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 4, 1532–1536 (2013). https://doi.org/10.1021/jz400638x
T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S.G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3, 23829–23832 (2015). https://doi.org/10.1039/C5TA05741H
F. Hao, C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks, R.P.H. Chang, M.G. Kanatzidis, Solvent-mediated crystallization Of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137, 11445–11452 (2015). https://doi.org/10.1021/jacs.5b06658
X. Lu, Z. Zhao, K. Li, Z. Han, S. Wei, C. Guo, S. Zhou, Z. Wu, W. Guo, C.M.L. Wu, First-principles insight into the photoelectronic properties of Ge-based perovskites. RSC Adv. 6, 86976–86981 (2016). https://doi.org/10.1039/c6ra18534g
M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S.G. Mhaisalkar, N. Mathews, Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122–7127 (2014). https://doi.org/10.1002/adma.201401991
C. Gurnani, A.L. Hector, E. Jager, W. Levason, D. Pugh, G. Reid, Tin(II) fluoride vs. tin(II) chloride-a comparison of their coordination chemistry with neutral ligands. Dalton Trans. 42, 8364–8374 (2013). https://doi.org/10.1039/c3dt50743b
H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013). https://doi.org/10.1021/jz4020162
N.G. Park, Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013). https://doi.org/10.1021/jz400892a
J. Bisquert, The swift surge of perovskite photovoltaics. J. Phys. Chem. Lett. 4, 2597–2598 (2013). https://doi.org/10.1021/jz401435d
K.C. Gödel, Y.C. Choi, B. Roose, A. Sadhanala, H.J. Snaith, S. Il Seok, U. Steiner, S.K. Pathak, Efficient room temperature aqueous Sb2S3 synthesis for inorganic–organic sensitized solar cells with 5.1% efficiencies. Chem. Commun. 51, 8640–8643 (2015). https://doi.org/10.1039/C5CC01966D
X.G. Zhao, J.H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.H. Wei, L. Zhang, Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139, 2630–2638 (2017). https://doi.org/10.1021/jacs.6b09645
K. Eckhardt, V. Bon, J. Getzschmann, J. Grothe, F.M. Wisser, S. Kaskel, Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaics. Chem. Commun. 52, 3058–3060 (2016). https://doi.org/10.1039/C5CC10455F
Y. Sun, C. Wang, D. Zhao, J. Yu, X. Yin, C.R. Grice, R.A. Awni, N. Shrestha, Y. Yu, L. Guan, R.J. Ellingson, W. Tang, Y. Yan, A new hole transport material for efficient perovskite solar cells with reduced device cost. Sol. RRL 1700175 (2017). https://doi.org/10.1002/solr.201700175
Q. Zhou, T. Petit, H. Choi, B.J. Nelson, L. Zhang, Dumbbell fluidic tweezers for dynamical trapping and selective transport of microobjects. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201604571
T. Li, Y. Hu, C.A. Morrison, W. Wu, H. Han, N. Robertson, Lead-free pseudo-three-dimensional organic–inorganic iodobismuthates for photovoltaic applications. Sustain. Energy Fuels 1, 308–316 (2017). https://doi.org/10.1039/C6SE00061D
T. Yokoyama, D.H. Cao, C.C. Stoumpos, T. Bin Song, Y. Sato, S. Aramaki, M.G. Kanatzidis, Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas–solid reaction film fabrication process. J. Phys. Chem. Lett. 7, 776–782 (2016). https://doi.org/10.1021/acs.jpclett.6b00118
P.C. Harikesh, H.K. Mulmudi, B. Ghosh, T.W. Goh, Y.T. Teng, K. Thirumal, M. Lockrey, K. Weber, T.M. Koh, S. Li, S. Mhaisalkar, N. Mathews, Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics. Chem. Mater. 28, 7496–7504 (2016). https://doi.org/10.1021/acs.chemmater.6b03310
M. Saliba, M. Saliba, T. Matsui, K. Domanski, J. Seo, A. Ummadisingu, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 5557, 1–8 (2016). https://doi.org/10.1126/science.aah5557
J.-C. Hebig, I. Kühn, J. Flohre, T. Kirchartz, Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett. 1, 309–314 (2016). https://doi.org/10.1021/acsenergylett.6b00170
N.H. Tiep, Z. Ku, H.J. Fan, Recent advances in improving stability of PSCs. Adv. Energy Mater. 6, 1–19 (2016). https://doi.org/10.1002/aenm.201501420