Nanostructured Ternary Metal Tungstate-Based Photocatalysts for Environmental Purification and Solar Water Splitting: A Review
Corresponding Author: Yang Hou
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 69
Abstract
Visible-light-responsive ternary metal tungstate (MWO4) photocatalysts are being increasingly investigated for energy conversion and environmental purification applications owing to their striking features, including low cost, eco-friendliness, and high stability under acidic and oxidative conditions. However, rapid recombination of photoinduced electron–hole pairs and a narrow light response range to the solar spectrum lead to low photocatalytic activity of MWO4-based materials, thus significantly hampering their wide usage in practice. To enable their widespread practical usage, significant efforts have been devoted, by developing new concepts and innovative strategies. In this review, we aim to provide an integrated overview of the fundamentals and recent progress of MWO4-based photocatalysts. Furthermore, different strategies, including morphological control, surface modification, heteroatom doping, and heterojunction fabrication, which are employed to promote the photocatalytic activities of MWO4-based materials, are systematically summarized and discussed. Finally, existing challenges and a future perspective are also provided to shed light on the development of highly efficient MWO4-based photocatalysts.
Highlights:
1 A series of ternary tungstate-based photocatalysts and their applications in solar energy conversion and environmental purification are systematically introduced.
2 The relationship between intrinsic structures and unique properties of ternary tungstate-based photocatalysts is discussed and summarized in detail.
3 Various new concepts and innovative strategies are employed to enhance the photocatalytic performance of ternary tungstate-based photocatalysts
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
- X.P. Chen, Z.X. Zhang, L. Chi, A.K. Nair, W.F. Shangguan, Z. Jiang, Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8(1), 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
- Y. Hou, X. Li, Q. Zhao, G. Chen, C.L. Raston, Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation. Environ. Sci. Technol. 46(7), 4042–4050 (2012). https://doi.org/10.1021/es204079d
- L. Cheng, Q.J. Xiang, Y.L. Liao, H.W. Zhang, CdS-Based photocatalysts. Energ. Environ. Sci. 11(6), 1362–1391 (2018). https://doi.org/10.1039/c7ee03640j
- F. Wang, Q. Li, D. Xu, Recent progress in semiconductor-based nanocomposite photocatalysts for solar to chemical energy conversion. Adv. Energy Mater. 7(23), 1700529 (2017). https://doi.org/10.1002/aenm.201700529
- Y. Hou, X. Zhuang, X. Feng, Recent advances in earth-abundant heterogeneous electrocatalysts for photoelectrochemical water splitting. Small Methods 1(6), 1700090 (2017). https://doi.org/10.1002/smtd.201700090
- Y. Hou, X. Li, Q. Zhao, G. Chen, ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: facile synthesis, improved activity and photocatalytic mechanism. Appl. Catal. B Environ. 142–143, 80–88 (2013). https://doi.org/10.1016/j.apcatb.2013.04.062
- Y. Hou, X. Li, Q. Zhao, X. Quan, G. Chen, Electrochemically assisted photocatalytic degradation of 4-chlorophenol by ZnFe2O4-modified TiO2 nanotube array electrode under visible light irradiation. Environ. Sci. Technol. 44(13), 5098–5103 (2010). https://doi.org/10.1021/es100004u
- W.Y. Teoh, J.A. Scott, R. Amal, Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J. Phys. Chem. Lett. 3(5), 629–639 (2012). https://doi.org/10.1021/jz3000646
- S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D.D. Dionysiou, New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 5(15), 2543–2554 (2014). https://doi.org/10.1021/jz501030x
- J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919–9986 (2014). https://doi.org/10.1021/cr5001892
- M.J. Kale, T. Avanesian, P. Christopher, Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4(1), 116–128 (2013). https://doi.org/10.1021/cs400993w
- V. Augugliaro, G. Camera-Roda, V. Loddo, G. Palmisano, L. Palmisano, J. Soria, S. Yurdakal, Heterogeneous photocatalysis and photoelectrocatalysis: from unselective abatement of noxious species to selective production of high-value chemicals. J. Phys. Chem. Lett. 6(10), 1968–1981 (2015). https://doi.org/10.1021/acs.jpclett.5b00294
- S. Xie, Q. Zhang, G. Liu, Y. Wang, Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 52(1), 35–59 (2016). https://doi.org/10.1039/c5cc07613g
- A. García, C. Fernandez-Blanco, J.R. Herance, J. Albero, H. García, Graphenes as additives in photoelectrocatalysis. J. Mater. Chem. A 5(32), 16522–16536 (2017). https://doi.org/10.1039/c7ta04045h
- A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5(2), 5577–5591 (2012). https://doi.org/10.1039/c2ee02618j
- Y. Yang, S. Ajmal, X. Zheng, L. Zhang, Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO2 reduction. Sustain. Energ. Fuels 2(3), 510–537 (2018). https://doi.org/10.1039/c7se00371d
- R. Zhou, R. Zhou, X. Zhang, J. Li, X. Wang et al., Synergistic effect of atmospheric-pressure plasma and TiO2 photocatalysis on inactivation of Escherichia coli cells in aqueous media. Sci. Rep. 6, 39552 (2016). https://doi.org/10.1038/srep39552
- J.J. Zou, C.J. Liu, Y.P. Zhang, Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment. Langmuir 22(5), 2334–2339 (2006). https://doi.org/10.1021/la052135u
- L. Zhang, G. Kong, Y. Meng, J. Tian, L. Zhang, S. Wan, J. Lin, Y. Wang, Direct coupling of thermo- and photocatalysis for conversion of CO2-H2O into fuels. Chemsuschem 10(23), 4709–4714 (2017). https://doi.org/10.1002/cssc.201701472
- E.T. Kho, T.H. Tan, E. Lovell, R.J. Wong, J. Scott, R. Amal, A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ. 2(3), 204–217 (2017). https://doi.org/10.1016/j.gee.2017.06.003
- J. Jia, H. Wang, Z. Lu, P.G. O’Brien, M. Ghoussoub et al., Photothermal catalyst engineering: hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 4(10), 1700252 (2017). https://doi.org/10.1002/advs.201700252
- H. Chen, C.E. Nanayakkara, V.H. Grassian, Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 112(11), 5919–5948 (2012). https://doi.org/10.1021/cr3002092
- L. Wan, M. Long, D. Zhou, L. Zhang, W. Cai, Preparation and characterization of freestanding hierarchical porous TiO2 monolith modified with graphene oxide. Nano-Micro Lett. 4(2), 90–97 (2012). https://doi.org/10.1007/bf03353698
- M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene blue. Nano-Micro Lett. 3(4), 236–241 (2011). https://doi.org/10.1007/bf03353678
- X. Li, J. Li, J. Bai, Y. Dong, L. Li, B. Zhou, The inhibition effect of tert-butyl alcohol on the TiO2 nano assays photoelectrocatalytic degradation of different organics and its mechanism. Nano-Micro Lett. 8(3), 221–231 (2016). https://doi.org/10.1007/s40820-015-0080-2
- X. Li, Y. Jiang, W. Cheng, Y. Li, X. Xu, K. Lin, Mesoporous TiO2/carbon beads: one-pot preparation and their application in visible-light-induced photodegradation. Nano-Micro Lett. 7(3), 243–254 (2015). https://doi.org/10.1007/s40820-015-0029-5
- Y. Hou, F. Zuo, A. Dagg, P. Feng, Visible light-driven α-Fe2O3 nanorod/graphene/BiV1–xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 12(12), 6464–6473 (2012). https://doi.org/10.1021/nl303961c
- J. Ke, H. Zhou, J. Liu, X. Duan, H. Zhang, S. Liu, S. Wang, Crystal transformation of 2D tungstic acid H2WO4 to WO3 for enhanced photocatalytic water oxidation. J. Colloid Interface Sci. 514, 576–583 (2018). https://doi.org/10.1016/j.jcis.2017.12.066
- Y. Hou, F. Zuo, A.P. Dagg, J. Liu, P. Feng, Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 26(29), 5043–5049 (2014). https://doi.org/10.1002/adma.201401032
- S. Luo, J. Ke, M. Yuan, Q. Zhang, P. Xie, L. Deng, S. Wang, CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants. Appl. Catal. B: Environ. 221, 215–222 (2018). https://doi.org/10.1016/j.apcatb.2017.09.028
- S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5(5), 3306–3351 (2015). https://doi.org/10.1039/c4ra13299h
- J. Ke, J. Liu, H. Sun, H. Zhang, X. Duan et al., Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Appl. Catal. B: Environ. 200, 47–55 (2017). https://doi.org/10.1016/j.apcatb.2016.06.071
- J. Liu, Y. Li, J. Ke, S. Wang, L. Wang, H. Xiao, Black NiO-TiO2 nanorods for solar photocatalysis: recognition of electronic structure and reaction mechanism. Appl. Catal. B: Environ. 224, 705–714 (2018). https://doi.org/10.1016/j.apcatb.2017.11.028
- S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211–13241 (2011). https://doi.org/10.1021/jp204364a
- M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energ. Rev. 11(3), 401–425 (2007). https://doi.org/10.1016/j.rser.2005.01.009
- J. Ke, X. Li, Q. Zhao, B. Liu, S. Liu, S. Wang, Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance. J. Colloid Interface Sci. 496, 425–433 (2017). https://doi.org/10.1016/j.jcis.2017.01.121
- A. Fujishima, X. Zhang, D. Tryk, Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrog. Energy 32(14), 2664–2672 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.009
- X. Zou, Y. Dong, S. Li, J. Ke, Y. Cui, Facile anion exchange to construct uniform AgX (X = Cl, Br, I)/Ag2CrO4 NR hybrids for efficient visible light driven photocatalytic activity. Sol. Energy 169, 392–400 (2018). https://doi.org/10.1016/j.solener.2018.05.017
- M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(28), 69–96 (1995). https://doi.org/10.1021/cr00033a004
- D. Chen, X.G. Zhang, A.F. Lee, Synthetic strategies to nanostructured photocatalysts for CO2 reduction to solar fuels and chemicals. J. Mater. Chem. A 3(28), 14487–14516 (2015). https://doi.org/10.1039/c5ta01592h
- H.F. Cheng, K. Fuku, Y. Kuwahara, K. Mori, H. Yamashita, Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light. J. Mater. Chem. A 3(10), 5244–5258 (2015). https://doi.org/10.1039/c4ta06484d
- K. Wenderich, G. Mul, Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem. Rev. 116(23), 14587–14619 (2016). https://doi.org/10.1021/acs.chemrev.6b00327
- T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). https://doi.org/10.1039/c3cs60378d
- G. Zhang, G. Liu, L. Wang, J.T.S. Irvine, Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 45(21), 5951–5984 (2016). https://doi.org/10.1039/c5cs00769k
- D.M. Fabian, S. Hu, N. Singh, F.A. Houle, T. Hisatomi, K. Domen, F.E. Osterloh, S. Ardo, Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8(10), 2825–2850 (2015). https://doi.org/10.1039/c5ee01434d
- T. Takata, K. Domen, Development of non-oxide semiconductors as light harvesting materials in photocatalytic and photoelectrochemical water splitting. Dalton Trans. 46(32), 10529–10544 (2017). https://doi.org/10.1039/c7dt00867h
- P. Mal, G. Bera, P. Rambabu, G.R. Turpu, B. Chakraborty et al., Electronic, magnetic and spectroscopic properties of doped Mn(1-x) AxWO4 (A = Co, Cu, Ni and Fe) multiferroic: an experimental and DFT study. J. Phys. Condens. Matter 29(7), 075901 (2017). https://doi.org/10.1088/1361-648X/aa4e64
- S.M.M. Zawawi, R. Yahya, Z. Hassan, E.H.N.M. Ekramul Mahmud, N.M. Daud, Structural and optical characterization of metal tungstates (MWO4; M = Ni, Ba, Bi) synthesized by a sucrose-templated method. Chem. Cent. J. 7, 80 (2013). https://doi.org/10.1186/1752-153X-7-80
- X.A. López, A.F. Fuentes, M.M. Zaragoza, J.A. Díaz Guillén, J.S. Gutiérrez, A.L. Ortiz, V. Collins-Martínez, Synthesis, characterization and photocatalytic evaluation of MWO4 (M = Ni Co, Cu and Mn) tungstates. Int. J. Hydrog. Energy 41(48), 23312–23317 (2016). https://doi.org/10.1016/j.ijhydene.2016.10.117
- S. Dey, R.A. Ricciardo, H.L. Cuthbert, P.M. Woodward, Metal-to-metal charge transfer in AWO4 (A = Mg, Mn Co, Ni, Cu, or Zn) compounds with the wolframite structure. Inorg. Chem. 53(9), 4299–4394 (2014). https://doi.org/10.1021/ic4031798
- M. Nikl, P. Bohacek, E. Mihokova, M. Kobayashi, M. Ishii et al., Excitonic emission of scheelite tungstates AWO4 (A = Pb, Ca, Ba, Sr). J. Lumin. 87–89, 1136–1139 (2000). https://doi.org/10.1016/S0022-2313(99)00569-4
- R.C. Pullar, S. Farrah, N.M. Alford, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J. Eur. Ceram. Soc. 27(2–3), 1059–1063 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.085
- G. Zhang, R. Jia, Q. Wu, Preparation, structural and optical properties of AWO4 (A = Ca, Ba, Sr) nanofilms. Mater. Sci. Eng. B 128(1–3), 254–259 (2006). https://doi.org/10.1016/j.mseb.2005.11.040
- R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, A. Segura, Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius. EPL 83(3), 37002 (2008). https://doi.org/10.1209/0295-5075/83/37002
- C. Shivakumara, R. Saraf, S. Behera, N. Dhananjaya, H. Nagabhushana, Scheelite-type MWO4 (M = Ca, Sr, and Ba) nanophosphors: facile synthesis, structural characterization, photoluminescence, and photocatalytic properties. Mater. Res. Bull. 61, 422–432 (2015). https://doi.org/10.1016/j.materresbull.2014.09.096
- S.D. Ramarao, S. Roopas Kiran, V.R.K. Murthy, Structural, lattice vibrational, optical and microwave dielectric studies on Ca1−xSrxMoO4 ceramics with scheelite structure. Mater. Res. Bull. 56, 71–79 (2014). https://doi.org/10.1016/j.materresbull.2014.04.064
- Y.G. Su, G.S. Li, Y.F. Xue, L.P. Li, Tunable physical properties of CaWO4 nanocrystals via particle size control. J. Phys. Chem. C 111(18), 6684–6689 (2007). https://doi.org/10.1021/jp068480p
- S.M. Ghoreishi, Facile synthesis and characterization of CaWO4 nanoparticles using a new Schiff base as capping agent: enhanced photocatalytic degradation of methyl orange. J. Mater. Sci. Mater. Electron. 28(19), 14833–14838 (2017). https://doi.org/10.1007/s10854-017-7354-z
- M. Mohamed Jaffer Sadiq, A. Samson Nesaraj, Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. J. Nanostruct. Chem. 5(1), 45–54 (2014). https://doi.org/10.1007/s40097-014-0133-y
- M.C. Oliveira, L. Gracia, I.C. Nogueira, M.F.D. Carmo Gurgel, J.M.R. Mercury, E. Longo, J. Andrés, Synthesis and morphological transformation of BaWO4 crystals: experimental and theoretical insights. Ceram. Int. 42(9), 10913–10921 (2016). https://doi.org/10.1016/j.ceramint.2016.03.225
- C. Yu, F. Cao, X. Li, G. Li, Y. Xie, J.C. Yu, Q. Shu, Q. Fan, J. Chen, Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chem. Eng. J. 219, 86–95 (2013). https://doi.org/10.1016/j.cej.2012.12.064
- D. Chen, Z. Liu, S.X. Ouyang, J.H. Ye, Simple room-temperature mineralization method to SrWO4 micro/nanostructures and their photocatalytic properties. J. Phys. Chem. C 115(32), 15778–15784 (2011). https://doi.org/10.1021/jp202406n
- D. Ye, D.Z. Li, W.J. Zhang, M. Sun, Y. Hu, Y.F. Zhang, X.Z. Fu, A new photocatalyst CdWO4 prepared with a hydrothermal method. J. Phys. Chem. C 112(44), 17351–17356 (2008). https://doi.org/10.1021/jp8059213
- A.M. Priya, R.K. Selvan, B. Senthilkumar, M.K. Satheeshkumar, C. Sanjeeviraja, Synthesis and characterization of CdWO4 nanocrystals. Ceram. Int. 37(7), 2485–2488 (2011). https://doi.org/10.1016/j.ceramint.2011.03.040
- C. Zhang, H. Zhang, K. Zhang, X. Li, Q. Leng, C. Hu, Photocatalytic activity of ZnWO4: band structure, morphology and surface modification. ACS Appl. Mater. Interfaces 6(16), 14423–14432 (2014). https://doi.org/10.1021/am503696b
- J. Guo, X. Zhou, Y. Lu, X. Zhang, S. Kuang, W. Hou, Monodisperse spindle-like FeWO4 nanoparticles: controlled hydrothermal synthesis and enhanced optical properties. J. Solid State Chem. 196, 550–556 (2012). https://doi.org/10.1016/j.jssc.2012.07.026
- M. Sivakumar, R. Madhu, S.M. Chen, V. Veeramani, A. Manikandan, W.H. Hung, N. Miyamoto, Y.L. Chueh, Low-temperature chemical synthesis of CoWO4 nanospheres for sensitive nonenzymatic glucose sensor. J. Phys. Chem. C 120(30), 17024–17028 (2016). https://doi.org/10.1021/acs.jpcc.6b04116
- F. Ahmadi, M. Rahimi-Nasrabadi, M. Eghbali-Arani, The synthesize of CuWO4 nanoparticles by a new morphological control method, characterization of its photocatalytic activity. J. Mater. Sci. Mater. Electron. 28(7), 5244–5249 (2016). https://doi.org/10.1007/s10854-016-6181-y
- M. Vosoughifar, Preparation, characterization, and morphological control of MnWO4 nanoparticles through novel method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 28(2), 2135–2140 (2016). https://doi.org/10.1007/s10854-016-5777-6
- R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Photocatalytic and antimicrobial activity of NiWO4 nanoparticles stabilized by the plant extract. Mater. Sci. Semicond. Process. 40, 123–129 (2015). https://doi.org/10.1016/j.mssp.2015.05.037
- G. Zhu, W. Que, J. Zhang, P. Zhong, Photocatalytic activity of SnWO4 and SnW3O9 nanostructures prepared by a surfactant-assisted hydrothermal process. Mater. Sci. Eng. B 176(18), 1448–1455 (2011). https://doi.org/10.1016/j.mseb.2011.08.003
- S. Pourmasoud, M. Eghbali-Arani, F. Ahmadi, M. Rahimi-Nasrabadi, Synthesis, characterization, and morphological control of PbWO4 nanostructures through precipitation method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 28(22), 17089–17097 (2017). https://doi.org/10.1007/s10854-017-7635-6
- W.M. Tong, L.P. Li, W.B. Hu, T.J. Yan, G.S. Li, Systematic control of monoclinic CdWO4 nanophase for optimum photocatalytic activity. J. Phys. Chem. C 114(3), 1512–1519 (2010). https://doi.org/10.1021/jp910284u
- S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45(7), 3612–3620 (2016). https://doi.org/10.1007/s11664-016-4532-3
- S.M. Hosseinpour-mashkani, A. Sobhani-Nasab, Simple synthesis and characterization of copper tungstate nanoparticles: investigation of surfactant effect and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27(7), 7548–7553 (2016). https://doi.org/10.1007/s10854-016-4735-7
- S. Wannapop, T. Thongtem, S. Thongtem, Photoemission and energy gap of MgWO4 particles connecting as nanofibers synthesized by electrospinning-calcination combinations. Appl. Surf. Sci. 258(11), 4971–4976 (2012). https://doi.org/10.1016/j.apsusc.2012.01.133
- A.T. Raj, S. Thangavel, A. Rose, C.V. Jipsa, M. Jose, G. Nallamuthu, S.J. Kim, G. Venugopal, Influence of morphology and common oxidants on the photocatalytic property of β-SnWO4 nanoparticles. J. Nanosci. Nanotechnol. 16(3), 2541–2547 (2016). https://doi.org/10.1166/jnn.2016.10961
- W.M. Tong, L.P. Li, W.B. Hu, T.J. Yan, X.F. Guan, G.S. Li, Kinetic control of MnWO4 nanoparticles for tailored structural properties. J. Phys. Chem. C 114(36), 15298–15305 (2010). https://doi.org/10.1021/jp103879c
- M.I. Ahmed, A. Adam, A. Khan, A.U. Rehman, M. Qamaruddin, M.N. Siddiqui, M. Qamar, Improved photoelectrochemical water oxidation under visible light with mesoporous CoWO4. Mater. Lett. 183, 281–284 (2016). https://doi.org/10.1016/j.matlet.2016.07.137
- Q. Gao, Z. Liu, FeWO4 nanorods with excellent UV-Visible light photocatalysis. Prog. Nat. Sci. Mater. 27(5), 556–560 (2017). https://doi.org/10.1016/j.pnsc.2017.08.016
- J. Di, J. Xiong, H. Li, Z. Liu, Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications. Adv. Mater. 30(1), 1704548 (2018). https://doi.org/10.1002/adma.201704548
- T. Yan, L. Li, W. Tong, J. Zheng, Y. Wang, G. Li, CdWO4 polymorphs: selective preparation, electronic structures, and photocatalytic activities. J. Solid State Chem. 184(2), 357–364 (2011). https://doi.org/10.1016/j.jssc.2010.12.013
- L.G. Cai, F.M. Liu, D. Zhang, W.W. Zhong, Dependence of optical properties of monoclinic MnWO4 on the electric field of incident light. Phys. B 407(17), 3654–3659 (2012). https://doi.org/10.1016/j.physb.2012.05.044
- S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, A simple sonochemical synthesis and characterization of CdWO4 nanoparticles and its photocatalytic application. J. Mater. Sci. Mater. Electron. 27(4), 3240–3244 (2015). https://doi.org/10.1007/s10854-015-4150-5
- Y. Wang, X. Guan, L. Li, H. Lin, X. Wang, G. Li, Solvent-driven polymorphic control of CdWO4 nanocrystals for photocatalytic performances. New J. Chem. 36(9), 1852–1858 (2012). https://doi.org/10.1039/c2nj40504k
- M. Dan, M. Cheng, H. Gao, H. Zheng, C. Feng, Synthesis and electrochemical properties of SnWO4. J. Nanosci. Nanotechnol. 14(3), 2395–2399 (2014). https://doi.org/10.1166/jnn.2014.8497
- I.S. Cho, C.H. Kwak, D.W. Kim, S.W. Lee, K.S. Hong, Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps. J. Phys. Chem. C 113(24), 10647–10653 (2009). https://doi.org/10.1021/jp901557z
- D. Chen, L. Gao, A. Yasumori, K. Kuroda, Y. Sugahara, Size- and shape-controlled conversion of tungstate-based inorganic-organic hybrid belts to WO3 nanoplates with high specific surface areas. Small 4(10), 1813–1822 (2008). https://doi.org/10.1002/smll.200800205
- L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, Y. Xie, High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets. Sci. Rep. 3, 1936 (2013). https://doi.org/10.1038/srep01936
- Z.F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J.J. Zou, Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27(36), 5309–5327 (2015). https://doi.org/10.1002/adma.201501217
- Y. Abraham, N.A.W. Holzwarth, R.T. Williams, Electronic structure and optical properties of CdMoO4 and CdWO4. Phys. Rev. B 62(3), 1733–1741 (2000). https://doi.org/10.1103/PhysRevB.62.1733
- S. Shepard, M. Smeu, Ab initio study of structural and electronic properties of copper and nickel tungstate. Comput. Mater. Sci. 143, 301–307 (2018). https://doi.org/10.1016/j.commatsci.2017.11.021
- A.E.B. Lima, M.J.S. Costa, R.S. Santos, N.C. Batista, L.S. Cavalcante, E. Longo, G.E. Luz, Facile preparation of CuWO4 porous films and their photoelectrochemical properties. Electrochim. Acta 256, 139–145 (2017). https://doi.org/10.1016/j.electacta.2017.10.010
- L. Wang, F. Ke, Q. Wang, J. Yan, C. Liu et al., Effect of crystallization water on the structural and electrical properties of CuWO4 under high pressure. Appl. Phys. Lett. 107(20), 201603 (2015). https://doi.org/10.1063/1.4935978
- D. Wang, P.S. Bassi, H. Qi, X. Zhao, Gurudayal, L.H. Wong, R. Xu, T. Sritharan, Z. Chen, Improved charge separation in WO3/CuWO4 composite photoanodes for photoelectrochemical water oxidation. Materials 9(5), 348 (2016). https://doi.org/10.3390/ma9050348
- S. Sun, W. Wang, Advanced chemical compositions and nanoarchitectures of bismuth based complex oxides for solar photocatalytic application. RSC Adv. 4(88), 47136–47152 (2014). https://doi.org/10.1039/c4ra06419d
- V.V. Atuchin, B.I. Troitskaia, O.Y. Khyzhun, V.L. Bekenev, Y.M. Solonin, Electronic properties of h-WO3 and CuWO4 nanocrystals as determined from X-ray spectroscopy and first principles band structure calculations. Int. J. Appl. Phys. Math. 1(1), 19–23 (2011). https://doi.org/10.7763/ijapm.2011.V1.4
- O.Y. Khyzhun, V.L. Bekenev, Y.M. Solonin, First-principles calculations and X-ray spectroscopy studies of the electronic structure of CuWO4. J. Alloy. Compd. 480(2), 184–189 (2009). https://doi.org/10.1016/j.jallcom.2009.01.119
- O.Y. Khyzhun, T. Strunskus, S. Cramm, Y.M. Solonin, Electronic structure of CuWO4: XPS, XES and NEXAFS studies. J. Alloy. Compd. 389(1–2), 14–20 (2005). https://doi.org/10.1016/j.jallcom.2004.08.013
- M.V. Lalić, Z.S. Popović, F.R. Vukajlović, Ab initio study of electronic, magnetic and optical properties of CuWO4 tungstate. Comp. Mater. Sci. 50(3), 1179–1186 (2011). https://doi.org/10.1016/j.commatsci.2010.11.018
- C.R. Lhermitte, B.M. Bartlett, Advancing the chemistry of CuWO4 for photoelectrochemical water oxidation. Acc. Chem. Res. 49(6), 1121–1129 (2016). https://doi.org/10.1021/acs.accounts.6b00045
- S. Rajagopal, D. Nataraj, O.Y. Khyzhun, Y. Djaoued, J. Robichaud, D. Mangalaraj, Hydrothermal synthesis and electronic properties of FeWO4 and CoWO4 nanostructures. J. Alloy. Compd. 493(1–2), 340–345 (2010). https://doi.org/10.1016/j.jallcom.2009.12.099
- S. Rajagopal, V.L. Bekenev, D. Nataraj, D. Mangalaraj, O.Y. Khyzhun, Electronic structure of FeWO4 and CoWO4 tungstates: first-principles FP-LAPW calculations and X-ray spectroscopy studies. J. Alloy. Compd. 496(1–2), 61–68 (2010). https://doi.org/10.1016/j.jallcom.2010.02.107
- K. Hoang, M. Oh, Y. Choi, Electronic structure, polaron formation, and functional properties in transition-metal tungstates. RSC Adv. 8(8), 4191–4196 (2018). https://doi.org/10.1039/c7ra13436c
- F. Yu, L. Cao, J. Huang, J. Wu, Effects of pH on the microstructures and optical property of FeWO4 nanocrystallites prepared via hydrothermal method. Ceram. Int. 39(4), 4133–4138 (2013). https://doi.org/10.1016/j.ceramint.2012.10.269
- L. Hou, L. Lian, L. Zhang, T. Wu, C. Yuan, Microwave-assisted interfacial hydrothermal fabrication of hydrophobic CdWO4 microspheres as a high-performance photocatalyst. RSC Adv. 4(5), 2374–2381 (2014). https://doi.org/10.1039/c3ra45784b
- Y. Ling, L. Zhou, L. Tan, Y. Wang, C. Yu, Synthesis of urchin-like CdWO4 microspheres via a facile template free hydrothermal method. CrystEngComm 12(10), 3019–3026 (2010). https://doi.org/10.1039/b927420k
- S. Kang, Y. Li, M. Wu, M. Cai, P.K. Shen, Synthesis of hierarchically flower-like FeWO4 as high performance anode materials for Li-ion batteries by a simple hydrothermal process. Int. J. Hydrog. Energy 39(28), 16081–16087 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.101
- S. Liu, S. Tian, R. Xing, CaWO4 hierarchical nanostructures: hydrothermal synthesis, growth mechanism and photoluminescence properties. CrystEngComm 13(24), 7258–7261 (2011). https://doi.org/10.1039/c1ce05790a
- T.N. Kovács, G. Pokol, F. Gáber, D. Nagy, T. Igricz, I.E. Lukács, Z. Fogarassy, K. Balázsi, I.M. Szilágyi, Preparation of iron tungstate (FeWO4) nanosheets by hydrothermal method. Mater. Res. Bull. 95, 563–569 (2017). https://doi.org/10.1016/j.materresbull.2017.08.031
- Z.G. Chen, H.J. Ma, J.X. Xia, J. Zeng, J. Di, S. Yin, L. Xu, H.M. Li, Ionic liquid-induced strategy for FeWO4 microspheres with advanced visible light photocatalysis. Ceram. Int. 42(7), 8997–9003 (2016). https://doi.org/10.1016/j.ceramint.2016.02.117
- Y.X. Zhou, Q. Zhang, J.Y. Gong, S.H. Yu, Surfactant-assisted hydrothermal synthesis and magnetic properties of urchin-like MnWO4 microspheres. J. Phys. Chem. C 112(35), 13383–13389 (2008). https://doi.org/10.1021/jp804211w
- Y. Xing, S. Song, J. Feng, Y. Lei, M. Li, H. Zhang, Microemulsion-mediated solvothermal synthesis and photoluminescent property of 3D flowerlike MnWO4 micro/nanocomposite structure. Solid State Sci. 10(10), 1299–1304 (2008). https://doi.org/10.1016/j.solidstatesciences.2008.01.019
- Y.C. Chen, Y.G. Lin, L.C. Hsu, A. Tarasov, P.T. Chen, M. Hayashi, J. Ungelenk, Y.K. Hsu, C. Feldmann, β-SnWO4 photocatalyst with controlled morphological transition of cubes to spikecubes. ACS Catal. 6(4), 2357–2367 (2016). https://doi.org/10.1021/acscatal.5b02444
- X.Y. Qiu, H.W. Huang, Y.D. Gao, Effects of surface properties of 010}, {001 and 100 of MnWO4 and FeWO4 on absorption of collector. Appl. Surf. Sci. 367, 354–361 (2016). https://doi.org/10.1016/j.apsusc.2016.01.190
- J. Ungelenk, C. Feldmann, Synthesis of faceted beta-SnWO4 microcrystals with enhanced visible-light photocatalytic properties. Chem. Commun. 48(63), 7838–7840 (2012). https://doi.org/10.1039/c2cc33224h
- T. Tian, L. Ai, X. Liu, L. Li, J. Li, J. Jiang, Synthesis of hierarchical FeWO4 architectures with {100}-faceted nanosheet assemblies as a robust biomimetic catalyst. Ind. Eng. Chem. Res. 54(4), 1171–1178 (2015). https://doi.org/10.1021/ie504114v
- Y. Hou, X. Li, X. Zou, X. Quan, G. Chen, Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation. Environ. Sci. Technol. 43(3), 858–863 (2009). https://doi.org/10.1021/es802420u
- Y. Hou, X. Li, Q. Zhao, X. Quan, G. Chen, Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv. Funct. Mater. 20(13), 2165–2174 (2010). https://doi.org/10.1002/adfm.200902390
- J. Yan, Y. Shen, R. Cao, T. Li, CdWO4 nanorods: ultrafast synthesis via a PEG-1000 polymer-assisted enhanced microwave synthesis route and their photoluminescence property. Ceram. Int. 40(6), 8081–8085 (2014). https://doi.org/10.1016/j.ceramint.2014.01.003
- H.W. Liao, Y.F. Wang, X.M. Liu, Y.D. Li, Y.T. Qian, Hydrothermal preparation and characterization of luminescent CdWO4 nanorods. Chem. Mater. 12(10), 2819–2821 (2000). https://doi.org/10.1021/cm000096w
- C. Zhang, D. Guo, W. Xu, C. Hu, Y. Chen, Radiative/nonradiative recombination affected by defects and electron-phone coupling in CdWO4 nanorods. J. Phys. Chem. C 120(22), 12218–12225 (2016). https://doi.org/10.1021/acs.jpcc.6b04145
- N. Aloysius Sabu, K.P. Priyanka, S. Ganesh, T. Varghese, Modifications in the structural and optical properties of nanocrystalline CaWO4 induced by 8 MeV electron beam irradiation. Radiat. Phys. Chem. 123, 1–5 (2016). https://doi.org/10.1016/j.radphyschem.2016.02.006
- Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, G. Yang, Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis. ACS Nano 9(7), 7256–7265 (2015). https://doi.org/10.1021/acsnano.5b02077
- W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23(13), 1612–1619 (2013). https://doi.org/10.1002/adfm.201202148
- Y. Hou, F. Zuo, Q. Ma, C. Wang, L. Bartels, P. Feng, Ag3PO4 oxygen evolution photocatalyst employing synergistic action of Ag/AgBr nanoparticles and graphene sheets. J. Phys. Chem. C 116(38), 20132–20139 (2012). https://doi.org/10.1021/jp303219j
- F. Wang, R.J. Wong, J.H. Ho, Y. Jiang, R. Amal, Sensitization of Pt/TiO2 using plasmonic Au nanoparticles for hydrogen evolution under visible-light irradiation. ACS Appl. Mater. Interfaces 9(36), 30575–30582 (2017). https://doi.org/10.1021/acsami.7b06265
- J. Liu, Y. Li, Z. Li, J. Ke, H. Xiao, Y. Hou, In situ growing of Bi/Bi2O2CO3 on Bi2WO6 nanosheets for improved photocatalytic performance. Catal. Today 314, 2–9 (2018). https://doi.org/10.1016/j.cattod.2017.12.001
- X. Liu, B. Liang, M. Zhang, Y. Long, W. Li, Enhanced photocatalytic properties of alpha-SnWO4 nanosheets modified by Ag nanoparticles. J. Colloid Interface Sci. 490, 46–52 (2017). https://doi.org/10.1016/j.jcis.2016.11.029
- Y. Yan, H. Xing, C. Han, A. Yang, Synthesis and photocatalytic activity of Ag-CdWO4 nanorods. Ceram. Int. 43(4), 3905–3909 (2017). https://doi.org/10.1016/j.ceramint.2016.11.186
- A.K. Chakraborty, S. Ganguli, M.A. Kebede, Photocatalytic degradation of 2-propanol and phenol using Au loaded MnWO4 nanorod under visible light irradiation. J. Clust. Sci. 23(2), 437–448 (2012). https://doi.org/10.1007/s10876-012-0450-6
- X. Zong, C. Sun, H. Yu, Z.G. Chen, Z. Xing, D. Ye, G.Q. Lu, X. Li, L. Wang, Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible light. J. Phys. Chem. C 117(10), 4937–4942 (2013). https://doi.org/10.1021/jp311729b
- Z. Mei, B. Zhang, J. Zheng, S. Yuan, Z. Zhuo et al., Tuning Cu dopant of Zn0.5Cd0.5S nanocrystals enables high-performance photocatalytic H2 evolution from water splitting under visible-light irradiation. Nano Energy 26, 405–416 (2016). https://doi.org/10.1016/j.nanoen.2016.05.051
- A.K. Ambast, S.K. Sharma, Variation of trap depth by dopant/codopant and heating rate in CaWO4 phosphors. Opt. Quant. Electron. 49(2), 58 (2017). https://doi.org/10.1007/s11082-017-0889-7
- Z. Liu, J. Tian, D. Zeng, C. Yu, L. Zhu, W. Huang, K. Yang, D. Li, A facile microwave-hydrothermal method to fabricate B doped ZnWO4 nanorods with high crystalline and highly efficient photocatalytic activity. Mater. Res. Bull. 94, 298–306 (2017). https://doi.org/10.1016/j.materresbull.2017.06.021
- G. Huang, Y. Zhu, Synthesis and photoactivity enhancement of ZnWO4 photocatalysts doped with chlorine. CrystEngComm 14(23), 8076–8082 (2012). https://doi.org/10.1039/c2ce26005k
- X. Tian, G. Jiang, Y. Chen, M. Yin, Eu3+, Li+ doped CaWO4 nanorods: synthesis, emission-decay curves and effective-refractive index. Curr. Appl. Phys. 14(12), 1612–1615 (2014). https://doi.org/10.1016/j.cap.2014.09.010
- C.K. Choo, S. Suzuki, K. Tanaka, Photoluminescence intensity enhancement of ion-doped CdWO4 thin films prepared with pulsed laser deposition. Thin Solid Films 458(1–2), 179–185 (2004). https://doi.org/10.1016/j.tsf.2003.12.062
- S.H. Chen, S.X. Sun, H.G. Sun, W.L. Fan, X. Zhao, X. Sun, Experimental and theoretical studies on the enhanced photocatalytic activity of ZnWO4 nanorods by fluorine doping. J. Phys. Chem. C 114(17), 7680–7699 (2010). https://doi.org/10.1021/jp911952v
- Y. Su, L. Hou, C. Du, L. Peng, K. Guan, X. Wang, Rapid synthesis of Zn2+ doped SnWO4 nanowires with the aim of exploring doping effects on highly enhanced visible photocatalytic activities. RSC Adv. 2(15), 6266–6273 (2012). https://doi.org/10.1039/c2ra20401k
- X.C. Song, X. Cui, W.Z. Huang, Y. Zhang, H.Y. Yin, Y.F. Zheng, Photoactivity enhancement of Zn-doped CdWO4 prepared with a hydrothermal method. Mater. Sci. Eng. B 197, 31–35 (2015). https://doi.org/10.1016/j.mseb.2015.03.007
- D. Ye, D. Li, W. Chen, Y. Shao, G. Xiao, M. Sun, X. Fu, Characterization and properties of Eu3+-doped CdWO4 prepared by a hydrothermal method. Res. Chem. Intermed. 35(6–7), 675–683 (2009). https://doi.org/10.1007/s11164-009-0104-y
- A. Phuruangrat, P. Dumrongrojthanath, T. Thongtem, S. Thongtem, Effect of Ce dopant on structure, morphology, photoabsorbance and photocatalysis of ZnWO4 nanostructure. J. Ceram. Soc. Jpn. 125(2), 62–64 (2017). https://doi.org/10.2109/jcersj2.16176
- H. Wei, L. Wang, Z. Li, S. Ni, Q. Zhao, Synthesis and photocatalytic activity of one-dimensional CdS@TiO2 core-shell heterostructures. Nano-Micro Lett. 3(1), 6–11 (2011). https://doi.org/10.1007/bf03353645
- C. Zhang, H. Hua, J. Liu, X. Han, Q. Liu, Z. Wei, C. Shao, C. Hu, Enhanced photocatalytic activity of nanoparticle-aggregated Ag-AgX (X = Cl, Br)@TiO2 microspheres under visible light. Nano-Micro Lett. 9(4), 49 (2017). https://doi.org/10.1007/s40820-017-0150-8
- C. Liu, F. Wang, J. Zhang, K. Wang, Y. Qiu, Q. Liang, Z. Chen, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett. 10(2), 37 (2018). https://doi.org/10.1007/s40820-018-0192-6
- J. Liu, Y. Li, J. Ke, Z. Wang, H. Xiao, Synergically improving light harvesting and charge transportation of TiO2 nanobelts by deposition of MoS2 for enhanced photocatalytic removal of Cr(VI). Catalysts 7(12), 30 (2017). https://doi.org/10.3390/catal7010030
- J. Liu, J. Ke, Y. Li, B. Liu, L. Wang, H. Xiao, S. Wang, Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting. Appl. Catal. B Environ. 236, 396–403 (2018). https://doi.org/10.1016/j.apcatb.2018.05.042
- L. Pan, S. Wang, J. Xie, L. Wang, X. Zhang, J.J. Zou, Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation. Nano Energy 28, 296–303 (2016). https://doi.org/10.1016/j.nanoen.2016.08.054
- Y. Xu, Y. Huang, B. Zhang, Rational design of semiconductor-based photocatalysts for advanced photocatalytic hydrogen production: the case of cadmium chalcogenides. Inorg. Chem. Front. 3(5), 591–615 (2016). https://doi.org/10.1039/c5qi00217f
- S. Kment, F. Riboni, S. Pausova, L. Wang, L. Wang et al., Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 46(12), 3716–3769 (2017). https://doi.org/10.1039/c6cs00015k
- P. Huo, Y. Tang, M. Zhou, J. Li, Z. Ye, C. Ma, L. Yu, Y. Yan, Fabrication of ZnWO4-CdS heterostructure photocatalysts for visible light induced degradation of ciprofloxacin antibiotics. J. Ind. Eng. Chem. 37, 340–346 (2016). https://doi.org/10.1016/j.jiec.2016.03.043
- K. Vignesh, R. Priyanka, R. Hariharan, M. Rajarajan, A. Suganthi, Fabrication of CdS and CuWO4 modified TiO2 nanoparticles and its photocatalytic activity under visible light irradiation. J. Ind. Eng. Chem. 20(2), 435–443 (2014). https://doi.org/10.1016/j.jiec.2013.04.038
- X. Yan, K. Liu, W. Shi, Facile synthesis of CdS/MnWO4 heterojunction with enhanced visible-light-driven photocatalytic activity and mechanism investigation. Colloids Surf. A Physicochem. Eng. Asp. 520, 138–145 (2017). https://doi.org/10.1016/j.colsurfa.2017.01.065
- M. Xu, T. Ye, F. Dai, J. Yang, J. Shen et al., Rationally designed n-n heterojunction with highly efficient solar hydrogen evolution. Chemsuschem 8(7), 1218–1225 (2015). https://doi.org/10.1002/cssc.201403334
- X. Jia, M. Tahir, L. Pan, Z.F. Huang, X. Zhang, L. Wang, J.J. Zou, Direct Z-scheme composite of CdS and oxygen-defected CdWO4: an efficient visible-light-driven photocatalyst for hydrogen evolution. Appl. Catal. B: Environ. 198, 154–161 (2016). https://doi.org/10.1016/j.apcatb.2016.05.046
- L. Wang, W. Wang, In situ synthesis of CdS modified CdWO4 nanorods and their application in photocatalytic H2 evolution. CrystEngComm 14(9), 3315–3320 (2012). https://doi.org/10.1039/c2ce06656d
- S. Bera, S.B. Rawal, H.J. Kim, W.I. Lee, Novel coupled structures of FeWO4/TiO2 and FeWO4/TiO2/CdS designed for highly efficient visible-light photocatalysis. ACS Appl. Mater. Interfaces 6(12), 9654–9663 (2014). https://doi.org/10.1021/am502079x
- A. Habibi-Yangjeh, M. Shekofteh-Gohari, Novel magnetic Fe3O4/ZnO/NiWO4 nanocomposites: enhanced visible-light photocatalytic performance through p-n heterojunctions. Sep. Purif. Technol. 184, 334–346 (2017). https://doi.org/10.1016/j.seppur.2017.05.007
- M.S. Hassan, T. Amna, S.S. Al-Deyab, H.C. Kim, M.S. Khil, Monodispersed 3D MnWO4-TiO2 composite nanoflowers photocatalysts for environmental remediation. Curr. Appl. Phys. 15(6), 753–758 (2015). https://doi.org/10.1016/j.cap.2015.03.022
- Y.N. Jiang, B.D. Liu, W.J. Yang, B. Yang, X.Y. Liu, X.L. Zhang, M.A. Mohsin, X. Jiang, New strategy for the in situ synthesis of single-crystalline MnWO4/TiO2 photocatalysts for efficient and cyclic photodegradation of organic pollutants. CrystEngComm 18(10), 1832–1841 (2016). https://doi.org/10.1039/c5ce02445e
- K. Buvaneswari, R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Effect of FeWO4 doping on the photocatalytic activity of ZnO under visible light irradiation. Appl. Surf. Sci. 356, 333–340 (2015). https://doi.org/10.1016/j.apsusc.2015.08.060
- T. Mavric, M. Valant, M. Forster, A.J. Cowan, U. Lavrencic, S. Emin, Design of a highly photocatalytically active ZnO/CuWO4 nanocomposite. J. Colloid Interf. Sci. 483, 93–101 (2016). https://doi.org/10.1016/j.jcis.2016.08.019
- H. Wang, C. Wang, X. Cui, L. Qin, R. Ding, L. Wang, Z. Liu, Z. Zheng, B. Lv, Design and facile one-step synthesis of FeWO4/Fe2O3 di-modified WO3 with super high photocatalytic activity toward degradation of quasi-phenothiazine dyes. Appl. Catal. B Environ. 221, 169–178 (2018). https://doi.org/10.1016/j.apcatb.2017.09.011
- T.H. Kim, C.H. Kwak, J.H. Lee, NiO/NiWO4 composite yolk-shell spheres with nanoscale NiO outer layer for ultrasensitive and selective detection of subppm-level p-xylene. ACS Appl. Mater. Interfaces 9(37), 32034–32043 (2017). https://doi.org/10.1021/acsami.7b10294
- K. Ding, X. Zhang, J. Li, P. Yang, X. Cheng, Formation of dandelion-like Co3O4/CoWO4 heterojunctions for enhanced supercapacitive performance. ChemElectroChem 4(11), 3011–3017 (2017). https://doi.org/10.1002/celc.201700704
- B. Polyakov, A. Kuzmin, S. Vlassov, E. Butanovs, J. Zideluns, J. Butikova, R. Kalendarev, M. Zubkins, A comparative study of heterostructured CuO/CuWO4 nanowires and thin films. J. Cryst. Growth 480, 78–84 (2017). https://doi.org/10.1016/j.jcrysgro.2017.10.011
- X. Cao, Y. Chen, S. Jiao, Z. Fang, M. Xu, X. Liu, L. Li, G. Pang, S. Feng, Magnetic photocatalysts with a p-n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nanoscale 6(21), 12366–12370 (2014). https://doi.org/10.1039/c4nr03729d
- S. Yao, M. Zhang, J. Di, Z. Wang, Y. Long, W. Li, Preparation of α-SnWO4/SnO2 heterostructure with enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 357, 1528–1535 (2015). https://doi.org/10.1016/j.apsusc.2015.10.012
- G.Q. Shao, J.K. Guo, J.R. Xie, X.L. Duan, B.L. Wu, R.Z. Yuan, The Preparation of CoWO4/WO3 nanocomposite powder. J. Wuhan Univ. Technol. 19(2), 1–3 (2004)
- H. Zhang, W. Tian, Y. Li, H. Sun, M.O. Tadé, S. Wang, Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water. J. Mater. Chem. A 6(15), 6265–6272 (2018). https://doi.org/10.1039/c8ta00555a
- T.H. Do, C. Van Nguyen, K.A. Tsai, L.T. Quynh, J.W. Chen et al., Superior photoelectrochemical activity of self-assembled NiWO4-WO3 heteroepitaxy. Nano Energy 23, 153–160 (2016). https://doi.org/10.1016/j.nanoen.2016.03.021
- S.F. Anis, B.S. Lalia, G. Palmisano, R. Hashaikeh, Photoelectrochemical activity of electrospun WO3/NiWO4 nanofibers under visible light irradiation. J. Mater. Sci. 53(3), 2208–2220 (2017). https://doi.org/10.1007/s10853-017-1633-1
- J.E. Yourey, J.B. Kurtz, B.M. Bartlett, Water oxidation on a CuWO4-WO3 composite electrode in the presence of [Fe(CN)6]3−: toward solar Z-scheme water splitting at zero bias. J. Phys. Chem. C 116(4), 3200–3205 (2012). https://doi.org/10.1021/jp211409x
- F. Zhan, J. Li, W. Li, Y. Liu, R. Xie, Y. Yang, Y. Li, Q. Chen, In situ formation of CuWO4/WO3 heterojunction plates array films with enhanced photoelectrochemical properties. Int. J. Hydrog. Energy 40(20), 6512–6520 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.131
- I. Aslam, C. Cao, M. Tanveer, M.H. Farooq, W.S. Khan, M. Tahir, F. Idrees, S. Khalid, A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv. 5(8), 6019–6026 (2015). https://doi.org/10.1039/c4ra15847d
- Y. Hou, Z. Wen, S. Cui, S. Ci, S. Mao, J. Chen, An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 25(6), 872–882 (2014). https://doi.org/10.1002/adfm.201403657
- Y. Qin, M. Long, B. Tan, B. Zhou, RhB adsorption performance of magnetic adsorbent Fe3O4/rGO composite and its regeneration through a Fenton-like reaction. Nano-Micro Lett. 6(2), 125–135 (2014). https://doi.org/10.1007/bf03353776
- P. Russo, A. Hu, G. Compagnini, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 260–273 (2013). https://doi.org/10.1007/bf03353757
- A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9(4), 47 (2017). https://doi.org/10.1007/s40820-017-0148-2
- L. Pan, T. Muhammad, L. Ma, Z.F. Huang, S. Wang, L. Wang, J.J. Zou, X. Zhang, MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Appl. Catal. B Environ. 189, 181–191 (2016). https://doi.org/10.1016/j.apcatb.2016.02.066
- J. Liu, J. Ke, D. Li, H. Sun, P. Liang et al., Oxygen vacancies in shape controlled Cu2O/reduced graphene oxide/In2O3 hybrid for promoted photocatalytic water oxidation and degradation of environmental pollutants. ACS Appl. Mater. Interfaces 9(13), 11678–11688 (2017). https://doi.org/10.1021/acsami.7b01605
- A.K. Singh, K. Mathew, H.L. Zhuang, R.G. Hennig, Computational screening of 2D materials for photocatalysis. J Phys. Chem. Lett. 6(6), 1087–1098 (2015). https://doi.org/10.1021/jz502646d
- G. Zhang, Z.A. Lan, X. Wang, Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 8(8), 5261–5274 (2017). https://doi.org/10.1039/c7sc01747b
- Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu, X. Zhuang, C. Yuan, X. Feng, Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater. 29(3), 1604480 (2017). https://doi.org/10.1002/adma.201604480
- J. Ke, X. Duan, S. Luo, H. Zhang, H. Sun, J. Liu, M. Tade, S. Wang, UV-assisted construction of 3D hierarchical rGO/Bi2MoO6 composites for enhanced photocatalytic water oxidation. Chem. Eng. J. 313, 1447–1453 (2017). https://doi.org/10.1016/j.cej.2016.11.048
- N. Gaillard, Y. Chang, A. DeAngelis, S. Higgins, A. Braun, A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO4) and multi-wall carbon nanotubes for solar-assisted water splitting. Int. J. Hydrog. Energy 38(8), 3166–3176 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.104
- P. Wadhwa, S. Kumar, T.J. Dhilip Kumar, A. Shukla, R. Kumar, Effect of edge defects on band structure of zigzag graphene nanoribbons. J. Appl. Phys. 123(16), 161416 (2018). https://doi.org/10.1063/1.5011310
- Z.B. Liu, X. Zhao, X.L. Zhang, X.Q. Yan, Y.P. Wu, Y.S. Chen, J.G. Tian, Ultrafast dynamics and nonlinear optical responses from sp2- and sp3-hybridized domains in graphene oxide. J. Phys. Chem. Lett. 2(16), 1972–1977 (2011). https://doi.org/10.1021/jz2008374
- X.J. Bai, L. Wang, Y.F. Zhu, Visible photocatalytic activity enhancement of ZnWO4 by graphene hybridization. ACS Catal. 2(12), 2769–2778 (2012). https://doi.org/10.1021/cs3005852
- J. Xu, M. Chen, Z. Wang, Preparation of CdWO4-deposited reduced graphene oxide and its enhanced photocatalytic properties. Dalton Trans. 43(9), 3537–3544 (2014). https://doi.org/10.1039/c3dt52120f
- J. Hao, S. Zhang, F. Ren, Z. Wang, J. Lei, X. Wang, T. Cheng, L. Li, Synthesis of TiO2@g-C3N4 core-shell nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light. J. Colloid Interface Sci. 508, 419–425 (2017). https://doi.org/10.1016/j.jcis.2017.08.065
- Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 25(43), 6291–6297 (2013). https://doi.org/10.1002/adma.201303116
- Y. Liu, H. Zhang, J. Ke, J. Zhang, W. Tian et al., 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B: Environ. 228, 64–74 (2018). https://doi.org/10.1016/j.apcatb.2018.01.067
- L. Sun, X. Zhao, C.-J. Jia, Y. Zhou, X. Cheng, P. Li, L. Liu, W. Fan, Enhanced visible-light photocatalytic activity of g-C3N4–ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies. J. Mater. Chem. A 22(44), 23428–23438 (2012). https://doi.org/10.1039/c2jm34965e
- N. Tian, H. Huang, Y. Zhang, Mixed-calcination synthesis of CdWO4/g-C3N4 heterojunction with enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 358, 343–349 (2015). https://doi.org/10.1016/j.apsusc.2015.07.154
- Z.F. Huang, J. Song, X. Wang, L. Pan, K. Li, X. Zhang, L. Wang, J.J. Zou, Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy 40, 308–316 (2017). https://doi.org/10.1016/j.nanoen.2017.08.032
- L. Pan, J. Zhang, X. Jia, Y.H. Ma, X. Zhang, L. Wang, J.J. Zou, Highly efficient Z-scheme WO3–x quantum dots/TiO2 for photocatalytic hydrogen generation. Chin. J. Catal. 38(2), 253–259 (2017). https://doi.org/10.1016/s1872-2067(16)62576-7
- B. Zhu, P. Xia, Y. Li, W. Ho, J. Yu, Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci. 391, 175–183 (2017). https://doi.org/10.1016/j.apsusc.2016.07.104
References
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
X.P. Chen, Z.X. Zhang, L. Chi, A.K. Nair, W.F. Shangguan, Z. Jiang, Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8(1), 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
Y. Hou, X. Li, Q. Zhao, G. Chen, C.L. Raston, Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation. Environ. Sci. Technol. 46(7), 4042–4050 (2012). https://doi.org/10.1021/es204079d
L. Cheng, Q.J. Xiang, Y.L. Liao, H.W. Zhang, CdS-Based photocatalysts. Energ. Environ. Sci. 11(6), 1362–1391 (2018). https://doi.org/10.1039/c7ee03640j
F. Wang, Q. Li, D. Xu, Recent progress in semiconductor-based nanocomposite photocatalysts for solar to chemical energy conversion. Adv. Energy Mater. 7(23), 1700529 (2017). https://doi.org/10.1002/aenm.201700529
Y. Hou, X. Zhuang, X. Feng, Recent advances in earth-abundant heterogeneous electrocatalysts for photoelectrochemical water splitting. Small Methods 1(6), 1700090 (2017). https://doi.org/10.1002/smtd.201700090
Y. Hou, X. Li, Q. Zhao, G. Chen, ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: facile synthesis, improved activity and photocatalytic mechanism. Appl. Catal. B Environ. 142–143, 80–88 (2013). https://doi.org/10.1016/j.apcatb.2013.04.062
Y. Hou, X. Li, Q. Zhao, X. Quan, G. Chen, Electrochemically assisted photocatalytic degradation of 4-chlorophenol by ZnFe2O4-modified TiO2 nanotube array electrode under visible light irradiation. Environ. Sci. Technol. 44(13), 5098–5103 (2010). https://doi.org/10.1021/es100004u
W.Y. Teoh, J.A. Scott, R. Amal, Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J. Phys. Chem. Lett. 3(5), 629–639 (2012). https://doi.org/10.1021/jz3000646
S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D.D. Dionysiou, New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 5(15), 2543–2554 (2014). https://doi.org/10.1021/jz501030x
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919–9986 (2014). https://doi.org/10.1021/cr5001892
M.J. Kale, T. Avanesian, P. Christopher, Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4(1), 116–128 (2013). https://doi.org/10.1021/cs400993w
V. Augugliaro, G. Camera-Roda, V. Loddo, G. Palmisano, L. Palmisano, J. Soria, S. Yurdakal, Heterogeneous photocatalysis and photoelectrocatalysis: from unselective abatement of noxious species to selective production of high-value chemicals. J. Phys. Chem. Lett. 6(10), 1968–1981 (2015). https://doi.org/10.1021/acs.jpclett.5b00294
S. Xie, Q. Zhang, G. Liu, Y. Wang, Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 52(1), 35–59 (2016). https://doi.org/10.1039/c5cc07613g
A. García, C. Fernandez-Blanco, J.R. Herance, J. Albero, H. García, Graphenes as additives in photoelectrocatalysis. J. Mater. Chem. A 5(32), 16522–16536 (2017). https://doi.org/10.1039/c7ta04045h
A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5(2), 5577–5591 (2012). https://doi.org/10.1039/c2ee02618j
Y. Yang, S. Ajmal, X. Zheng, L. Zhang, Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO2 reduction. Sustain. Energ. Fuels 2(3), 510–537 (2018). https://doi.org/10.1039/c7se00371d
R. Zhou, R. Zhou, X. Zhang, J. Li, X. Wang et al., Synergistic effect of atmospheric-pressure plasma and TiO2 photocatalysis on inactivation of Escherichia coli cells in aqueous media. Sci. Rep. 6, 39552 (2016). https://doi.org/10.1038/srep39552
J.J. Zou, C.J. Liu, Y.P. Zhang, Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment. Langmuir 22(5), 2334–2339 (2006). https://doi.org/10.1021/la052135u
L. Zhang, G. Kong, Y. Meng, J. Tian, L. Zhang, S. Wan, J. Lin, Y. Wang, Direct coupling of thermo- and photocatalysis for conversion of CO2-H2O into fuels. Chemsuschem 10(23), 4709–4714 (2017). https://doi.org/10.1002/cssc.201701472
E.T. Kho, T.H. Tan, E. Lovell, R.J. Wong, J. Scott, R. Amal, A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ. 2(3), 204–217 (2017). https://doi.org/10.1016/j.gee.2017.06.003
J. Jia, H. Wang, Z. Lu, P.G. O’Brien, M. Ghoussoub et al., Photothermal catalyst engineering: hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 4(10), 1700252 (2017). https://doi.org/10.1002/advs.201700252
H. Chen, C.E. Nanayakkara, V.H. Grassian, Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 112(11), 5919–5948 (2012). https://doi.org/10.1021/cr3002092
L. Wan, M. Long, D. Zhou, L. Zhang, W. Cai, Preparation and characterization of freestanding hierarchical porous TiO2 monolith modified with graphene oxide. Nano-Micro Lett. 4(2), 90–97 (2012). https://doi.org/10.1007/bf03353698
M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene blue. Nano-Micro Lett. 3(4), 236–241 (2011). https://doi.org/10.1007/bf03353678
X. Li, J. Li, J. Bai, Y. Dong, L. Li, B. Zhou, The inhibition effect of tert-butyl alcohol on the TiO2 nano assays photoelectrocatalytic degradation of different organics and its mechanism. Nano-Micro Lett. 8(3), 221–231 (2016). https://doi.org/10.1007/s40820-015-0080-2
X. Li, Y. Jiang, W. Cheng, Y. Li, X. Xu, K. Lin, Mesoporous TiO2/carbon beads: one-pot preparation and their application in visible-light-induced photodegradation. Nano-Micro Lett. 7(3), 243–254 (2015). https://doi.org/10.1007/s40820-015-0029-5
Y. Hou, F. Zuo, A. Dagg, P. Feng, Visible light-driven α-Fe2O3 nanorod/graphene/BiV1–xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 12(12), 6464–6473 (2012). https://doi.org/10.1021/nl303961c
J. Ke, H. Zhou, J. Liu, X. Duan, H. Zhang, S. Liu, S. Wang, Crystal transformation of 2D tungstic acid H2WO4 to WO3 for enhanced photocatalytic water oxidation. J. Colloid Interface Sci. 514, 576–583 (2018). https://doi.org/10.1016/j.jcis.2017.12.066
Y. Hou, F. Zuo, A.P. Dagg, J. Liu, P. Feng, Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 26(29), 5043–5049 (2014). https://doi.org/10.1002/adma.201401032
S. Luo, J. Ke, M. Yuan, Q. Zhang, P. Xie, L. Deng, S. Wang, CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants. Appl. Catal. B: Environ. 221, 215–222 (2018). https://doi.org/10.1016/j.apcatb.2017.09.028
S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5(5), 3306–3351 (2015). https://doi.org/10.1039/c4ra13299h
J. Ke, J. Liu, H. Sun, H. Zhang, X. Duan et al., Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Appl. Catal. B: Environ. 200, 47–55 (2017). https://doi.org/10.1016/j.apcatb.2016.06.071
J. Liu, Y. Li, J. Ke, S. Wang, L. Wang, H. Xiao, Black NiO-TiO2 nanorods for solar photocatalysis: recognition of electronic structure and reaction mechanism. Appl. Catal. B: Environ. 224, 705–714 (2018). https://doi.org/10.1016/j.apcatb.2017.11.028
S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211–13241 (2011). https://doi.org/10.1021/jp204364a
M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energ. Rev. 11(3), 401–425 (2007). https://doi.org/10.1016/j.rser.2005.01.009
J. Ke, X. Li, Q. Zhao, B. Liu, S. Liu, S. Wang, Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance. J. Colloid Interface Sci. 496, 425–433 (2017). https://doi.org/10.1016/j.jcis.2017.01.121
A. Fujishima, X. Zhang, D. Tryk, Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrog. Energy 32(14), 2664–2672 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.009
X. Zou, Y. Dong, S. Li, J. Ke, Y. Cui, Facile anion exchange to construct uniform AgX (X = Cl, Br, I)/Ag2CrO4 NR hybrids for efficient visible light driven photocatalytic activity. Sol. Energy 169, 392–400 (2018). https://doi.org/10.1016/j.solener.2018.05.017
M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(28), 69–96 (1995). https://doi.org/10.1021/cr00033a004
D. Chen, X.G. Zhang, A.F. Lee, Synthetic strategies to nanostructured photocatalysts for CO2 reduction to solar fuels and chemicals. J. Mater. Chem. A 3(28), 14487–14516 (2015). https://doi.org/10.1039/c5ta01592h
H.F. Cheng, K. Fuku, Y. Kuwahara, K. Mori, H. Yamashita, Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light. J. Mater. Chem. A 3(10), 5244–5258 (2015). https://doi.org/10.1039/c4ta06484d
K. Wenderich, G. Mul, Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem. Rev. 116(23), 14587–14619 (2016). https://doi.org/10.1021/acs.chemrev.6b00327
T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). https://doi.org/10.1039/c3cs60378d
G. Zhang, G. Liu, L. Wang, J.T.S. Irvine, Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 45(21), 5951–5984 (2016). https://doi.org/10.1039/c5cs00769k
D.M. Fabian, S. Hu, N. Singh, F.A. Houle, T. Hisatomi, K. Domen, F.E. Osterloh, S. Ardo, Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8(10), 2825–2850 (2015). https://doi.org/10.1039/c5ee01434d
T. Takata, K. Domen, Development of non-oxide semiconductors as light harvesting materials in photocatalytic and photoelectrochemical water splitting. Dalton Trans. 46(32), 10529–10544 (2017). https://doi.org/10.1039/c7dt00867h
P. Mal, G. Bera, P. Rambabu, G.R. Turpu, B. Chakraborty et al., Electronic, magnetic and spectroscopic properties of doped Mn(1-x) AxWO4 (A = Co, Cu, Ni and Fe) multiferroic: an experimental and DFT study. J. Phys. Condens. Matter 29(7), 075901 (2017). https://doi.org/10.1088/1361-648X/aa4e64
S.M.M. Zawawi, R. Yahya, Z. Hassan, E.H.N.M. Ekramul Mahmud, N.M. Daud, Structural and optical characterization of metal tungstates (MWO4; M = Ni, Ba, Bi) synthesized by a sucrose-templated method. Chem. Cent. J. 7, 80 (2013). https://doi.org/10.1186/1752-153X-7-80
X.A. López, A.F. Fuentes, M.M. Zaragoza, J.A. Díaz Guillén, J.S. Gutiérrez, A.L. Ortiz, V. Collins-Martínez, Synthesis, characterization and photocatalytic evaluation of MWO4 (M = Ni Co, Cu and Mn) tungstates. Int. J. Hydrog. Energy 41(48), 23312–23317 (2016). https://doi.org/10.1016/j.ijhydene.2016.10.117
S. Dey, R.A. Ricciardo, H.L. Cuthbert, P.M. Woodward, Metal-to-metal charge transfer in AWO4 (A = Mg, Mn Co, Ni, Cu, or Zn) compounds with the wolframite structure. Inorg. Chem. 53(9), 4299–4394 (2014). https://doi.org/10.1021/ic4031798
M. Nikl, P. Bohacek, E. Mihokova, M. Kobayashi, M. Ishii et al., Excitonic emission of scheelite tungstates AWO4 (A = Pb, Ca, Ba, Sr). J. Lumin. 87–89, 1136–1139 (2000). https://doi.org/10.1016/S0022-2313(99)00569-4
R.C. Pullar, S. Farrah, N.M. Alford, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J. Eur. Ceram. Soc. 27(2–3), 1059–1063 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.085
G. Zhang, R. Jia, Q. Wu, Preparation, structural and optical properties of AWO4 (A = Ca, Ba, Sr) nanofilms. Mater. Sci. Eng. B 128(1–3), 254–259 (2006). https://doi.org/10.1016/j.mseb.2005.11.040
R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, A. Segura, Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius. EPL 83(3), 37002 (2008). https://doi.org/10.1209/0295-5075/83/37002
C. Shivakumara, R. Saraf, S. Behera, N. Dhananjaya, H. Nagabhushana, Scheelite-type MWO4 (M = Ca, Sr, and Ba) nanophosphors: facile synthesis, structural characterization, photoluminescence, and photocatalytic properties. Mater. Res. Bull. 61, 422–432 (2015). https://doi.org/10.1016/j.materresbull.2014.09.096
S.D. Ramarao, S. Roopas Kiran, V.R.K. Murthy, Structural, lattice vibrational, optical and microwave dielectric studies on Ca1−xSrxMoO4 ceramics with scheelite structure. Mater. Res. Bull. 56, 71–79 (2014). https://doi.org/10.1016/j.materresbull.2014.04.064
Y.G. Su, G.S. Li, Y.F. Xue, L.P. Li, Tunable physical properties of CaWO4 nanocrystals via particle size control. J. Phys. Chem. C 111(18), 6684–6689 (2007). https://doi.org/10.1021/jp068480p
S.M. Ghoreishi, Facile synthesis and characterization of CaWO4 nanoparticles using a new Schiff base as capping agent: enhanced photocatalytic degradation of methyl orange. J. Mater. Sci. Mater. Electron. 28(19), 14833–14838 (2017). https://doi.org/10.1007/s10854-017-7354-z
M. Mohamed Jaffer Sadiq, A. Samson Nesaraj, Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. J. Nanostruct. Chem. 5(1), 45–54 (2014). https://doi.org/10.1007/s40097-014-0133-y
M.C. Oliveira, L. Gracia, I.C. Nogueira, M.F.D. Carmo Gurgel, J.M.R. Mercury, E. Longo, J. Andrés, Synthesis and morphological transformation of BaWO4 crystals: experimental and theoretical insights. Ceram. Int. 42(9), 10913–10921 (2016). https://doi.org/10.1016/j.ceramint.2016.03.225
C. Yu, F. Cao, X. Li, G. Li, Y. Xie, J.C. Yu, Q. Shu, Q. Fan, J. Chen, Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chem. Eng. J. 219, 86–95 (2013). https://doi.org/10.1016/j.cej.2012.12.064
D. Chen, Z. Liu, S.X. Ouyang, J.H. Ye, Simple room-temperature mineralization method to SrWO4 micro/nanostructures and their photocatalytic properties. J. Phys. Chem. C 115(32), 15778–15784 (2011). https://doi.org/10.1021/jp202406n
D. Ye, D.Z. Li, W.J. Zhang, M. Sun, Y. Hu, Y.F. Zhang, X.Z. Fu, A new photocatalyst CdWO4 prepared with a hydrothermal method. J. Phys. Chem. C 112(44), 17351–17356 (2008). https://doi.org/10.1021/jp8059213
A.M. Priya, R.K. Selvan, B. Senthilkumar, M.K. Satheeshkumar, C. Sanjeeviraja, Synthesis and characterization of CdWO4 nanocrystals. Ceram. Int. 37(7), 2485–2488 (2011). https://doi.org/10.1016/j.ceramint.2011.03.040
C. Zhang, H. Zhang, K. Zhang, X. Li, Q. Leng, C. Hu, Photocatalytic activity of ZnWO4: band structure, morphology and surface modification. ACS Appl. Mater. Interfaces 6(16), 14423–14432 (2014). https://doi.org/10.1021/am503696b
J. Guo, X. Zhou, Y. Lu, X. Zhang, S. Kuang, W. Hou, Monodisperse spindle-like FeWO4 nanoparticles: controlled hydrothermal synthesis and enhanced optical properties. J. Solid State Chem. 196, 550–556 (2012). https://doi.org/10.1016/j.jssc.2012.07.026
M. Sivakumar, R. Madhu, S.M. Chen, V. Veeramani, A. Manikandan, W.H. Hung, N. Miyamoto, Y.L. Chueh, Low-temperature chemical synthesis of CoWO4 nanospheres for sensitive nonenzymatic glucose sensor. J. Phys. Chem. C 120(30), 17024–17028 (2016). https://doi.org/10.1021/acs.jpcc.6b04116
F. Ahmadi, M. Rahimi-Nasrabadi, M. Eghbali-Arani, The synthesize of CuWO4 nanoparticles by a new morphological control method, characterization of its photocatalytic activity. J. Mater. Sci. Mater. Electron. 28(7), 5244–5249 (2016). https://doi.org/10.1007/s10854-016-6181-y
M. Vosoughifar, Preparation, characterization, and morphological control of MnWO4 nanoparticles through novel method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 28(2), 2135–2140 (2016). https://doi.org/10.1007/s10854-016-5777-6
R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Photocatalytic and antimicrobial activity of NiWO4 nanoparticles stabilized by the plant extract. Mater. Sci. Semicond. Process. 40, 123–129 (2015). https://doi.org/10.1016/j.mssp.2015.05.037
G. Zhu, W. Que, J. Zhang, P. Zhong, Photocatalytic activity of SnWO4 and SnW3O9 nanostructures prepared by a surfactant-assisted hydrothermal process. Mater. Sci. Eng. B 176(18), 1448–1455 (2011). https://doi.org/10.1016/j.mseb.2011.08.003
S. Pourmasoud, M. Eghbali-Arani, F. Ahmadi, M. Rahimi-Nasrabadi, Synthesis, characterization, and morphological control of PbWO4 nanostructures through precipitation method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 28(22), 17089–17097 (2017). https://doi.org/10.1007/s10854-017-7635-6
W.M. Tong, L.P. Li, W.B. Hu, T.J. Yan, G.S. Li, Systematic control of monoclinic CdWO4 nanophase for optimum photocatalytic activity. J. Phys. Chem. C 114(3), 1512–1519 (2010). https://doi.org/10.1021/jp910284u
S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45(7), 3612–3620 (2016). https://doi.org/10.1007/s11664-016-4532-3
S.M. Hosseinpour-mashkani, A. Sobhani-Nasab, Simple synthesis and characterization of copper tungstate nanoparticles: investigation of surfactant effect and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27(7), 7548–7553 (2016). https://doi.org/10.1007/s10854-016-4735-7
S. Wannapop, T. Thongtem, S. Thongtem, Photoemission and energy gap of MgWO4 particles connecting as nanofibers synthesized by electrospinning-calcination combinations. Appl. Surf. Sci. 258(11), 4971–4976 (2012). https://doi.org/10.1016/j.apsusc.2012.01.133
A.T. Raj, S. Thangavel, A. Rose, C.V. Jipsa, M. Jose, G. Nallamuthu, S.J. Kim, G. Venugopal, Influence of morphology and common oxidants on the photocatalytic property of β-SnWO4 nanoparticles. J. Nanosci. Nanotechnol. 16(3), 2541–2547 (2016). https://doi.org/10.1166/jnn.2016.10961
W.M. Tong, L.P. Li, W.B. Hu, T.J. Yan, X.F. Guan, G.S. Li, Kinetic control of MnWO4 nanoparticles for tailored structural properties. J. Phys. Chem. C 114(36), 15298–15305 (2010). https://doi.org/10.1021/jp103879c
M.I. Ahmed, A. Adam, A. Khan, A.U. Rehman, M. Qamaruddin, M.N. Siddiqui, M. Qamar, Improved photoelectrochemical water oxidation under visible light with mesoporous CoWO4. Mater. Lett. 183, 281–284 (2016). https://doi.org/10.1016/j.matlet.2016.07.137
Q. Gao, Z. Liu, FeWO4 nanorods with excellent UV-Visible light photocatalysis. Prog. Nat. Sci. Mater. 27(5), 556–560 (2017). https://doi.org/10.1016/j.pnsc.2017.08.016
J. Di, J. Xiong, H. Li, Z. Liu, Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications. Adv. Mater. 30(1), 1704548 (2018). https://doi.org/10.1002/adma.201704548
T. Yan, L. Li, W. Tong, J. Zheng, Y. Wang, G. Li, CdWO4 polymorphs: selective preparation, electronic structures, and photocatalytic activities. J. Solid State Chem. 184(2), 357–364 (2011). https://doi.org/10.1016/j.jssc.2010.12.013
L.G. Cai, F.M. Liu, D. Zhang, W.W. Zhong, Dependence of optical properties of monoclinic MnWO4 on the electric field of incident light. Phys. B 407(17), 3654–3659 (2012). https://doi.org/10.1016/j.physb.2012.05.044
S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, A simple sonochemical synthesis and characterization of CdWO4 nanoparticles and its photocatalytic application. J. Mater. Sci. Mater. Electron. 27(4), 3240–3244 (2015). https://doi.org/10.1007/s10854-015-4150-5
Y. Wang, X. Guan, L. Li, H. Lin, X. Wang, G. Li, Solvent-driven polymorphic control of CdWO4 nanocrystals for photocatalytic performances. New J. Chem. 36(9), 1852–1858 (2012). https://doi.org/10.1039/c2nj40504k
M. Dan, M. Cheng, H. Gao, H. Zheng, C. Feng, Synthesis and electrochemical properties of SnWO4. J. Nanosci. Nanotechnol. 14(3), 2395–2399 (2014). https://doi.org/10.1166/jnn.2014.8497
I.S. Cho, C.H. Kwak, D.W. Kim, S.W. Lee, K.S. Hong, Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps. J. Phys. Chem. C 113(24), 10647–10653 (2009). https://doi.org/10.1021/jp901557z
D. Chen, L. Gao, A. Yasumori, K. Kuroda, Y. Sugahara, Size- and shape-controlled conversion of tungstate-based inorganic-organic hybrid belts to WO3 nanoplates with high specific surface areas. Small 4(10), 1813–1822 (2008). https://doi.org/10.1002/smll.200800205
L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, Y. Xie, High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets. Sci. Rep. 3, 1936 (2013). https://doi.org/10.1038/srep01936
Z.F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J.J. Zou, Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27(36), 5309–5327 (2015). https://doi.org/10.1002/adma.201501217
Y. Abraham, N.A.W. Holzwarth, R.T. Williams, Electronic structure and optical properties of CdMoO4 and CdWO4. Phys. Rev. B 62(3), 1733–1741 (2000). https://doi.org/10.1103/PhysRevB.62.1733
S. Shepard, M. Smeu, Ab initio study of structural and electronic properties of copper and nickel tungstate. Comput. Mater. Sci. 143, 301–307 (2018). https://doi.org/10.1016/j.commatsci.2017.11.021
A.E.B. Lima, M.J.S. Costa, R.S. Santos, N.C. Batista, L.S. Cavalcante, E. Longo, G.E. Luz, Facile preparation of CuWO4 porous films and their photoelectrochemical properties. Electrochim. Acta 256, 139–145 (2017). https://doi.org/10.1016/j.electacta.2017.10.010
L. Wang, F. Ke, Q. Wang, J. Yan, C. Liu et al., Effect of crystallization water on the structural and electrical properties of CuWO4 under high pressure. Appl. Phys. Lett. 107(20), 201603 (2015). https://doi.org/10.1063/1.4935978
D. Wang, P.S. Bassi, H. Qi, X. Zhao, Gurudayal, L.H. Wong, R. Xu, T. Sritharan, Z. Chen, Improved charge separation in WO3/CuWO4 composite photoanodes for photoelectrochemical water oxidation. Materials 9(5), 348 (2016). https://doi.org/10.3390/ma9050348
S. Sun, W. Wang, Advanced chemical compositions and nanoarchitectures of bismuth based complex oxides for solar photocatalytic application. RSC Adv. 4(88), 47136–47152 (2014). https://doi.org/10.1039/c4ra06419d
V.V. Atuchin, B.I. Troitskaia, O.Y. Khyzhun, V.L. Bekenev, Y.M. Solonin, Electronic properties of h-WO3 and CuWO4 nanocrystals as determined from X-ray spectroscopy and first principles band structure calculations. Int. J. Appl. Phys. Math. 1(1), 19–23 (2011). https://doi.org/10.7763/ijapm.2011.V1.4
O.Y. Khyzhun, V.L. Bekenev, Y.M. Solonin, First-principles calculations and X-ray spectroscopy studies of the electronic structure of CuWO4. J. Alloy. Compd. 480(2), 184–189 (2009). https://doi.org/10.1016/j.jallcom.2009.01.119
O.Y. Khyzhun, T. Strunskus, S. Cramm, Y.M. Solonin, Electronic structure of CuWO4: XPS, XES and NEXAFS studies. J. Alloy. Compd. 389(1–2), 14–20 (2005). https://doi.org/10.1016/j.jallcom.2004.08.013
M.V. Lalić, Z.S. Popović, F.R. Vukajlović, Ab initio study of electronic, magnetic and optical properties of CuWO4 tungstate. Comp. Mater. Sci. 50(3), 1179–1186 (2011). https://doi.org/10.1016/j.commatsci.2010.11.018
C.R. Lhermitte, B.M. Bartlett, Advancing the chemistry of CuWO4 for photoelectrochemical water oxidation. Acc. Chem. Res. 49(6), 1121–1129 (2016). https://doi.org/10.1021/acs.accounts.6b00045
S. Rajagopal, D. Nataraj, O.Y. Khyzhun, Y. Djaoued, J. Robichaud, D. Mangalaraj, Hydrothermal synthesis and electronic properties of FeWO4 and CoWO4 nanostructures. J. Alloy. Compd. 493(1–2), 340–345 (2010). https://doi.org/10.1016/j.jallcom.2009.12.099
S. Rajagopal, V.L. Bekenev, D. Nataraj, D. Mangalaraj, O.Y. Khyzhun, Electronic structure of FeWO4 and CoWO4 tungstates: first-principles FP-LAPW calculations and X-ray spectroscopy studies. J. Alloy. Compd. 496(1–2), 61–68 (2010). https://doi.org/10.1016/j.jallcom.2010.02.107
K. Hoang, M. Oh, Y. Choi, Electronic structure, polaron formation, and functional properties in transition-metal tungstates. RSC Adv. 8(8), 4191–4196 (2018). https://doi.org/10.1039/c7ra13436c
F. Yu, L. Cao, J. Huang, J. Wu, Effects of pH on the microstructures and optical property of FeWO4 nanocrystallites prepared via hydrothermal method. Ceram. Int. 39(4), 4133–4138 (2013). https://doi.org/10.1016/j.ceramint.2012.10.269
L. Hou, L. Lian, L. Zhang, T. Wu, C. Yuan, Microwave-assisted interfacial hydrothermal fabrication of hydrophobic CdWO4 microspheres as a high-performance photocatalyst. RSC Adv. 4(5), 2374–2381 (2014). https://doi.org/10.1039/c3ra45784b
Y. Ling, L. Zhou, L. Tan, Y. Wang, C. Yu, Synthesis of urchin-like CdWO4 microspheres via a facile template free hydrothermal method. CrystEngComm 12(10), 3019–3026 (2010). https://doi.org/10.1039/b927420k
S. Kang, Y. Li, M. Wu, M. Cai, P.K. Shen, Synthesis of hierarchically flower-like FeWO4 as high performance anode materials for Li-ion batteries by a simple hydrothermal process. Int. J. Hydrog. Energy 39(28), 16081–16087 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.101
S. Liu, S. Tian, R. Xing, CaWO4 hierarchical nanostructures: hydrothermal synthesis, growth mechanism and photoluminescence properties. CrystEngComm 13(24), 7258–7261 (2011). https://doi.org/10.1039/c1ce05790a
T.N. Kovács, G. Pokol, F. Gáber, D. Nagy, T. Igricz, I.E. Lukács, Z. Fogarassy, K. Balázsi, I.M. Szilágyi, Preparation of iron tungstate (FeWO4) nanosheets by hydrothermal method. Mater. Res. Bull. 95, 563–569 (2017). https://doi.org/10.1016/j.materresbull.2017.08.031
Z.G. Chen, H.J. Ma, J.X. Xia, J. Zeng, J. Di, S. Yin, L. Xu, H.M. Li, Ionic liquid-induced strategy for FeWO4 microspheres with advanced visible light photocatalysis. Ceram. Int. 42(7), 8997–9003 (2016). https://doi.org/10.1016/j.ceramint.2016.02.117
Y.X. Zhou, Q. Zhang, J.Y. Gong, S.H. Yu, Surfactant-assisted hydrothermal synthesis and magnetic properties of urchin-like MnWO4 microspheres. J. Phys. Chem. C 112(35), 13383–13389 (2008). https://doi.org/10.1021/jp804211w
Y. Xing, S. Song, J. Feng, Y. Lei, M. Li, H. Zhang, Microemulsion-mediated solvothermal synthesis and photoluminescent property of 3D flowerlike MnWO4 micro/nanocomposite structure. Solid State Sci. 10(10), 1299–1304 (2008). https://doi.org/10.1016/j.solidstatesciences.2008.01.019
Y.C. Chen, Y.G. Lin, L.C. Hsu, A. Tarasov, P.T. Chen, M. Hayashi, J. Ungelenk, Y.K. Hsu, C. Feldmann, β-SnWO4 photocatalyst with controlled morphological transition of cubes to spikecubes. ACS Catal. 6(4), 2357–2367 (2016). https://doi.org/10.1021/acscatal.5b02444
X.Y. Qiu, H.W. Huang, Y.D. Gao, Effects of surface properties of 010}, {001 and 100 of MnWO4 and FeWO4 on absorption of collector. Appl. Surf. Sci. 367, 354–361 (2016). https://doi.org/10.1016/j.apsusc.2016.01.190
J. Ungelenk, C. Feldmann, Synthesis of faceted beta-SnWO4 microcrystals with enhanced visible-light photocatalytic properties. Chem. Commun. 48(63), 7838–7840 (2012). https://doi.org/10.1039/c2cc33224h
T. Tian, L. Ai, X. Liu, L. Li, J. Li, J. Jiang, Synthesis of hierarchical FeWO4 architectures with {100}-faceted nanosheet assemblies as a robust biomimetic catalyst. Ind. Eng. Chem. Res. 54(4), 1171–1178 (2015). https://doi.org/10.1021/ie504114v
Y. Hou, X. Li, X. Zou, X. Quan, G. Chen, Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation. Environ. Sci. Technol. 43(3), 858–863 (2009). https://doi.org/10.1021/es802420u
Y. Hou, X. Li, Q. Zhao, X. Quan, G. Chen, Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv. Funct. Mater. 20(13), 2165–2174 (2010). https://doi.org/10.1002/adfm.200902390
J. Yan, Y. Shen, R. Cao, T. Li, CdWO4 nanorods: ultrafast synthesis via a PEG-1000 polymer-assisted enhanced microwave synthesis route and their photoluminescence property. Ceram. Int. 40(6), 8081–8085 (2014). https://doi.org/10.1016/j.ceramint.2014.01.003
H.W. Liao, Y.F. Wang, X.M. Liu, Y.D. Li, Y.T. Qian, Hydrothermal preparation and characterization of luminescent CdWO4 nanorods. Chem. Mater. 12(10), 2819–2821 (2000). https://doi.org/10.1021/cm000096w
C. Zhang, D. Guo, W. Xu, C. Hu, Y. Chen, Radiative/nonradiative recombination affected by defects and electron-phone coupling in CdWO4 nanorods. J. Phys. Chem. C 120(22), 12218–12225 (2016). https://doi.org/10.1021/acs.jpcc.6b04145
N. Aloysius Sabu, K.P. Priyanka, S. Ganesh, T. Varghese, Modifications in the structural and optical properties of nanocrystalline CaWO4 induced by 8 MeV electron beam irradiation. Radiat. Phys. Chem. 123, 1–5 (2016). https://doi.org/10.1016/j.radphyschem.2016.02.006
Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, G. Yang, Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis. ACS Nano 9(7), 7256–7265 (2015). https://doi.org/10.1021/acsnano.5b02077
W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23(13), 1612–1619 (2013). https://doi.org/10.1002/adfm.201202148
Y. Hou, F. Zuo, Q. Ma, C. Wang, L. Bartels, P. Feng, Ag3PO4 oxygen evolution photocatalyst employing synergistic action of Ag/AgBr nanoparticles and graphene sheets. J. Phys. Chem. C 116(38), 20132–20139 (2012). https://doi.org/10.1021/jp303219j
F. Wang, R.J. Wong, J.H. Ho, Y. Jiang, R. Amal, Sensitization of Pt/TiO2 using plasmonic Au nanoparticles for hydrogen evolution under visible-light irradiation. ACS Appl. Mater. Interfaces 9(36), 30575–30582 (2017). https://doi.org/10.1021/acsami.7b06265
J. Liu, Y. Li, Z. Li, J. Ke, H. Xiao, Y. Hou, In situ growing of Bi/Bi2O2CO3 on Bi2WO6 nanosheets for improved photocatalytic performance. Catal. Today 314, 2–9 (2018). https://doi.org/10.1016/j.cattod.2017.12.001
X. Liu, B. Liang, M. Zhang, Y. Long, W. Li, Enhanced photocatalytic properties of alpha-SnWO4 nanosheets modified by Ag nanoparticles. J. Colloid Interface Sci. 490, 46–52 (2017). https://doi.org/10.1016/j.jcis.2016.11.029
Y. Yan, H. Xing, C. Han, A. Yang, Synthesis and photocatalytic activity of Ag-CdWO4 nanorods. Ceram. Int. 43(4), 3905–3909 (2017). https://doi.org/10.1016/j.ceramint.2016.11.186
A.K. Chakraborty, S. Ganguli, M.A. Kebede, Photocatalytic degradation of 2-propanol and phenol using Au loaded MnWO4 nanorod under visible light irradiation. J. Clust. Sci. 23(2), 437–448 (2012). https://doi.org/10.1007/s10876-012-0450-6
X. Zong, C. Sun, H. Yu, Z.G. Chen, Z. Xing, D. Ye, G.Q. Lu, X. Li, L. Wang, Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible light. J. Phys. Chem. C 117(10), 4937–4942 (2013). https://doi.org/10.1021/jp311729b
Z. Mei, B. Zhang, J. Zheng, S. Yuan, Z. Zhuo et al., Tuning Cu dopant of Zn0.5Cd0.5S nanocrystals enables high-performance photocatalytic H2 evolution from water splitting under visible-light irradiation. Nano Energy 26, 405–416 (2016). https://doi.org/10.1016/j.nanoen.2016.05.051
A.K. Ambast, S.K. Sharma, Variation of trap depth by dopant/codopant and heating rate in CaWO4 phosphors. Opt. Quant. Electron. 49(2), 58 (2017). https://doi.org/10.1007/s11082-017-0889-7
Z. Liu, J. Tian, D. Zeng, C. Yu, L. Zhu, W. Huang, K. Yang, D. Li, A facile microwave-hydrothermal method to fabricate B doped ZnWO4 nanorods with high crystalline and highly efficient photocatalytic activity. Mater. Res. Bull. 94, 298–306 (2017). https://doi.org/10.1016/j.materresbull.2017.06.021
G. Huang, Y. Zhu, Synthesis and photoactivity enhancement of ZnWO4 photocatalysts doped with chlorine. CrystEngComm 14(23), 8076–8082 (2012). https://doi.org/10.1039/c2ce26005k
X. Tian, G. Jiang, Y. Chen, M. Yin, Eu3+, Li+ doped CaWO4 nanorods: synthesis, emission-decay curves and effective-refractive index. Curr. Appl. Phys. 14(12), 1612–1615 (2014). https://doi.org/10.1016/j.cap.2014.09.010
C.K. Choo, S. Suzuki, K. Tanaka, Photoluminescence intensity enhancement of ion-doped CdWO4 thin films prepared with pulsed laser deposition. Thin Solid Films 458(1–2), 179–185 (2004). https://doi.org/10.1016/j.tsf.2003.12.062
S.H. Chen, S.X. Sun, H.G. Sun, W.L. Fan, X. Zhao, X. Sun, Experimental and theoretical studies on the enhanced photocatalytic activity of ZnWO4 nanorods by fluorine doping. J. Phys. Chem. C 114(17), 7680–7699 (2010). https://doi.org/10.1021/jp911952v
Y. Su, L. Hou, C. Du, L. Peng, K. Guan, X. Wang, Rapid synthesis of Zn2+ doped SnWO4 nanowires with the aim of exploring doping effects on highly enhanced visible photocatalytic activities. RSC Adv. 2(15), 6266–6273 (2012). https://doi.org/10.1039/c2ra20401k
X.C. Song, X. Cui, W.Z. Huang, Y. Zhang, H.Y. Yin, Y.F. Zheng, Photoactivity enhancement of Zn-doped CdWO4 prepared with a hydrothermal method. Mater. Sci. Eng. B 197, 31–35 (2015). https://doi.org/10.1016/j.mseb.2015.03.007
D. Ye, D. Li, W. Chen, Y. Shao, G. Xiao, M. Sun, X. Fu, Characterization and properties of Eu3+-doped CdWO4 prepared by a hydrothermal method. Res. Chem. Intermed. 35(6–7), 675–683 (2009). https://doi.org/10.1007/s11164-009-0104-y
A. Phuruangrat, P. Dumrongrojthanath, T. Thongtem, S. Thongtem, Effect of Ce dopant on structure, morphology, photoabsorbance and photocatalysis of ZnWO4 nanostructure. J. Ceram. Soc. Jpn. 125(2), 62–64 (2017). https://doi.org/10.2109/jcersj2.16176
H. Wei, L. Wang, Z. Li, S. Ni, Q. Zhao, Synthesis and photocatalytic activity of one-dimensional CdS@TiO2 core-shell heterostructures. Nano-Micro Lett. 3(1), 6–11 (2011). https://doi.org/10.1007/bf03353645
C. Zhang, H. Hua, J. Liu, X. Han, Q. Liu, Z. Wei, C. Shao, C. Hu, Enhanced photocatalytic activity of nanoparticle-aggregated Ag-AgX (X = Cl, Br)@TiO2 microspheres under visible light. Nano-Micro Lett. 9(4), 49 (2017). https://doi.org/10.1007/s40820-017-0150-8
C. Liu, F. Wang, J. Zhang, K. Wang, Y. Qiu, Q. Liang, Z. Chen, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett. 10(2), 37 (2018). https://doi.org/10.1007/s40820-018-0192-6
J. Liu, Y. Li, J. Ke, Z. Wang, H. Xiao, Synergically improving light harvesting and charge transportation of TiO2 nanobelts by deposition of MoS2 for enhanced photocatalytic removal of Cr(VI). Catalysts 7(12), 30 (2017). https://doi.org/10.3390/catal7010030
J. Liu, J. Ke, Y. Li, B. Liu, L. Wang, H. Xiao, S. Wang, Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting. Appl. Catal. B Environ. 236, 396–403 (2018). https://doi.org/10.1016/j.apcatb.2018.05.042
L. Pan, S. Wang, J. Xie, L. Wang, X. Zhang, J.J. Zou, Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation. Nano Energy 28, 296–303 (2016). https://doi.org/10.1016/j.nanoen.2016.08.054
Y. Xu, Y. Huang, B. Zhang, Rational design of semiconductor-based photocatalysts for advanced photocatalytic hydrogen production: the case of cadmium chalcogenides. Inorg. Chem. Front. 3(5), 591–615 (2016). https://doi.org/10.1039/c5qi00217f
S. Kment, F. Riboni, S. Pausova, L. Wang, L. Wang et al., Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 46(12), 3716–3769 (2017). https://doi.org/10.1039/c6cs00015k
P. Huo, Y. Tang, M. Zhou, J. Li, Z. Ye, C. Ma, L. Yu, Y. Yan, Fabrication of ZnWO4-CdS heterostructure photocatalysts for visible light induced degradation of ciprofloxacin antibiotics. J. Ind. Eng. Chem. 37, 340–346 (2016). https://doi.org/10.1016/j.jiec.2016.03.043
K. Vignesh, R. Priyanka, R. Hariharan, M. Rajarajan, A. Suganthi, Fabrication of CdS and CuWO4 modified TiO2 nanoparticles and its photocatalytic activity under visible light irradiation. J. Ind. Eng. Chem. 20(2), 435–443 (2014). https://doi.org/10.1016/j.jiec.2013.04.038
X. Yan, K. Liu, W. Shi, Facile synthesis of CdS/MnWO4 heterojunction with enhanced visible-light-driven photocatalytic activity and mechanism investigation. Colloids Surf. A Physicochem. Eng. Asp. 520, 138–145 (2017). https://doi.org/10.1016/j.colsurfa.2017.01.065
M. Xu, T. Ye, F. Dai, J. Yang, J. Shen et al., Rationally designed n-n heterojunction with highly efficient solar hydrogen evolution. Chemsuschem 8(7), 1218–1225 (2015). https://doi.org/10.1002/cssc.201403334
X. Jia, M. Tahir, L. Pan, Z.F. Huang, X. Zhang, L. Wang, J.J. Zou, Direct Z-scheme composite of CdS and oxygen-defected CdWO4: an efficient visible-light-driven photocatalyst for hydrogen evolution. Appl. Catal. B: Environ. 198, 154–161 (2016). https://doi.org/10.1016/j.apcatb.2016.05.046
L. Wang, W. Wang, In situ synthesis of CdS modified CdWO4 nanorods and their application in photocatalytic H2 evolution. CrystEngComm 14(9), 3315–3320 (2012). https://doi.org/10.1039/c2ce06656d
S. Bera, S.B. Rawal, H.J. Kim, W.I. Lee, Novel coupled structures of FeWO4/TiO2 and FeWO4/TiO2/CdS designed for highly efficient visible-light photocatalysis. ACS Appl. Mater. Interfaces 6(12), 9654–9663 (2014). https://doi.org/10.1021/am502079x
A. Habibi-Yangjeh, M. Shekofteh-Gohari, Novel magnetic Fe3O4/ZnO/NiWO4 nanocomposites: enhanced visible-light photocatalytic performance through p-n heterojunctions. Sep. Purif. Technol. 184, 334–346 (2017). https://doi.org/10.1016/j.seppur.2017.05.007
M.S. Hassan, T. Amna, S.S. Al-Deyab, H.C. Kim, M.S. Khil, Monodispersed 3D MnWO4-TiO2 composite nanoflowers photocatalysts for environmental remediation. Curr. Appl. Phys. 15(6), 753–758 (2015). https://doi.org/10.1016/j.cap.2015.03.022
Y.N. Jiang, B.D. Liu, W.J. Yang, B. Yang, X.Y. Liu, X.L. Zhang, M.A. Mohsin, X. Jiang, New strategy for the in situ synthesis of single-crystalline MnWO4/TiO2 photocatalysts for efficient and cyclic photodegradation of organic pollutants. CrystEngComm 18(10), 1832–1841 (2016). https://doi.org/10.1039/c5ce02445e
K. Buvaneswari, R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Effect of FeWO4 doping on the photocatalytic activity of ZnO under visible light irradiation. Appl. Surf. Sci. 356, 333–340 (2015). https://doi.org/10.1016/j.apsusc.2015.08.060
T. Mavric, M. Valant, M. Forster, A.J. Cowan, U. Lavrencic, S. Emin, Design of a highly photocatalytically active ZnO/CuWO4 nanocomposite. J. Colloid Interf. Sci. 483, 93–101 (2016). https://doi.org/10.1016/j.jcis.2016.08.019
H. Wang, C. Wang, X. Cui, L. Qin, R. Ding, L. Wang, Z. Liu, Z. Zheng, B. Lv, Design and facile one-step synthesis of FeWO4/Fe2O3 di-modified WO3 with super high photocatalytic activity toward degradation of quasi-phenothiazine dyes. Appl. Catal. B Environ. 221, 169–178 (2018). https://doi.org/10.1016/j.apcatb.2017.09.011
T.H. Kim, C.H. Kwak, J.H. Lee, NiO/NiWO4 composite yolk-shell spheres with nanoscale NiO outer layer for ultrasensitive and selective detection of subppm-level p-xylene. ACS Appl. Mater. Interfaces 9(37), 32034–32043 (2017). https://doi.org/10.1021/acsami.7b10294
K. Ding, X. Zhang, J. Li, P. Yang, X. Cheng, Formation of dandelion-like Co3O4/CoWO4 heterojunctions for enhanced supercapacitive performance. ChemElectroChem 4(11), 3011–3017 (2017). https://doi.org/10.1002/celc.201700704
B. Polyakov, A. Kuzmin, S. Vlassov, E. Butanovs, J. Zideluns, J. Butikova, R. Kalendarev, M. Zubkins, A comparative study of heterostructured CuO/CuWO4 nanowires and thin films. J. Cryst. Growth 480, 78–84 (2017). https://doi.org/10.1016/j.jcrysgro.2017.10.011
X. Cao, Y. Chen, S. Jiao, Z. Fang, M. Xu, X. Liu, L. Li, G. Pang, S. Feng, Magnetic photocatalysts with a p-n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nanoscale 6(21), 12366–12370 (2014). https://doi.org/10.1039/c4nr03729d
S. Yao, M. Zhang, J. Di, Z. Wang, Y. Long, W. Li, Preparation of α-SnWO4/SnO2 heterostructure with enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 357, 1528–1535 (2015). https://doi.org/10.1016/j.apsusc.2015.10.012
G.Q. Shao, J.K. Guo, J.R. Xie, X.L. Duan, B.L. Wu, R.Z. Yuan, The Preparation of CoWO4/WO3 nanocomposite powder. J. Wuhan Univ. Technol. 19(2), 1–3 (2004)
H. Zhang, W. Tian, Y. Li, H. Sun, M.O. Tadé, S. Wang, Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water. J. Mater. Chem. A 6(15), 6265–6272 (2018). https://doi.org/10.1039/c8ta00555a
T.H. Do, C. Van Nguyen, K.A. Tsai, L.T. Quynh, J.W. Chen et al., Superior photoelectrochemical activity of self-assembled NiWO4-WO3 heteroepitaxy. Nano Energy 23, 153–160 (2016). https://doi.org/10.1016/j.nanoen.2016.03.021
S.F. Anis, B.S. Lalia, G. Palmisano, R. Hashaikeh, Photoelectrochemical activity of electrospun WO3/NiWO4 nanofibers under visible light irradiation. J. Mater. Sci. 53(3), 2208–2220 (2017). https://doi.org/10.1007/s10853-017-1633-1
J.E. Yourey, J.B. Kurtz, B.M. Bartlett, Water oxidation on a CuWO4-WO3 composite electrode in the presence of [Fe(CN)6]3−: toward solar Z-scheme water splitting at zero bias. J. Phys. Chem. C 116(4), 3200–3205 (2012). https://doi.org/10.1021/jp211409x
F. Zhan, J. Li, W. Li, Y. Liu, R. Xie, Y. Yang, Y. Li, Q. Chen, In situ formation of CuWO4/WO3 heterojunction plates array films with enhanced photoelectrochemical properties. Int. J. Hydrog. Energy 40(20), 6512–6520 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.131
I. Aslam, C. Cao, M. Tanveer, M.H. Farooq, W.S. Khan, M. Tahir, F. Idrees, S. Khalid, A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv. 5(8), 6019–6026 (2015). https://doi.org/10.1039/c4ra15847d
Y. Hou, Z. Wen, S. Cui, S. Ci, S. Mao, J. Chen, An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 25(6), 872–882 (2014). https://doi.org/10.1002/adfm.201403657
Y. Qin, M. Long, B. Tan, B. Zhou, RhB adsorption performance of magnetic adsorbent Fe3O4/rGO composite and its regeneration through a Fenton-like reaction. Nano-Micro Lett. 6(2), 125–135 (2014). https://doi.org/10.1007/bf03353776
P. Russo, A. Hu, G. Compagnini, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 260–273 (2013). https://doi.org/10.1007/bf03353757
A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9(4), 47 (2017). https://doi.org/10.1007/s40820-017-0148-2
L. Pan, T. Muhammad, L. Ma, Z.F. Huang, S. Wang, L. Wang, J.J. Zou, X. Zhang, MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Appl. Catal. B Environ. 189, 181–191 (2016). https://doi.org/10.1016/j.apcatb.2016.02.066
J. Liu, J. Ke, D. Li, H. Sun, P. Liang et al., Oxygen vacancies in shape controlled Cu2O/reduced graphene oxide/In2O3 hybrid for promoted photocatalytic water oxidation and degradation of environmental pollutants. ACS Appl. Mater. Interfaces 9(13), 11678–11688 (2017). https://doi.org/10.1021/acsami.7b01605
A.K. Singh, K. Mathew, H.L. Zhuang, R.G. Hennig, Computational screening of 2D materials for photocatalysis. J Phys. Chem. Lett. 6(6), 1087–1098 (2015). https://doi.org/10.1021/jz502646d
G. Zhang, Z.A. Lan, X. Wang, Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 8(8), 5261–5274 (2017). https://doi.org/10.1039/c7sc01747b
Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu, X. Zhuang, C. Yuan, X. Feng, Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater. 29(3), 1604480 (2017). https://doi.org/10.1002/adma.201604480
J. Ke, X. Duan, S. Luo, H. Zhang, H. Sun, J. Liu, M. Tade, S. Wang, UV-assisted construction of 3D hierarchical rGO/Bi2MoO6 composites for enhanced photocatalytic water oxidation. Chem. Eng. J. 313, 1447–1453 (2017). https://doi.org/10.1016/j.cej.2016.11.048
N. Gaillard, Y. Chang, A. DeAngelis, S. Higgins, A. Braun, A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO4) and multi-wall carbon nanotubes for solar-assisted water splitting. Int. J. Hydrog. Energy 38(8), 3166–3176 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.104
P. Wadhwa, S. Kumar, T.J. Dhilip Kumar, A. Shukla, R. Kumar, Effect of edge defects on band structure of zigzag graphene nanoribbons. J. Appl. Phys. 123(16), 161416 (2018). https://doi.org/10.1063/1.5011310
Z.B. Liu, X. Zhao, X.L. Zhang, X.Q. Yan, Y.P. Wu, Y.S. Chen, J.G. Tian, Ultrafast dynamics and nonlinear optical responses from sp2- and sp3-hybridized domains in graphene oxide. J. Phys. Chem. Lett. 2(16), 1972–1977 (2011). https://doi.org/10.1021/jz2008374
X.J. Bai, L. Wang, Y.F. Zhu, Visible photocatalytic activity enhancement of ZnWO4 by graphene hybridization. ACS Catal. 2(12), 2769–2778 (2012). https://doi.org/10.1021/cs3005852
J. Xu, M. Chen, Z. Wang, Preparation of CdWO4-deposited reduced graphene oxide and its enhanced photocatalytic properties. Dalton Trans. 43(9), 3537–3544 (2014). https://doi.org/10.1039/c3dt52120f
J. Hao, S. Zhang, F. Ren, Z. Wang, J. Lei, X. Wang, T. Cheng, L. Li, Synthesis of TiO2@g-C3N4 core-shell nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light. J. Colloid Interface Sci. 508, 419–425 (2017). https://doi.org/10.1016/j.jcis.2017.08.065
Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 25(43), 6291–6297 (2013). https://doi.org/10.1002/adma.201303116
Y. Liu, H. Zhang, J. Ke, J. Zhang, W. Tian et al., 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B: Environ. 228, 64–74 (2018). https://doi.org/10.1016/j.apcatb.2018.01.067
L. Sun, X. Zhao, C.-J. Jia, Y. Zhou, X. Cheng, P. Li, L. Liu, W. Fan, Enhanced visible-light photocatalytic activity of g-C3N4–ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies. J. Mater. Chem. A 22(44), 23428–23438 (2012). https://doi.org/10.1039/c2jm34965e
N. Tian, H. Huang, Y. Zhang, Mixed-calcination synthesis of CdWO4/g-C3N4 heterojunction with enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 358, 343–349 (2015). https://doi.org/10.1016/j.apsusc.2015.07.154
Z.F. Huang, J. Song, X. Wang, L. Pan, K. Li, X. Zhang, L. Wang, J.J. Zou, Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy 40, 308–316 (2017). https://doi.org/10.1016/j.nanoen.2017.08.032
L. Pan, J. Zhang, X. Jia, Y.H. Ma, X. Zhang, L. Wang, J.J. Zou, Highly efficient Z-scheme WO3–x quantum dots/TiO2 for photocatalytic hydrogen generation. Chin. J. Catal. 38(2), 253–259 (2017). https://doi.org/10.1016/s1872-2067(16)62576-7
B. Zhu, P. Xia, Y. Li, W. Ho, J. Yu, Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci. 391, 175–183 (2017). https://doi.org/10.1016/j.apsusc.2016.07.104