Beyond Graphene Anode Materials for Emerging Metal Ion Batteries and Supercapacitors
Corresponding Author: Gurpreet Singh
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 70
Abstract
Intensive research effort is currently focused on the development of efficient, reliable, and environmentally safe electrochemical energy storage systems due to the ever-increasing global energy storage demand. Li ion battery systems have been used as the primary energy storage device over the last three decades. However, low abundance and uneven distribution of lithium and cobalt in the earth crust and the associated cost of these materials, have resulted in a concerted effort to develop beyond lithium electrochemical storage systems. In the case of non-Li ion rechargeable systems, the development of electrode materials is a significant challenge, considering the larger ionic size of the metal-ions and slower kinetics. Two-dimensional (2D) materials, such as graphene, transition metal dichalcogenides, MXenes and phosphorene, have garnered significant attention recently due to their multi-faceted advantageous properties: large surface areas, high electrical and thermal conductivity, mechanical strength, etc. Consequently, the study of 2D materials as negative electrodes is of notable importance as emerging non-Li battery systems continue to generate increasing attention. Among these interesting materials, graphene has already been extensively studied and reviewed, hence this report focuses on 2D materials beyond graphene for emerging non-Li systems. We provide a comparative analysis of 2D material chemistry, structure, and performance parameters as anode materials in rechargeable batteries and supercapacitors.
Highlights:
1 A comprehensive review of novel 2D materials, particularly MXene and phosphorene, for applications as electrodes in both batteries and supercapacitors. The performance of these materials, in addition to their fabrication techniques, structure, and electrochemistry, is highlighted.
2 Separate sections are dedicated to explaining the limitations of conventional anode materials and the role of 2D materials in addressing these deficiencies, in addition to the future path of development of this field of research.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
- V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011). https://doi.org/10.1039/C1EE01598B
- X. Xie, S. Wang, K. Kretschmer, G. Wang, Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. J. Colloid Interface Sci. 499, 17–32 (2017). https://doi.org/10.1016/j.jcis.2017.03.077
- R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). https://doi.org/10.1107/s0567739476001551
- L. Peng, Y. Zhu, D. Chen, R.S. Ruoff, G. Yu, Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 6, 1600025–1600045 (2016). https://doi.org/10.1002/aenm.201600025
- B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries, A look into the future. Energy Environ. Sci. 4, 3287–3295 (2011). https://doi.org/10.1039/C1EE01388B
- T. Ichitsubo, T. Adachi, S. Yagi, T. Doi, Potential positive electrodes for high-voltage magnesium-ion batteries. J. Mater. Chem. 21, 11764–11772 (2011). https://doi.org/10.1039/C1JM11793A
- M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013)
- Y. Wang, R. Chen, T. Chen, H. Lv, G. Zhu, L. Ma, C. Wang, Z. Jin, J. Liu, Emerging non-lithium ion batteries. Energy Storage Mater. 4, 103–129 (2016). https://doi.org/10.1016/j.ensm.2016.04.001
- Y. Chen, W. Luo, M. Carter, L. Zhou, J. Dai et al., Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 18, 205–211 (2015). https://doi.org/10.1016/j.nanoen.2015.10.015
- Y. Zhou, Y. Yang, M. Jiao, Z. Zhou, What is the promising anode material for Na ion batteries? Sci. Bull. 63, 146–148 (2018). https://doi.org/10.1016/j.scib.2018.01.011
- D.R.S. Few, O. Schmidt, A. Gambhir, Electrical Energy Storage for Mitigating Climate Change, Briefing Paper No 20 (Grantham Institute, Imperial College, London, UK, 2016), pp. 1–23. https://hdl.handle.net/10044/1/37495
- Y. Han, Y. Ge, Y. Chao, C. Wang, G.G. Wallace, Recent progress in 2d materials for flexible supercapacitors. J. Energy Chem. 27, 57–72 (2018). https://doi.org/10.1016/j.jechem.2017.10.033
- M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010). https://doi.org/10.1021/cr900070d
- Y. Jing, Z. Zhou, C.R. Cabrera, Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A 2, 12104–12122 (2014). https://doi.org/10.1039/C4TA01033G
- A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39, 507–514 (2001). https://doi.org/10.1016/S0008-6223(00)00155-X
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
- X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017). https://doi.org/10.1038/natrevmats.2017.46
- M. Pumera, Z. Sofer, A. Ambrosi, Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2, 8981–8987 (2014). https://doi.org/10.1039/C4TA00652F
- M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L. Ottaviano, Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sensor Actuat. B: Chem. 207, 602–613 (2015). https://doi.org/10.1016/j.snb.2014.10.099
- J.-C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10, 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x
- B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
- Q. Hu, D. Sun, Q. Wu, H. Wang, L. Wang, B. Liu, A. Zhou, J. He, MXene: a new family of promising hydrogen storage medium. J. Phys. Chem. A 117, 14253–14260 (2013). https://doi.org/10.1021/jp409585v
- H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). https://doi.org/10.1021/nn501226z
- S. Zhao, W. Kang, J. Xue, The potential application of phosphorene as an anode material in Li-ion batteries. J. Mater. Chem. A 2, 19046–19052 (2014). https://doi.org/10.1039/C4TA04368E
- A. Sibari, A.E. Marjaoui, M. Lakhal, Z. Kerrami, A. Kara et al., Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: a first-principle study. Sol. Energy Mater. Sol. Cells 180, 253–257 (2018). https://doi.org/10.1016/j.solmat.2017.06.034
- J. Dai, X.C. Zeng, Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5, 1289–1293 (2014). https://doi.org/10.1021/jz500409m
- L. Kou, T. Frauenheim, C. Chen, Phosphorene as a superior gas sensor: selective adsorption and distinct i–v response. J. Phys. Chem. Lett. 5, 2675–2681 (2014). https://doi.org/10.1021/jz501188k
- R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015). https://doi.org/10.1038/nmat4170
- W. Lv, Z. Li, Y. Deng, Q.-H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016). https://doi.org/10.1016/j.ensm.2015.10.002
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for k-ion batteries. J. Am. Chem. Soc. 137, 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu, Challenges and perspectives for nasicon-type electrode materials for advanced sodium-ion batteries. Adv. Mater. (2017). https://doi.org/10.1002/adma.201700431
- I. Sultana, M.M. Rahman, S. Mateti, V.G. Ahmadabadi, A.M. Glushenkov, Y. Chen, K-ion and Na-ion storage performances of CO3O4–Fe2O3 nanoparticle-decorated super p carbon black prepared by a ball milling process. Nanoscale 9, 3646–3654 (2017). https://doi.org/10.1039/C6NR09613A
- N. Wu, Y.-C. Lyu, R.-J. Xiao, X. Yu, Y.-X. Yin, X.-Q. Yang, H. Li, L. Gu, Y.-G. Guo, A highly reversible, low-strain Mg-ion insertion anode material for rechargeable mg-ion batteries. NPG Asia Mater. 6, e120 (2014). https://doi.org/10.1038/am.2014.61
- X. Fan, J. Mao, Y. Zhu, C. Luo, L. Suo, T. Gao, F. Han, S.C. Liou, C. Wang, Superior stable self-healing SnP3 anode for sodium-ion batteries. Adv. Energy Mater. 5, 1500174 (2015). https://doi.org/10.1002/aenm.201500174
- W. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139, 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185
- H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013). https://doi.org/10.1039/c3ee40871j
- L. Shi, T. Zhao, Recent advances in inorganic 2d materials and their applications in lithium and sodium batteries. J. Mater. Chem. A 5, 3735–3758 (2017). https://doi.org/10.1039/C6TA09831B
- P. Kumar, H. Abuhimd, W. Wahyudi, M. Li, J. Ming, L.-J. Li, Review—two-dimensional layered materials for energy storage applications. ECS J. Solid State Sci. Technol. 5, Q3021–Q3025 (2016). https://doi.org/10.1149/2.0051611jss
- L. Kou, C. Chen, S.C. Smith, Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6, 2794–2805 (2015). https://doi.org/10.1021/acs.jpclett.5b01094
- M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589
- J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969). https://doi.org/10.1080/00018736900101307
- Y.C. Jiang, J. Gao, L. Wang, Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer. Sci. Rep. 6, 19624 (2016). https://doi.org/10.1038/srep19624
- J.A. Wilson, F.J.D. Salvo, S. Mahajan, Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975). https://doi.org/10.1080/00018737500101391
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
- S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011). https://doi.org/10.1021/nn203879f
- X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42, 1934–1946 (2013). https://doi.org/10.1039/c2cs35387c
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2d metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Mxenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- M.W. Barsoum, M. Radovic, Elastic and mechanical properties of the max phases. Ann. Rev. Mater. Res. 41, 195–227 (2011). https://doi.org/10.1146/annurev-matsci-062910-100448
- Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for li ion batteries? Computational studies on electronic properties and li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012). https://doi.org/10.1021/ja308463r
- M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans. 44, 9353–9358 (2015). https://doi.org/10.1039/C5DT01247C
- H.W. Wang, M. Naguib, K. Page, D.J. Wesolowski, Y. Gogotsi, Resolving the structure of Ti3C2Tx MXenes through multi-level structural modeling of the atomic pair distribution function. Chem. Mat. 28, 349–359 (2015). https://doi.org/10.1021/acs.chemmater.5b04250
- Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014). https://doi.org/10.1063/1.4885215
- A. Khandelwal, K. Mani, M.H. Karigerasi, I. Lahiri, Phosphorene – the two-dimensional black phosphorous: properties, synthesis and applications. Mater. Sci. Eng. B 221, 17–34 (2017). https://doi.org/10.1016/j.mseb.2017.03.011
- A. Castellanos-Gomez, Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6, 4280–4291 (2015). https://doi.org/10.1021/acs.jpclett.5b01686
- H.Y. Lv, W.J. Lu, D.F. Shao, Y.P. Sun, Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys. Rev. B 90, 085433 (2014). https://doi.org/10.1103/PhysRevB.90.085433
- L. Zhu, G. Zhang, B. Li, Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. B 90, 214302 (2014). https://doi.org/10.1103/PhysRevB.90.214302
- Y.-Y. Zhang, Q.-X. Pei, J.-W. Jiang, N. Wei, Y.-W. Zhang, Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study. Nanoscale 8, 483–491 (2016). https://doi.org/10.1039/C5NR05451F
- Y. Jing, X. Zhang, Z. Zhou, Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6, 5–19 (2016). https://doi.org/10.1002/wcms.1234
- P. Srivastava, K.P.S.S. Hembram, H. Mizuseki, K.R. Lee, S.S. Han, S. Kim, Tuning the electronic and magnetic properties of phosphorene by vacancies and adatoms. J. Phys. Chem. C 119, 6530–6538 (2015). https://doi.org/10.1021/jp5110938
- S. Pan, J. He, C. Wang, Y. Zuo, Exfoliation of two-dimensional phosphorene sheets with enhanced photocatalytic activity under simulated sunlight. Mater. Lett. 212, 311–314 (2018). https://doi.org/10.1016/j.matlet.2017.10.090
- H. Kaur, S. Yadav, A.K. Srivastava, N. Singh, J.J. Schneider, O.P. Sinha, V.V. Agrawal, R. Srivastava, Large area fabrication of semiconducting phosphorene by langmuir-blodgett assembly. Sci. Rep. 6, 34095 (2016). https://doi.org/10.1038/srep34095
- Q.X. Xia, J. Fu, J.M. Yun, R.S. Mane, K.H. Kim, High volumetric energy density annealed-mxene-nickel oxide/mxene asymmetric supercapacitor. RSC Adv. 7, 11000–11011 (2017). https://doi.org/10.1039/C6RA27880A
- E. Yang, H. Ji, J. Kim, H. Kim, Y. Jung, Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries. Phys. Chem. Chem. Phys. 17, 5000–5005 (2015). https://doi.org/10.1039/C4CP05140H
- A. Byeon, M.-Q. Zhao, C.E. Ren, J. Halim, S. Kota, P. Urbankowski, B. Anasori, M.W. Barsoum, Y. Gogotsi, Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 4296–4300 (2017). https://doi.org/10.1021/acsami.6b04198
- S. Xu, G. Wei, J. Li, Y. Ji, N. Klyui, V. Izotov, W. Han, Binder-free Ti3C2Tx mxene electrode film for supercapacitor produced by electrophoretic deposition method. Chem. Eng. J. 317, 1026–1036 (2017). https://doi.org/10.1016/j.cej.2017.02.144
- X. Zhou, J. Jiang, T. Ding, J. Zhang, B. Pan, J. Zuoa, Q. Yang, Fast colloidal synthesis of scalable mo-rich hierarchical ultrathin MoSe2-x nanosheets for high performance hydrogen evolution. Nanoscale 6, 11046–11051 (2014). https://doi.org/10.1039/C4NR02716G
- H. Zhang, X.-L. Fan, Y. Yang, P. Xiao, Strain engineering the magnetic states of vacancy-doped monolayer MoSe2. J. Alloy. Compd. 635, 307–313 (2015). https://doi.org/10.1016/j.jallcom.2015.02.141
- M. Bougouma, A. Batan, B. Guel, T. Segato, J.B. Legma, F. Reniers, M.-P. Delplancke-Ogletree, C. Buess-Herman, T. Doneux, Growth and characterization of large, high quality MoSe2 single crystals. J. Cryst. Growth 363, 122–127 (2013). https://doi.org/10.1016/j.jcrysgro.2012.10.026
- J. Xia, X. Huang, L.-Z. Liu, M. Wang, L. Wang et al., CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 6, 8949–8955 (2014). https://doi.org/10.1039/C4NR02311K
- D.A.C. Brownson, D.K. Kampouris, C.E. Banks, Graphene electrochemistry: fundamental concepts through to prominent applications. Chem. Soc. Rev. 41, 6944–6976 (2012). https://doi.org/10.1039/c2cs35105f
- H. Chengxue, Y. Zhong, S. Xiufeng, Z. Haibo, 2D materials via liquid exfoliation: a review on fabrication and applications. Sci. Bull. 60, 1994–2008 (2015). https://doi.org/10.1007/s11434-015-0936-3
- A.H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L.K. Shrestha, S. Acharya, K. Ariga, Two-dimensional (2d) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull. Chem. Soc. Jpn. 90, 627–648 (2017). https://doi.org/10.1246/bcsj.20170043
- H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
- K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. PNAS, USA 102, 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
- A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010). https://doi.org/10.1021/nl903868w
- H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067–1075 (2014). https://doi.org/10.1021/ar4002312
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
- M.H. Rummeli, C.G. Rocha, F. Ortmann, I. Ibrahim, H. Sevincli, Graphene: piecing it together. Adv. Mater. 23, 4471–4490 (2011). https://doi.org/10.1002/adma.201101855
- R. Lv, H. Terrones, A.L. Elías, N. Perea-López, R. Gutiérrez, H.E. Cruz-Silva, L.P. Rajukumar, S. Dresselhaus, M. MauricioTerrones, Two-dimensional transition metal dichalcogenides: clusters, ribbons, sheets and more. Nano Today 10, 559–592 (2015). https://doi.org/10.1016/j.nantod.2015.07.004
- J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011). https://doi.org/10.1126/science.1194975
- L. David, R. Bhandavat, G. Singh, MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8, 1759–1770 (2014). https://doi.org/10.1021/nn406156b
- S. Haar, M. Bruna, J.X. Lian, F. Tomarchio, Y. Olivier et al., Liquid-phase exfoliation of graphite into single- and few-layer graphene with α-functionalized alkanes. J. Phys. Chem. Lett. 7, 2714–2721 (2016). https://doi.org/10.1021/acs.jpclett.6b01260
- E. Benavente, M.A.S. Ana, F. Mendizabal, G. Gonzalez, Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 224, 87–109 (2002). https://doi.org/10.1016/S0010-8545(01)00392-7
- A.S. Golub, Y.V. Zubavichus, Y.L. Slovokhotov, Y.N. Novikov, Single layer dispersion of transition metal dichalcogenides in the synthesis of intercalation compounds. Russ. Chem. Rev. 72, 123–141 (2003). https://doi.org/10.1070/RC2003v072n02ABEH000789
- J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mat. 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a
- M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi, M.W. Barsoum, Ion-exchange and cation solvation reactions in Ti3C2 mxene. Chem. Mat. 28, 3507–3514 (2016). https://doi.org/10.1021/acs.chemmater.6b01275
- C.N.R. Rao, H.S.S.R. Matte, U. Maitra, Graphene analogues of inorganic layered materials. Angew. Chem. Intern. Edit. 52, 13162–13185 (2013). https://doi.org/10.1002/anie.201301548
- R.A. Vilá, K. Momeni, Q. Wang, B.M. Bersch, N. Lu, M.J. Kim, L.Q. Chen, J.A. Robinson, Bottom-up synthesis of vertically oriented two-dimensional materials. 2D Mater 3, 041003 (2016). https://doi.org/10.1088/2053-1583/3/4/041003
- A. Özden, F. Ay, C. Sevik, N.K. Perkgöz, CVD growth of monolayer MoS2: role of growth zone configuration and precursors ratio. Jpn. J. Appl. Phys. 56, 06GG05 (2017). https://doi.org/10.7567/JJAP.56.06GG05
- J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6, 6705–6716 (2015). https://doi.org/10.1039/C5SC01941A
- A. Valdivia, D.J. Tweet, Jr. JFC, Atomic layer deposition of two dimensional MoS2 on 150 mm substrates. J. Vac. Sci. Technol. A 34, 021515 (2016). https://doi.org/10.1116/1.4941245
- X. Zhang, Z. Zhang, Z. Zhou, Mxene-based materials for electrochemical energy storage. J. Energy Chem. 27, 73–85 (2018). https://doi.org/10.1016/j.jechem.2017.08.004
- D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu, J. Chen, W. Liu, W. Zhou, K.P. Loh, Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29, 1700072 (2017). https://doi.org/10.1002/adma.201700072
- H. Ye, J. Zhou, D. Er, C.C. Price, Z. Yu, Y. Liu, J. Lowengrub, J. Lou, Z. Liu, V.B. Shenoy, Toward a mechanistic understanding of vertical growth of van der waals stacked 2D materials: a multiscale model and experiments. ACS Nano 11, 12780–12788 (2017). https://doi.org/10.1021/acsnano.7b07604
- J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun et al., Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010). https://doi.org/10.1038/nature09211
- S. Wu, Y. Du, S. Sun, Transition metal dichalcogenide based nanomaterials for rechargeable batteries. Chem. Eng. J. 307, 189–207 (2017). https://doi.org/10.1016/j.cej.2016.08.044
- R. Bhandavat, L. David, G. Singh, Synthesis of surface-functionalized WS2 nanosheets and performance as li-ion battery anodes. J. Phys. Chem. Lett. 3, 1523–1530 (2012). https://doi.org/10.1021/jz300480w
- W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
- Y. Yang, H. Fei, G. Ruan, C. Xiang, J.M. Tour, Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 26, 8163–8168 (2014). https://doi.org/10.1002/adma.201402847
- M. Acerce, D. Voiry, M. Chhowalla, Metallic 1t phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015). https://doi.org/10.1038/nnano.2015.40
- F. Li, Z. Zhou, Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14, 1702961–1702986 (2018). https://doi.org/10.1002/smll.201702961
- M. Mortazavi, C. Wang, J. Deng, V.B. Shenoy, N.V. Medhekar, Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J. Power Sources 268, 279–286 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.049
- H. Chen, Q. Ha, O. Zivkovic, G. Hautier, L.-S. Du et al., Sidorenkite (Na3MnPO4CO3): a new intercalation cathode material for na-ion batteries. Chem. Mat. 25, 2777–2786 (2013). https://doi.org/10.1021/cm400805q
- Q. Li, Z. Yao, J. Wu, S. Mitra, S. Hao, T.S. Sahu, Y. Li, C. Wolverton, V.P. Dravid, Intermediate phases in sodium intercalation into MoS2 nanosheets and their implications for sodium-ion batteries. Nano Energy 38, 342–349 (2017). https://doi.org/10.1016/j.nanoen.2017.05.055
- D.W. Su, S.X. Dou, G.X. Wang, Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv. Energy Mater. 5, 1401205 (2015). https://doi.org/10.1002/aenm.201401205
- G.S. Bang, K.W. Nam, J.Y. Kim, J. Shin, J.W. Choi, S.-Y. Choi, Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces 6, 7084–7089 (2014). https://doi.org/10.1021/am4060222
- S.D. Lacey, J. Wan, W.C.A. Von, S.M. Russell, J. Dai, W. Bao, K. Xu, L. Hu, Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett. 15, 1018–1024 (2015). https://doi.org/10.1021/nl503871s
- K. Share, J. Lewis, L. Oakes, R.E. Carter, A.P. Cohn, C.L. Pint, Tungsten diselenide (WSe2) as a high capacity, low overpotential conversion electrode for sodium ion batteries. RSC Adv. 5, 101262–101267 (2015). https://doi.org/10.1039/C5RA19717A
- M. Li, Z. Wu, Z. Wang, S. Yu, Y. Zhu, B. Nan, Y. Shi, Facile synthesis of ultrathin MoS2/C nanosheets for use in sodium-ion batteries. RSC Adv. 7, 285–289 (2017). https://doi.org/10.1039/C6RA24800D
- S. Zhang, X. Yu, H. Yu, Y. Chen, P. Gao, C. Li, C. Zhu, Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl. Mater. Interfaces 6, 21880–21885 (2014). https://doi.org/10.1021/am5061036
- Y. Liu, X. He, D. Hanlon, A. Harvey, J.N. Coleman, Y. Li, Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 10, 8821–8828 (2016). https://doi.org/10.1021/acsnano.6b04577
- Z. Zhang, X. Yang, Y. Fu, K. Du, Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries. J. Power Sources 296, 2–9 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.008
- Y. Zhang, Z. Liu, H. Zhao, Y. Du, MoSe2 nanosheets grown on carbon cloth with superior electrochemical performance as flexible electrode for sodium ion batteries. RSC Adv. 6, 1440–1444 (2016). https://doi.org/10.1039/C5RA24852C
- F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan, J. Yang, Y. Qian, MoSe2-covered n, p-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 27, 170052 (2017). https://doi.org/10.1002/adfm.201700522
- K. Xie, K. Yuan, X. Li, W. Lu, C. Shen, C. Liang, Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small 13, 1701471 (2017). https://doi.org/10.1002/smll.201701471
- B. Liu, T. Luo, G. Mu, X. Wang, D. Chen, G. Shen, Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 7, 8051–8058 (2013). https://doi.org/10.1021/nn4032454
- S.-K. Park, J. Lee, S. Bong, B. Jang, K.-D. Seong, Y. Piao, Scalable synthesis of few-layer MoS2 incorporated into hierarchical porous carbon nanosheets for high-performance Li and Na battery anodes. ACS Appl. Mater. Interfaces 8, 19456–19465 (2016). https://doi.org/10.1021/acsami.6b05010
- Y. Liang, H.D. Yoo, Y. Li, J. Shuai, H.A. Calderon, F.C.R. Hernandez, L.C. Grabow, Y. Yao, Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15, 2194–2202 (2015). https://doi.org/10.1021/acs.nanolett.5b00388
- H. Wang, X. Lan, D. Jiang, Y. Zhang, H. Zhong, Z. Zhanga, Y. Jiang, Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J. Power Sources 283, 187–194 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.096
- Z. Zhang, X. Yang, Y. Fu, Nanostructured WSe2/C composites as anode materials for sodium-ion batteries. RSC Adv. 6, 12726–12729 (2016). https://doi.org/10.1039/C5RA25645C
- X. Ren, Q. Zhao, W.D. McCulloch, Y. Wu, MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 10, 1313–1321 (2017). https://doi.org/10.1007/s12274-016-1419-9
- Y. Liu, L. Jiao, Q. Wu, Y. Zhao, K. Cao, H. Liu, Y. Wang, H. Yuan, Synthesis of rgo-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale 5, 9562–9567 (2013). https://doi.org/10.1039/c3nr02850j
- E.G.D.S. Firmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, E.R. Leite, Supercapacitor electrodes obtained by directly bonding 2d MoS2 on reduced graphene oxide. Adv. Energy Mater. 4, 1301380 (2014). https://doi.org/10.1002/aenm.201301380
- K.-J. Huang, L. Wang, Y.-J. Liu, Y.-M. Liu, H.B. Wang, T. Gan, L.-L. Wang, Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance. Int. J. Hydrogen Energy 38, 14027–14034 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.112
- J. Wang, Z. Wu, K. Hu, X. Chen, H. Yin, High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J. Alloy. Compd. 619, 38–43 (2015). https://doi.org/10.1016/j.jallcom.2014.09.008
- L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong et al., Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 9, 2905–2910 (2013). https://doi.org/10.1002/smll.201203164
- S.K. Balasingam, J.S. Lee, Y. Jun, Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans. 44, 15491–15498 (2015). https://doi.org/10.1039/C5DT01985K
- K.-J. Huang, J.-Z. Zhang, Y. Fan, Preparation of layered MoSe2 nanosheets on Ni-foam substrate with enhanced supercapacitor performance. Mater. Lett. 152, 244–247 (2015). https://doi.org/10.1016/j.matlet.2015.03.130
- K.-J. Huang, J.-Z. Zhang, J.-L. Cai, Preparation of porous layered molybdenum selenide-graphene composites on Ni foam for high-performance supercapacitor and electrochemical sensing. Electrochim. Acta 180, 770–777 (2015). https://doi.org/10.1016/j.electacta.2015.09.016
- C.C. Mayorga-Martinez, A. Ambrosi, A.Y.S. Eng, Z. Sofer, M. Pumera, Transition metal dichalcogenides (MoS2, MoSe2, WS2 and WSe2) exfoliation technique has strong influence upon their capacitance. Electrochem. Commun. 56, 24–28 (2015). https://doi.org/10.1016/j.elecom.2015.03.017
- S. Ratha, C.S. Rout, Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl. Mater. Interfaces 5, 11427–11433 (2013). https://doi.org/10.1021/am403663f
- C. Eames, M.S. Islam, Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J. Am. Chem. Soc. 136, 16270–16276 (2014). https://doi.org/10.1021/ja508154e
- Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R.C. Kent, Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8, 9606–9615 (2014). https://doi.org/10.1021/nn503921j
- J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang, L. Zhang, Y. Gan, C. Liang, W. Zhang, Sn4+ ion decorated highly conductive Ti3C2 mxene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10, 2491–2499 (2016). https://doi.org/10.1021/acsnano.5b07333
- D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 mxene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6, 11173–11179 (2014). https://doi.org/10.1021/am501144q
- Q. Sun, Y. Dai, Y. Ma, T. Jing, W. Wei, B. Huang, Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries. J. Phys. Chem. Lett. 7, 937–943 (2016). https://doi.org/10.1021/acs.jpclett.6b00171
- M. Naguib, R.A. Adams, Y. Zhao, D. Zemlyanov, A. Varma, J. Nanda, V.G. Pol, Electrochemical performance of Mxenes as k-ion battery anodes. Chem. Commun. 53, 6883–6886 (2017). https://doi.org/10.1039/C7CC02026K
- V. Natu, M. Clites, E. Pomerantseva, M.W. Barsoum, Mesoporous mxene powders synthesized by acid induced crumpling and their use as na-ion battery anodes. Mater. Res. Lett. 6, 230–235 (2018). https://doi.org/10.1080/21663831.2018.1434249
- Y. Wu, P. Nie, L. Wu, H. Dou, X. Zhang, 2d MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chem. Eng. J. 334, 932–938 (2018). https://doi.org/10.1016/j.cej.2017.10.007
- Y. Wu, P. Nie, J. Jiang, B. Ding, H. Dou, X. Zhang, Mos2-nanosheet-decorated 2d titanium carbide (MXene) as high-performance anodes for sodium-ion batteries. ChemElectroChem 4, 1560–1565 (2017). https://doi.org/10.1002/celc.201700060
- X. Guo, X. Xie, S. Choi, Y. Zhao, H. Liu, C. Wang, S. Chang, G. Wang, Sb2O3/mxene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 5, 12445–12452 (2017). https://doi.org/10.1039/C7TA02689G
- Y. Dong, Z.-S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi, X. Bao, Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11, 4792–4800 (2017). https://doi.org/10.1021/acsnano.7b01165
- P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
- S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita, K. Gotoh, Y. Tateyama, M. Okubo, A. Yamada, Sodium-ion intercalation mechanism in mxene nanosheets. ACS Nano 10, 3334–3341 (2016). https://doi.org/10.1021/acsnano.5b06958
- M. Xu, S. Lei, J. Qi, Q. Dou, L. Liu, Y. Lu, Q. Huang, S. Shi, X. Yan, Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12, 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959
- X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C.E. Ren et al., Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
- Y. Gao, L. Wang, Z. Li, Y. Zhang, B. Xing, C. Zhang, A. Zhou, Electrochemical performance of Ti3C2 supercapacitors in KOH electrolyte. J. Adv. Ceram. 4(2), 130–134 (2015). https://doi.org/10.1007/s40145-015-0143-3
- Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu, L. Dai, L. Wang, Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368–376 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009
- Y. Wang, H. Dou, J. Wang, B. Ding, Y. Xu, Z. Chang, X. Hao, Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 327, 221–228 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.062
- M.-Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L.V. Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Func. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- Z. Lin, D. Barbara, P.-L. Taberna, K.L.V. Aken, B. Anasori, Y. Gogotsi, P. Simon, Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources 326, 575–579 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.035
- R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mat. 27, 5314–5323 (2015). https://doi.org/10.1021/acs.chemmater.5b01623
- S.-Y. Lin, X. Zhang, Two-dimensional titanium carbide electrode with large mass loading for supercapacitor. J. Power Sources 294, 354–359 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.082
- E.T. Sisakht, F. Fazileh, M.H. Zare, M. Zarenia, F.M. Peeters, Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons. Phys. Rev. B 94, 085417 (2016). https://doi.org/10.1103/PhysRevB.94.085417
- G.-C. Guo, D. Wang, X.-L. Wei, Q. Zhang, H. Liu, W.-M. Lau, L.-M. Liu, First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. J. Phys. Chem. Lett. 6, 5002–5008 (2015). https://doi.org/10.1021/acs.jpclett.5b02513
- V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17, 13921–13928 (2015). https://doi.org/10.1039/C5CP01502B
- X. Sun, Z. Wang, Sodium adsorption and diffusion on monolayer black phosphorus with intrinsic defects. Appl. Surf. Sci. 427, 189–197 (2018). https://doi.org/10.1016/j.apsusc.2017.08.199
- B. Peng, Y. Xu, K. Liu, X. Wang, F.M. Mulder, High-performance and low-cost sodium-ion anode based on a facile black phosphorus–carbon nanocomposite. ChemElectroChem 4, 2140–2144 (2017). https://doi.org/10.1002/celc.201700345
- I. Sultana, M.M. Rahman, T. Ramireddy, Y. Chen, A.M. Glushenkov, High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 5, 23506–23512 (2017). https://doi.org/10.1039/C7TA02483E
- A. Nie, Y. Cheng, S. Ning, T. Foroozan, P. Yasaei et al., Selective ionic transport pathways in phosphorene. Nano Lett. 16, 2240–2247 (2016). https://doi.org/10.1021/acs.nanolett.5b04514
- J. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–985 (2015). https://doi.org/10.1038/nnano.2015.194
- C. Chowdhury, S. Karmakar, A. Datta, Capping black phosphorene by h-BN enhances performances in anodes for Li and Na ion batteries. ACS Energy Lett. 1, 253–259 (2016). https://doi.org/10.1021/acsenergylett.6b00164
- X. Ren, P. Lian, D. Xie, Y. Yang, Y. Mei, X. Huang, Z. Wang, X. Yin, Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review. J. Mater. Sci. 52, 10364–10386 (2017). https://doi.org/10.1007/s10853-017-1194-3
- M. Dahbi, N. Yabuuchi, M. Fukunishi, K. Kubota, K. Chihara et al., Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface. Chem. Mat. 28, 1625–1635 (2016). https://doi.org/10.1021/acs.chemmater.5b03524
- L. Wang, Z. Jiang, W. Li, X. Gu, L. Huang, Hybrid phosphorene/graphene nanocomposite as an anode material for Na-ion batteries: a first principles study. J. Phys. D Appl. Phys. 50, 165501–165507 (2017). https://doi.org/10.1088/1361-6463/aa5aaf
- X. Han, C. Liu, J. Sun, A.D. Sendek, W. Yang, Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries. RSC Adv. 8, 7196–7204 (2018). https://doi.org/10.1039/C7RA12400G
- A. Sajedi-Moghaddam, C.C. Mayorga-Martinez, Z. Sofer, D. Bousa, E. Saievar-Iranizad, M. Pumera, Black phosphorus nanoflakes/polyaniline hybrid material for high performance pseudocapacitors. J. Phys. Chem. C 121, 20532–20538 (2017). https://doi.org/10.1021/acs.jpcc.7b06958
- C. Hao, B. Yang, F. Wen, J. Xiang, L. Li et al., Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv. Mater. 28(16), 3194–3201 (2016). https://doi.org/10.1002/adma.201505730
- B. Yang, C. Hao, F. Wen, B. Wang, C. Mu et al., Flexible black-phosphorus nanoflake/carbon nanotube composite paper for high-performance all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 9, 44478–44484 (2017). https://doi.org/10.1021/acsami.7b13572
- S. Luo, J. Zhao, J. Zou, Z. He, C. Xu, F. Liu, Y. Huang, L. Dong, L. Wang, H. Zhang, Self-standing polypyrrole/black phosphorus laminated film: promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS Appl. Mater. Interfaces 10, 3538–3548 (2018). https://doi.org/10.1021/acsami.7b15458
- H. Xiao, Z.-S. Wu, L. Chen, F. Zhou, S. Zheng, W. Ren, H.-M. Cheng, X. Bao, One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 11, 7284–7292 (2017). https://doi.org/10.1021/acsnano.7b03288
- G. Liu, W. Jin, N. Xu, Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew. Chem. Intern. Edit. 55, 13384–13397 (2016). https://doi.org/10.1002/anie.201600438
- X. Wang, Z. Guan, Y. Li, Z. Wang, L. Chen, Guest-host interactions and their impacts on structure and performance of Nano-MoS2. Nanoscale 7, 637–641 (2015). https://doi.org/10.1039/C4NR05773B
- Z. Hu, Q. Liu, S.-L. Chou, S.-X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29(48), 1700606 (2017). https://doi.org/10.1002/adma.201700606
- J. Wang, C. Luo, T. Gao, A. Langrock, A.C. Mignerey, C. Wang, An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11, 473–481 (2015). https://doi.org/10.1002/smll.201401521
- T. Lu, S. Dong, C. Zhang, L. Zhang, G. Cui, Fabrication of transition metal selenides and their applications in energy storage. Coord. Chem. Rev. 332, 75–99 (2017). https://doi.org/10.1016/j.ccr.2016.11.005
- Y. Chao, R. Jalili, Y. Ge, C. Wang, T. Zheng, K. Shu, G.G. Wallace, Self-assembly of flexible free-standing 3d porous MoS2-reduced graphene oxide structure for high-performance lithium-ion batteries. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201700234
- S. Byun, D.M. Sim, J. Yu, J.J. Yoo, High-power supercapacitive properties of graphene oxide hybrid films with highly conductive molybdenum disulfide nanosheets. ChemElectroChem 2, 1938–1946 (2015). https://doi.org/10.1002/celc.201500393
- X. Yang, S. Tang, G. Ding, X. Xie, M. Jiang, F. Huang, Layer-by-layer thinning of graphene by plasma irradiation and post-annealing. Nanotechnology 23(2), 025704 (2012). https://doi.org/10.1088/0957-4484/23/2/025704
- V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1420 (2013). https://doi.org/10.1126/science.1226419
References
N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011). https://doi.org/10.1039/C1EE01598B
X. Xie, S. Wang, K. Kretschmer, G. Wang, Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. J. Colloid Interface Sci. 499, 17–32 (2017). https://doi.org/10.1016/j.jcis.2017.03.077
R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). https://doi.org/10.1107/s0567739476001551
L. Peng, Y. Zhu, D. Chen, R.S. Ruoff, G. Yu, Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 6, 1600025–1600045 (2016). https://doi.org/10.1002/aenm.201600025
B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries, A look into the future. Energy Environ. Sci. 4, 3287–3295 (2011). https://doi.org/10.1039/C1EE01388B
T. Ichitsubo, T. Adachi, S. Yagi, T. Doi, Potential positive electrodes for high-voltage magnesium-ion batteries. J. Mater. Chem. 21, 11764–11772 (2011). https://doi.org/10.1039/C1JM11793A
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013)
Y. Wang, R. Chen, T. Chen, H. Lv, G. Zhu, L. Ma, C. Wang, Z. Jin, J. Liu, Emerging non-lithium ion batteries. Energy Storage Mater. 4, 103–129 (2016). https://doi.org/10.1016/j.ensm.2016.04.001
Y. Chen, W. Luo, M. Carter, L. Zhou, J. Dai et al., Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 18, 205–211 (2015). https://doi.org/10.1016/j.nanoen.2015.10.015
Y. Zhou, Y. Yang, M. Jiao, Z. Zhou, What is the promising anode material for Na ion batteries? Sci. Bull. 63, 146–148 (2018). https://doi.org/10.1016/j.scib.2018.01.011
D.R.S. Few, O. Schmidt, A. Gambhir, Electrical Energy Storage for Mitigating Climate Change, Briefing Paper No 20 (Grantham Institute, Imperial College, London, UK, 2016), pp. 1–23. https://hdl.handle.net/10044/1/37495
Y. Han, Y. Ge, Y. Chao, C. Wang, G.G. Wallace, Recent progress in 2d materials for flexible supercapacitors. J. Energy Chem. 27, 57–72 (2018). https://doi.org/10.1016/j.jechem.2017.10.033
M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010). https://doi.org/10.1021/cr900070d
Y. Jing, Z. Zhou, C.R. Cabrera, Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A 2, 12104–12122 (2014). https://doi.org/10.1039/C4TA01033G
A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39, 507–514 (2001). https://doi.org/10.1016/S0008-6223(00)00155-X
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017). https://doi.org/10.1038/natrevmats.2017.46
M. Pumera, Z. Sofer, A. Ambrosi, Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2, 8981–8987 (2014). https://doi.org/10.1039/C4TA00652F
M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L. Ottaviano, Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sensor Actuat. B: Chem. 207, 602–613 (2015). https://doi.org/10.1016/j.snb.2014.10.099
J.-C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10, 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
Q. Hu, D. Sun, Q. Wu, H. Wang, L. Wang, B. Liu, A. Zhou, J. He, MXene: a new family of promising hydrogen storage medium. J. Phys. Chem. A 117, 14253–14260 (2013). https://doi.org/10.1021/jp409585v
H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). https://doi.org/10.1021/nn501226z
S. Zhao, W. Kang, J. Xue, The potential application of phosphorene as an anode material in Li-ion batteries. J. Mater. Chem. A 2, 19046–19052 (2014). https://doi.org/10.1039/C4TA04368E
A. Sibari, A.E. Marjaoui, M. Lakhal, Z. Kerrami, A. Kara et al., Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: a first-principle study. Sol. Energy Mater. Sol. Cells 180, 253–257 (2018). https://doi.org/10.1016/j.solmat.2017.06.034
J. Dai, X.C. Zeng, Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5, 1289–1293 (2014). https://doi.org/10.1021/jz500409m
L. Kou, T. Frauenheim, C. Chen, Phosphorene as a superior gas sensor: selective adsorption and distinct i–v response. J. Phys. Chem. Lett. 5, 2675–2681 (2014). https://doi.org/10.1021/jz501188k
R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015). https://doi.org/10.1038/nmat4170
W. Lv, Z. Li, Y. Deng, Q.-H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016). https://doi.org/10.1016/j.ensm.2015.10.002
Z. Jian, W. Luo, X. Ji, Carbon electrodes for k-ion batteries. J. Am. Chem. Soc. 137, 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu, Challenges and perspectives for nasicon-type electrode materials for advanced sodium-ion batteries. Adv. Mater. (2017). https://doi.org/10.1002/adma.201700431
I. Sultana, M.M. Rahman, S. Mateti, V.G. Ahmadabadi, A.M. Glushenkov, Y. Chen, K-ion and Na-ion storage performances of CO3O4–Fe2O3 nanoparticle-decorated super p carbon black prepared by a ball milling process. Nanoscale 9, 3646–3654 (2017). https://doi.org/10.1039/C6NR09613A
N. Wu, Y.-C. Lyu, R.-J. Xiao, X. Yu, Y.-X. Yin, X.-Q. Yang, H. Li, L. Gu, Y.-G. Guo, A highly reversible, low-strain Mg-ion insertion anode material for rechargeable mg-ion batteries. NPG Asia Mater. 6, e120 (2014). https://doi.org/10.1038/am.2014.61
X. Fan, J. Mao, Y. Zhu, C. Luo, L. Suo, T. Gao, F. Han, S.C. Liou, C. Wang, Superior stable self-healing SnP3 anode for sodium-ion batteries. Adv. Energy Mater. 5, 1500174 (2015). https://doi.org/10.1002/aenm.201500174
W. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139, 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185
H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013). https://doi.org/10.1039/c3ee40871j
L. Shi, T. Zhao, Recent advances in inorganic 2d materials and their applications in lithium and sodium batteries. J. Mater. Chem. A 5, 3735–3758 (2017). https://doi.org/10.1039/C6TA09831B
P. Kumar, H. Abuhimd, W. Wahyudi, M. Li, J. Ming, L.-J. Li, Review—two-dimensional layered materials for energy storage applications. ECS J. Solid State Sci. Technol. 5, Q3021–Q3025 (2016). https://doi.org/10.1149/2.0051611jss
L. Kou, C. Chen, S.C. Smith, Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6, 2794–2805 (2015). https://doi.org/10.1021/acs.jpclett.5b01094
M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589
J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969). https://doi.org/10.1080/00018736900101307
Y.C. Jiang, J. Gao, L. Wang, Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer. Sci. Rep. 6, 19624 (2016). https://doi.org/10.1038/srep19624
J.A. Wilson, F.J.D. Salvo, S. Mahajan, Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975). https://doi.org/10.1080/00018737500101391
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011). https://doi.org/10.1021/nn203879f
X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42, 1934–1946 (2013). https://doi.org/10.1039/c2cs35387c
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2d metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Mxenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
M.W. Barsoum, M. Radovic, Elastic and mechanical properties of the max phases. Ann. Rev. Mater. Res. 41, 195–227 (2011). https://doi.org/10.1146/annurev-matsci-062910-100448
Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for li ion batteries? Computational studies on electronic properties and li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012). https://doi.org/10.1021/ja308463r
M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans. 44, 9353–9358 (2015). https://doi.org/10.1039/C5DT01247C
H.W. Wang, M. Naguib, K. Page, D.J. Wesolowski, Y. Gogotsi, Resolving the structure of Ti3C2Tx MXenes through multi-level structural modeling of the atomic pair distribution function. Chem. Mat. 28, 349–359 (2015). https://doi.org/10.1021/acs.chemmater.5b04250
Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014). https://doi.org/10.1063/1.4885215
A. Khandelwal, K. Mani, M.H. Karigerasi, I. Lahiri, Phosphorene – the two-dimensional black phosphorous: properties, synthesis and applications. Mater. Sci. Eng. B 221, 17–34 (2017). https://doi.org/10.1016/j.mseb.2017.03.011
A. Castellanos-Gomez, Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6, 4280–4291 (2015). https://doi.org/10.1021/acs.jpclett.5b01686
H.Y. Lv, W.J. Lu, D.F. Shao, Y.P. Sun, Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys. Rev. B 90, 085433 (2014). https://doi.org/10.1103/PhysRevB.90.085433
L. Zhu, G. Zhang, B. Li, Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. B 90, 214302 (2014). https://doi.org/10.1103/PhysRevB.90.214302
Y.-Y. Zhang, Q.-X. Pei, J.-W. Jiang, N. Wei, Y.-W. Zhang, Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study. Nanoscale 8, 483–491 (2016). https://doi.org/10.1039/C5NR05451F
Y. Jing, X. Zhang, Z. Zhou, Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6, 5–19 (2016). https://doi.org/10.1002/wcms.1234
P. Srivastava, K.P.S.S. Hembram, H. Mizuseki, K.R. Lee, S.S. Han, S. Kim, Tuning the electronic and magnetic properties of phosphorene by vacancies and adatoms. J. Phys. Chem. C 119, 6530–6538 (2015). https://doi.org/10.1021/jp5110938
S. Pan, J. He, C. Wang, Y. Zuo, Exfoliation of two-dimensional phosphorene sheets with enhanced photocatalytic activity under simulated sunlight. Mater. Lett. 212, 311–314 (2018). https://doi.org/10.1016/j.matlet.2017.10.090
H. Kaur, S. Yadav, A.K. Srivastava, N. Singh, J.J. Schneider, O.P. Sinha, V.V. Agrawal, R. Srivastava, Large area fabrication of semiconducting phosphorene by langmuir-blodgett assembly. Sci. Rep. 6, 34095 (2016). https://doi.org/10.1038/srep34095
Q.X. Xia, J. Fu, J.M. Yun, R.S. Mane, K.H. Kim, High volumetric energy density annealed-mxene-nickel oxide/mxene asymmetric supercapacitor. RSC Adv. 7, 11000–11011 (2017). https://doi.org/10.1039/C6RA27880A
E. Yang, H. Ji, J. Kim, H. Kim, Y. Jung, Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries. Phys. Chem. Chem. Phys. 17, 5000–5005 (2015). https://doi.org/10.1039/C4CP05140H
A. Byeon, M.-Q. Zhao, C.E. Ren, J. Halim, S. Kota, P. Urbankowski, B. Anasori, M.W. Barsoum, Y. Gogotsi, Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 4296–4300 (2017). https://doi.org/10.1021/acsami.6b04198
S. Xu, G. Wei, J. Li, Y. Ji, N. Klyui, V. Izotov, W. Han, Binder-free Ti3C2Tx mxene electrode film for supercapacitor produced by electrophoretic deposition method. Chem. Eng. J. 317, 1026–1036 (2017). https://doi.org/10.1016/j.cej.2017.02.144
X. Zhou, J. Jiang, T. Ding, J. Zhang, B. Pan, J. Zuoa, Q. Yang, Fast colloidal synthesis of scalable mo-rich hierarchical ultrathin MoSe2-x nanosheets for high performance hydrogen evolution. Nanoscale 6, 11046–11051 (2014). https://doi.org/10.1039/C4NR02716G
H. Zhang, X.-L. Fan, Y. Yang, P. Xiao, Strain engineering the magnetic states of vacancy-doped monolayer MoSe2. J. Alloy. Compd. 635, 307–313 (2015). https://doi.org/10.1016/j.jallcom.2015.02.141
M. Bougouma, A. Batan, B. Guel, T. Segato, J.B. Legma, F. Reniers, M.-P. Delplancke-Ogletree, C. Buess-Herman, T. Doneux, Growth and characterization of large, high quality MoSe2 single crystals. J. Cryst. Growth 363, 122–127 (2013). https://doi.org/10.1016/j.jcrysgro.2012.10.026
J. Xia, X. Huang, L.-Z. Liu, M. Wang, L. Wang et al., CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 6, 8949–8955 (2014). https://doi.org/10.1039/C4NR02311K
D.A.C. Brownson, D.K. Kampouris, C.E. Banks, Graphene electrochemistry: fundamental concepts through to prominent applications. Chem. Soc. Rev. 41, 6944–6976 (2012). https://doi.org/10.1039/c2cs35105f
H. Chengxue, Y. Zhong, S. Xiufeng, Z. Haibo, 2D materials via liquid exfoliation: a review on fabrication and applications. Sci. Bull. 60, 1994–2008 (2015). https://doi.org/10.1007/s11434-015-0936-3
A.H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L.K. Shrestha, S. Acharya, K. Ariga, Two-dimensional (2d) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull. Chem. Soc. Jpn. 90, 627–648 (2017). https://doi.org/10.1246/bcsj.20170043
H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. PNAS, USA 102, 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010). https://doi.org/10.1021/nl903868w
H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067–1075 (2014). https://doi.org/10.1021/ar4002312
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
M.H. Rummeli, C.G. Rocha, F. Ortmann, I. Ibrahim, H. Sevincli, Graphene: piecing it together. Adv. Mater. 23, 4471–4490 (2011). https://doi.org/10.1002/adma.201101855
R. Lv, H. Terrones, A.L. Elías, N. Perea-López, R. Gutiérrez, H.E. Cruz-Silva, L.P. Rajukumar, S. Dresselhaus, M. MauricioTerrones, Two-dimensional transition metal dichalcogenides: clusters, ribbons, sheets and more. Nano Today 10, 559–592 (2015). https://doi.org/10.1016/j.nantod.2015.07.004
J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011). https://doi.org/10.1126/science.1194975
L. David, R. Bhandavat, G. Singh, MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8, 1759–1770 (2014). https://doi.org/10.1021/nn406156b
S. Haar, M. Bruna, J.X. Lian, F. Tomarchio, Y. Olivier et al., Liquid-phase exfoliation of graphite into single- and few-layer graphene with α-functionalized alkanes. J. Phys. Chem. Lett. 7, 2714–2721 (2016). https://doi.org/10.1021/acs.jpclett.6b01260
E. Benavente, M.A.S. Ana, F. Mendizabal, G. Gonzalez, Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 224, 87–109 (2002). https://doi.org/10.1016/S0010-8545(01)00392-7
A.S. Golub, Y.V. Zubavichus, Y.L. Slovokhotov, Y.N. Novikov, Single layer dispersion of transition metal dichalcogenides in the synthesis of intercalation compounds. Russ. Chem. Rev. 72, 123–141 (2003). https://doi.org/10.1070/RC2003v072n02ABEH000789
J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mat. 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a
M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi, M.W. Barsoum, Ion-exchange and cation solvation reactions in Ti3C2 mxene. Chem. Mat. 28, 3507–3514 (2016). https://doi.org/10.1021/acs.chemmater.6b01275
C.N.R. Rao, H.S.S.R. Matte, U. Maitra, Graphene analogues of inorganic layered materials. Angew. Chem. Intern. Edit. 52, 13162–13185 (2013). https://doi.org/10.1002/anie.201301548
R.A. Vilá, K. Momeni, Q. Wang, B.M. Bersch, N. Lu, M.J. Kim, L.Q. Chen, J.A. Robinson, Bottom-up synthesis of vertically oriented two-dimensional materials. 2D Mater 3, 041003 (2016). https://doi.org/10.1088/2053-1583/3/4/041003
A. Özden, F. Ay, C. Sevik, N.K. Perkgöz, CVD growth of monolayer MoS2: role of growth zone configuration and precursors ratio. Jpn. J. Appl. Phys. 56, 06GG05 (2017). https://doi.org/10.7567/JJAP.56.06GG05
J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6, 6705–6716 (2015). https://doi.org/10.1039/C5SC01941A
A. Valdivia, D.J. Tweet, Jr. JFC, Atomic layer deposition of two dimensional MoS2 on 150 mm substrates. J. Vac. Sci. Technol. A 34, 021515 (2016). https://doi.org/10.1116/1.4941245
X. Zhang, Z. Zhang, Z. Zhou, Mxene-based materials for electrochemical energy storage. J. Energy Chem. 27, 73–85 (2018). https://doi.org/10.1016/j.jechem.2017.08.004
D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu, J. Chen, W. Liu, W. Zhou, K.P. Loh, Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29, 1700072 (2017). https://doi.org/10.1002/adma.201700072
H. Ye, J. Zhou, D. Er, C.C. Price, Z. Yu, Y. Liu, J. Lowengrub, J. Lou, Z. Liu, V.B. Shenoy, Toward a mechanistic understanding of vertical growth of van der waals stacked 2D materials: a multiscale model and experiments. ACS Nano 11, 12780–12788 (2017). https://doi.org/10.1021/acsnano.7b07604
J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun et al., Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010). https://doi.org/10.1038/nature09211
S. Wu, Y. Du, S. Sun, Transition metal dichalcogenide based nanomaterials for rechargeable batteries. Chem. Eng. J. 307, 189–207 (2017). https://doi.org/10.1016/j.cej.2016.08.044
R. Bhandavat, L. David, G. Singh, Synthesis of surface-functionalized WS2 nanosheets and performance as li-ion battery anodes. J. Phys. Chem. Lett. 3, 1523–1530 (2012). https://doi.org/10.1021/jz300480w
W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
Y. Yang, H. Fei, G. Ruan, C. Xiang, J.M. Tour, Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 26, 8163–8168 (2014). https://doi.org/10.1002/adma.201402847
M. Acerce, D. Voiry, M. Chhowalla, Metallic 1t phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015). https://doi.org/10.1038/nnano.2015.40
F. Li, Z. Zhou, Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14, 1702961–1702986 (2018). https://doi.org/10.1002/smll.201702961
M. Mortazavi, C. Wang, J. Deng, V.B. Shenoy, N.V. Medhekar, Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J. Power Sources 268, 279–286 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.049
H. Chen, Q. Ha, O. Zivkovic, G. Hautier, L.-S. Du et al., Sidorenkite (Na3MnPO4CO3): a new intercalation cathode material for na-ion batteries. Chem. Mat. 25, 2777–2786 (2013). https://doi.org/10.1021/cm400805q
Q. Li, Z. Yao, J. Wu, S. Mitra, S. Hao, T.S. Sahu, Y. Li, C. Wolverton, V.P. Dravid, Intermediate phases in sodium intercalation into MoS2 nanosheets and their implications for sodium-ion batteries. Nano Energy 38, 342–349 (2017). https://doi.org/10.1016/j.nanoen.2017.05.055
D.W. Su, S.X. Dou, G.X. Wang, Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv. Energy Mater. 5, 1401205 (2015). https://doi.org/10.1002/aenm.201401205
G.S. Bang, K.W. Nam, J.Y. Kim, J. Shin, J.W. Choi, S.-Y. Choi, Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces 6, 7084–7089 (2014). https://doi.org/10.1021/am4060222
S.D. Lacey, J. Wan, W.C.A. Von, S.M. Russell, J. Dai, W. Bao, K. Xu, L. Hu, Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett. 15, 1018–1024 (2015). https://doi.org/10.1021/nl503871s
K. Share, J. Lewis, L. Oakes, R.E. Carter, A.P. Cohn, C.L. Pint, Tungsten diselenide (WSe2) as a high capacity, low overpotential conversion electrode for sodium ion batteries. RSC Adv. 5, 101262–101267 (2015). https://doi.org/10.1039/C5RA19717A
M. Li, Z. Wu, Z. Wang, S. Yu, Y. Zhu, B. Nan, Y. Shi, Facile synthesis of ultrathin MoS2/C nanosheets for use in sodium-ion batteries. RSC Adv. 7, 285–289 (2017). https://doi.org/10.1039/C6RA24800D
S. Zhang, X. Yu, H. Yu, Y. Chen, P. Gao, C. Li, C. Zhu, Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl. Mater. Interfaces 6, 21880–21885 (2014). https://doi.org/10.1021/am5061036
Y. Liu, X. He, D. Hanlon, A. Harvey, J.N. Coleman, Y. Li, Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 10, 8821–8828 (2016). https://doi.org/10.1021/acsnano.6b04577
Z. Zhang, X. Yang, Y. Fu, K. Du, Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries. J. Power Sources 296, 2–9 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.008
Y. Zhang, Z. Liu, H. Zhao, Y. Du, MoSe2 nanosheets grown on carbon cloth with superior electrochemical performance as flexible electrode for sodium ion batteries. RSC Adv. 6, 1440–1444 (2016). https://doi.org/10.1039/C5RA24852C
F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan, J. Yang, Y. Qian, MoSe2-covered n, p-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 27, 170052 (2017). https://doi.org/10.1002/adfm.201700522
K. Xie, K. Yuan, X. Li, W. Lu, C. Shen, C. Liang, Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small 13, 1701471 (2017). https://doi.org/10.1002/smll.201701471
B. Liu, T. Luo, G. Mu, X. Wang, D. Chen, G. Shen, Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 7, 8051–8058 (2013). https://doi.org/10.1021/nn4032454
S.-K. Park, J. Lee, S. Bong, B. Jang, K.-D. Seong, Y. Piao, Scalable synthesis of few-layer MoS2 incorporated into hierarchical porous carbon nanosheets for high-performance Li and Na battery anodes. ACS Appl. Mater. Interfaces 8, 19456–19465 (2016). https://doi.org/10.1021/acsami.6b05010
Y. Liang, H.D. Yoo, Y. Li, J. Shuai, H.A. Calderon, F.C.R. Hernandez, L.C. Grabow, Y. Yao, Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15, 2194–2202 (2015). https://doi.org/10.1021/acs.nanolett.5b00388
H. Wang, X. Lan, D. Jiang, Y. Zhang, H. Zhong, Z. Zhanga, Y. Jiang, Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J. Power Sources 283, 187–194 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.096
Z. Zhang, X. Yang, Y. Fu, Nanostructured WSe2/C composites as anode materials for sodium-ion batteries. RSC Adv. 6, 12726–12729 (2016). https://doi.org/10.1039/C5RA25645C
X. Ren, Q. Zhao, W.D. McCulloch, Y. Wu, MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 10, 1313–1321 (2017). https://doi.org/10.1007/s12274-016-1419-9
Y. Liu, L. Jiao, Q. Wu, Y. Zhao, K. Cao, H. Liu, Y. Wang, H. Yuan, Synthesis of rgo-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale 5, 9562–9567 (2013). https://doi.org/10.1039/c3nr02850j
E.G.D.S. Firmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, E.R. Leite, Supercapacitor electrodes obtained by directly bonding 2d MoS2 on reduced graphene oxide. Adv. Energy Mater. 4, 1301380 (2014). https://doi.org/10.1002/aenm.201301380
K.-J. Huang, L. Wang, Y.-J. Liu, Y.-M. Liu, H.B. Wang, T. Gan, L.-L. Wang, Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance. Int. J. Hydrogen Energy 38, 14027–14034 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.112
J. Wang, Z. Wu, K. Hu, X. Chen, H. Yin, High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J. Alloy. Compd. 619, 38–43 (2015). https://doi.org/10.1016/j.jallcom.2014.09.008
L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong et al., Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 9, 2905–2910 (2013). https://doi.org/10.1002/smll.201203164
S.K. Balasingam, J.S. Lee, Y. Jun, Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans. 44, 15491–15498 (2015). https://doi.org/10.1039/C5DT01985K
K.-J. Huang, J.-Z. Zhang, Y. Fan, Preparation of layered MoSe2 nanosheets on Ni-foam substrate with enhanced supercapacitor performance. Mater. Lett. 152, 244–247 (2015). https://doi.org/10.1016/j.matlet.2015.03.130
K.-J. Huang, J.-Z. Zhang, J.-L. Cai, Preparation of porous layered molybdenum selenide-graphene composites on Ni foam for high-performance supercapacitor and electrochemical sensing. Electrochim. Acta 180, 770–777 (2015). https://doi.org/10.1016/j.electacta.2015.09.016
C.C. Mayorga-Martinez, A. Ambrosi, A.Y.S. Eng, Z. Sofer, M. Pumera, Transition metal dichalcogenides (MoS2, MoSe2, WS2 and WSe2) exfoliation technique has strong influence upon their capacitance. Electrochem. Commun. 56, 24–28 (2015). https://doi.org/10.1016/j.elecom.2015.03.017
S. Ratha, C.S. Rout, Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl. Mater. Interfaces 5, 11427–11433 (2013). https://doi.org/10.1021/am403663f
C. Eames, M.S. Islam, Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J. Am. Chem. Soc. 136, 16270–16276 (2014). https://doi.org/10.1021/ja508154e
Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R.C. Kent, Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8, 9606–9615 (2014). https://doi.org/10.1021/nn503921j
J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang, L. Zhang, Y. Gan, C. Liang, W. Zhang, Sn4+ ion decorated highly conductive Ti3C2 mxene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10, 2491–2499 (2016). https://doi.org/10.1021/acsnano.5b07333
D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 mxene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6, 11173–11179 (2014). https://doi.org/10.1021/am501144q
Q. Sun, Y. Dai, Y. Ma, T. Jing, W. Wei, B. Huang, Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries. J. Phys. Chem. Lett. 7, 937–943 (2016). https://doi.org/10.1021/acs.jpclett.6b00171
M. Naguib, R.A. Adams, Y. Zhao, D. Zemlyanov, A. Varma, J. Nanda, V.G. Pol, Electrochemical performance of Mxenes as k-ion battery anodes. Chem. Commun. 53, 6883–6886 (2017). https://doi.org/10.1039/C7CC02026K
V. Natu, M. Clites, E. Pomerantseva, M.W. Barsoum, Mesoporous mxene powders synthesized by acid induced crumpling and their use as na-ion battery anodes. Mater. Res. Lett. 6, 230–235 (2018). https://doi.org/10.1080/21663831.2018.1434249
Y. Wu, P. Nie, L. Wu, H. Dou, X. Zhang, 2d MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chem. Eng. J. 334, 932–938 (2018). https://doi.org/10.1016/j.cej.2017.10.007
Y. Wu, P. Nie, J. Jiang, B. Ding, H. Dou, X. Zhang, Mos2-nanosheet-decorated 2d titanium carbide (MXene) as high-performance anodes for sodium-ion batteries. ChemElectroChem 4, 1560–1565 (2017). https://doi.org/10.1002/celc.201700060
X. Guo, X. Xie, S. Choi, Y. Zhao, H. Liu, C. Wang, S. Chang, G. Wang, Sb2O3/mxene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 5, 12445–12452 (2017). https://doi.org/10.1039/C7TA02689G
Y. Dong, Z.-S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi, X. Bao, Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11, 4792–4800 (2017). https://doi.org/10.1021/acsnano.7b01165
P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita, K. Gotoh, Y. Tateyama, M. Okubo, A. Yamada, Sodium-ion intercalation mechanism in mxene nanosheets. ACS Nano 10, 3334–3341 (2016). https://doi.org/10.1021/acsnano.5b06958
M. Xu, S. Lei, J. Qi, Q. Dou, L. Liu, Y. Lu, Q. Huang, S. Shi, X. Yan, Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12, 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959
X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C.E. Ren et al., Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
Y. Gao, L. Wang, Z. Li, Y. Zhang, B. Xing, C. Zhang, A. Zhou, Electrochemical performance of Ti3C2 supercapacitors in KOH electrolyte. J. Adv. Ceram. 4(2), 130–134 (2015). https://doi.org/10.1007/s40145-015-0143-3
Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu, L. Dai, L. Wang, Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368–376 (2017). https://doi.org/10.1016/j.nanoen.2017.06.009
Y. Wang, H. Dou, J. Wang, B. Ding, Y. Xu, Z. Chang, X. Hao, Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 327, 221–228 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.062
M.-Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L.V. Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Func. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
Z. Lin, D. Barbara, P.-L. Taberna, K.L.V. Aken, B. Anasori, Y. Gogotsi, P. Simon, Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources 326, 575–579 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.035
R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mat. 27, 5314–5323 (2015). https://doi.org/10.1021/acs.chemmater.5b01623
S.-Y. Lin, X. Zhang, Two-dimensional titanium carbide electrode with large mass loading for supercapacitor. J. Power Sources 294, 354–359 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.082
E.T. Sisakht, F. Fazileh, M.H. Zare, M. Zarenia, F.M. Peeters, Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons. Phys. Rev. B 94, 085417 (2016). https://doi.org/10.1103/PhysRevB.94.085417
G.-C. Guo, D. Wang, X.-L. Wei, Q. Zhang, H. Liu, W.-M. Lau, L.-M. Liu, First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. J. Phys. Chem. Lett. 6, 5002–5008 (2015). https://doi.org/10.1021/acs.jpclett.5b02513
V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17, 13921–13928 (2015). https://doi.org/10.1039/C5CP01502B
X. Sun, Z. Wang, Sodium adsorption and diffusion on monolayer black phosphorus with intrinsic defects. Appl. Surf. Sci. 427, 189–197 (2018). https://doi.org/10.1016/j.apsusc.2017.08.199
B. Peng, Y. Xu, K. Liu, X. Wang, F.M. Mulder, High-performance and low-cost sodium-ion anode based on a facile black phosphorus–carbon nanocomposite. ChemElectroChem 4, 2140–2144 (2017). https://doi.org/10.1002/celc.201700345
I. Sultana, M.M. Rahman, T. Ramireddy, Y. Chen, A.M. Glushenkov, High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 5, 23506–23512 (2017). https://doi.org/10.1039/C7TA02483E
A. Nie, Y. Cheng, S. Ning, T. Foroozan, P. Yasaei et al., Selective ionic transport pathways in phosphorene. Nano Lett. 16, 2240–2247 (2016). https://doi.org/10.1021/acs.nanolett.5b04514
J. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–985 (2015). https://doi.org/10.1038/nnano.2015.194
C. Chowdhury, S. Karmakar, A. Datta, Capping black phosphorene by h-BN enhances performances in anodes for Li and Na ion batteries. ACS Energy Lett. 1, 253–259 (2016). https://doi.org/10.1021/acsenergylett.6b00164
X. Ren, P. Lian, D. Xie, Y. Yang, Y. Mei, X. Huang, Z. Wang, X. Yin, Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review. J. Mater. Sci. 52, 10364–10386 (2017). https://doi.org/10.1007/s10853-017-1194-3
M. Dahbi, N. Yabuuchi, M. Fukunishi, K. Kubota, K. Chihara et al., Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface. Chem. Mat. 28, 1625–1635 (2016). https://doi.org/10.1021/acs.chemmater.5b03524
L. Wang, Z. Jiang, W. Li, X. Gu, L. Huang, Hybrid phosphorene/graphene nanocomposite as an anode material for Na-ion batteries: a first principles study. J. Phys. D Appl. Phys. 50, 165501–165507 (2017). https://doi.org/10.1088/1361-6463/aa5aaf
X. Han, C. Liu, J. Sun, A.D. Sendek, W. Yang, Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries. RSC Adv. 8, 7196–7204 (2018). https://doi.org/10.1039/C7RA12400G
A. Sajedi-Moghaddam, C.C. Mayorga-Martinez, Z. Sofer, D. Bousa, E. Saievar-Iranizad, M. Pumera, Black phosphorus nanoflakes/polyaniline hybrid material for high performance pseudocapacitors. J. Phys. Chem. C 121, 20532–20538 (2017). https://doi.org/10.1021/acs.jpcc.7b06958
C. Hao, B. Yang, F. Wen, J. Xiang, L. Li et al., Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv. Mater. 28(16), 3194–3201 (2016). https://doi.org/10.1002/adma.201505730
B. Yang, C. Hao, F. Wen, B. Wang, C. Mu et al., Flexible black-phosphorus nanoflake/carbon nanotube composite paper for high-performance all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 9, 44478–44484 (2017). https://doi.org/10.1021/acsami.7b13572
S. Luo, J. Zhao, J. Zou, Z. He, C. Xu, F. Liu, Y. Huang, L. Dong, L. Wang, H. Zhang, Self-standing polypyrrole/black phosphorus laminated film: promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS Appl. Mater. Interfaces 10, 3538–3548 (2018). https://doi.org/10.1021/acsami.7b15458
H. Xiao, Z.-S. Wu, L. Chen, F. Zhou, S. Zheng, W. Ren, H.-M. Cheng, X. Bao, One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 11, 7284–7292 (2017). https://doi.org/10.1021/acsnano.7b03288
G. Liu, W. Jin, N. Xu, Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew. Chem. Intern. Edit. 55, 13384–13397 (2016). https://doi.org/10.1002/anie.201600438
X. Wang, Z. Guan, Y. Li, Z. Wang, L. Chen, Guest-host interactions and their impacts on structure and performance of Nano-MoS2. Nanoscale 7, 637–641 (2015). https://doi.org/10.1039/C4NR05773B
Z. Hu, Q. Liu, S.-L. Chou, S.-X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29(48), 1700606 (2017). https://doi.org/10.1002/adma.201700606
J. Wang, C. Luo, T. Gao, A. Langrock, A.C. Mignerey, C. Wang, An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11, 473–481 (2015). https://doi.org/10.1002/smll.201401521
T. Lu, S. Dong, C. Zhang, L. Zhang, G. Cui, Fabrication of transition metal selenides and their applications in energy storage. Coord. Chem. Rev. 332, 75–99 (2017). https://doi.org/10.1016/j.ccr.2016.11.005
Y. Chao, R. Jalili, Y. Ge, C. Wang, T. Zheng, K. Shu, G.G. Wallace, Self-assembly of flexible free-standing 3d porous MoS2-reduced graphene oxide structure for high-performance lithium-ion batteries. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201700234
S. Byun, D.M. Sim, J. Yu, J.J. Yoo, High-power supercapacitive properties of graphene oxide hybrid films with highly conductive molybdenum disulfide nanosheets. ChemElectroChem 2, 1938–1946 (2015). https://doi.org/10.1002/celc.201500393
X. Yang, S. Tang, G. Ding, X. Xie, M. Jiang, F. Huang, Layer-by-layer thinning of graphene by plasma irradiation and post-annealing. Nanotechnology 23(2), 025704 (2012). https://doi.org/10.1088/0957-4484/23/2/025704
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1420 (2013). https://doi.org/10.1126/science.1226419