Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications
Corresponding Author: Ken-Tye Yong
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 72
Abstract
Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage, and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties, as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them. Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers, nitroaromatic explosives, pollutants, vitamins, and drugs. Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing.
Highlights:
1 Introduction to carbon dots: properties, photoluminescence mechanism, and synthesis.
2 The design principles of carbon dot-based sensors and sensing mechanisms.
3 The versatility of carbon dots for the sensing of different analytes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.J. Ward, F.A. Zucca, J.H. Duyn, R.R. Crichton, L. Zecca, The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 13(10), 1045–1060 (2014). https://doi.org/10.1016/S1474-4422(14)70117-6
- X. Huang, Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat. Res.-Fund. Mol. M. 533(1), 153–171 (2003). https://doi.org/10.1016/j.mrfmmm.2003.08.023
- Y. Deugnier, Iron and liver cancer. Alcohol 30(2), 145–150 (2003). https://doi.org/10.1016/S0741-8329(03)00129-0
- S. Toyokuni, Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci. 100(1), 9–16 (2009). https://doi.org/10.1111/j.1349-7006.2008.01001.x
- M.F. Bouchard, S. Sauvé, B. Barbeau, M. Legrand, M.-È. Brodeur, T. Bouffard, E. Limoges, D.C. Bellinger, D. Mergler, Intellectual impairment in school-age children exposed to manganese from drinking water. Environ. Health Persp. 119(1), 138 (2011). https://doi.org/10.1289/ehp.1002321
- J. Zhao, X. Yan, T. Zhou, J. Wang, H. Li, P. Zhang, H. Ding, L. Ding, Multi-throughput dynamic microwave-assisted leaching coupled with inductively coupled plasma atomic emission spectrometry for heavy metal analysis in soil. J. Anal. Atom. Spectrom. 30(9), 1920–1926 (2015). https://doi.org/10.1039/C5JA00233H
- B. Feist, B. Mikula, Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry. Food Chem. 147, 302–306 (2014). https://doi.org/10.1016/j.foodchem.2013.10.002
- G. Benipal, A. Harris, C. Srirajayatsayai, A. Tate, V. Topalidis et al., Examination of Al, As, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sb, Se, V, and Zn in sediments collected around the downtown Houston, Texas area, using inductively coupled plasma-optical emission spectroscopy. Microchem. J. 130, 255–262 (2017). https://doi.org/10.1016/j.microc.2016.09.009
- M. Behbahani, N.A.G. Tapeh, M. Mahyari, A.R. Pourali, B.G. Amin, A. Shaabani, Monitoring of trace amounts of heavy metals in different food and water samples by flame atomic absorption spectrophotometer after preconcentration by amine-functionalized graphene nanosheet. Environ. Monit. Assess. 186(11), 7245–7257 (2014). https://doi.org/10.1007/s10661-014-3924-1
- T. Daşbaşı, Ş. Saçmacı, A. Ülgen, Ş. Kartal, A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry. Food Chem. 174, 591–596 (2015). https://doi.org/10.1016/j.foodchem.2014.11.049
- L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 63, 276–286 (2015). https://doi.org/10.1016/j.bios.2014.07.052
- G. Xu, S. Zeng, B. Zhang, M.T. Swihart, K.-T. Yong, P.N. Prasad, New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 116(19), 12234–12327 (2016). https://doi.org/10.1021/acs.chemrev.6b00290
- V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115(11), 4744–4822 (2015). https://doi.org/10.1021/cr500304f
- X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004). https://doi.org/10.1021/ja040082h
- Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.S. Fernando et al., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128(24), 7756–7757 (2006). https://doi.org/10.1021/ja062677d
- M. Bottini, C. Balasubramanian, M.I. Dawson, A. Bergamaschi, S. Bellucci, T. Mustelin, Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J. Phys. Chem. B 110(2), 831–836 (2006). https://doi.org/10.1021/jp055503b
- H. Gonçalves, P.A. Jorge, J. Fernandes, J.C.E. da Silva, Hg(II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sensor. Actuat. B-Chem. 145(2), 702–707 (2010). https://doi.org/10.1016/j.snb.2010.01.031
- X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, N. Koshizaki, Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem. Commun. 47(3), 932–934 (2011). https://doi.org/10.1039/C0CC03552A
- S. Hu, J. Liu, J. Yang, Y. Wang, S. Cao, Laser synthesis and size tailor of carbon quantum dots. J. Nanopart. Res. 13(12), 7247–7252 (2011). https://doi.org/10.1007/s11051-011-0638-y
- L. Bao, Z.L. Zhang, Z.Q. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi, D.W. Pang, Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv. Mater. 23(48), 5801–5806 (2011). https://doi.org/10.1002/adma.201102866
- M. Liu, Y. Xu, F. Niu, J.J. Gooding, J. Liu, Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 141(9), 2657–2664 (2016). https://doi.org/10.1039/C5AN02231B
- Y. Hou, Q. Lu, J. Deng, H. Li, Y. Zhang, One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal. Chim. Acta 866, 69–74 (2015). https://doi.org/10.1016/j.aca.2015.01.039
- J. Deng, Q. Lu, N. Mi, H. Li, M. Liu et al., Electrochemical synthesis of carbon nanodots directly from alcohols. Chem.-Eur. J. 20(17), 4993–4999 (2014). https://doi.org/10.1002/chem.201304869
- H. Tao, K. Yang, Z. Ma, J. Wan, Y. Zhang, Z. Kang, Z. Liu, In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8(2), 281–290 (2012). https://doi.org/10.1002/smll.201101706
- D. Sun, R. Ban, P.-H. Zhang, G.-H. Wu, J.-R. Zhang, J.-J. Zhu, Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64, 424–434 (2013). https://doi.org/10.1016/j.Carbon2013.07.095
- M.M.F. Chang, I.R. Ginjom, M. Ngu-Schwemlein, S.M. Ng, Synthesis of yellow fluorescent carbon dots and their application to the determination of chromium(III) with selectivity improved by pH tuning. Microchim. Acta 183(6), 1899–1907 (2016). https://doi.org/10.1007/s00604-016-1819-2
- Y. Hu, J. Yang, J. Tian, L. Jia, J.-S. Yu, Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon 77, 775–782 (2014). https://doi.org/10.1016/j.Carbon2014.05.081
- V. Subramanian, H. Zhu, R. Vajtai, P. Ajayan, B. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109(43), 20207–20214 (2005). https://doi.org/10.1021/jp0543330
- G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi, Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J. Power Sources 160(1), 516–522 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.067
- Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60, 421–428 (2013). https://doi.org/10.1016/j.Carbon2013.04.055
- Q. Xu, P. Pu, J. Zhao, C. Dong, C. Gao, Y. Chen, J. Chen, Y. Liu, H. Zhou, Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J. Mater. Chem. A 3(2), 542–546 (2015). https://doi.org/10.1039/C4TA05483K
- J.-Y. Li, Y. Liu, Q.-W. Shu, J.-M. Liang, F. Zhang, X.-P. Chen, X.-Y. Deng, M.T. Swihart, K.-J. Tan, One-pot hydrothermal synthesis of carbon dots with efficient up-and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay. Langmuir 33(4), 1043–1050 (2017). https://doi.org/10.1021/acs.langmuir.6b04225
- V.N. Mehta, S. Jha, H. Basu, R.K. Singhal, S.K. Kailasa, One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensor. Actuat. B-Chem. 213, 434–443 (2015). https://doi.org/10.1016/j.snb.2015.02.104
- L. Wang, H.S. Zhou, Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal. Chem. 86(18), 8902–8905 (2014). https://doi.org/10.1021/ac502646x
- T.N.J.I. Edison, R. Atchudan, J.-J. Shim, S. Kalimuthu, B.-C. Ahn, Y.R. Lee, Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. J. Photoch. Photobio. B 158, 235–242 (2016). https://doi.org/10.1016/j.jphotobiol.2016.03.010
- R. Atchudan, T.N.J.I. Edison, M.G. Sethuraman, Y.R. Lee, Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Appl. Surf. Sci. 384, 432–441 (2016). https://doi.org/10.1016/j.apsusc.2016.05.054
- Y. Liu, Q. Zhou, J. Li, M. Lei, X. Yan, Selective and sensitive chemosensor for lead ions using fluorescent carbon dots prepared from chocolate by one-step hydrothermal method. Sensor. Actuat. B-Chem. 237, 597–604 (2016). https://doi.org/10.1016/j.snb.2016.06.092
- J. Yu, N. Song, Y.-K. Zhang, S.-X. Zhong, A.-J. Wang, J. Chen, Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensor. Actuat. B-Chem. 214, 29–35 (2015). https://doi.org/10.1016/j.snb.2015.03.006
- J. Wei, X. Zhang, Y. Sheng, J. Shen, P. Huang, S. Guo, J. Pan, B. Feng, Dual functional carbon dots derived from cornflour via a simple one-pot hydrothermal route. Mater. Lett. 123, 107–111 (2014). https://doi.org/10.1016/j.matlet.2014.02.090
- L. Li, X. Wang, Z. Fu, F. Cui, One-step hydrothermal synthesis of nitrogen-and sulfur-co-doped carbon dots from ginkgo leaves and application in biology. Mater. Lett. 196, 300–303 (2017). https://doi.org/10.1016/j.matlet.2017.03.112
- R. Liu, J. Zhang, M. Gao, Z. Li, J. Chen, D. Wu, P. Liu, A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers. RSC Adv. 5(6), 4428–4433 (2015). https://doi.org/10.1039/C4RA12077A
- S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. 48(70), 8835–8837 (2012). https://doi.org/10.1039/c2cc33796g
- R. Purbia, S. Paria, A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosens. Bioelectron. 79, 467–475 (2016). https://doi.org/10.1016/j.bios.2015.12.087
- J. Niu, H. Gao, Synthesis and drug detection performance of nitrogen-doped carbon dots. J. Lumin. 149, 159–162 (2014). https://doi.org/10.1016/j.jlumin.2014.01.026
- S. Chandra, A.R. Chowdhuri, D. Laha, S.K. Sahu, Fabrication of nitrogen-and phosphorous-doped carbon dots by the pyrolysis method for iodide and iron(III) sensing. Luminescence 33(2), 336–344 (2017). https://doi.org/10.1002/bio.3418
- L.-H. Mao, W.-Q. Tang, Z.-Y. Deng, S.-S. Liu, C.-F. Wang, S. Chen, Facile access to white fluorescent carbon dots toward light-emitting devices. Ind. Eng. Chem. Res. 53(15), 6417–6425 (2014). https://doi.org/10.1021/ie500602n
- F. Wang, S. Pang, L. Wang, Q. Li, M. Kreiter, C.-Y. Liu, One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem. Mater. 22(16), 4528–4530 (2010). https://doi.org/10.1021/cm101350u
- H. He, X. Wang, Z. Feng, T. Cheng, X. Sun, Y. Sun, Y. Xia, S. Wang, J. Wang, X. Zhang, Rapid microwave-assisted synthesis of ultra-bright fluorescent carbon dots for live cell staining, cell-specific targeting and in vivo imaging. J. Mater. Chem. B 3(24), 4786–4789 (2015). https://doi.org/10.1039/C5TB00570A
- H. Li, Y. Xu, J. Ding, L. Zhao, T. Zhou, H. Ding, Y. Chen, L. Ding, Microwave-assisted synthesis of highly luminescent N-and S-co-doped carbon dots as a ratiometric fluorescent probe for levofloxacin. Microchim. Acta 185(2), 104 (2018). https://doi.org/10.1007/s00604-017-2619-z
- Q. Xiao, Y. Liang, F. Zhu, S. Lu, S. Huang, Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. Microchim. Acta 184(7), 2429–2438 (2017). https://doi.org/10.1007/s00604-017-2242-z
- W. Kwon, S.-W. Rhee, Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chem. Commun. 48(43), 5256–5258 (2012). https://doi.org/10.1039/c2cc31687k
- J. Zhang, F. Abbasi, J. Claverie, An efficient templating approach for the synthesis of redispersible size-controllable carbon quantum dots from graphitic polymeric micelles. Chem.-Eur. J. 21(43), 15142–15147 (2015). https://doi.org/10.1002/chem.201502158
- K. Linehan, H. Doyle, Efficient one-pot synthesis of highly monodisperse carbon quantum dots. RSC Adv. 4(1), 18–21 (2014). https://doi.org/10.1039/C3RA45083J
- R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. 121(25), 4668–4671 (2009). https://doi.org/10.1002/ange.200900652
- Y. Yang, D. Wu, S. Han, P. Hu, R. Liu, Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach. Chem. Commun. 49(43), 4920–4922 (2013). https://doi.org/10.1039/c3cc38815h
- Z.L. Wu, Z.X. Liu, Y.H. Yuan, Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J. Mater. Chem. B 5(21), 3794–3809 (2017). https://doi.org/10.1039/C7TB00363C
- X. Sun, Y. Lei, Fluorescent carbon dots and their sensing applications. TrAC-Trend. Anal. Chem. 89, 163–180 (2017). https://doi.org/10.1016/j.trac.2017.02.001
- S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao, X.-W. Du, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 19(4), 484–488 (2009). https://doi.org/10.1039/B812943F
- S. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int.-Ed. 51(49), 12215–12218 (2012). https://doi.org/10.1002/anie.201206791
- D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang et al., Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5(24), 12272–12277 (2013). https://doi.org/10.1039/c3nr04402e
- Y. Dong, R. Wang, H. Li, J. Shao, Y. Chi, X. Lin, G. Chen, Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50(8), 2810–2815 (2012). https://doi.org/10.1016/j.Carbon2012.02.046
- C. Liu, P. Zhang, X. Zhai, F. Tian, W. Li, J. Yang, Y. Liu, H. Wang, W. Wang, W. Liu, Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33(13), 3604–3613 (2012). https://doi.org/10.1016/j.biomaterials.2012.01.052
- Z. Yang, M. Xu, Y. Liu, F. He, F. Gao, Y. Su, H. Wei, Y. Zhang, Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 6(3), 1890–1895 (2014). https://doi.org/10.1039/C3NR05380F
- A.B. Bourlinos, G. Trivizas, M.A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis, A. Bakandritsos, K. Hola, O. Kozak, R. Zboril, Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon 83, 173–179 (2015). https://doi.org/10.1016/j.Carbon2014.11.032
- Z. Qian, X. Shan, L. Chai, J. Ma, J. Chen, H. Feng, Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl. Mater. Interfaces. 6(9), 6797–6805 (2014). https://doi.org/10.1021/am500403n
- F. Qiao, J. Wang, S. Ai, L. Li, As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine. Sensor. Actuat. B-Chem. 216, 418–427 (2015). https://doi.org/10.1016/j.snb.2015.04.074
- N. Gong, H. Wang, S. Li, Y. Deng, X.A. Chen, L. Ye, W. Gu, Microwave-assisted polyol synthesis of gadolinium-doped green luminescent carbon dots as a bimodal nanoprobe. Langmuir 30(36), 10933–10939 (2014). https://doi.org/10.1021/la502705g
- H. Li, F.-Q. Shao, H. Huang, J.-J. Feng, A.-J. Wang, Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sensor. Actuat. B-Chem. 226, 506–511 (2016). https://doi.org/10.1016/j.snb.2015.12.018
- M. Ganiga, J. Cyriac, FRET based ammonia sensor using carbon dots. Sensor. Actuat. B-Chem. 225, 522–528 (2016). https://doi.org/10.1016/j.snb.2015.11.074
- C. Han, R. Wang, K. Wang, H. Xu, M. Sui, J. Li, K. Xu, Highly fluorescent carbon dots as selective and sensitive on-off-on probes for iron(III) ion and apoferritin detection and imaging in living cells. Biosens. Bioelectron. 83, 229–236 (2016). https://doi.org/10.1016/j.bios.2016.04.066
- R.K. Das, S. Mohapatra, Highly luminescent, heteroatom-doped carbon quantum dots for ultrasensitive sensing of glucosamine and targeted imaging of liver cancer cells. J. Mater. Chem. B 5(11), 2190–2197 (2017). https://doi.org/10.1039/C6TB03141B
- K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai, H. Lin, Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int.-Ed. 54(18), 5360–5363 (2015). https://doi.org/10.1002/anie.201501193
- L. Pan, S. Sun, A. Zhang, K. Jiang, L. Zhang, C. Dong, Q. Huang, A. Wu, H. Lin, Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater. 27(47), 7782–7787 (2015). https://doi.org/10.1002/adma.201503821
- Y. Zhang, J. He, Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties. Phys. Chem. Chem. Phys. 17(31), 20154–20159 (2015). https://doi.org/10.1039/C5CP03498A
- X. Li, S. Zhang, S.A. Kulinich, Y. Liu, H. Zeng, Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci. Rep. 4, 4976 (2014). https://doi.org/10.1038/srep04976
- H. Wang, C. Sun, X. Chen, Y. Zhang, V.L. Colvin et al., Excitation wavelength independent visible color emission of carbon dots. Nanoscale 9(5), 1909–1915 (2017). https://doi.org/10.1039/C6NR09200D
- X. Meng, Q. Chang, C. Xue, J. Yang, S. Hu, Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties. Chem. Commun. 53(21), 3074–3077 (2017). https://doi.org/10.1039/C7CC00461C
- C. Wang, Z. Xu, H. Cheng, H. Lin, M.G. Humphrey, C. Zhang, A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 82, 87–95 (2015). https://doi.org/10.1016/j.Carbon2014.10.035
- X. Jia, J. Li, E. Wang, One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4(18), 5572–5575 (2012). https://doi.org/10.1039/c2nr31319g
- S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7(2), 1239–1245 (2013). https://doi.org/10.1021/nn304675g
- Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao, Y. Chi, C.M. Li, T. Yu, Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int.-Ed. 52(30), 7800–7804 (2013). https://doi.org/10.1002/anie.201301114
- H. Li, H. Ming, Y. Liu, H. Yu, X. He, H. Huang, K. Pan, Z. Kang, S.-T. Lee, Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New J. Chem. 35(11), 2666–2670 (2011). https://doi.org/10.1039/c1nj20575g
- P. Yu, X. Wen, Y.-R. Toh, J. Tang, Temperature-dependent fluorescence in carbon dots. J. Phys. Chem. C 116(48), 25552–25557 (2012). https://doi.org/10.1021/jp307308z
- P.-C. Chen, Y.-N. Chen, P.-C. Hsu, C.-C. Shih, H.-T. Chang, Photoluminescent organosilane-functionalized carbon dots as temperature probes. Chem. Commun. 49(16), 1639–1641 (2013). https://doi.org/10.1039/c3cc38486a
- L. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang et al., Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129(37), 11318–11319 (2007). https://doi.org/10.1021/ja073527l
- A. Salinas-Castillo, M. Ariza-Avidad, C. Pritz, M. Camprubí-Robles, B. Fernández et al., Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem. Commun. 49(11), 1103–1105 (2013). https://doi.org/10.1039/c2cc36450f
- B. Yin, J. Deng, X. Peng, Q. Long, J. Zhao, Q. Lu, Q. Chen, H. Li, H. Tang, Y. Zhang, Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138(21), 6551–6557 (2013). https://doi.org/10.1039/c3an01003a
- C. Zhang, L. Du, C. Liu, Y. Li, Z. Yang, Y.-C. Cao, Photostable epoxy polymerized carbon quantum dots luminescent thin films and the performance study. Results Phys. 6, 767–771 (2016). https://doi.org/10.1016/j.rinp.2016.10.013
- J.C.E. da Silva, H.M. Gonçalves, Analytical and bioanalytical applications of carbon dots. TrAC-Trend. Anal. Chem. 30(8), 1327–1336 (2011). https://doi.org/10.1016/j.trac.2011.04.009
- H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int.-Ed. 49(26), 4430–4434 (2010). https://doi.org/10.1002/anie.200906154
- W. Kwon, G. Lee, S. Do, T. Joo, S.W. Rhee, Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials. Small 10(3), 506–513 (2014). https://doi.org/10.1002/smll.201301770
- S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8(2), 355–381 (2015). https://doi.org/10.1007/s12274-014-0644-3
- H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10(1), 484–491 (2015). https://doi.org/10.1021/acsnano.5b05406
- Q. Li, T.Y. Ohulchanskyy, R. Liu, K. Koynov, D. Wu, A. Best, R. Kumar, A. Bonoiu, P.N. Prasad, Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 114(28), 12062–12068 (2010). https://doi.org/10.1021/jp911539r
- M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134(2), 747–750 (2011). https://doi.org/10.1021/ja204661r
- Z. Ma, H. Ming, H. Huang, Y. Liu, Z. Kang, One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J. Chem. 36(4), 861–864 (2012). https://doi.org/10.1039/c2nj20942j
- X. Wen, P. Yu, Y.-R. Toh, X. Ma, J. Tang, On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem. Commun. 50(36), 4703–4706 (2014). https://doi.org/10.1039/C4CC01213E
- G. Jiang, T. Jiang, X. Li, Z. Wei, X. Du, X. Wang, Boronic acid functionalized N-doped carbon quantum dots as fluorescent probe for selective and sensitive glucose determination. Mater. Res. Express 1, 2 (2014). https://doi.org/10.1088/2053-1591/1/2/025708
- Z. Zhang, Y. Shi, Y. Pan, X. Cheng, L. Zhang, J. Chen, M.-J. Li, C. Yi, Quinoline derivative-functionalized carbon dots as a fluorescent nanosensor for sensing and intracellular imaging of Zn2+. J. Mater. Chem. B 2(31), 5020–5027 (2014). https://doi.org/10.1039/C4TB00677A
- M. Amjadi, Z. Abolghasemi-Fakhri, T. Hallaj, Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. J. Photoch. Photobio. A 309, 8–14 (2015). https://doi.org/10.1016/j.jphotochem.2015.04.016
- F. Qu, H. Pei, R. Kong, S. Zhu, L. Xia, Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 165, 136–142 (2017). https://doi.org/10.1016/j.talanta.2016.11.051
- Y. Guo, L. Yang, W. Li, X. Wang, Y. Shang, B. Li, Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a turn-on fluorescent probe for cystein, glutathione and homocysteine. Microchim. Acta 183(4), 1409–1416 (2016). https://doi.org/10.1007/s00604-016-1779-6
- L. Li, C. Wang, K. Liu, Y. Wang, K. Liu, Y. Lin, Hexagonal cobalt oxyhydroxide–carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia. Anal. Chem. 87(6), 3404–3411 (2015). https://doi.org/10.1021/ac5046609
- C. Yuan, B. Liu, F. Liu, M.-Y. Han, Z. Zhang, Fluorescence turn on detection of mercuric ion based on bis (dithiocarbamato) copper(II) complex functionalized carbon nanodots. Anal. Chem. 86(2), 1123–1130 (2014). https://doi.org/10.1021/ac402894z
- A. Cayuela, M.L. Soriano, M.C. Carrión, M. Valcárcel, Functionalized carbon dots as sensors for gold nanoparticles in spiked samples: formation of nanohybrids. Anal. Chim. Acta 820, 133–138 (2014). https://doi.org/10.1016/j.aca.2014.02.010
- P. Zheng, N. Wu, Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chem.-Asian J. 12(18), 2343–2353 (2017). https://doi.org/10.1002/asia.201700814
- I.L. Medintz, A.R. Clapp, H. Mattoussi, E.R. Goldman, B. Fisher, J.M. Mauro, Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2(9), 630–638 (2003). https://doi.org/10.1038/nmat961
- Y. Zhang, X. Liu, Y. Fan, X. Guo, L. Zhou, Y. Lv, J. Lin, One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields. Nanoscale 8(33), 15281–15287 (2016). https://doi.org/10.1039/C6NR03125K
- C. Albrecht, J.R. Lakowicz, Principles of fluorescence spectroscopy. Anal. Bioanal. Chem. 390(5), 1223–1224 (2008). https://doi.org/10.1007/s00216-007-1822-x
- S. Chen, Y.-L. Yu, J.-H. Wang, Inner filter effect-based fluorescent sensing systems: a review. Anal. Chim. Acta 999, 13–26 (2017). https://doi.org/10.1016/j.aca.2017.10.026
- X. Gong, W. Lu, M.C. Paau, Q. Hu, X. Wu, S. Shuang, C. Dong, M.M. Choi, Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging. Anal. Chim. Acta 861, 74–84 (2015). https://doi.org/10.1016/j.aca.2014.12.045
- J. Shangguan, J. Huang, D. He, X. He, K. Wang, R. Ye, X. Yang, T. Qing, J. Tang, Highly Fe3+-selective fluorescent nanoprobe based on ultrabright N/P codoped carbon dots and its application in biological samples. Anal. Chem. 89(14), 7477–7484 (2017). https://doi.org/10.1021/acs.analchem.7b01053
- W. Liu, H. Diao, H. Chang, H. Wang, T. Li, W. Wei, Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensor. Actuat. B-Chem. 241, 190–198 (2017). https://doi.org/10.1016/j.snb.2016.10.068
- M. Rong, Y. Feng, Y. Wang, X. Chen, One-pot solid phase pyrolysis synthesis of nitrogen-doped carbon dots for Fe3+ sensing and bioimaging. Sensor. Actuat. B-Chem. 245, 868–874 (2017). https://doi.org/10.1016/j.snb.2017.02.014
- Y. Liu, W. Duan, W. Song, J. Liu, C. Ren, J. Wu, D. Liu, H. Chen, Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe3+ ions in complex biological fluids and living cells. ACS Appl. Mater. Interfaces. 9(14), 12663–12672 (2017). https://doi.org/10.1021/acsami.6b15746
- J. Wu, Y. Feng, Y. Shao, Y. Sun, High quality nitrogen and silicon Co-doped carbon dots (N/Si-CDs) for Fe3+ sensing. J. Nanosci. Nanotechnol. 18(6), 4196–4203 (2018). https://doi.org/10.1166/jnn.2018.15206
- S. Chandra, D. Laha, A. Pramanik, A. Ray Chowdhuri, P. Karmakar, S.K. Sahu, Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe3+ ions in cancer cells. Luminescence 31(1), 81–87 (2016). https://doi.org/10.1002/bio.2927
- G. He, M. Xu, M. Shu, X. Li, Z. Yang, L. Zhang, Y. Su, N. Hu, Y. Zhang, Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging. Nanotechnology 27, 39 (2016). https://doi.org/10.1088/0957-4484/27/39/395706
- W. Lu, X. Gong, M. Nan, Y. Liu, S. Shuang, C. Dong, Comparative study for N and S doped carbon dots: Synthesis, characterization and applications for Fe3+ probe and cellular imaging. Anal. Chim. Acta 898, 116–127 (2015). https://doi.org/10.1016/j.aca.2015.09.050
- A. Iqbal, Y. Tian, X. Wang, D. Gong, Y. Guo, K. Iqbal, Z. Wang, W. Liu, W. Qin, Carbon dots prepared by solid state method via citric acid and 1, 10-phenanthroline for selective and sensing detection of Fe2+ and Fe3+. Sensor. Actuat. B-Chem. 237, 408–415 (2016). https://doi.org/10.1016/j.snb.2016.06.126
- Y. Song, C. Zhu, J. Song, H. Li, D. Du, Y. Lin, Drug-derived bright and color-tunable N-doped carbon dots for cell imaging and sensitive detection of Fe3+ in living cells. ACS Appl. Mater. Interfaces. 9(8), 7399–7405 (2017). https://doi.org/10.1021/acsami.6b13954
- R. Yang, X. Guo, L. Jia, Y. Zhang, Z. Zhao, F. Lonshakov, Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging. Appl. Surf. Sci. 423, 426–432 (2017). https://doi.org/10.1016/j.apsusc.2017.05.252
- L. Ge, H. Yu, H. Ren, B. Shi, Q. Guo, W. Gao, Z. Li, J. Li, Photoluminescence of carbon dots and their applications in Hela cell imaging and Fe3+ ion detection. J. Mater. Sci. 52(17), 9979–9989 (2017). https://doi.org/10.1007/s10853-017-1178-3
- K. Kim, J. Kim, Synthesis of carbon quantum dots from jujubes for detection of iron(III) ions. J. Nanosci. Nanotechnol. 18(2), 1320–1322 (2018). https://doi.org/10.1166/jnn.2018.14901
- J. Shen, S. Shang, X. Chen, D. Wang, Y. Cai, Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater. Sci. Eng., C 76, 856–864 (2017). https://doi.org/10.1016/j.msec.2017.03.178
- A.M. Aslandaş, N. Balcı, M. Arık, H. Şakiroğlu, Y. Onganer, K. Meral, Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their performance in Fe3+ detection. Appl. Surf. Sci. 356, 747–752 (2015). https://doi.org/10.1016/j.apsusc.2015.08.147
- C. Sun, Y. Zhang, P. Wang, Y. Yang, Y. Wang, J. Xu, Y. Wang, W.Y. William, Synthesis of nitrogen and sulfur co-doped carbon dots from garlic for selective detection of Fe3+. Nanoscale Res. Lett. 11(1), 110 (2016). https://doi.org/10.1186/s11671-016-1326-8
- X. Wen, L. Shi, G. Wen, Y. Li, C. Dong, J. Yang, S. Shuang, Green synthesis of carbon nanodots from cotton for multicolor imaging, patterning, and sensing. Sensor. Actuat. B-Chem. 221, 769–776 (2015). https://doi.org/10.1016/j.snb.2015.07.019
- R. Bandi, B.R. Gangapuram, R. Dadigala, R. Eslavath, S.S. Singh, V. Guttena, Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Adv. 6(34), 28633–28639 (2016). https://doi.org/10.1039/C6RA01669C
- A. Tyagi, K.M. Tripathi, N. Singh, S. Choudhary, R.K. Gupta, Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv. 6(76), 72423–72432 (2016). https://doi.org/10.1039/C6RA10488F
- R. Atchudan, T.N.J.I. Edison, D. Chakradhar, S. Perumal, J.-J. Shim, Y.R. Lee, Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sensor. Actuat. B-Chem. 246, 497–509 (2017). https://doi.org/10.1016/j.snb.2017.02.119
- C. Wang, K. Jiang, Z. Xu, H. Lin, C. Zhang, Glutathione modified carbon-dots: from aggregation-induced emission enhancement properties to a turn-on sensing of temperature/Fe3+ ions in cells. Inorg. Chem. Front. 3(4), 514–522 (2016). https://doi.org/10.1039/C5QI00273G
- M. Deng, S. Wang, C. Liang, H. Shang, S. Jiang, A FRET fluorescent nanosensor based on carbon dots for ratiometric detection of Fe3+ in aqueous solution. RSC Adv. 6(32), 26936–26940 (2016). https://doi.org/10.1039/C6RA02679F
- L. Song, Y. Cui, C. Zhang, Z. Hu, X. Liu, Microwave-assisted facile synthesis of yellow fluorescent carbon dots from o-phenylenediamine for cell imaging and sensitive detection of Fe3+ and H2O2. RSC Adv. 6(21), 17704–17712 (2016). https://doi.org/10.1039/C6RA02554D
- G.J. Brewer, Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol. 23(2), 319–326 (2009). https://doi.org/10.1021/tx900338d
- G.J. Brewer, The risks of free copper in the body and the development of useful anticopper drugs. Curr. Opin. Clin. Nutr. 11(6), 727–732 (2008). https://doi.org/10.1097/MCO.0b013e328314b678
- E. Gaggelli, H. Kozlowski, D. Valensin, G. Valensin, Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 106(6), 1995–2044 (2006). https://doi.org/10.1021/cr040410w
- Q. Liu, N. Zhang, H. Shi, W. Ji, W. Yuan, Q. Hu, One-step microwave synthesis of carbon dots for highly sensitive and selective detection of copper ion in aqueous solution. New J. Chem. 42(4), 3097–3101 (2018). https://doi.org/10.1039/C7NJ05000C
- D. Chen, M. Xu, W. Wu, S. Li, Multi-color fluorescent carbon dots for wavelength-selective and ultrasensitive Cu2+ sensing. J. Alloys Compd. 701, 75–81 (2017). https://doi.org/10.1016/j.jallcom.2017.01.124
- G. Gedda, C.-Y. Lee, Y.-C. Lin, H.-F. Wu, Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sensor. Actuat. B-Chem. 224, 396–403 (2016). https://doi.org/10.1016/j.snb.2015.09.065
- L. Liu, H. Gong, D. Li, L. Zhao, Synthesis of carbon dots from pear juice for fluorescence detection of Cu2+ ion in water. J. Nanosci. Nanotechnology 18(8), 5327–5332 (2018). https://doi.org/10.1166/jnn.2018.15356
- A. Kumari, A. Kumar, S.K. Sahu, S. Kumar, Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging. Sensor. Actuat. B-Chem. 254, 197–205 (2018). https://doi.org/10.1016/j.snb.2017.07.075
- Y. Liu, Y. Zhao, Y. Zhang, One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sensor. Actuat. B-Chem. 196, 647–652 (2014). https://doi.org/10.1016/j.snb.2014.02.053
- Z. Fu, F. Cui, Thiosemicarbazide chemical functionalized carbon dots as a fluorescent nanosensor for sensing Cu2+ and intracellular imaging. RSC Adv. 6(68), 63681–63688 (2016). https://doi.org/10.1039/C6RA10168B
- M. Vedamalai, A.P. Periasamy, C.-W. Wang, Y.-T. Tseng, L.-C. Ho, C.-C. Shih, H.-T. Chang, Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6(21), 13119–13125 (2014). https://doi.org/10.1039/C4NR03213F
- H. Rao, W. Liu, Z. Lu, Y. Wang, H. Ge, P. Zou, X. Wang, H. He, X. Zeng, Y. Wang, Silica-coated carbon dots conjugated to CdTe quantum dots: a ratiometric fluorescent probe for copper(II). Microchim. Acta 183(2), 581–588 (2016). https://doi.org/10.1007/s00604-015-1682-6
- C. Liu, D. Ning, C. Zhang, Z. Liu, R. Zhang, J. Zhao, T. Zhao, B. Liu, Z. Zhang, Dual-colored carbon dot ratiometric fluorescent test paper based on a specific spectral energy transfer for semiquantitative assay of copper ions. ACS Appl. Mater. Interfaces. 9(22), 18897–18903 (2017). https://doi.org/10.1021/acsami.7b05827
- A. Zhao, C. Zhao, M. Li, J. Ren, X. Qu, Ionic liquids as precursors for highly luminescent, surface-different nitrogen-doped carbon dots used for label-free detection of Cu2+/Fe3+ and cell imaging. Anal. Chim. Acta 809, 128–133 (2014). https://doi.org/10.1016/j.aca.2013.10.046
- J.-M. Liu, L.-P. Lin, X.-X. Wang, S.-Q. Lin, W.-L. Cai, L.-H. Zhang, Z.-Y. Zheng, Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst 137(11), 2637–2642 (2012). https://doi.org/10.1039/c2an35130g
- B. Gao, F. Zhao, Y. Miao, H. Min, L. Xu, C. Huang, Boron-and nitrogen-doped photoluminescent polymer carbon nanoparticles as nanosensors for imaging detection of Cu2+ and biothiols in living cells. RSC Adv. 7(75), 47654–47661 (2017). https://doi.org/10.1039/C7RA07683E
- N. Gogoi, M. Barooah, G. Majumdar, D. Chowdhury, Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Appl. Mater. Interfaces. 7(5), 3058–3067 (2015). https://doi.org/10.1021/am506558d
- M.-C. Rong, K.-X. Zhang, Y.-R. Wang, X. Chen, The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu2+. Chinese Chem. Lett. 28(5), 1119–1124 (2017). https://doi.org/10.1016/j.cclet.2016.12.009
- Y. Wang, W.-T. Wu, M.-B. Wu, H. Xie, C. Hu, X.-Y. Wu, J.-S. Qiu, Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions. New Carbon Mater. 30(6), 550–559 (2015). https://doi.org/10.1016/S1872-5805(15)60204-9
- X. Niu, G. Liu, L. Li, Z. Fu, H. Xu, F. Cui, Green and economical synthesis of nitrogen-doped carbon dots from vegetables for sensing and imaging applications. RSC Adv. 5(115), 95223–95229 (2015). https://doi.org/10.1039/C5RA17439B
- M. Harada, Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 25(1), 1–24 (1995). https://doi.org/10.3109/10408449509089885
- MathSciNet
- M. Harada, Congenital Minamata disease: intrauterine methylmercury poisoning. Teratology 18(2), 285–288 (1978). https://doi.org/10.1002/tera.1420180216
- W. Tang, Y. Wang, P. Wang, J. Di, J. Yang, Y. Wu, Synthesis of strongly fluorescent carbon quantum dots modified with polyamidoamine and a triethoxysilane as quenchable fluorescent probes for mercury(II). Microchim. Acta 183(9), 2571–2578 (2016). https://doi.org/10.1007/s00604-016-1898-0
- Q. Ye, F. Yan, Y. Luo, Y. Wang, X. Zhou, L. Chen, Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion. Spectrochim. Acta A 173, 854–862 (2017). https://doi.org/10.1016/j.saa.2016.10.039
- Y.H. Yuan, R.S. Li, Q. Wang, Z.L. Wu, J. Wang, H. Liu, C.Z. Huang, Germanium-doped carbon dots as a new type of fluorescent probe for visualizing the dynamic invasions of mercury(II) ions into cancer cells. Nanoscale 7(40), 16841–16847 (2015). https://doi.org/10.1039/C5NR05326A
- M. Zhang, W. Wang, P. Yuan, C. Chi, J. Zhang, N. Zhou, Synthesis of lanthanum doped carbon dots for detection of mercury ion, multi-color imaging of cells and tissue, and bacteriostasis. Chem. Eng. J. 330, 1137–1147 (2017). https://doi.org/10.1016/j.cej.2017.07.166
- L. Li, B. Yu, T. You, Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg(II) ions. Biosens. Bioelectron. 74, 263–269 (2015). https://doi.org/10.1016/j.bios.2015.06.050
- Y. Li, Z.-Y. Zhang, H.-F. Yang, G. Shao, F. Gan, Highly selective fluorescent carbon dots probe for mercury(II) based on thymine–mercury(II)–thymine structure. RSC Adv. 8(8), 3982–3988 (2018). https://doi.org/10.1039/C7RA11487G
- H. Xu, K. Zhang, Q. Liu, Y. Liu, M. Xie, Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim. Acta 184(4), 1199–1206 (2017). https://doi.org/10.1007/s00604-017-2099-1
- W. Liu, X. Wang, Y. Wang, J. Li, D. Shen, Q. Kang, L. Chen, Ratiometric fluorescence sensor based on dithiothreitol modified carbon dots-gold nanoclusters for the sensitive detection of mercury ions in water samples. Sensor. Actuat. B-Chem. 262, 810–817 (2018). https://doi.org/10.1016/j.snb.2018.01.222
- J. Zhao, M. Huang, L. Zhang, M. Zou, D. Chen, Y. Huang, S. Zhao, Unique approach to develop carbon dot-based nanohybrid near-infrared ratiometric fluorescent sensor for the detection of mercury ions. Anal. Chem. 89(15), 8044–8049 (2017). https://doi.org/10.1021/acs.analchem.7b01443
- Y. Wang, S.-H. Kim, L. Feng, Highly luminescent N, S–Co-doped carbon dots and their direct use as mercury(II) sensor. Anal. Chim. Acta 890, 134–142 (2015). https://doi.org/10.1016/j.aca.2015.07.051
- R. Tabaraki, N. Sadeghinejad, Microwave assisted synthesis of doped carbon dots and their application as green and simple turn off–on fluorescent sensor for mercury(II) and iodide in environmental samples. Ecotox. Environ. Safe. 153, 101–106 (2018). https://doi.org/10.1016/j.ecoenv.2018.01.059
- A. Gupta, A. Chaudhary, P. Mehta, C. Dwivedi, S. Khan, N.C. Verma, C.K. Nandi, Nitrogen-doped, thiol-functionalized carbon dots for ultrasensitive Hg(II) detection. Chem. Commun. 51(53), 10750–10753 (2015). https://doi.org/10.1039/C5CC03019F
- F. Zhao, J. Qian, F. Quan, C. Wu, Y. Zheng, L. Zhou, Aconitic acid derived carbon dots as recyclable on–off–on fluorescent nanoprobes for sensitive detection of mercury(II) ions, cysteine and cellular imaging. RSC Adv. 7(70), 44178–44185 (2017). https://doi.org/10.1039/C7RA08097B
- F. Yan, D. Shi, T. Zheng, K. Yun, X. Zhou, L. Chen, Carbon dots as nanosensor for sensitive and selective detection of Hg2+ and l-cysteine by means of fluorescence off–on switching. Sensor. Actuat. B-Chem. 224, 926–935 (2016). https://doi.org/10.1016/j.snb.2015.09.057
- J. He, H. Zhang, J. Zou, Y. Liu, J. Zhuang, Y. Xiao, B. Lei, Carbon dots-based fluorescent probe for off-on sensing of Hg(II) and I−. Biosens. Bioelectron. 79, 531–535 (2016). https://doi.org/10.1016/j.bios.2015.12.084
- H. Huang, Y. Weng, L. Zheng, B. Yao, W. Weng, X. Lin, Nitrogen-doped carbon quantum dots as fluorescent probe for off-on detection of mercury ions, l-cysteine and iodide ions. J. Colloid Interf. Sci. 506, 373–378 (2017). https://doi.org/10.1016/j.jcis.2017.07.076
- Y. Ma, Z. Zhang, Y. Xu, M. Ma, B. Chen, L. Wei, L. Xiao, A bright carbon-dot-based fluorescent probe for selective and sensitive detection of mercury ions. Talanta 161, 476–481 (2016). https://doi.org/10.1016/j.talanta.2016.08.082
- S. Lu, D. Wu, G. Li, Z. Lv, Z. Chen, L. Chen, G. Chen, L. Xia, J. You, Y. Wu, Carbon dots-based ratiometric nanosensor for highly sensitive and selective detection of mercury(II) ions and glutathione. RSC Adv. 6(105), 103169–103177 (2016). https://doi.org/10.1039/C6RA21309J
- Y. Liang, H. Zhang, Y. Zhang, F. Chen, Simple hydrothermal preparation of carbon nanodots and their application in colorimetric and fluorimetric detection of mercury ions. Anal. Method. 7(18), 7540–7547 (2015). https://doi.org/10.1039/C5AY01301A
- L. Wang, B. Li, F. Xu, X. Shi, D. Feng, D. Wei, Y. Li, Y. Feng, Y. Wang, D. Jia, High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens. Bioelectron. 79, 1–8 (2016). https://doi.org/10.1016/j.bios.2015.11.085
- Y. Zhang, P. Cui, F. Zhang, X. Feng, Y. Wang, Y. Yang, X. Liu, Fluorescent probes for off–on highly sensitive detection of Hg2+ and l-cysteine based on nitrogen-doped carbon dots. Talanta 152, 288–300 (2016). https://doi.org/10.1016/j.talanta.2016.02.018
- K.B.A. Ahmed, S. Kumar, A. Veerappan, A facile method to prepare fluorescent carbon dots and their application in selective colorimetric sensing of silver ion through the formation of silver nanoparticles. J. Lumin. 177, 228–234 (2016). https://doi.org/10.1016/j.jlumin.2016.04.053
- X. Gao, Y. Lu, R. Zhang, S. He, J. Ju, M. Liu, L. Li, W. Chen, One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J. Mater. Chem. C 3(10), 2302–2309 (2015). https://doi.org/10.1039/C4TC02582B
- R. Vaz, J. Bettini, J.G.F. Júnior, E.D.S. Lima, W.G. Botero, J.C.C. Santos, M.A. Schiavon, High luminescent carbon dots as an eco-friendly fluorescence sensor for Cr(VI) determination in water and soil samples. J. Photoch. Photobio. A 346, 502–511 (2017). https://doi.org/10.1016/j.jphotochem.2017.06.047
- J. Shen, S. Shang, X. Chen, D. Wang, Y. Cai, Highly fluorescent N, S-co-doped carbon dots and their potential applications as antioxidants and sensitive probes for Cr(VI) detection. Sensor. Actuat. B-Chem. 248, 92–100 (2017). https://doi.org/10.1016/j.snb.2017.03.123
- Y. Liu, J. Hu, Y. Li, H.-P. Wei, X.-S. Li, X.-H. Zhang, S.-M. Chen, X.-Q. Chen, Synthesis of polyethyleneimine capped carbon dots for preconcentration and slurry sampling analysis of trace chromium in environmental water samples. Talanta 134, 16–23 (2015). https://doi.org/10.1016/j.talanta.2014.11.001
- J. Chen, Y. Li, K. Lv, W. Zhong, H. Wang, Z. Wu, P. Yi, J. Jiang, Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(II) ion and sulfide anion in aqueous media and its imaging in live cells. Sensor. Actuat. B-Chem. 224, 298–306 (2016). https://doi.org/10.1016/j.snb.2015.10.046
- N. Amin, A. Afkhami, T. Madrakian, Construction of a novel off-on fluorescence sensor for highly selective sensing of selenite based on europium ions induced crosslinking of nitrogen-doped carbon dots. J. Lumin. 194, 768–777 (2018). https://doi.org/10.1016/j.jlumin.2017.09.048
- U. Baruah, N. Gogoi, G. Majumdar, D. Chowdhury, β-Cyclodextrin and calix [4] arene-25, 26, 27, 28-tetrol capped carbon dots for selective and sensitive detection of fluoride. Carbohyd. Polym. 117, 377–383 (2015). https://doi.org/10.1016/j.carbpol.2014.09.083
- P. Ganguly, S.F. Alam, Role of homocysteine in the development of cardiovascular disease. Nutr. J. 14(1), 6 (2015). https://doi.org/10.1186/1475-2891-14-6
- X. Yang, Y. Guo, R.M. Strongin, Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew. Chem. Int.-Ed. 50(45), 10690–10693 (2011). https://doi.org/10.1002/anie.201103759
- D. Barford, The role of cysteine residues as redox-sensitive regulatory switches. Curr. Opin. Struc. Biol. 14(6), 679–686 (2004). https://doi.org/10.1016/j.sbi.2004.09.012
- J. Choi, R.-M. Liu, R.K. Kundu, F. Sangiorgi, W. Wu, R. Maxson, H.J. Forman, Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J. Biol. Chem. 275(5), 3693–3698 (2000). https://doi.org/10.1074/jbc.275.5.3693
- F.J. Staal, S.W. Ela, M. Roederer, M. Anderson, L. Herzenberg, Glutathione deficiency and human immunodeficiency virus infection. The Lancet. 339(8798), 909–912 (1992). https://doi.org/10.1016/0140-6736(92)90939-Z
- Z. Song, F. Quan, Y. Xu, M. Liu, L. Cui, J. Liu, Multifunctional N, S co-doped carbon quantum dots with pH-and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 104, 169–178 (2016). https://doi.org/10.1016/j.Carbon2016.04.003
- Y. Wang, K. Jiang, J. Zhu, L. Zhang, H. Lin, A FRET-based carbon dot–MnO2 nanosheet architecture for glutathione sensing in human whole blood samples. Chem. Commun. 51(64), 12748–12751 (2015). https://doi.org/10.1039/C5CC04905A
- D. Wu, G. Li, X. Chen, N. Qiu, X. Shi, G. Chen, Z. Sun, J. You, Y. Wu, Fluorometric determination and imaging of glutathione based on a thiol-triggered inner filter effect on the fluorescence of carbon dots. Microchim. Acta 184(7), 1923–1931 (2017). https://doi.org/10.1007/s00604-017-2187-2
- J. Deng, Q. Lu, Y. Hou, M. Liu, H. Li, Y. Zhang, S. Yao, Nanosensor composed of nitrogen-doped carbon dots and gold nanoparticles for highly selective detection of cysteine with multiple signals. Anal. Chem. 87(4), 2195–2203 (2015). https://doi.org/10.1021/ac503595y
- P.S. Brookes, Y. Yoon, J.L. Robotham, M. Anders, S.-S. Sheu, Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol.-Cell Physiol. 287(4), C817–C833 (2004). https://doi.org/10.1152/ajpcell.00139.2004
- C.M. O’Reilly, K.E. Fogarty, R.M. Drummond, R.A. Tuft, J.V. Walsh, Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys. J. 85(5), 3350–3357 (2003). https://doi.org/10.1016/S0006-3495(03)74754-7
- Y. Gong, B. Yu, W. Yang, X. Zhang, Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages. Biosens. Bioelectron. 79, 822–828 (2016). https://doi.org/10.1016/j.bios.2016.01.022
- E.F. Simões, J.C.E. da Silva, J.M. Leitão, Peroxynitrite and nitric oxide fluorescence sensing by ethylenediamine doped carbon dots. Sensor. Actuat. B-Chem. 220, 1043–1049 (2015). https://doi.org/10.1016/j.snb.2015.06.072
- J. Wu, X. Wang, Y. Lin, Y. Zheng, J.-M. Lin, Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on microfluidic chip. Talanta 154, 73–79 (2016). https://doi.org/10.1016/j.talanta.2016.03.062
- J.R. Stone, S. Yang, Hydrogen peroxide: a signaling messenger. Antioxid. Redox Sign. 8(3–4), 243–270 (2006). https://doi.org/10.1089/ars.2006.8.243
- Y. Su, X. Zhou, Y. Long, W. Li, Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide. Microchim. Acta 185(2), 114 (2018). https://doi.org/10.1007/s00604-017-2629-x
- S. Huang, L. Wang, F. Zhu, W. Su, J. Sheng, C. Huang, Q. Xiao, A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA. RSC Adv. 5(55), 44587–44597 (2015). https://doi.org/10.1039/C5RA05519A
- A.H. Loo, Z. Sofer, D. Bouša, P. Ulbrich, A. Bonanni, M. Pumera, Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl. Mater. Interfaces. 8(3), 1951–1957 (2016). https://doi.org/10.1021/acsami.5b10160
- R. Guo, B. Chen, F. Li, S. Weng, Z. Zheng, M. Chen, W. Wu, X. Lin, C. Yang, Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sensor. Actuat. B-Chem. 264, 193–201 (2018). https://doi.org/10.1016/j.snb.2018.02.175
- S. Pang, Y. Zhang, C. Wu, S. Feng, Fluorescent carbon dots sensor for highly sensitive detection of guanine. Sensor. Actuat. B-Chem. 222, 857–863 (2016). https://doi.org/10.1016/j.snb.2015.09.037
- L. Li, Y. Lu, Y. Ding, F. Zhang, Y. Wang, Facile aqueous synthesis of functionalized CdTe nanoparticles and their application as fluorescence probes for determination of adenine and guanine. Can. J. Chem. 90(2), 173–179 (2011). https://doi.org/10.1139/v11-144
- S. Huang, L. Wang, C. Huang, J. Xie, W. Su, J. Sheng, Q. Xiao, A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. Sensor. Actuat. B-Chem. 221, 1215–1222 (2015). https://doi.org/10.1016/j.snb.2015.07.099
- A. Barati, M. Shamsipur, H. Abdollahi, Hemoglobin detection using carbon dots as a fluorescence probe. Biosens. Bioelectron. 71, 470–475 (2015). https://doi.org/10.1016/j.bios.2015.04.073
- M. Enserink, This time it was real: knowledge of anthrax put to the test. Science 294(5542), 490–491 (2001). https://doi.org/10.1126/science.294.5542.490
- H. Chen, Y. Xie, A.M. Kirillov, L. Liu, M. Yu, W. Liu, Y. Tang, A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chem. Commun. 51(24), 5036–5039 (2015). https://doi.org/10.1039/C5CC00757G
- M. Rong, Y. Liang, D. Zhao, B. Chen, C. Pan, X. Deng, Y. Chen, J. He, A ratiometric fluorescence visual test paper for an anthrax biomarker based on functionalized manganese-doped carbon dots. Sensor. Actuat. B-Chem. 265, 498–505 (2018). https://doi.org/10.1016/j.snb.2018.03.094
- C.P. McCoy, F. Stomeo, S.E. Plush, T. Gunnlaugsson, Soft matter ph sensing: from luminescent lanthanide ph switches in solution to sensing in hydrogels. Chem. Mater. 18(18), 4336–4343 (2006). https://doi.org/10.1021/cm060603v
- K. Qu, J. Wang, J. Ren, X. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem.-Eur. J. 19(22), 7243–7249 (2013). https://doi.org/10.1002/chem.201300042
- P. Shen, Y. Xia, Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal. Chem. 86(11), 5323–5329 (2014). https://doi.org/10.1021/ac5001338
- H. Wang, J. Yi, D. Velado, Y. Yu, S. Zhou, Immobilization of carbon dots in molecularly imprinted microgels for optical sensing of glucose at physiological pH. ACS Appl. Mater. Interfaces. 7(29), 15735–15745 (2015). https://doi.org/10.1021/acsami.5b04744
- H. Miao, L. Wang, Y. Zhuo, Z. Zhou, X. Yang, Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice. Biosens. Bioelectron. 86, 83–89 (2016). https://doi.org/10.1016/j.bios.2016.06.043
- H. Motaghi, M.A. Mehrgardi, P. Bouvet, Carbon dots-AS1411 aptamer nanoconjugate for ultrasensitive spectrofluorometric detection of cancer cells. Sci. Rep. 7(1), 10513 (2017). https://doi.org/10.1038/s41598-017-11087-2
- Z.S. Qian, L.J. Chai, Y.Y. Huang, C. Tang, J. Jia Shen, J.R. Chen, H. Feng, A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosens. Bioelectron. 68, 675–680 (2015). https://doi.org/10.1016/j.bios.2015.01.068
- S. Liu, N. Zhao, Z. Cheng, H. Liu, Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale 7(15), 6836–6842 (2015). https://doi.org/10.1039/C5NR00070J
- M. Amjadi, T. Hallaj, Z. Kouhi, An enzyme-free fluorescent probe based on carbon dots: MnO2 nanosheets for determination of uric acid. J. Photoch. Photobio. A 356, 603–609 (2018). https://doi.org/10.1016/j.jphotochem.2018.02.002
- D. Zhao, C. Chen, J. Sun, X. Yang, Carbon dots-assisted colorimetric and fluorometric dual-mode protocol for acetylcholinesterase activity and inhibitors screening based on the inner filter effect of silver nanoparticles. Analyst 141(11), 3280–3288 (2016). https://doi.org/10.1039/C6AN00514D
- A. Korten, J. Lodder, F. Vreeling, A. Boreas, L. van Raak, F. Kessels, Stroke and idiopathic Parkinson’s disease: does a shortage of dopamine offer protection against stroke? Movement Disord. 16(1), 119–123 (2001). https://doi.org/10.1002/1531-8257(200101)16:1%3c119:AID-MDS1024%3e3.0.CO;2-W
- J.D. Elsworth, R.H. Roth, Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson’s disease. Exp. Neurol. 144(1), 4–9 (1997). https://doi.org/10.1006/exnr.1996.6379
- S. Casalini, F. Leonardi, T. Cramer, F. Biscarini, Organic field-effect transistor for label-free dopamine sensing. Org. Electron. 14(1), 156–163 (2013). https://doi.org/10.1016/j.orgel.2012.10.027
- H. Li, J. Liu, M. Yang, W. Kong, H. Huang, Y. Liu, Highly sensitive, stable, and precise detection of dopamine with carbon dots/tyrosinase hybrid as fluorescent probe. RSC Adv. 4(87), 46437–46443 (2014). https://doi.org/10.1039/C4RA06163B
- H. Li, W. Kong, J. Liu, N. Liu, H. Huang, Y. Liu, Z. Kang, Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon 91, 66–75 (2015). https://doi.org/10.1016/j.Carbon2015.04.032
- N. Wang, Y. Wang, T. Guo, T. Yang, M. Chen, J. Wang, Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of iron(III) and Escherichia coli. Biosens. Bioelectron. 85, 68–75 (2016). https://doi.org/10.1016/j.bios.2016.04.089
- I.P.-J. Lai, S.G. Harroun, S.-Y. Chen, B. Unnikrishnan, Y.-J. Li, C.-C. Huang, Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sensor. Actuat. B-Chem. 228, 465–470 (2016). https://doi.org/10.1016/j.snb.2016.01.062
- N. Duan, S. Wu, S. Dai, T. Miao, J. Chen, Z. Wang, Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim. Acta 182(5–6), 917–923 (2015). https://doi.org/10.1007/s00604-014-1406-3
- L. Yang, W. Deng, C. Cheng, Y. Tan, Q. Xie, S. Yao, Fluorescent immunoassay for the detection of pathogenic bacteria at the single-cell level using carbon dots-encapsulated breakable organosilica nanocapsule as labels. ACS Appl. Mater. Interfaces. 10(4), 3441–3448 (2018). https://doi.org/10.1021/acsami.7b18714
- J. Zhang, X. Zhao, M. Xian, C. Dong, S. Shuang, Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 183, 39–47 (2018). https://doi.org/10.1016/j.talanta.2018.02.009
- G. Gao, Y.-W. Jiang, J. Yang, F.-G. Wu, Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. Nanoscale 9(46), 18368–18378 (2017). https://doi.org/10.1039/C7NR06764J
- B.B. Chen, Z.X. Liu, H.Y. Zou, C.Z. Huang, Highly selective detection of 2,4,6-trinitrophenol by using newly developed terbium-doped blue carbon dots. Analyst 141(9), 2676–2681 (2016). https://doi.org/10.1039/C5AN02569A
- F. Cheng, X. An, C. Zheng, S. Cao, Green synthesis of fluorescent hydrophobic carbon quantum dots and their use for 2,4,6-trinitrophenol detection. RSC Adv. 5(113), 93360–93363 (2015). https://doi.org/10.1039/C5RA19029K
- B. Ju, Y. Wang, Y.-M. Zhang, T. Zhang, Z. Liu, M. Li, S.X.-A. Zhang, Photo-stable and low-toxic yellow-green carbon dots for highly selective detection of explosive 2,4,6-trinitrophenol based on dual electron transfer mechanism. ACS Appl. Mater. Interfaces. 10(15), 13040–13047 (2018). https://doi.org/10.1021/acsami.8b02330
- D. Shi, F. Yan, T. Zheng, Y. Wang, X. Zhou, L. Chen, P-doped carbon dots act as a nanosensor for trace 2,4,6-trinitrophenol detection and a fluorescent reagent for biological imaging. RSC Adv. 5(119), 98492–98499 (2015). https://doi.org/10.1039/C5RA18800H
- L. Zhang, Y. Han, J. Zhu, Y. Zhai, S. Dong, Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots. Anal. Chem. 87(4), 2033–2036 (2015). https://doi.org/10.1021/ac5043686
- S. Zou, C. Hou, H. Fa, L. Zhang, Y. Ma, L. Dong, D. Li, D. Huo, M. Yang, An efficient fluorescent probe for fluazinam using N, S co-doped carbon dots from l-cysteine. Sensor. Actuat. B-Chem. 239, 1033–1041 (2017). https://doi.org/10.1016/j.snb.2016.07.169
- H. Xu, X. Yang, G. Li, C. Zhao, X. Liao, Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J. Agr. Food Chem. 63(30), 6707–6714 (2015). https://doi.org/10.1021/acs.jafc.5b02319
- B. Wang, Y. Chen, Y. Wu, B. Weng, Y. Liu, Z. Lu, C.M. Li, C. Yu, Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens. Bioelectron. 78, 23–30 (2016). https://doi.org/10.1016/j.bios.2015.11.015
- J. Hou, H. Li, L. Wang, P. Zhang, T. Zhou, H. Ding, L. Ding, Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta 146, 34–40 (2016). https://doi.org/10.1016/j.talanta.2015.08.024
- L. Feng, L. Tan, H. Li, Z. Xu, G. Shen, Y. Tang, Selective fluorescent sensing of α-amanitin in serum using carbon quantum dots-embedded specificity determinant imprinted polymers. Biosens. Bioelectron. 69, 265–271 (2015). https://doi.org/10.1016/j.bios.2015.03.005
- J. Hou, J. Dong, H. Zhu, X. Teng, S. Ai, M. Mang, A simple and sensitive fluorescent sensor for methyl parathion based on l-tyrosine methyl ester functionalized carbon dots. Biosens. Bioelectron. 68, 20–26 (2015). https://doi.org/10.1016/j.bios.2014.12.037
- J. Hou, Z. Tian, H. Xie, Q. Tian, S. Ai, A fluorescence resonance energy transfer sensor based on quaternized carbon dots and Ellman’s test for ultrasensitive detection of dichlorvos. Sensor. Actuat. B-Chem. 232, 477–483 (2016). https://doi.org/10.1016/j.snb.2016.03.092
- M. Zheng, C. Wang, Y. Wang, W. Wei, S. Ma, X. Sun, J. He, Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim. Talanta 185, 309–315 (2018). https://doi.org/10.1016/j.talanta.2018.03.066
- B.B.Z. Mazhari, D. Agsar, Detection of phenols from industrial effluents using streptomyces mediated gold nanoparticles. Indian J. Mater. Sci. 2016, 6937489 (2016). https://doi.org/10.1155/2016/6937489
- G.H.G. Ahmed, R.B. Laí-o, J.A.G. Calzón, M.E.D. García, Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Microchim. Acta 182(1), 51–59 (2015). https://doi.org/10.1007/s00604-014-1302-x
- T. Hao, X. Wei, Y. Nie, Y. Xu, Y. Yan, Z. Zhou, An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim. Acta 183(7), 2197–2203 (2016). https://doi.org/10.1007/s00604-016-1851-2
- N. Xiao, S.G. Liu, S. Mo, N. Li, Y.J. Ju, Y. Ling, N.B. Li, H.Q. Luo, Highly selective detection of p-nitrophenol using fluorescence assay based on boron, nitrogen co-doped carbon dots. Talanta 184, 184–192 (2018). https://doi.org/10.1016/j.talanta.2018.02.114
- P. Ni, H. Dai, Z. Li, Y. Sun, J. Hu, S. Jiang, Y. Wang, Z. Li, Carbon dots based fluorescent sensor for sensitive determination of hydroquinone. Talanta 144, 258–262 (2015). https://doi.org/10.1016/j.talanta.2015.06.014
- G. Liu, Z. Chen, X. Jiang, D.-Q. Feng, J. Zhao, D. Fan, W. Wang, In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol A. Sensor. Actuat. B-Chem. 228, 302–307 (2016). https://doi.org/10.1016/j.snb.2016.01.010
- M. Xue, M. Zou, J. Zhao, Z. Zhan, S. Zhao, Green preparation of fluorescent carbon dots from lychee seeds and their application for the selective detection of methylene blue and imaging in living cells. J. Mater. Chem. B 3(33), 6783–6789 (2015). https://doi.org/10.1039/C5TB01073J
- D. Zhao, C. Chen, L. Lu, F. Yang, X. Yang, A dual-mode colorimetric and fluorometric light on sensor for thiocyanate based on fluorescent carbon dots and unmodified gold nanoparticles. Analyst 140(24), 8157–8164 (2015). https://doi.org/10.1039/C5AN01926E
- X. Luo, W. Zhang, Y. Han, X. Chen, L. Zhu, W. Tang, J. Wang, T. Yue, Z. Li, N, S co-doped carbon dots based fluorescent on-off-on sensor for determination of ascorbic acid in common fruits. Food Chem. 258, 214–221 (2018). https://doi.org/10.1016/j.foodchem.2018.03.032
- J. Liu, Y. Chen, W. Wang, J. Feng, M. Liang, S. Ma, X. Chen, Switch-on fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots–MnO2 probe. J. Agr. Food Chem. 64(1), 371–380 (2015). https://doi.org/10.1021/acs.jafc.5b05726
- L. Ding, H. Yang, S. Ge, J. Yu, Fluorescent carbon dots nanosensor for label-free determination of vitamin B 12 based on inner filter effect. Spectrochim. Acta A 193, 305–309 (2018). https://doi.org/10.1016/j.saa.2017.12.015
- H. Zeng, L. Li, Y. Ding, Q. Zhuang, Simple and selective determination of 6-thioguanine by using polyethylenimine (PEI) functionalized carbon dots. Talanta 178, 879–885 (2018). https://doi.org/10.1016/j.talanta.2017.09.087
- D. Garg, A. Mehta, A. Mishra, S. Basu, A sensitive turn on fluorescent probe for detection of biothiols using MnO2@ carbon dots nanocomposites. Spectrochim. Acta A 192, 411–419 (2018). https://doi.org/10.1016/j.saa.2017.11.041
- F. Qu, Z. Sun, D. Liu, X. Zhao, J. You, Direct and indirect fluorescent detection of tetracyclines using dually emitting carbon dots. Microchim. Acta 183(9), 2547–2553 (2016). https://doi.org/10.1007/s00604-016-1901-9
- X. Fu, R. Lv, J. Su, H. Li, B. Yang, W. Gu, X. Liu, A dual-emission nano-rod MOF equipped with carbon dots for visual detection of doxycycline and sensitive sensing of MnO4−. RSC Adv. 8(9), 4766–4772 (2018). https://doi.org/10.1039/C7RA12252G
- Y. Wang, T. Ma, S. Ma, Y. Liu, Y. Tian, R. Wang, Y. Jiang, D. Hou, J. Wang, Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim. Acta 184(1), 203–210 (2017). https://doi.org/10.1007/s00604-016-2011-4
- Y. Zou, F. Yan, T. Zheng, D. Shi, F. Sun, N. Yang, L. Chen, Highly luminescent organosilane-functionalized carbon dots as a nanosensor for sensitive and selective detection of quercetin in aqueous solution. Talanta 135, 145–148 (2015). https://doi.org/10.1016/j.talanta.2014.12.029
- Y. Zhang, Z. Gao, W. Zhang, W. Wang, J. Chang, J. Kai, Fluorescent carbon dots as nanoprobe for determination of lidocaine hydrochloride. Sensor. Actuat. B-Chem. 262, 928–937 (2018). https://doi.org/10.1016/j.snb.2018.02.079
- A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Ha
References
R.J. Ward, F.A. Zucca, J.H. Duyn, R.R. Crichton, L. Zecca, The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 13(10), 1045–1060 (2014). https://doi.org/10.1016/S1474-4422(14)70117-6
X. Huang, Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat. Res.-Fund. Mol. M. 533(1), 153–171 (2003). https://doi.org/10.1016/j.mrfmmm.2003.08.023
Y. Deugnier, Iron and liver cancer. Alcohol 30(2), 145–150 (2003). https://doi.org/10.1016/S0741-8329(03)00129-0
S. Toyokuni, Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci. 100(1), 9–16 (2009). https://doi.org/10.1111/j.1349-7006.2008.01001.x
M.F. Bouchard, S. Sauvé, B. Barbeau, M. Legrand, M.-È. Brodeur, T. Bouffard, E. Limoges, D.C. Bellinger, D. Mergler, Intellectual impairment in school-age children exposed to manganese from drinking water. Environ. Health Persp. 119(1), 138 (2011). https://doi.org/10.1289/ehp.1002321
J. Zhao, X. Yan, T. Zhou, J. Wang, H. Li, P. Zhang, H. Ding, L. Ding, Multi-throughput dynamic microwave-assisted leaching coupled with inductively coupled plasma atomic emission spectrometry for heavy metal analysis in soil. J. Anal. Atom. Spectrom. 30(9), 1920–1926 (2015). https://doi.org/10.1039/C5JA00233H
B. Feist, B. Mikula, Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry. Food Chem. 147, 302–306 (2014). https://doi.org/10.1016/j.foodchem.2013.10.002
G. Benipal, A. Harris, C. Srirajayatsayai, A. Tate, V. Topalidis et al., Examination of Al, As, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sb, Se, V, and Zn in sediments collected around the downtown Houston, Texas area, using inductively coupled plasma-optical emission spectroscopy. Microchem. J. 130, 255–262 (2017). https://doi.org/10.1016/j.microc.2016.09.009
M. Behbahani, N.A.G. Tapeh, M. Mahyari, A.R. Pourali, B.G. Amin, A. Shaabani, Monitoring of trace amounts of heavy metals in different food and water samples by flame atomic absorption spectrophotometer after preconcentration by amine-functionalized graphene nanosheet. Environ. Monit. Assess. 186(11), 7245–7257 (2014). https://doi.org/10.1007/s10661-014-3924-1
T. Daşbaşı, Ş. Saçmacı, A. Ülgen, Ş. Kartal, A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry. Food Chem. 174, 591–596 (2015). https://doi.org/10.1016/j.foodchem.2014.11.049
L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 63, 276–286 (2015). https://doi.org/10.1016/j.bios.2014.07.052
G. Xu, S. Zeng, B. Zhang, M.T. Swihart, K.-T. Yong, P.N. Prasad, New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 116(19), 12234–12327 (2016). https://doi.org/10.1021/acs.chemrev.6b00290
V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115(11), 4744–4822 (2015). https://doi.org/10.1021/cr500304f
X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004). https://doi.org/10.1021/ja040082h
Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.S. Fernando et al., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128(24), 7756–7757 (2006). https://doi.org/10.1021/ja062677d
M. Bottini, C. Balasubramanian, M.I. Dawson, A. Bergamaschi, S. Bellucci, T. Mustelin, Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J. Phys. Chem. B 110(2), 831–836 (2006). https://doi.org/10.1021/jp055503b
H. Gonçalves, P.A. Jorge, J. Fernandes, J.C.E. da Silva, Hg(II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sensor. Actuat. B-Chem. 145(2), 702–707 (2010). https://doi.org/10.1016/j.snb.2010.01.031
X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, N. Koshizaki, Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem. Commun. 47(3), 932–934 (2011). https://doi.org/10.1039/C0CC03552A
S. Hu, J. Liu, J. Yang, Y. Wang, S. Cao, Laser synthesis and size tailor of carbon quantum dots. J. Nanopart. Res. 13(12), 7247–7252 (2011). https://doi.org/10.1007/s11051-011-0638-y
L. Bao, Z.L. Zhang, Z.Q. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi, D.W. Pang, Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv. Mater. 23(48), 5801–5806 (2011). https://doi.org/10.1002/adma.201102866
M. Liu, Y. Xu, F. Niu, J.J. Gooding, J. Liu, Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 141(9), 2657–2664 (2016). https://doi.org/10.1039/C5AN02231B
Y. Hou, Q. Lu, J. Deng, H. Li, Y. Zhang, One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal. Chim. Acta 866, 69–74 (2015). https://doi.org/10.1016/j.aca.2015.01.039
J. Deng, Q. Lu, N. Mi, H. Li, M. Liu et al., Electrochemical synthesis of carbon nanodots directly from alcohols. Chem.-Eur. J. 20(17), 4993–4999 (2014). https://doi.org/10.1002/chem.201304869
H. Tao, K. Yang, Z. Ma, J. Wan, Y. Zhang, Z. Kang, Z. Liu, In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8(2), 281–290 (2012). https://doi.org/10.1002/smll.201101706
D. Sun, R. Ban, P.-H. Zhang, G.-H. Wu, J.-R. Zhang, J.-J. Zhu, Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64, 424–434 (2013). https://doi.org/10.1016/j.Carbon2013.07.095
M.M.F. Chang, I.R. Ginjom, M. Ngu-Schwemlein, S.M. Ng, Synthesis of yellow fluorescent carbon dots and their application to the determination of chromium(III) with selectivity improved by pH tuning. Microchim. Acta 183(6), 1899–1907 (2016). https://doi.org/10.1007/s00604-016-1819-2
Y. Hu, J. Yang, J. Tian, L. Jia, J.-S. Yu, Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon 77, 775–782 (2014). https://doi.org/10.1016/j.Carbon2014.05.081
V. Subramanian, H. Zhu, R. Vajtai, P. Ajayan, B. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109(43), 20207–20214 (2005). https://doi.org/10.1021/jp0543330
G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi, Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J. Power Sources 160(1), 516–522 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.067
Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60, 421–428 (2013). https://doi.org/10.1016/j.Carbon2013.04.055
Q. Xu, P. Pu, J. Zhao, C. Dong, C. Gao, Y. Chen, J. Chen, Y. Liu, H. Zhou, Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J. Mater. Chem. A 3(2), 542–546 (2015). https://doi.org/10.1039/C4TA05483K
J.-Y. Li, Y. Liu, Q.-W. Shu, J.-M. Liang, F. Zhang, X.-P. Chen, X.-Y. Deng, M.T. Swihart, K.-J. Tan, One-pot hydrothermal synthesis of carbon dots with efficient up-and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay. Langmuir 33(4), 1043–1050 (2017). https://doi.org/10.1021/acs.langmuir.6b04225
V.N. Mehta, S. Jha, H. Basu, R.K. Singhal, S.K. Kailasa, One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensor. Actuat. B-Chem. 213, 434–443 (2015). https://doi.org/10.1016/j.snb.2015.02.104
L. Wang, H.S. Zhou, Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal. Chem. 86(18), 8902–8905 (2014). https://doi.org/10.1021/ac502646x
T.N.J.I. Edison, R. Atchudan, J.-J. Shim, S. Kalimuthu, B.-C. Ahn, Y.R. Lee, Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. J. Photoch. Photobio. B 158, 235–242 (2016). https://doi.org/10.1016/j.jphotobiol.2016.03.010
R. Atchudan, T.N.J.I. Edison, M.G. Sethuraman, Y.R. Lee, Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Appl. Surf. Sci. 384, 432–441 (2016). https://doi.org/10.1016/j.apsusc.2016.05.054
Y. Liu, Q. Zhou, J. Li, M. Lei, X. Yan, Selective and sensitive chemosensor for lead ions using fluorescent carbon dots prepared from chocolate by one-step hydrothermal method. Sensor. Actuat. B-Chem. 237, 597–604 (2016). https://doi.org/10.1016/j.snb.2016.06.092
J. Yu, N. Song, Y.-K. Zhang, S.-X. Zhong, A.-J. Wang, J. Chen, Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensor. Actuat. B-Chem. 214, 29–35 (2015). https://doi.org/10.1016/j.snb.2015.03.006
J. Wei, X. Zhang, Y. Sheng, J. Shen, P. Huang, S. Guo, J. Pan, B. Feng, Dual functional carbon dots derived from cornflour via a simple one-pot hydrothermal route. Mater. Lett. 123, 107–111 (2014). https://doi.org/10.1016/j.matlet.2014.02.090
L. Li, X. Wang, Z. Fu, F. Cui, One-step hydrothermal synthesis of nitrogen-and sulfur-co-doped carbon dots from ginkgo leaves and application in biology. Mater. Lett. 196, 300–303 (2017). https://doi.org/10.1016/j.matlet.2017.03.112
R. Liu, J. Zhang, M. Gao, Z. Li, J. Chen, D. Wu, P. Liu, A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers. RSC Adv. 5(6), 4428–4433 (2015). https://doi.org/10.1039/C4RA12077A
S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. 48(70), 8835–8837 (2012). https://doi.org/10.1039/c2cc33796g
R. Purbia, S. Paria, A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosens. Bioelectron. 79, 467–475 (2016). https://doi.org/10.1016/j.bios.2015.12.087
J. Niu, H. Gao, Synthesis and drug detection performance of nitrogen-doped carbon dots. J. Lumin. 149, 159–162 (2014). https://doi.org/10.1016/j.jlumin.2014.01.026
S. Chandra, A.R. Chowdhuri, D. Laha, S.K. Sahu, Fabrication of nitrogen-and phosphorous-doped carbon dots by the pyrolysis method for iodide and iron(III) sensing. Luminescence 33(2), 336–344 (2017). https://doi.org/10.1002/bio.3418
L.-H. Mao, W.-Q. Tang, Z.-Y. Deng, S.-S. Liu, C.-F. Wang, S. Chen, Facile access to white fluorescent carbon dots toward light-emitting devices. Ind. Eng. Chem. Res. 53(15), 6417–6425 (2014). https://doi.org/10.1021/ie500602n
F. Wang, S. Pang, L. Wang, Q. Li, M. Kreiter, C.-Y. Liu, One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem. Mater. 22(16), 4528–4530 (2010). https://doi.org/10.1021/cm101350u
H. He, X. Wang, Z. Feng, T. Cheng, X. Sun, Y. Sun, Y. Xia, S. Wang, J. Wang, X. Zhang, Rapid microwave-assisted synthesis of ultra-bright fluorescent carbon dots for live cell staining, cell-specific targeting and in vivo imaging. J. Mater. Chem. B 3(24), 4786–4789 (2015). https://doi.org/10.1039/C5TB00570A
H. Li, Y. Xu, J. Ding, L. Zhao, T. Zhou, H. Ding, Y. Chen, L. Ding, Microwave-assisted synthesis of highly luminescent N-and S-co-doped carbon dots as a ratiometric fluorescent probe for levofloxacin. Microchim. Acta 185(2), 104 (2018). https://doi.org/10.1007/s00604-017-2619-z
Q. Xiao, Y. Liang, F. Zhu, S. Lu, S. Huang, Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. Microchim. Acta 184(7), 2429–2438 (2017). https://doi.org/10.1007/s00604-017-2242-z
W. Kwon, S.-W. Rhee, Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chem. Commun. 48(43), 5256–5258 (2012). https://doi.org/10.1039/c2cc31687k
J. Zhang, F. Abbasi, J. Claverie, An efficient templating approach for the synthesis of redispersible size-controllable carbon quantum dots from graphitic polymeric micelles. Chem.-Eur. J. 21(43), 15142–15147 (2015). https://doi.org/10.1002/chem.201502158
K. Linehan, H. Doyle, Efficient one-pot synthesis of highly monodisperse carbon quantum dots. RSC Adv. 4(1), 18–21 (2014). https://doi.org/10.1039/C3RA45083J
R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. 121(25), 4668–4671 (2009). https://doi.org/10.1002/ange.200900652
Y. Yang, D. Wu, S. Han, P. Hu, R. Liu, Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach. Chem. Commun. 49(43), 4920–4922 (2013). https://doi.org/10.1039/c3cc38815h
Z.L. Wu, Z.X. Liu, Y.H. Yuan, Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J. Mater. Chem. B 5(21), 3794–3809 (2017). https://doi.org/10.1039/C7TB00363C
X. Sun, Y. Lei, Fluorescent carbon dots and their sensing applications. TrAC-Trend. Anal. Chem. 89, 163–180 (2017). https://doi.org/10.1016/j.trac.2017.02.001
S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao, X.-W. Du, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 19(4), 484–488 (2009). https://doi.org/10.1039/B812943F
S. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int.-Ed. 51(49), 12215–12218 (2012). https://doi.org/10.1002/anie.201206791
D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang et al., Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5(24), 12272–12277 (2013). https://doi.org/10.1039/c3nr04402e
Y. Dong, R. Wang, H. Li, J. Shao, Y. Chi, X. Lin, G. Chen, Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50(8), 2810–2815 (2012). https://doi.org/10.1016/j.Carbon2012.02.046
C. Liu, P. Zhang, X. Zhai, F. Tian, W. Li, J. Yang, Y. Liu, H. Wang, W. Wang, W. Liu, Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33(13), 3604–3613 (2012). https://doi.org/10.1016/j.biomaterials.2012.01.052
Z. Yang, M. Xu, Y. Liu, F. He, F. Gao, Y. Su, H. Wei, Y. Zhang, Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 6(3), 1890–1895 (2014). https://doi.org/10.1039/C3NR05380F
A.B. Bourlinos, G. Trivizas, M.A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis, A. Bakandritsos, K. Hola, O. Kozak, R. Zboril, Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon 83, 173–179 (2015). https://doi.org/10.1016/j.Carbon2014.11.032
Z. Qian, X. Shan, L. Chai, J. Ma, J. Chen, H. Feng, Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl. Mater. Interfaces. 6(9), 6797–6805 (2014). https://doi.org/10.1021/am500403n
F. Qiao, J. Wang, S. Ai, L. Li, As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine. Sensor. Actuat. B-Chem. 216, 418–427 (2015). https://doi.org/10.1016/j.snb.2015.04.074
N. Gong, H. Wang, S. Li, Y. Deng, X.A. Chen, L. Ye, W. Gu, Microwave-assisted polyol synthesis of gadolinium-doped green luminescent carbon dots as a bimodal nanoprobe. Langmuir 30(36), 10933–10939 (2014). https://doi.org/10.1021/la502705g
H. Li, F.-Q. Shao, H. Huang, J.-J. Feng, A.-J. Wang, Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sensor. Actuat. B-Chem. 226, 506–511 (2016). https://doi.org/10.1016/j.snb.2015.12.018
M. Ganiga, J. Cyriac, FRET based ammonia sensor using carbon dots. Sensor. Actuat. B-Chem. 225, 522–528 (2016). https://doi.org/10.1016/j.snb.2015.11.074
C. Han, R. Wang, K. Wang, H. Xu, M. Sui, J. Li, K. Xu, Highly fluorescent carbon dots as selective and sensitive on-off-on probes for iron(III) ion and apoferritin detection and imaging in living cells. Biosens. Bioelectron. 83, 229–236 (2016). https://doi.org/10.1016/j.bios.2016.04.066
R.K. Das, S. Mohapatra, Highly luminescent, heteroatom-doped carbon quantum dots for ultrasensitive sensing of glucosamine and targeted imaging of liver cancer cells. J. Mater. Chem. B 5(11), 2190–2197 (2017). https://doi.org/10.1039/C6TB03141B
K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai, H. Lin, Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int.-Ed. 54(18), 5360–5363 (2015). https://doi.org/10.1002/anie.201501193
L. Pan, S. Sun, A. Zhang, K. Jiang, L. Zhang, C. Dong, Q. Huang, A. Wu, H. Lin, Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater. 27(47), 7782–7787 (2015). https://doi.org/10.1002/adma.201503821
Y. Zhang, J. He, Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties. Phys. Chem. Chem. Phys. 17(31), 20154–20159 (2015). https://doi.org/10.1039/C5CP03498A
X. Li, S. Zhang, S.A. Kulinich, Y. Liu, H. Zeng, Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci. Rep. 4, 4976 (2014). https://doi.org/10.1038/srep04976
H. Wang, C. Sun, X. Chen, Y. Zhang, V.L. Colvin et al., Excitation wavelength independent visible color emission of carbon dots. Nanoscale 9(5), 1909–1915 (2017). https://doi.org/10.1039/C6NR09200D
X. Meng, Q. Chang, C. Xue, J. Yang, S. Hu, Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties. Chem. Commun. 53(21), 3074–3077 (2017). https://doi.org/10.1039/C7CC00461C
C. Wang, Z. Xu, H. Cheng, H. Lin, M.G. Humphrey, C. Zhang, A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 82, 87–95 (2015). https://doi.org/10.1016/j.Carbon2014.10.035
X. Jia, J. Li, E. Wang, One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4(18), 5572–5575 (2012). https://doi.org/10.1039/c2nr31319g
S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7(2), 1239–1245 (2013). https://doi.org/10.1021/nn304675g
Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao, Y. Chi, C.M. Li, T. Yu, Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int.-Ed. 52(30), 7800–7804 (2013). https://doi.org/10.1002/anie.201301114
H. Li, H. Ming, Y. Liu, H. Yu, X. He, H. Huang, K. Pan, Z. Kang, S.-T. Lee, Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New J. Chem. 35(11), 2666–2670 (2011). https://doi.org/10.1039/c1nj20575g
P. Yu, X. Wen, Y.-R. Toh, J. Tang, Temperature-dependent fluorescence in carbon dots. J. Phys. Chem. C 116(48), 25552–25557 (2012). https://doi.org/10.1021/jp307308z
P.-C. Chen, Y.-N. Chen, P.-C. Hsu, C.-C. Shih, H.-T. Chang, Photoluminescent organosilane-functionalized carbon dots as temperature probes. Chem. Commun. 49(16), 1639–1641 (2013). https://doi.org/10.1039/c3cc38486a
L. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang et al., Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129(37), 11318–11319 (2007). https://doi.org/10.1021/ja073527l
A. Salinas-Castillo, M. Ariza-Avidad, C. Pritz, M. Camprubí-Robles, B. Fernández et al., Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem. Commun. 49(11), 1103–1105 (2013). https://doi.org/10.1039/c2cc36450f
B. Yin, J. Deng, X. Peng, Q. Long, J. Zhao, Q. Lu, Q. Chen, H. Li, H. Tang, Y. Zhang, Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138(21), 6551–6557 (2013). https://doi.org/10.1039/c3an01003a
C. Zhang, L. Du, C. Liu, Y. Li, Z. Yang, Y.-C. Cao, Photostable epoxy polymerized carbon quantum dots luminescent thin films and the performance study. Results Phys. 6, 767–771 (2016). https://doi.org/10.1016/j.rinp.2016.10.013
J.C.E. da Silva, H.M. Gonçalves, Analytical and bioanalytical applications of carbon dots. TrAC-Trend. Anal. Chem. 30(8), 1327–1336 (2011). https://doi.org/10.1016/j.trac.2011.04.009
H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int.-Ed. 49(26), 4430–4434 (2010). https://doi.org/10.1002/anie.200906154
W. Kwon, G. Lee, S. Do, T. Joo, S.W. Rhee, Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials. Small 10(3), 506–513 (2014). https://doi.org/10.1002/smll.201301770
S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8(2), 355–381 (2015). https://doi.org/10.1007/s12274-014-0644-3
H. Ding, S.-B. Yu, J.-S. Wei, H.-M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10(1), 484–491 (2015). https://doi.org/10.1021/acsnano.5b05406
Q. Li, T.Y. Ohulchanskyy, R. Liu, K. Koynov, D. Wu, A. Best, R. Kumar, A. Bonoiu, P.N. Prasad, Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 114(28), 12062–12068 (2010). https://doi.org/10.1021/jp911539r
M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134(2), 747–750 (2011). https://doi.org/10.1021/ja204661r
Z. Ma, H. Ming, H. Huang, Y. Liu, Z. Kang, One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J. Chem. 36(4), 861–864 (2012). https://doi.org/10.1039/c2nj20942j
X. Wen, P. Yu, Y.-R. Toh, X. Ma, J. Tang, On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem. Commun. 50(36), 4703–4706 (2014). https://doi.org/10.1039/C4CC01213E
G. Jiang, T. Jiang, X. Li, Z. Wei, X. Du, X. Wang, Boronic acid functionalized N-doped carbon quantum dots as fluorescent probe for selective and sensitive glucose determination. Mater. Res. Express 1, 2 (2014). https://doi.org/10.1088/2053-1591/1/2/025708
Z. Zhang, Y. Shi, Y. Pan, X. Cheng, L. Zhang, J. Chen, M.-J. Li, C. Yi, Quinoline derivative-functionalized carbon dots as a fluorescent nanosensor for sensing and intracellular imaging of Zn2+. J. Mater. Chem. B 2(31), 5020–5027 (2014). https://doi.org/10.1039/C4TB00677A
M. Amjadi, Z. Abolghasemi-Fakhri, T. Hallaj, Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. J. Photoch. Photobio. A 309, 8–14 (2015). https://doi.org/10.1016/j.jphotochem.2015.04.016
F. Qu, H. Pei, R. Kong, S. Zhu, L. Xia, Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 165, 136–142 (2017). https://doi.org/10.1016/j.talanta.2016.11.051
Y. Guo, L. Yang, W. Li, X. Wang, Y. Shang, B. Li, Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a turn-on fluorescent probe for cystein, glutathione and homocysteine. Microchim. Acta 183(4), 1409–1416 (2016). https://doi.org/10.1007/s00604-016-1779-6
L. Li, C. Wang, K. Liu, Y. Wang, K. Liu, Y. Lin, Hexagonal cobalt oxyhydroxide–carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia. Anal. Chem. 87(6), 3404–3411 (2015). https://doi.org/10.1021/ac5046609
C. Yuan, B. Liu, F. Liu, M.-Y. Han, Z. Zhang, Fluorescence turn on detection of mercuric ion based on bis (dithiocarbamato) copper(II) complex functionalized carbon nanodots. Anal. Chem. 86(2), 1123–1130 (2014). https://doi.org/10.1021/ac402894z
A. Cayuela, M.L. Soriano, M.C. Carrión, M. Valcárcel, Functionalized carbon dots as sensors for gold nanoparticles in spiked samples: formation of nanohybrids. Anal. Chim. Acta 820, 133–138 (2014). https://doi.org/10.1016/j.aca.2014.02.010
P. Zheng, N. Wu, Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chem.-Asian J. 12(18), 2343–2353 (2017). https://doi.org/10.1002/asia.201700814
I.L. Medintz, A.R. Clapp, H. Mattoussi, E.R. Goldman, B. Fisher, J.M. Mauro, Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2(9), 630–638 (2003). https://doi.org/10.1038/nmat961
Y. Zhang, X. Liu, Y. Fan, X. Guo, L. Zhou, Y. Lv, J. Lin, One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields. Nanoscale 8(33), 15281–15287 (2016). https://doi.org/10.1039/C6NR03125K
C. Albrecht, J.R. Lakowicz, Principles of fluorescence spectroscopy. Anal. Bioanal. Chem. 390(5), 1223–1224 (2008). https://doi.org/10.1007/s00216-007-1822-x
S. Chen, Y.-L. Yu, J.-H. Wang, Inner filter effect-based fluorescent sensing systems: a review. Anal. Chim. Acta 999, 13–26 (2017). https://doi.org/10.1016/j.aca.2017.10.026
X. Gong, W. Lu, M.C. Paau, Q. Hu, X. Wu, S. Shuang, C. Dong, M.M. Choi, Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging. Anal. Chim. Acta 861, 74–84 (2015). https://doi.org/10.1016/j.aca.2014.12.045
J. Shangguan, J. Huang, D. He, X. He, K. Wang, R. Ye, X. Yang, T. Qing, J. Tang, Highly Fe3+-selective fluorescent nanoprobe based on ultrabright N/P codoped carbon dots and its application in biological samples. Anal. Chem. 89(14), 7477–7484 (2017). https://doi.org/10.1021/acs.analchem.7b01053
W. Liu, H. Diao, H. Chang, H. Wang, T. Li, W. Wei, Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensor. Actuat. B-Chem. 241, 190–198 (2017). https://doi.org/10.1016/j.snb.2016.10.068
M. Rong, Y. Feng, Y. Wang, X. Chen, One-pot solid phase pyrolysis synthesis of nitrogen-doped carbon dots for Fe3+ sensing and bioimaging. Sensor. Actuat. B-Chem. 245, 868–874 (2017). https://doi.org/10.1016/j.snb.2017.02.014
Y. Liu, W. Duan, W. Song, J. Liu, C. Ren, J. Wu, D. Liu, H. Chen, Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe3+ ions in complex biological fluids and living cells. ACS Appl. Mater. Interfaces. 9(14), 12663–12672 (2017). https://doi.org/10.1021/acsami.6b15746
J. Wu, Y. Feng, Y. Shao, Y. Sun, High quality nitrogen and silicon Co-doped carbon dots (N/Si-CDs) for Fe3+ sensing. J. Nanosci. Nanotechnol. 18(6), 4196–4203 (2018). https://doi.org/10.1166/jnn.2018.15206
S. Chandra, D. Laha, A. Pramanik, A. Ray Chowdhuri, P. Karmakar, S.K. Sahu, Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe3+ ions in cancer cells. Luminescence 31(1), 81–87 (2016). https://doi.org/10.1002/bio.2927
G. He, M. Xu, M. Shu, X. Li, Z. Yang, L. Zhang, Y. Su, N. Hu, Y. Zhang, Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging. Nanotechnology 27, 39 (2016). https://doi.org/10.1088/0957-4484/27/39/395706
W. Lu, X. Gong, M. Nan, Y. Liu, S. Shuang, C. Dong, Comparative study for N and S doped carbon dots: Synthesis, characterization and applications for Fe3+ probe and cellular imaging. Anal. Chim. Acta 898, 116–127 (2015). https://doi.org/10.1016/j.aca.2015.09.050
A. Iqbal, Y. Tian, X. Wang, D. Gong, Y. Guo, K. Iqbal, Z. Wang, W. Liu, W. Qin, Carbon dots prepared by solid state method via citric acid and 1, 10-phenanthroline for selective and sensing detection of Fe2+ and Fe3+. Sensor. Actuat. B-Chem. 237, 408–415 (2016). https://doi.org/10.1016/j.snb.2016.06.126
Y. Song, C. Zhu, J. Song, H. Li, D. Du, Y. Lin, Drug-derived bright and color-tunable N-doped carbon dots for cell imaging and sensitive detection of Fe3+ in living cells. ACS Appl. Mater. Interfaces. 9(8), 7399–7405 (2017). https://doi.org/10.1021/acsami.6b13954
R. Yang, X. Guo, L. Jia, Y. Zhang, Z. Zhao, F. Lonshakov, Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging. Appl. Surf. Sci. 423, 426–432 (2017). https://doi.org/10.1016/j.apsusc.2017.05.252
L. Ge, H. Yu, H. Ren, B. Shi, Q. Guo, W. Gao, Z. Li, J. Li, Photoluminescence of carbon dots and their applications in Hela cell imaging and Fe3+ ion detection. J. Mater. Sci. 52(17), 9979–9989 (2017). https://doi.org/10.1007/s10853-017-1178-3
K. Kim, J. Kim, Synthesis of carbon quantum dots from jujubes for detection of iron(III) ions. J. Nanosci. Nanotechnol. 18(2), 1320–1322 (2018). https://doi.org/10.1166/jnn.2018.14901
J. Shen, S. Shang, X. Chen, D. Wang, Y. Cai, Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater. Sci. Eng., C 76, 856–864 (2017). https://doi.org/10.1016/j.msec.2017.03.178
A.M. Aslandaş, N. Balcı, M. Arık, H. Şakiroğlu, Y. Onganer, K. Meral, Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their performance in Fe3+ detection. Appl. Surf. Sci. 356, 747–752 (2015). https://doi.org/10.1016/j.apsusc.2015.08.147
C. Sun, Y. Zhang, P. Wang, Y. Yang, Y. Wang, J. Xu, Y. Wang, W.Y. William, Synthesis of nitrogen and sulfur co-doped carbon dots from garlic for selective detection of Fe3+. Nanoscale Res. Lett. 11(1), 110 (2016). https://doi.org/10.1186/s11671-016-1326-8
X. Wen, L. Shi, G. Wen, Y. Li, C. Dong, J. Yang, S. Shuang, Green synthesis of carbon nanodots from cotton for multicolor imaging, patterning, and sensing. Sensor. Actuat. B-Chem. 221, 769–776 (2015). https://doi.org/10.1016/j.snb.2015.07.019
R. Bandi, B.R. Gangapuram, R. Dadigala, R. Eslavath, S.S. Singh, V. Guttena, Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Adv. 6(34), 28633–28639 (2016). https://doi.org/10.1039/C6RA01669C
A. Tyagi, K.M. Tripathi, N. Singh, S. Choudhary, R.K. Gupta, Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv. 6(76), 72423–72432 (2016). https://doi.org/10.1039/C6RA10488F
R. Atchudan, T.N.J.I. Edison, D. Chakradhar, S. Perumal, J.-J. Shim, Y.R. Lee, Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sensor. Actuat. B-Chem. 246, 497–509 (2017). https://doi.org/10.1016/j.snb.2017.02.119
C. Wang, K. Jiang, Z. Xu, H. Lin, C. Zhang, Glutathione modified carbon-dots: from aggregation-induced emission enhancement properties to a turn-on sensing of temperature/Fe3+ ions in cells. Inorg. Chem. Front. 3(4), 514–522 (2016). https://doi.org/10.1039/C5QI00273G
M. Deng, S. Wang, C. Liang, H. Shang, S. Jiang, A FRET fluorescent nanosensor based on carbon dots for ratiometric detection of Fe3+ in aqueous solution. RSC Adv. 6(32), 26936–26940 (2016). https://doi.org/10.1039/C6RA02679F
L. Song, Y. Cui, C. Zhang, Z. Hu, X. Liu, Microwave-assisted facile synthesis of yellow fluorescent carbon dots from o-phenylenediamine for cell imaging and sensitive detection of Fe3+ and H2O2. RSC Adv. 6(21), 17704–17712 (2016). https://doi.org/10.1039/C6RA02554D
G.J. Brewer, Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol. 23(2), 319–326 (2009). https://doi.org/10.1021/tx900338d
G.J. Brewer, The risks of free copper in the body and the development of useful anticopper drugs. Curr. Opin. Clin. Nutr. 11(6), 727–732 (2008). https://doi.org/10.1097/MCO.0b013e328314b678
E. Gaggelli, H. Kozlowski, D. Valensin, G. Valensin, Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 106(6), 1995–2044 (2006). https://doi.org/10.1021/cr040410w
Q. Liu, N. Zhang, H. Shi, W. Ji, W. Yuan, Q. Hu, One-step microwave synthesis of carbon dots for highly sensitive and selective detection of copper ion in aqueous solution. New J. Chem. 42(4), 3097–3101 (2018). https://doi.org/10.1039/C7NJ05000C
D. Chen, M. Xu, W. Wu, S. Li, Multi-color fluorescent carbon dots for wavelength-selective and ultrasensitive Cu2+ sensing. J. Alloys Compd. 701, 75–81 (2017). https://doi.org/10.1016/j.jallcom.2017.01.124
G. Gedda, C.-Y. Lee, Y.-C. Lin, H.-F. Wu, Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sensor. Actuat. B-Chem. 224, 396–403 (2016). https://doi.org/10.1016/j.snb.2015.09.065
L. Liu, H. Gong, D. Li, L. Zhao, Synthesis of carbon dots from pear juice for fluorescence detection of Cu2+ ion in water. J. Nanosci. Nanotechnology 18(8), 5327–5332 (2018). https://doi.org/10.1166/jnn.2018.15356
A. Kumari, A. Kumar, S.K. Sahu, S. Kumar, Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging. Sensor. Actuat. B-Chem. 254, 197–205 (2018). https://doi.org/10.1016/j.snb.2017.07.075
Y. Liu, Y. Zhao, Y. Zhang, One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sensor. Actuat. B-Chem. 196, 647–652 (2014). https://doi.org/10.1016/j.snb.2014.02.053
Z. Fu, F. Cui, Thiosemicarbazide chemical functionalized carbon dots as a fluorescent nanosensor for sensing Cu2+ and intracellular imaging. RSC Adv. 6(68), 63681–63688 (2016). https://doi.org/10.1039/C6RA10168B
M. Vedamalai, A.P. Periasamy, C.-W. Wang, Y.-T. Tseng, L.-C. Ho, C.-C. Shih, H.-T. Chang, Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6(21), 13119–13125 (2014). https://doi.org/10.1039/C4NR03213F
H. Rao, W. Liu, Z. Lu, Y. Wang, H. Ge, P. Zou, X. Wang, H. He, X. Zeng, Y. Wang, Silica-coated carbon dots conjugated to CdTe quantum dots: a ratiometric fluorescent probe for copper(II). Microchim. Acta 183(2), 581–588 (2016). https://doi.org/10.1007/s00604-015-1682-6
C. Liu, D. Ning, C. Zhang, Z. Liu, R. Zhang, J. Zhao, T. Zhao, B. Liu, Z. Zhang, Dual-colored carbon dot ratiometric fluorescent test paper based on a specific spectral energy transfer for semiquantitative assay of copper ions. ACS Appl. Mater. Interfaces. 9(22), 18897–18903 (2017). https://doi.org/10.1021/acsami.7b05827
A. Zhao, C. Zhao, M. Li, J. Ren, X. Qu, Ionic liquids as precursors for highly luminescent, surface-different nitrogen-doped carbon dots used for label-free detection of Cu2+/Fe3+ and cell imaging. Anal. Chim. Acta 809, 128–133 (2014). https://doi.org/10.1016/j.aca.2013.10.046
J.-M. Liu, L.-P. Lin, X.-X. Wang, S.-Q. Lin, W.-L. Cai, L.-H. Zhang, Z.-Y. Zheng, Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst 137(11), 2637–2642 (2012). https://doi.org/10.1039/c2an35130g
B. Gao, F. Zhao, Y. Miao, H. Min, L. Xu, C. Huang, Boron-and nitrogen-doped photoluminescent polymer carbon nanoparticles as nanosensors for imaging detection of Cu2+ and biothiols in living cells. RSC Adv. 7(75), 47654–47661 (2017). https://doi.org/10.1039/C7RA07683E
N. Gogoi, M. Barooah, G. Majumdar, D. Chowdhury, Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Appl. Mater. Interfaces. 7(5), 3058–3067 (2015). https://doi.org/10.1021/am506558d
M.-C. Rong, K.-X. Zhang, Y.-R. Wang, X. Chen, The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu2+. Chinese Chem. Lett. 28(5), 1119–1124 (2017). https://doi.org/10.1016/j.cclet.2016.12.009
Y. Wang, W.-T. Wu, M.-B. Wu, H. Xie, C. Hu, X.-Y. Wu, J.-S. Qiu, Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions. New Carbon Mater. 30(6), 550–559 (2015). https://doi.org/10.1016/S1872-5805(15)60204-9
X. Niu, G. Liu, L. Li, Z. Fu, H. Xu, F. Cui, Green and economical synthesis of nitrogen-doped carbon dots from vegetables for sensing and imaging applications. RSC Adv. 5(115), 95223–95229 (2015). https://doi.org/10.1039/C5RA17439B
M. Harada, Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 25(1), 1–24 (1995). https://doi.org/10.3109/10408449509089885
MathSciNet
M. Harada, Congenital Minamata disease: intrauterine methylmercury poisoning. Teratology 18(2), 285–288 (1978). https://doi.org/10.1002/tera.1420180216
W. Tang, Y. Wang, P. Wang, J. Di, J. Yang, Y. Wu, Synthesis of strongly fluorescent carbon quantum dots modified with polyamidoamine and a triethoxysilane as quenchable fluorescent probes for mercury(II). Microchim. Acta 183(9), 2571–2578 (2016). https://doi.org/10.1007/s00604-016-1898-0
Q. Ye, F. Yan, Y. Luo, Y. Wang, X. Zhou, L. Chen, Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion. Spectrochim. Acta A 173, 854–862 (2017). https://doi.org/10.1016/j.saa.2016.10.039
Y.H. Yuan, R.S. Li, Q. Wang, Z.L. Wu, J. Wang, H. Liu, C.Z. Huang, Germanium-doped carbon dots as a new type of fluorescent probe for visualizing the dynamic invasions of mercury(II) ions into cancer cells. Nanoscale 7(40), 16841–16847 (2015). https://doi.org/10.1039/C5NR05326A
M. Zhang, W. Wang, P. Yuan, C. Chi, J. Zhang, N. Zhou, Synthesis of lanthanum doped carbon dots for detection of mercury ion, multi-color imaging of cells and tissue, and bacteriostasis. Chem. Eng. J. 330, 1137–1147 (2017). https://doi.org/10.1016/j.cej.2017.07.166
L. Li, B. Yu, T. You, Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg(II) ions. Biosens. Bioelectron. 74, 263–269 (2015). https://doi.org/10.1016/j.bios.2015.06.050
Y. Li, Z.-Y. Zhang, H.-F. Yang, G. Shao, F. Gan, Highly selective fluorescent carbon dots probe for mercury(II) based on thymine–mercury(II)–thymine structure. RSC Adv. 8(8), 3982–3988 (2018). https://doi.org/10.1039/C7RA11487G
H. Xu, K. Zhang, Q. Liu, Y. Liu, M. Xie, Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim. Acta 184(4), 1199–1206 (2017). https://doi.org/10.1007/s00604-017-2099-1
W. Liu, X. Wang, Y. Wang, J. Li, D. Shen, Q. Kang, L. Chen, Ratiometric fluorescence sensor based on dithiothreitol modified carbon dots-gold nanoclusters for the sensitive detection of mercury ions in water samples. Sensor. Actuat. B-Chem. 262, 810–817 (2018). https://doi.org/10.1016/j.snb.2018.01.222
J. Zhao, M. Huang, L. Zhang, M. Zou, D. Chen, Y. Huang, S. Zhao, Unique approach to develop carbon dot-based nanohybrid near-infrared ratiometric fluorescent sensor for the detection of mercury ions. Anal. Chem. 89(15), 8044–8049 (2017). https://doi.org/10.1021/acs.analchem.7b01443
Y. Wang, S.-H. Kim, L. Feng, Highly luminescent N, S–Co-doped carbon dots and their direct use as mercury(II) sensor. Anal. Chim. Acta 890, 134–142 (2015). https://doi.org/10.1016/j.aca.2015.07.051
R. Tabaraki, N. Sadeghinejad, Microwave assisted synthesis of doped carbon dots and their application as green and simple turn off–on fluorescent sensor for mercury(II) and iodide in environmental samples. Ecotox. Environ. Safe. 153, 101–106 (2018). https://doi.org/10.1016/j.ecoenv.2018.01.059
A. Gupta, A. Chaudhary, P. Mehta, C. Dwivedi, S. Khan, N.C. Verma, C.K. Nandi, Nitrogen-doped, thiol-functionalized carbon dots for ultrasensitive Hg(II) detection. Chem. Commun. 51(53), 10750–10753 (2015). https://doi.org/10.1039/C5CC03019F
F. Zhao, J. Qian, F. Quan, C. Wu, Y. Zheng, L. Zhou, Aconitic acid derived carbon dots as recyclable on–off–on fluorescent nanoprobes for sensitive detection of mercury(II) ions, cysteine and cellular imaging. RSC Adv. 7(70), 44178–44185 (2017). https://doi.org/10.1039/C7RA08097B
F. Yan, D. Shi, T. Zheng, K. Yun, X. Zhou, L. Chen, Carbon dots as nanosensor for sensitive and selective detection of Hg2+ and l-cysteine by means of fluorescence off–on switching. Sensor. Actuat. B-Chem. 224, 926–935 (2016). https://doi.org/10.1016/j.snb.2015.09.057
J. He, H. Zhang, J. Zou, Y. Liu, J. Zhuang, Y. Xiao, B. Lei, Carbon dots-based fluorescent probe for off-on sensing of Hg(II) and I−. Biosens. Bioelectron. 79, 531–535 (2016). https://doi.org/10.1016/j.bios.2015.12.084
H. Huang, Y. Weng, L. Zheng, B. Yao, W. Weng, X. Lin, Nitrogen-doped carbon quantum dots as fluorescent probe for off-on detection of mercury ions, l-cysteine and iodide ions. J. Colloid Interf. Sci. 506, 373–378 (2017). https://doi.org/10.1016/j.jcis.2017.07.076
Y. Ma, Z. Zhang, Y. Xu, M. Ma, B. Chen, L. Wei, L. Xiao, A bright carbon-dot-based fluorescent probe for selective and sensitive detection of mercury ions. Talanta 161, 476–481 (2016). https://doi.org/10.1016/j.talanta.2016.08.082
S. Lu, D. Wu, G. Li, Z. Lv, Z. Chen, L. Chen, G. Chen, L. Xia, J. You, Y. Wu, Carbon dots-based ratiometric nanosensor for highly sensitive and selective detection of mercury(II) ions and glutathione. RSC Adv. 6(105), 103169–103177 (2016). https://doi.org/10.1039/C6RA21309J
Y. Liang, H. Zhang, Y. Zhang, F. Chen, Simple hydrothermal preparation of carbon nanodots and their application in colorimetric and fluorimetric detection of mercury ions. Anal. Method. 7(18), 7540–7547 (2015). https://doi.org/10.1039/C5AY01301A
L. Wang, B. Li, F. Xu, X. Shi, D. Feng, D. Wei, Y. Li, Y. Feng, Y. Wang, D. Jia, High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens. Bioelectron. 79, 1–8 (2016). https://doi.org/10.1016/j.bios.2015.11.085
Y. Zhang, P. Cui, F. Zhang, X. Feng, Y. Wang, Y. Yang, X. Liu, Fluorescent probes for off–on highly sensitive detection of Hg2+ and l-cysteine based on nitrogen-doped carbon dots. Talanta 152, 288–300 (2016). https://doi.org/10.1016/j.talanta.2016.02.018
K.B.A. Ahmed, S. Kumar, A. Veerappan, A facile method to prepare fluorescent carbon dots and their application in selective colorimetric sensing of silver ion through the formation of silver nanoparticles. J. Lumin. 177, 228–234 (2016). https://doi.org/10.1016/j.jlumin.2016.04.053
X. Gao, Y. Lu, R. Zhang, S. He, J. Ju, M. Liu, L. Li, W. Chen, One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J. Mater. Chem. C 3(10), 2302–2309 (2015). https://doi.org/10.1039/C4TC02582B
R. Vaz, J. Bettini, J.G.F. Júnior, E.D.S. Lima, W.G. Botero, J.C.C. Santos, M.A. Schiavon, High luminescent carbon dots as an eco-friendly fluorescence sensor for Cr(VI) determination in water and soil samples. J. Photoch. Photobio. A 346, 502–511 (2017). https://doi.org/10.1016/j.jphotochem.2017.06.047
J. Shen, S. Shang, X. Chen, D. Wang, Y. Cai, Highly fluorescent N, S-co-doped carbon dots and their potential applications as antioxidants and sensitive probes for Cr(VI) detection. Sensor. Actuat. B-Chem. 248, 92–100 (2017). https://doi.org/10.1016/j.snb.2017.03.123
Y. Liu, J. Hu, Y. Li, H.-P. Wei, X.-S. Li, X.-H. Zhang, S.-M. Chen, X.-Q. Chen, Synthesis of polyethyleneimine capped carbon dots for preconcentration and slurry sampling analysis of trace chromium in environmental water samples. Talanta 134, 16–23 (2015). https://doi.org/10.1016/j.talanta.2014.11.001
J. Chen, Y. Li, K. Lv, W. Zhong, H. Wang, Z. Wu, P. Yi, J. Jiang, Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(II) ion and sulfide anion in aqueous media and its imaging in live cells. Sensor. Actuat. B-Chem. 224, 298–306 (2016). https://doi.org/10.1016/j.snb.2015.10.046
N. Amin, A. Afkhami, T. Madrakian, Construction of a novel off-on fluorescence sensor for highly selective sensing of selenite based on europium ions induced crosslinking of nitrogen-doped carbon dots. J. Lumin. 194, 768–777 (2018). https://doi.org/10.1016/j.jlumin.2017.09.048
U. Baruah, N. Gogoi, G. Majumdar, D. Chowdhury, β-Cyclodextrin and calix [4] arene-25, 26, 27, 28-tetrol capped carbon dots for selective and sensitive detection of fluoride. Carbohyd. Polym. 117, 377–383 (2015). https://doi.org/10.1016/j.carbpol.2014.09.083
P. Ganguly, S.F. Alam, Role of homocysteine in the development of cardiovascular disease. Nutr. J. 14(1), 6 (2015). https://doi.org/10.1186/1475-2891-14-6
X. Yang, Y. Guo, R.M. Strongin, Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew. Chem. Int.-Ed. 50(45), 10690–10693 (2011). https://doi.org/10.1002/anie.201103759
D. Barford, The role of cysteine residues as redox-sensitive regulatory switches. Curr. Opin. Struc. Biol. 14(6), 679–686 (2004). https://doi.org/10.1016/j.sbi.2004.09.012
J. Choi, R.-M. Liu, R.K. Kundu, F. Sangiorgi, W. Wu, R. Maxson, H.J. Forman, Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J. Biol. Chem. 275(5), 3693–3698 (2000). https://doi.org/10.1074/jbc.275.5.3693
F.J. Staal, S.W. Ela, M. Roederer, M. Anderson, L. Herzenberg, Glutathione deficiency and human immunodeficiency virus infection. The Lancet. 339(8798), 909–912 (1992). https://doi.org/10.1016/0140-6736(92)90939-Z
Z. Song, F. Quan, Y. Xu, M. Liu, L. Cui, J. Liu, Multifunctional N, S co-doped carbon quantum dots with pH-and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 104, 169–178 (2016). https://doi.org/10.1016/j.Carbon2016.04.003
Y. Wang, K. Jiang, J. Zhu, L. Zhang, H. Lin, A FRET-based carbon dot–MnO2 nanosheet architecture for glutathione sensing in human whole blood samples. Chem. Commun. 51(64), 12748–12751 (2015). https://doi.org/10.1039/C5CC04905A
D. Wu, G. Li, X. Chen, N. Qiu, X. Shi, G. Chen, Z. Sun, J. You, Y. Wu, Fluorometric determination and imaging of glutathione based on a thiol-triggered inner filter effect on the fluorescence of carbon dots. Microchim. Acta 184(7), 1923–1931 (2017). https://doi.org/10.1007/s00604-017-2187-2
J. Deng, Q. Lu, Y. Hou, M. Liu, H. Li, Y. Zhang, S. Yao, Nanosensor composed of nitrogen-doped carbon dots and gold nanoparticles for highly selective detection of cysteine with multiple signals. Anal. Chem. 87(4), 2195–2203 (2015). https://doi.org/10.1021/ac503595y
P.S. Brookes, Y. Yoon, J.L. Robotham, M. Anders, S.-S. Sheu, Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol.-Cell Physiol. 287(4), C817–C833 (2004). https://doi.org/10.1152/ajpcell.00139.2004
C.M. O’Reilly, K.E. Fogarty, R.M. Drummond, R.A. Tuft, J.V. Walsh, Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys. J. 85(5), 3350–3357 (2003). https://doi.org/10.1016/S0006-3495(03)74754-7
Y. Gong, B. Yu, W. Yang, X. Zhang, Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages. Biosens. Bioelectron. 79, 822–828 (2016). https://doi.org/10.1016/j.bios.2016.01.022
E.F. Simões, J.C.E. da Silva, J.M. Leitão, Peroxynitrite and nitric oxide fluorescence sensing by ethylenediamine doped carbon dots. Sensor. Actuat. B-Chem. 220, 1043–1049 (2015). https://doi.org/10.1016/j.snb.2015.06.072
J. Wu, X. Wang, Y. Lin, Y. Zheng, J.-M. Lin, Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on microfluidic chip. Talanta 154, 73–79 (2016). https://doi.org/10.1016/j.talanta.2016.03.062
J.R. Stone, S. Yang, Hydrogen peroxide: a signaling messenger. Antioxid. Redox Sign. 8(3–4), 243–270 (2006). https://doi.org/10.1089/ars.2006.8.243
Y. Su, X. Zhou, Y. Long, W. Li, Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide. Microchim. Acta 185(2), 114 (2018). https://doi.org/10.1007/s00604-017-2629-x
S. Huang, L. Wang, F. Zhu, W. Su, J. Sheng, C. Huang, Q. Xiao, A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA. RSC Adv. 5(55), 44587–44597 (2015). https://doi.org/10.1039/C5RA05519A
A.H. Loo, Z. Sofer, D. Bouša, P. Ulbrich, A. Bonanni, M. Pumera, Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl. Mater. Interfaces. 8(3), 1951–1957 (2016). https://doi.org/10.1021/acsami.5b10160
R. Guo, B. Chen, F. Li, S. Weng, Z. Zheng, M. Chen, W. Wu, X. Lin, C. Yang, Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sensor. Actuat. B-Chem. 264, 193–201 (2018). https://doi.org/10.1016/j.snb.2018.02.175
S. Pang, Y. Zhang, C. Wu, S. Feng, Fluorescent carbon dots sensor for highly sensitive detection of guanine. Sensor. Actuat. B-Chem. 222, 857–863 (2016). https://doi.org/10.1016/j.snb.2015.09.037
L. Li, Y. Lu, Y. Ding, F. Zhang, Y. Wang, Facile aqueous synthesis of functionalized CdTe nanoparticles and their application as fluorescence probes for determination of adenine and guanine. Can. J. Chem. 90(2), 173–179 (2011). https://doi.org/10.1139/v11-144
S. Huang, L. Wang, C. Huang, J. Xie, W. Su, J. Sheng, Q. Xiao, A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. Sensor. Actuat. B-Chem. 221, 1215–1222 (2015). https://doi.org/10.1016/j.snb.2015.07.099
A. Barati, M. Shamsipur, H. Abdollahi, Hemoglobin detection using carbon dots as a fluorescence probe. Biosens. Bioelectron. 71, 470–475 (2015). https://doi.org/10.1016/j.bios.2015.04.073
M. Enserink, This time it was real: knowledge of anthrax put to the test. Science 294(5542), 490–491 (2001). https://doi.org/10.1126/science.294.5542.490
H. Chen, Y. Xie, A.M. Kirillov, L. Liu, M. Yu, W. Liu, Y. Tang, A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chem. Commun. 51(24), 5036–5039 (2015). https://doi.org/10.1039/C5CC00757G
M. Rong, Y. Liang, D. Zhao, B. Chen, C. Pan, X. Deng, Y. Chen, J. He, A ratiometric fluorescence visual test paper for an anthrax biomarker based on functionalized manganese-doped carbon dots. Sensor. Actuat. B-Chem. 265, 498–505 (2018). https://doi.org/10.1016/j.snb.2018.03.094
C.P. McCoy, F. Stomeo, S.E. Plush, T. Gunnlaugsson, Soft matter ph sensing: from luminescent lanthanide ph switches in solution to sensing in hydrogels. Chem. Mater. 18(18), 4336–4343 (2006). https://doi.org/10.1021/cm060603v
K. Qu, J. Wang, J. Ren, X. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem.-Eur. J. 19(22), 7243–7249 (2013). https://doi.org/10.1002/chem.201300042
P. Shen, Y. Xia, Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal. Chem. 86(11), 5323–5329 (2014). https://doi.org/10.1021/ac5001338
H. Wang, J. Yi, D. Velado, Y. Yu, S. Zhou, Immobilization of carbon dots in molecularly imprinted microgels for optical sensing of glucose at physiological pH. ACS Appl. Mater. Interfaces. 7(29), 15735–15745 (2015). https://doi.org/10.1021/acsami.5b04744
H. Miao, L. Wang, Y. Zhuo, Z. Zhou, X. Yang, Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice. Biosens. Bioelectron. 86, 83–89 (2016). https://doi.org/10.1016/j.bios.2016.06.043
H. Motaghi, M.A. Mehrgardi, P. Bouvet, Carbon dots-AS1411 aptamer nanoconjugate for ultrasensitive spectrofluorometric detection of cancer cells. Sci. Rep. 7(1), 10513 (2017). https://doi.org/10.1038/s41598-017-11087-2
Z.S. Qian, L.J. Chai, Y.Y. Huang, C. Tang, J. Jia Shen, J.R. Chen, H. Feng, A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosens. Bioelectron. 68, 675–680 (2015). https://doi.org/10.1016/j.bios.2015.01.068
S. Liu, N. Zhao, Z. Cheng, H. Liu, Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale 7(15), 6836–6842 (2015). https://doi.org/10.1039/C5NR00070J
M. Amjadi, T. Hallaj, Z. Kouhi, An enzyme-free fluorescent probe based on carbon dots: MnO2 nanosheets for determination of uric acid. J. Photoch. Photobio. A 356, 603–609 (2018). https://doi.org/10.1016/j.jphotochem.2018.02.002
D. Zhao, C. Chen, J. Sun, X. Yang, Carbon dots-assisted colorimetric and fluorometric dual-mode protocol for acetylcholinesterase activity and inhibitors screening based on the inner filter effect of silver nanoparticles. Analyst 141(11), 3280–3288 (2016). https://doi.org/10.1039/C6AN00514D
A. Korten, J. Lodder, F. Vreeling, A. Boreas, L. van Raak, F. Kessels, Stroke and idiopathic Parkinson’s disease: does a shortage of dopamine offer protection against stroke? Movement Disord. 16(1), 119–123 (2001). https://doi.org/10.1002/1531-8257(200101)16:1%3c119:AID-MDS1024%3e3.0.CO;2-W
J.D. Elsworth, R.H. Roth, Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson’s disease. Exp. Neurol. 144(1), 4–9 (1997). https://doi.org/10.1006/exnr.1996.6379
S. Casalini, F. Leonardi, T. Cramer, F. Biscarini, Organic field-effect transistor for label-free dopamine sensing. Org. Electron. 14(1), 156–163 (2013). https://doi.org/10.1016/j.orgel.2012.10.027
H. Li, J. Liu, M. Yang, W. Kong, H. Huang, Y. Liu, Highly sensitive, stable, and precise detection of dopamine with carbon dots/tyrosinase hybrid as fluorescent probe. RSC Adv. 4(87), 46437–46443 (2014). https://doi.org/10.1039/C4RA06163B
H. Li, W. Kong, J. Liu, N. Liu, H. Huang, Y. Liu, Z. Kang, Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon 91, 66–75 (2015). https://doi.org/10.1016/j.Carbon2015.04.032
N. Wang, Y. Wang, T. Guo, T. Yang, M. Chen, J. Wang, Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of iron(III) and Escherichia coli. Biosens. Bioelectron. 85, 68–75 (2016). https://doi.org/10.1016/j.bios.2016.04.089
I.P.-J. Lai, S.G. Harroun, S.-Y. Chen, B. Unnikrishnan, Y.-J. Li, C.-C. Huang, Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sensor. Actuat. B-Chem. 228, 465–470 (2016). https://doi.org/10.1016/j.snb.2016.01.062
N. Duan, S. Wu, S. Dai, T. Miao, J. Chen, Z. Wang, Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim. Acta 182(5–6), 917–923 (2015). https://doi.org/10.1007/s00604-014-1406-3
L. Yang, W. Deng, C. Cheng, Y. Tan, Q. Xie, S. Yao, Fluorescent immunoassay for the detection of pathogenic bacteria at the single-cell level using carbon dots-encapsulated breakable organosilica nanocapsule as labels. ACS Appl. Mater. Interfaces. 10(4), 3441–3448 (2018). https://doi.org/10.1021/acsami.7b18714
J. Zhang, X. Zhao, M. Xian, C. Dong, S. Shuang, Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 183, 39–47 (2018). https://doi.org/10.1016/j.talanta.2018.02.009
G. Gao, Y.-W. Jiang, J. Yang, F.-G. Wu, Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. Nanoscale 9(46), 18368–18378 (2017). https://doi.org/10.1039/C7NR06764J
B.B. Chen, Z.X. Liu, H.Y. Zou, C.Z. Huang, Highly selective detection of 2,4,6-trinitrophenol by using newly developed terbium-doped blue carbon dots. Analyst 141(9), 2676–2681 (2016). https://doi.org/10.1039/C5AN02569A
F. Cheng, X. An, C. Zheng, S. Cao, Green synthesis of fluorescent hydrophobic carbon quantum dots and their use for 2,4,6-trinitrophenol detection. RSC Adv. 5(113), 93360–93363 (2015). https://doi.org/10.1039/C5RA19029K
B. Ju, Y. Wang, Y.-M. Zhang, T. Zhang, Z. Liu, M. Li, S.X.-A. Zhang, Photo-stable and low-toxic yellow-green carbon dots for highly selective detection of explosive 2,4,6-trinitrophenol based on dual electron transfer mechanism. ACS Appl. Mater. Interfaces. 10(15), 13040–13047 (2018). https://doi.org/10.1021/acsami.8b02330
D. Shi, F. Yan, T. Zheng, Y. Wang, X. Zhou, L. Chen, P-doped carbon dots act as a nanosensor for trace 2,4,6-trinitrophenol detection and a fluorescent reagent for biological imaging. RSC Adv. 5(119), 98492–98499 (2015). https://doi.org/10.1039/C5RA18800H
L. Zhang, Y. Han, J. Zhu, Y. Zhai, S. Dong, Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots. Anal. Chem. 87(4), 2033–2036 (2015). https://doi.org/10.1021/ac5043686
S. Zou, C. Hou, H. Fa, L. Zhang, Y. Ma, L. Dong, D. Li, D. Huo, M. Yang, An efficient fluorescent probe for fluazinam using N, S co-doped carbon dots from l-cysteine. Sensor. Actuat. B-Chem. 239, 1033–1041 (2017). https://doi.org/10.1016/j.snb.2016.07.169
H. Xu, X. Yang, G. Li, C. Zhao, X. Liao, Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J. Agr. Food Chem. 63(30), 6707–6714 (2015). https://doi.org/10.1021/acs.jafc.5b02319
B. Wang, Y. Chen, Y. Wu, B. Weng, Y. Liu, Z. Lu, C.M. Li, C. Yu, Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens. Bioelectron. 78, 23–30 (2016). https://doi.org/10.1016/j.bios.2015.11.015
J. Hou, H. Li, L. Wang, P. Zhang, T. Zhou, H. Ding, L. Ding, Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta 146, 34–40 (2016). https://doi.org/10.1016/j.talanta.2015.08.024
L. Feng, L. Tan, H. Li, Z. Xu, G. Shen, Y. Tang, Selective fluorescent sensing of α-amanitin in serum using carbon quantum dots-embedded specificity determinant imprinted polymers. Biosens. Bioelectron. 69, 265–271 (2015). https://doi.org/10.1016/j.bios.2015.03.005
J. Hou, J. Dong, H. Zhu, X. Teng, S. Ai, M. Mang, A simple and sensitive fluorescent sensor for methyl parathion based on l-tyrosine methyl ester functionalized carbon dots. Biosens. Bioelectron. 68, 20–26 (2015). https://doi.org/10.1016/j.bios.2014.12.037
J. Hou, Z. Tian, H. Xie, Q. Tian, S. Ai, A fluorescence resonance energy transfer sensor based on quaternized carbon dots and Ellman’s test for ultrasensitive detection of dichlorvos. Sensor. Actuat. B-Chem. 232, 477–483 (2016). https://doi.org/10.1016/j.snb.2016.03.092
M. Zheng, C. Wang, Y. Wang, W. Wei, S. Ma, X. Sun, J. He, Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim. Talanta 185, 309–315 (2018). https://doi.org/10.1016/j.talanta.2018.03.066
B.B.Z. Mazhari, D. Agsar, Detection of phenols from industrial effluents using streptomyces mediated gold nanoparticles. Indian J. Mater. Sci. 2016, 6937489 (2016). https://doi.org/10.1155/2016/6937489
G.H.G. Ahmed, R.B. Laí-o, J.A.G. Calzón, M.E.D. García, Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Microchim. Acta 182(1), 51–59 (2015). https://doi.org/10.1007/s00604-014-1302-x
T. Hao, X. Wei, Y. Nie, Y. Xu, Y. Yan, Z. Zhou, An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim. Acta 183(7), 2197–2203 (2016). https://doi.org/10.1007/s00604-016-1851-2
N. Xiao, S.G. Liu, S. Mo, N. Li, Y.J. Ju, Y. Ling, N.B. Li, H.Q. Luo, Highly selective detection of p-nitrophenol using fluorescence assay based on boron, nitrogen co-doped carbon dots. Talanta 184, 184–192 (2018). https://doi.org/10.1016/j.talanta.2018.02.114
P. Ni, H. Dai, Z. Li, Y. Sun, J. Hu, S. Jiang, Y. Wang, Z. Li, Carbon dots based fluorescent sensor for sensitive determination of hydroquinone. Talanta 144, 258–262 (2015). https://doi.org/10.1016/j.talanta.2015.06.014
G. Liu, Z. Chen, X. Jiang, D.-Q. Feng, J. Zhao, D. Fan, W. Wang, In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol A. Sensor. Actuat. B-Chem. 228, 302–307 (2016). https://doi.org/10.1016/j.snb.2016.01.010
M. Xue, M. Zou, J. Zhao, Z. Zhan, S. Zhao, Green preparation of fluorescent carbon dots from lychee seeds and their application for the selective detection of methylene blue and imaging in living cells. J. Mater. Chem. B 3(33), 6783–6789 (2015). https://doi.org/10.1039/C5TB01073J
D. Zhao, C. Chen, L. Lu, F. Yang, X. Yang, A dual-mode colorimetric and fluorometric light on sensor for thiocyanate based on fluorescent carbon dots and unmodified gold nanoparticles. Analyst 140(24), 8157–8164 (2015). https://doi.org/10.1039/C5AN01926E
X. Luo, W. Zhang, Y. Han, X. Chen, L. Zhu, W. Tang, J. Wang, T. Yue, Z. Li, N, S co-doped carbon dots based fluorescent on-off-on sensor for determination of ascorbic acid in common fruits. Food Chem. 258, 214–221 (2018). https://doi.org/10.1016/j.foodchem.2018.03.032
J. Liu, Y. Chen, W. Wang, J. Feng, M. Liang, S. Ma, X. Chen, Switch-on fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots–MnO2 probe. J. Agr. Food Chem. 64(1), 371–380 (2015). https://doi.org/10.1021/acs.jafc.5b05726
L. Ding, H. Yang, S. Ge, J. Yu, Fluorescent carbon dots nanosensor for label-free determination of vitamin B 12 based on inner filter effect. Spectrochim. Acta A 193, 305–309 (2018). https://doi.org/10.1016/j.saa.2017.12.015
H. Zeng, L. Li, Y. Ding, Q. Zhuang, Simple and selective determination of 6-thioguanine by using polyethylenimine (PEI) functionalized carbon dots. Talanta 178, 879–885 (2018). https://doi.org/10.1016/j.talanta.2017.09.087
D. Garg, A. Mehta, A. Mishra, S. Basu, A sensitive turn on fluorescent probe for detection of biothiols using MnO2@ carbon dots nanocomposites. Spectrochim. Acta A 192, 411–419 (2018). https://doi.org/10.1016/j.saa.2017.11.041
F. Qu, Z. Sun, D. Liu, X. Zhao, J. You, Direct and indirect fluorescent detection of tetracyclines using dually emitting carbon dots. Microchim. Acta 183(9), 2547–2553 (2016). https://doi.org/10.1007/s00604-016-1901-9
X. Fu, R. Lv, J. Su, H. Li, B. Yang, W. Gu, X. Liu, A dual-emission nano-rod MOF equipped with carbon dots for visual detection of doxycycline and sensitive sensing of MnO4−. RSC Adv. 8(9), 4766–4772 (2018). https://doi.org/10.1039/C7RA12252G
Y. Wang, T. Ma, S. Ma, Y. Liu, Y. Tian, R. Wang, Y. Jiang, D. Hou, J. Wang, Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim. Acta 184(1), 203–210 (2017). https://doi.org/10.1007/s00604-016-2011-4
Y. Zou, F. Yan, T. Zheng, D. Shi, F. Sun, N. Yang, L. Chen, Highly luminescent organosilane-functionalized carbon dots as a nanosensor for sensitive and selective detection of quercetin in aqueous solution. Talanta 135, 145–148 (2015). https://doi.org/10.1016/j.talanta.2014.12.029
Y. Zhang, Z. Gao, W. Zhang, W. Wang, J. Chang, J. Kai, Fluorescent carbon dots as nanoprobe for determination of lidocaine hydrochloride. Sensor. Actuat. B-Chem. 262, 928–937 (2018). https://doi.org/10.1016/j.snb.2018.02.079
A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Ha