Adhesion Reinforcement of Electrode–Electrolyte Interface in Flexible Electrochemical Energy Storage Devices
Corresponding Author: Walid A. Daoud
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 255
Abstract
Wearable and deformable electronics are becoming increasingly essential components of modern healthcare and daily life. To power such devices, flexible electrochemical energy storage (FEES) plays a critical role. The practical performance of FEES is dominated by charge and mass transfer at the electrode-electrolyte interface, similar to many rigid battery technologies. However, a unique challenge for FEES is the durability of this interface under deformation. Herein, we present the first comprehensive review of the interface physics, unveiling the crucial role of interface adhesion in the mechanical endurance of FEES. By bridging adhesion physics, material chemistry, and device mechanics, adhesion reinforcement strategies are comprehensively discussed and quantitatively compared, providing multi-scale mechanisms for optimizing FFES interface - from nanoscale bond engineering to microscale surface topology, mechanical interlocking, and macroscale device design. Further, inspired by the synergetic effect of adhesion mechanisms, we propose potential research directions for durable electrode-electrolyte interfaces under dynamic deformation. We also revisit the evaluation of flexibility and electrochemical performance, proposing an application-driven bending index for device assessment. These insights on electrode-electrolyte interface physics of FEES will facilitate the flourishing future of flexible devices.
Highlights:
1 This article is the first to systematically bridge adhesion physics, materials science, and device mechanics in flexible electrochemical energy storage, offering a multi-scale perspective from nanoscale bonds to macroscale design.
2 Comprehensive adhesion reinforcement strategies are classified and compared, with explicit emphasis on interfacial durability under dynamic deformation.
3 A novel application-driven bending index is introduced for standardizing the evaluation of flexible electrochemical energy storage flexibility, providing a practical framework for device assessment and comparison.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Li, Y. Lv, L. Ren, J. Li, L. Kong et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11(1), 1151 (2020). https://doi.org/10.1038/s41467-020-15023-3
- K.K. Fu, J. Cheng, T. Li, L. Hu, Flexible batteries: from mechanics to devices. ACS Energy Lett. 1(5), 1065–1079 (2016). https://doi.org/10.1021/acsenergylett.6b00401
- L. Mao, Q. Meng, A. Ahmad, Z. Wei, Mechanical analyses and structural design requirements for flexible energy storage devices. Adv. Energy Mater. 7(23), 1700535 (2017). https://doi.org/10.1002/aenm.201700535
- G. Qian, X. Liao, Y. Zhu, F. Pan, X. Chen et al., Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 4(3), 690–701 (2019). https://doi.org/10.1021/acsenergylett.8b02496
- X. Ge, S. Cao, Z. Lv, Z. Zhu, Y. Tang et al., Mechano-graded electrodes mitigate the mismatch between mechanical reliability and energy density for foldable lithium-ion batteries. Adv. Mater. 34(45), 2206797 (2022). https://doi.org/10.1002/adma.202206797
- J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nano-Micro Lett. 15(1), 97 (2023). https://doi.org/10.1007/s40820-023-01072-y
- O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S.A. Bencherif et al., Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15(3), 326–334 (2016). https://doi.org/10.1038/nmat4489
- S. Wu, M. Hua, Y. Alsaid, Y. Du, Y. Ma et al., Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 33(11), 2007829 (2021). https://doi.org/10.1002/adma.202007829
- Y. Zhang, F. Li, K. Yang, X. Liu, Y. Chen et al., Polymer molecular engineering enables rapid electron/ion transport in ultra-thick electrode for high-energy-density flexible lithium-ion battery. Adv. Funct. Mater. 31(19), 2100434 (2021). https://doi.org/10.1002/adfm.202100434
- E.M. Petri. Handbook of Adhesives and Sealants (McGraw-Hill; 2000).
- J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16(1), 22 (2023). https://doi.org/10.1007/s40820-023-01229-9
- R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936). https://doi.org/10.1021/ie50320a024
- K. Li, W. Shen, T. Xu, L. Yang, X. Xu et al., Fibrous gel polymer electrolyte for an ultrastable and highly safe flexible lithium-ion battery in a wide temperature range. Carbon Energy 3(6), 916–928 (2021). https://doi.org/10.1002/cey2.151
- C. Shen, M. Kabbani, C.M. Evans, Solid-state, single-anion-conducting networks for flexible and stable supercapacitor electrolytes. ACS Appl. Polym. Mater. 3(8), 4168–4176 (2021). https://doi.org/10.1021/acsapm.1c00613
- T.N. Nguyen, B. Iranpour, E. Cheng, J.D.W. Madden, Washable and stretchable Zn–MnO2 rechargeable cell. Adv. Energy Mater. 12(2), 2103148 (2022). https://doi.org/10.1002/aenm.202103148
- M. Yao, Z. Yuan, S. Li, T. He, R. Wang et al., Scalable assembly of flexible ultrathin all-in-one zinc-ion batteries with highly stretchable, editable, and customizable functions. Adv. Mater. 33(10), 2008140 (2021). https://doi.org/10.1002/adma.202008140
- L. Yang, Z. Wang, Y. Feng, R. Tan, Y. Zuo et al., Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li–electrolyte interface for solid state lithium-ion batteries. Adv. Energy Mater. 7(22), 1701437 (2017). https://doi.org/10.1002/aenm.201701437
- P. Zhu, C. Yan, J. Zhu, J. Zang, Y. Li et al., Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater. 17, 220–225 (2019). https://doi.org/10.1016/j.ensm.2018.11.009
- D. Li, L. Chen, T. Wang, L.-Z. Fan, 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 10(8), 7069–7078 (2018). https://doi.org/10.1021/acsami.7b18123
- B. Li, Q. Su, L. Yu, W. Liu, S. Dong et al., Biomimetic PVDF/LLTO composite polymer electrolyte enables excellent interface contact and enhanced ionic conductivity. Appl. Surf. Sci. 541, 148434 (2021). https://doi.org/10.1016/j.apsusc.2020.148434
- J. Yang, R. Bai, B. Chen, Z. Suo, Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30(2), 1901693 (2020). https://doi.org/10.1002/adfm.201901693
- J. Sheng, Q. Zhang, C. Sun, J. Wang, X. Zhong et al., Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium–sulfur batteries. Adv. Funct. Mater. 32(40), 2203272 (2022). https://doi.org/10.1002/adfm.202203272
- L. Shen, S. Deng, R. Jiang, G. Liu, J. Yang et al., Flexible composite solid electrolyte with 80 wt% Na3.4Zr1.9Zn0.1Si2.2P0.8O12 for solid-state sodium batteries. Energy Storage Mater. 46, 175–181 (2022). https://doi.org/10.1016/j.ensm.2022.01.010
- S. Guo, Y. Su, K. Yan, C. Zhao, Y. Lu et al., Robust and adhesive laminar solid electrolyte with homogenous and fast Li-ion conduction for high-performance all-solid-state lithium metal battery. Adv. Sci. 11(30), 2404307 (2024). https://doi.org/10.1002/advs.202404307
- X. Pan, P. Yang, Y. Guo, K. Zhao, B. Xi et al., Electrochemical and nanomechanical properties of TiO2 ceramic filler Li-ion composite gel polymer electrolytes for Li metal batteries. Adv. Mater. Interfaces 8(16), 2100669 (2021). https://doi.org/10.1002/admi.202100669
- Y. Cheng, J. Shu, L. Xu, Y. Xia, L. Du et al., Flexible nanowire cathode membrane with gradient interfaces and rapid electron/ion transport channels for solid-state lithium batteries. Adv. Energy Mater. 11(12), 2100026 (2021). https://doi.org/10.1002/aenm.202100026
- L. Liu, M. Zhu, S. Huang, X. Lu, L. Zhang et al., Artificial electrode interfaces enable stable operation of freestanding anodes for high-performance flexible lithium ion batteries. J. Mater. Chem. A 7(23), 14097–14107 (2019). https://doi.org/10.1039/c9ta03302e
- Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 33(25), e2100353 (2021). https://doi.org/10.1002/adma.202100353
- T. Deng, L. Cao, X. He, A.-M. Li, D. Li et al., In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. Chem 7(11), 3052–3068 (2021). https://doi.org/10.1016/j.chempr.2021.06.019
- Y. Gu, H. Tao, X. Yang, Liquid metal interlayer for ultrastable solid-state sodium metal battery. Small 20(45), e2403864 (2024). https://doi.org/10.1002/smll.202403864
- D. Ding, H. Tao, X. Fan, X. Yang, L.-Z. Fan, A hybrid LiCl/LixSn conductive interlayer to unlock the potential of solid-state lithium metal batteries. Adv. Funct. Mater. 34(29), 2401457 (2024). https://doi.org/10.1002/adfm.202401457
- X. Yu, L. Wang, J. Ma, X. Sun, X. Zhou et al., Selectively wetted rigid–flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv. Energy Mater. 10(18), 1903939 (2020). https://doi.org/10.1002/aenm.201903939
- H. Duan, M. Fan, W.-P. Chen, J.-Y. Li, P.-F. Wang et al., Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater. 31(12), e1807789 (2019). https://doi.org/10.1002/adma.201807789
- T. Jiang, P. He, G. Wang, Y. Shen, C.-W. Nan et al., Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 10(12), 1903376 (2020). https://doi.org/10.1002/aenm.201903376
- Y. Mu, Z. Liao, Y. Chu, Q. Zhang, L. Zou et al., Electron acceptor-driven solid electrolyte interphases with elevated LiF content for 4.7 V lithium metal batteries. Nano-Micro Lett. 17(1), 163 (2025). https://doi.org/10.1007/s40820-025-01663-x
- J. Byun, J.H. Chang, C. Hwang, C.R. Lee, M. Kim et al., Transformative effect of Li salt for proactively mitigating interfacial side reactions in sodium-ion batteries. Nano-Micro Letters 17(1), 226 (2025). https://doi.org/10.1007/s40820-025-01742-z
- Y. Pan, Z. Zuo, Y. Jiao, P. Wu, Constructing lysozyme protective layer via conformational transition for aqueous Zn batteries. Adv. Mater. 36(29), e2314144 (2024). https://doi.org/10.1002/adma.202314144
- Y. Yao, Z. Wei, H. Wang, H. Huang, Y. Jiang et al., Toward high energy density all solid-state sodium batteries with excellent flexibility. Adv. Energy Mater. 10(12), 1903698 (2020). https://doi.org/10.1002/aenm.201903698
- Q. Li, D. Wang, B. Yan, Y. Zhao, J. Fan et al., Dendrite issues for zinc anodes in a flexible cell configuration for zinc-based wearable energy-storage devices. Angew. Chem. Int. Ed. 61(25), e202202780 (2022). https://doi.org/10.1002/anie.202202780
- M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
- L. Ma, S. Chen, X. Li, A. Chen, B. Dong et al., Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by In Situ constructed polymer electrolyte. Angew. Chem. Int. Ed. 59(52), 23836–23844 (2020). https://doi.org/10.1002/anie.202011788
- X. Ji, Q. Wang, M. Yu, M.K. Hadi, Y. Liu et al., All-in-one energy storage devices supported and interfacially cross-linked by gel polymeric electrolyte. Energy Storage Mater. 37, 587–597 (2021). https://doi.org/10.1016/j.ensm.2021.02.044
- Y. Liu, X. Zhou, Y. Bai, R. Liu, X. Li et al., Engineering integrated structure for high-performance flexible zinc-ion batteries. Chem. Eng. J. 417, 127955 (2021). https://doi.org/10.1016/j.cej.2020.127955
- J. Zhao, K.K. Sonigara, J. Li, J. Zhang, B. Chen et al., A smart flexible zinc battery with cooling recovery ability. Angew. Chem. Int. Ed. 56(27), 7871–7875 (2017). https://doi.org/10.1002/anie.201704373
- S. Zhao, T. Liu, Y. Dai, Y. Wang, Z. Guo et al., All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries. Chem. Eng. J. 430, 132718 (2022). https://doi.org/10.1016/j.cej.2021.132718
- Y. Zuo, K. Wang, S. Zhao, M. Wei, X. Liu et al., A high areal capacity solid-state zinc-air battery via interface optimization of electrode and electrolyte. Chem. Eng. J. 430, 132996 (2022). https://doi.org/10.1016/j.cej.2021.132996
- Z. Shao, S. Cheng, Y. Zhang, H. Guo, X. Cui et al., Wearable and fully biocompatible all-in-one structured ″Paper-like″ zinc ion battery. ACS Appl. Mater. Interfaces 13(29), 34349–34356 (2021). https://doi.org/10.1021/acsami.1c08388
- W.-J. Song, C. Hwang, S. Lee, M. Kong, J. Kim et al., Design of a Janus-faced electrode for highly stretchable zinc–silver rechargeable batteries. Adv. Funct. Mater. 30(42), 2004137 (2020). https://doi.org/10.1002/adfm.202004137
- G. Du, S. Wang, Z. Tong, X. Ji, X. Wei et al., Dual thermal-stimulated self-adhesive mixed-phase interface to enable ultra-long cycle life of solid-state sodium metal batteries. Energy Environ. Sci. 18(8), 3689–3698 (2025). https://doi.org/10.1039/d4ee05140h
- Y. Yan, J. Ju, S. Dong, Y. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8(9), 2003887 (2021). https://doi.org/10.1002/advs.202003887
- Z. Bi, W. Huang, S. Mu, W. Sun, N. Zhao et al., Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy 90, 106498 (2021). https://doi.org/10.1016/j.nanoen.2021.106498
- M. Liao, C. Wang, Y. Hong, Y. Zhang, X. Cheng et al., Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17(4), 372–377 (2022). https://doi.org/10.1038/s41565-021-01062-4
- C. Liu, F. Zhu, Z. Huang, W. Liao, X. Guan et al., An integrate and ultra-flexible solid-state lithium battery enabled by in situ polymerized solid electrolyte. Chem. Eng. J. 434, 134644 (2022). https://doi.org/10.1016/j.cej.2022.134644
- B. Ying, R.Z. Chen, R. Zuo, J. Li, X. Liu, An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv. Funct. Mater. 31(42), 2104665 (2021). https://doi.org/10.1002/adfm.202104665
- Q. Zhang, X. Hou, X. Liu, X. Xie, L. Duan et al., Nucleotide-tackified organohydrogel electrolyte for environmentally self-adaptive flexible supercapacitor with robust electrolyte/electrode interface. Small 17(46), 2103091 (2021). https://doi.org/10.1002/smll.202103091
- Z. Zhao, F. Li, J. Zhao, G. Ding, J. Wang et al., Ionic-association-assisted viscoelastic nylon electrolytes enable synchronously coupled interface for solid batteries. Adv. Funct. Mater. 30(21), 2000347 (2020). https://doi.org/10.1002/adfm.202000347
- H. Mu, X. Huang, W. Wang, X. Tian, Z. An et al., High-performance-integrated stretchable supercapacitors based on a polyurethane organo/hydrogel electrolyte. ACS Appl. Mater. Interfaces 14(1), 622–632 (2022). https://doi.org/10.1021/acsami.1c17186
- W. Zhang, F. Guo, H. Mi, Z.-S. Wu, C. Ji et al., Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors. Adv. Energy Mater. 12(40), 2202219 (2022). https://doi.org/10.1002/aenm.202202219
- Y. Wang, Z. Wu, R. Zhang, Z. Chen, Z. Wei et al., Spider silk inspired polymer electrolyte with well bonded interface and fast kinetics for solid-state lithium-ion batteries. Mater. Today 76, 1–8 (2024). https://doi.org/10.1016/j.mattod.2024.05.001
- J. Zeng, L. Dong, W. Sha, L. Wei, X. Guo, Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chem. Eng. J. 383, 123098 (2020). https://doi.org/10.1016/j.cej.2019.123098
- T. Ye, J. Wang, Y. Jiao, L. Li, E. He et al., A tissue-like soft all-hydrogel battery. Adv. Mater. 34(4), e2105120 (2022). https://doi.org/10.1002/adma.202105120
- R. Xu, J. Yao, Z. Zhang, L. Li, Z. Wang et al., Room temperature halide-eutectic solid electrolytes with viscous feature and ultrahigh ionic conductivity. Adv. Sci. 9(35), 2204633 (2022). https://doi.org/10.1002/advs.202204633
- Q. Fu, S. Hao, X. Zhang, H. Zhao, F. Xu et al., All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ. Sci. 16(3), 1291–1311 (2023). https://doi.org/10.1039/D2EE03793A
- H. Zou, X. Meng, X. Zhao, J. Qiu, Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 35(5), e2207262 (2023). https://doi.org/10.1002/adma.202207262
- B. Kang, H. Tang, Z. Zhao, S. Song, Hofmeister series: insights of ion specificity from amphiphilic assembly and interface property. ACS Omega 5(12), 6229–6239 (2020). https://doi.org/10.1021/acsomega.0c00237
- M. Hua, S. Wu, Y. Ma, Y. Zhao, Z. Chen et al., Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590(7847), 594–599 (2021). https://doi.org/10.1038/s41586-021-03212-z
- Q. He, Y. Huang, S. Wang, Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 28(5), 1705069 (2018). https://doi.org/10.1002/adfm.201705069
- M. Jaspers, A.E. Rowan, P.H.J. Kouwer, Tuning hydrogel mechanics using the hofmeister effect. Adv. Funct. Mater. 25(41), 6503–6510 (2015). https://doi.org/10.1002/adfm.201502241
- Y. Du, F. Mo, C. Qin, D. Ho, H. Hu, A Hofmeister effect induced hydrogel electrolyte–electrode interfacial adhesion enhancement strategy for energy-efficient and mechanically robust redoxcapacitors. J. Mater. Chem. A 11(34), 18135–18145 (2023). https://doi.org/10.1039/D3TA02790B
- K. Tang, J. Fu, M. Wu, T. Hua, J. Liu et al., Synergetic chemistry and interface engineering of hydrogel electrolyte to strengthen durability of solid-state Zn–air batteries. Small Methods 6(2), 2101276 (2022). https://doi.org/10.1002/smtd.202101276
- C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
- Y. Liu, R. Hu, D. Zhang, J. Liu, F. Liu et al., Constructing Li-rich artificial SEI layer in alloy–polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries. Adv. Mater. 33(11), 2004711 (2021). https://doi.org/10.1002/adma.202004711
- C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598(7882), 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
- P. Chen, W. Zhou, Z. Xiao, S. Li, Z. Wang et al., An integrated configuration with robust interfacial contact for durable and flexible zinc ion batteries. Nano Energy 74, 104905 (2020). https://doi.org/10.1016/j.nanoen.2020.104905
- Z. Zhou, Z. He, S. Yin, X. Xie, W. Yuan, Adhesive, stretchable and antibacterial hydrogel with external/self-power for flexible sensitive sensor used as human motion detection. Compos. B Eng. 220, 108984 (2021). https://doi.org/10.1016/j.compositesb.2021.108984
- X. Wang, M. Yang, Z. Ren, L. Zhou, Z. Wang et al., Mussel-inspired, hydrophobic association-regulated hydrogel electrolytes with super-adhesive and self-healing properties for durable and flexible zinc-ion batteries. Energy Storage Mater. 70, 103523 (2024). https://doi.org/10.1016/j.ensm.2024.103523
- W. Zhang, R. Wang, Z. Sun, X. Zhu, Q. Zhao et al., Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 49(2), 433–464 (2020). https://doi.org/10.1039/c9cs00285e
- Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15(1), 205 (2023). https://doi.org/10.1007/s40820-023-01171-w
- Z. Shang, H. Zhang, J. Liang, Z. You, R. Wang et al., Highly adhesive hydrogel electrolytes driven by adenosine monophosphate and Fe3+ for high-voltage asymmetric flexible zinc-air batteries. Energy Storage Mater. 71, 103599 (2024). https://doi.org/10.1016/j.ensm.2024.103599
- G. Cao, L. Zhao, X. Ji, Y. Peng, M. Yu et al., “Salting out” in hofmeister effect enhancing mechanical and electrochemical performance of amide-based hydrogel electrolytes for flexible zinc-ion battery (small 30/2023). Small 19(30), 2370233 (2023). https://doi.org/10.1002/smll.202370233
- X. He, Z. Zhu, G. Wen, S. Lv, S. Yang et al., Design of high-entropy tape electrolytes for compression-free solid-state batteries. Adv. Mater. 36(16), e2307599 (2024). https://doi.org/10.1002/adma.202307599
- Z. Shang, H. Zhang, M. Qu, R. Wang, L. Wan et al., High adhesion hydrogel electrolytes enhanced by multifunctional group polymer enable high performance of flexible zinc-air batteries in wide temperature range. Chem. Eng. J. 468, 143836 (2023). https://doi.org/10.1016/j.cej.2023.143836
- Y. Deng, Y. Wu, L. Wang, K. Zhang, Y. Wang et al., Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth. J. Colloid Interface Sci. 633, 142–154 (2023). https://doi.org/10.1016/j.jcis.2022.11.086
- Z.-J. Chen, T.-Y. Shen, M.-H. Zhang, X. Xiao, H.-Q. Wang et al., Tough, anti-fatigue, self-adhesive, and anti-freezing hydrogel electrolytes for dendrite-free flexible zinc ion batteries and strain sensors. Adv. Funct. Mater. 34(26), 2314864 (2024). https://doi.org/10.1002/adfm.202314864
- C. Li, W. Wang, J. Luo, W. Zhuang, J. Zhou et al., High-fluidity/high-strength dual-layer gel electrolytes enable ultra-flexible and dendrite-free fiber-shaped aqueous zinc metal battery. Adv. Mater. 36(21), 2313772 (2024). https://doi.org/10.1002/adma.202313772
- D.G. Mackanic, M. Kao, Z. Bao, Enabling deformable and stretchable batteries. Adv. Energy Mater. 10(29), 2001424 (2020). https://doi.org/10.1002/aenm.202001424
- L. Mao, G. Li, B. Zhang, K. Wen, C. Wang et al., Functional hydrogels for aqueous zinc-based batteries: progress and perspectives. Adv. Mater. 37(46), 2416345 (2025). https://doi.org/10.1002/adma.202416345
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
- J. Rao, N. Liu, Z. Zhang, J. Su, L. Li et al., All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability. Nano Energy 51, 425–433 (2018). https://doi.org/10.1016/j.nanoen.2018.06.067
- X. Wan, T. Mu, G. Yin, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15(1), 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
- C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629(8010), 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
- H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang et al., Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12(4), 3140–3148 (2018). https://doi.org/10.1021/acsnano.7b09003
- J. He, C. Lu, H. Jiang, F. Han, X. Shi et al., Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597(7874), 57–63 (2021). https://doi.org/10.1038/s41586-021-03772-0
- L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo et al., Super-stretchable zinc–air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 9(12), 1803046 (2019). https://doi.org/10.1002/aenm.201803046
- Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19(6), 4035–4042 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
- F. Mo, G. Liang, Z. Huang, H. Li, D. Wang et al., An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater. 32(5), e1902151 (2020). https://doi.org/10.1002/adma.201902151
- X. Wang, Z. Pan, J. Yang, Z. Lyu, Y. Zhong et al., Stretchable fiber-shaped lithium metal anode. Energy Storage Mater. 22, 179–184 (2019). https://doi.org/10.1016/j.ensm.2019.01.013
- Y. Wang, C. Chen, H. Xie, T. Gao, Y. Yao et al., 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 27(43), 1703140 (2017). https://doi.org/10.1002/adfm.201703140
- S. Praveen, G.S. Sim, C.W. Ho, C.W. Lee, 3D-printed twisted yarn-type Li-ion battery towards smart fabrics. Energy Storage Mater. 41, 748–757 (2021). https://doi.org/10.1016/j.ensm.2021.07.024
- C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
- J. Zhang, Y. Hu, L. Zhang, J. Zhou, A. Lu, Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nano-Micro Lett. 15(1), 8 (2022). https://doi.org/10.1007/s40820-022-00980-9
- X. Ma, X. Zhou, J. Ding, B. Huang, P. Wang et al., Hydrogels for underwater adhesion: adhesion mechanism, design strategies and applications. J. Mater. Chem. A 10(22), 11823–11853 (2022). https://doi.org/10.1039/d2ta01960d
- B. Xue, J. Gu, L. Li, W. Yu, S. Yin et al., Hydrogel tapes for fault-tolerant strong wet adhesion. Nat. Commun. 12(1), 7156 (2021). https://doi.org/10.1038/s41467-021-27529-5
- J. Yang, R. Bai, Z. Suo, Topological adhesion of wet materials. Adv. Mater. 30(25), 1800671 (2018). https://doi.org/10.1002/adma.201800671
- L.C. Bradley, N.D. Bade, L.M. Mariani, K.T. Turner, D. Lee et al., Rough adhesive hydrogels (RAd gels) for underwater adhesion. ACS Appl. Mater. Interfaces 9(33), 27409–27413 (2017). https://doi.org/10.1021/acsami.7b08916
- P. Rao, T.L. Sun, L. Chen, R. Takahashi, G. Shinohara et al., Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv. Mater. 30(32), e1801884 (2018). https://doi.org/10.1002/adma.201801884
- J. Chang, Q. Huang, Z. Zheng, A figure of merit for flexible batteries. Joule 4(7), 1346–1349 (2020). https://doi.org/10.1016/j.joule.2020.05.015
- T. Shimura, S. Sato, P. Zalar, N. Matsuhisa, Engineering the comfort-of-wear for next generation wearables. Adv. Electron. Mater. 9(9), 2200512 (2023). https://doi.org/10.1002/aelm.202200512
- D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011). https://doi.org/10.1126/science.1206157
- Y. Mengüç, Y.-L. Park, H. Pei, D. Vogt, P.M. Aubin et al., Wearable soft sensing suit for human gait measurement. Int. J. Rob. Res. 33(14), 1748–1764 (2014). https://doi.org/10.1177/0278364914543793
- X. Song, Y. Lu, F. Wang, X. Zhao, H. Chen, A coupled electro-chemo-mechanical model for all-solid-state thin film Li-ion batteries: the effects of bending on battery performances. J. Power. Sources 452, 227803 (2020). https://doi.org/10.1016/j.jpowsour.2020.227803
- Y. Zhou, Z. Wang, Y.C. Lu, Flexible aqueous lithium-ion batteries with ultrahigh areal capacity and long cycle life. Mater. Today Energy 19, 100570 (2021). https://doi.org/10.1016/j.mtener.2020.100570
- S.H. Ha, K.H. Shin, H.W. Park, Y.J. Lee, Flexible lithium-ion batteries with high areal capacity enabled by smart conductive textiles. Small 14(43), 1703418 (2018). https://doi.org/10.1002/smll.201703418
- L. Yin, J. Scharf, J. Ma, J.-M. Doux, C. Redquest et al., High performance printed AgO-Zn rechargeable battery for flexible electronics. Joule 5(1), 228–248 (2021). https://doi.org/10.1016/j.joule.2020.11.008
- D. Wei, W. Shen, T. Xu, K. Li, L. Yang et al., Ultra-flexible and foldable gel polymer lithium–ion batteries enabling scalable production. Mater. Today Energy 23, 100889 (2022). https://doi.org/10.1016/j.mtener.2021.100889
- C. Xie, J. Chang, J. Shang, L. Wang, Y. Gao et al., Hybrid lithium-ion/metal electrodes enable long cycle stability and high energy density of flexible batteries. Adv. Funct. Mater. 32(34), 2203242 (2022). https://doi.org/10.1002/adfm.202203242
- G. Qian, B. Zhu, X. Liao, H. Zhai, A. Srinivasan et al., Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density. Adv. Mater. 30(12), 1704947 (2018). https://doi.org/10.1002/adma.201704947
- C. Hwang, W.-J. Song, J.-G. Han, S. Bae, G. Song et al., Foldable electrode architectures based on silver-nanowire-wound or carbon-nanotube-webbed micrometer-scale fibers of polyethylene terephthalate mats for flexible lithium-ion batteries. Adv. Mater. 30(7), 1705445 (2018). https://doi.org/10.1002/adma.201705445
- H. Wang, R. Guo, H. Li, J. Wang, C. Du et al., 2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries. Chem. Eng. J. 429, 132196 (2022). https://doi.org/10.1016/j.cej.2021.132196
- M.-H. Kim, S. Nam, M. Oh, H.-J. Lee, B. Jang et al., Bioinspired, shape-morphing scale battery for untethered soft robots. Soft Robot. 9(3), 486–496 (2022). https://doi.org/10.1089/soro.2020.0175
- J.-H. Kim, Y.-H. Lee, S.-J. Cho, J.-G. Gwon, H.-J. Cho et al., Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12(1), 177–186 (2019). https://doi.org/10.1039/c8ee01879k
References
Z. Li, Y. Lv, L. Ren, J. Li, L. Kong et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11(1), 1151 (2020). https://doi.org/10.1038/s41467-020-15023-3
K.K. Fu, J. Cheng, T. Li, L. Hu, Flexible batteries: from mechanics to devices. ACS Energy Lett. 1(5), 1065–1079 (2016). https://doi.org/10.1021/acsenergylett.6b00401
L. Mao, Q. Meng, A. Ahmad, Z. Wei, Mechanical analyses and structural design requirements for flexible energy storage devices. Adv. Energy Mater. 7(23), 1700535 (2017). https://doi.org/10.1002/aenm.201700535
G. Qian, X. Liao, Y. Zhu, F. Pan, X. Chen et al., Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 4(3), 690–701 (2019). https://doi.org/10.1021/acsenergylett.8b02496
X. Ge, S. Cao, Z. Lv, Z. Zhu, Y. Tang et al., Mechano-graded electrodes mitigate the mismatch between mechanical reliability and energy density for foldable lithium-ion batteries. Adv. Mater. 34(45), 2206797 (2022). https://doi.org/10.1002/adma.202206797
J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nano-Micro Lett. 15(1), 97 (2023). https://doi.org/10.1007/s40820-023-01072-y
O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S.A. Bencherif et al., Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15(3), 326–334 (2016). https://doi.org/10.1038/nmat4489
S. Wu, M. Hua, Y. Alsaid, Y. Du, Y. Ma et al., Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 33(11), 2007829 (2021). https://doi.org/10.1002/adma.202007829
Y. Zhang, F. Li, K. Yang, X. Liu, Y. Chen et al., Polymer molecular engineering enables rapid electron/ion transport in ultra-thick electrode for high-energy-density flexible lithium-ion battery. Adv. Funct. Mater. 31(19), 2100434 (2021). https://doi.org/10.1002/adfm.202100434
E.M. Petri. Handbook of Adhesives and Sealants (McGraw-Hill; 2000).
J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16(1), 22 (2023). https://doi.org/10.1007/s40820-023-01229-9
R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936). https://doi.org/10.1021/ie50320a024
K. Li, W. Shen, T. Xu, L. Yang, X. Xu et al., Fibrous gel polymer electrolyte for an ultrastable and highly safe flexible lithium-ion battery in a wide temperature range. Carbon Energy 3(6), 916–928 (2021). https://doi.org/10.1002/cey2.151
C. Shen, M. Kabbani, C.M. Evans, Solid-state, single-anion-conducting networks for flexible and stable supercapacitor electrolytes. ACS Appl. Polym. Mater. 3(8), 4168–4176 (2021). https://doi.org/10.1021/acsapm.1c00613
T.N. Nguyen, B. Iranpour, E. Cheng, J.D.W. Madden, Washable and stretchable Zn–MnO2 rechargeable cell. Adv. Energy Mater. 12(2), 2103148 (2022). https://doi.org/10.1002/aenm.202103148
M. Yao, Z. Yuan, S. Li, T. He, R. Wang et al., Scalable assembly of flexible ultrathin all-in-one zinc-ion batteries with highly stretchable, editable, and customizable functions. Adv. Mater. 33(10), 2008140 (2021). https://doi.org/10.1002/adma.202008140
L. Yang, Z. Wang, Y. Feng, R. Tan, Y. Zuo et al., Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li–electrolyte interface for solid state lithium-ion batteries. Adv. Energy Mater. 7(22), 1701437 (2017). https://doi.org/10.1002/aenm.201701437
P. Zhu, C. Yan, J. Zhu, J. Zang, Y. Li et al., Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater. 17, 220–225 (2019). https://doi.org/10.1016/j.ensm.2018.11.009
D. Li, L. Chen, T. Wang, L.-Z. Fan, 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 10(8), 7069–7078 (2018). https://doi.org/10.1021/acsami.7b18123
B. Li, Q. Su, L. Yu, W. Liu, S. Dong et al., Biomimetic PVDF/LLTO composite polymer electrolyte enables excellent interface contact and enhanced ionic conductivity. Appl. Surf. Sci. 541, 148434 (2021). https://doi.org/10.1016/j.apsusc.2020.148434
J. Yang, R. Bai, B. Chen, Z. Suo, Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30(2), 1901693 (2020). https://doi.org/10.1002/adfm.201901693
J. Sheng, Q. Zhang, C. Sun, J. Wang, X. Zhong et al., Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium–sulfur batteries. Adv. Funct. Mater. 32(40), 2203272 (2022). https://doi.org/10.1002/adfm.202203272
L. Shen, S. Deng, R. Jiang, G. Liu, J. Yang et al., Flexible composite solid electrolyte with 80 wt% Na3.4Zr1.9Zn0.1Si2.2P0.8O12 for solid-state sodium batteries. Energy Storage Mater. 46, 175–181 (2022). https://doi.org/10.1016/j.ensm.2022.01.010
S. Guo, Y. Su, K. Yan, C. Zhao, Y. Lu et al., Robust and adhesive laminar solid electrolyte with homogenous and fast Li-ion conduction for high-performance all-solid-state lithium metal battery. Adv. Sci. 11(30), 2404307 (2024). https://doi.org/10.1002/advs.202404307
X. Pan, P. Yang, Y. Guo, K. Zhao, B. Xi et al., Electrochemical and nanomechanical properties of TiO2 ceramic filler Li-ion composite gel polymer electrolytes for Li metal batteries. Adv. Mater. Interfaces 8(16), 2100669 (2021). https://doi.org/10.1002/admi.202100669
Y. Cheng, J. Shu, L. Xu, Y. Xia, L. Du et al., Flexible nanowire cathode membrane with gradient interfaces and rapid electron/ion transport channels for solid-state lithium batteries. Adv. Energy Mater. 11(12), 2100026 (2021). https://doi.org/10.1002/aenm.202100026
L. Liu, M. Zhu, S. Huang, X. Lu, L. Zhang et al., Artificial electrode interfaces enable stable operation of freestanding anodes for high-performance flexible lithium ion batteries. J. Mater. Chem. A 7(23), 14097–14107 (2019). https://doi.org/10.1039/c9ta03302e
Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 33(25), e2100353 (2021). https://doi.org/10.1002/adma.202100353
T. Deng, L. Cao, X. He, A.-M. Li, D. Li et al., In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. Chem 7(11), 3052–3068 (2021). https://doi.org/10.1016/j.chempr.2021.06.019
Y. Gu, H. Tao, X. Yang, Liquid metal interlayer for ultrastable solid-state sodium metal battery. Small 20(45), e2403864 (2024). https://doi.org/10.1002/smll.202403864
D. Ding, H. Tao, X. Fan, X. Yang, L.-Z. Fan, A hybrid LiCl/LixSn conductive interlayer to unlock the potential of solid-state lithium metal batteries. Adv. Funct. Mater. 34(29), 2401457 (2024). https://doi.org/10.1002/adfm.202401457
X. Yu, L. Wang, J. Ma, X. Sun, X. Zhou et al., Selectively wetted rigid–flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv. Energy Mater. 10(18), 1903939 (2020). https://doi.org/10.1002/aenm.201903939
H. Duan, M. Fan, W.-P. Chen, J.-Y. Li, P.-F. Wang et al., Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater. 31(12), e1807789 (2019). https://doi.org/10.1002/adma.201807789
T. Jiang, P. He, G. Wang, Y. Shen, C.-W. Nan et al., Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 10(12), 1903376 (2020). https://doi.org/10.1002/aenm.201903376
Y. Mu, Z. Liao, Y. Chu, Q. Zhang, L. Zou et al., Electron acceptor-driven solid electrolyte interphases with elevated LiF content for 4.7 V lithium metal batteries. Nano-Micro Lett. 17(1), 163 (2025). https://doi.org/10.1007/s40820-025-01663-x
J. Byun, J.H. Chang, C. Hwang, C.R. Lee, M. Kim et al., Transformative effect of Li salt for proactively mitigating interfacial side reactions in sodium-ion batteries. Nano-Micro Letters 17(1), 226 (2025). https://doi.org/10.1007/s40820-025-01742-z
Y. Pan, Z. Zuo, Y. Jiao, P. Wu, Constructing lysozyme protective layer via conformational transition for aqueous Zn batteries. Adv. Mater. 36(29), e2314144 (2024). https://doi.org/10.1002/adma.202314144
Y. Yao, Z. Wei, H. Wang, H. Huang, Y. Jiang et al., Toward high energy density all solid-state sodium batteries with excellent flexibility. Adv. Energy Mater. 10(12), 1903698 (2020). https://doi.org/10.1002/aenm.201903698
Q. Li, D. Wang, B. Yan, Y. Zhao, J. Fan et al., Dendrite issues for zinc anodes in a flexible cell configuration for zinc-based wearable energy-storage devices. Angew. Chem. Int. Ed. 61(25), e202202780 (2022). https://doi.org/10.1002/anie.202202780
M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
L. Ma, S. Chen, X. Li, A. Chen, B. Dong et al., Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by In Situ constructed polymer electrolyte. Angew. Chem. Int. Ed. 59(52), 23836–23844 (2020). https://doi.org/10.1002/anie.202011788
X. Ji, Q. Wang, M. Yu, M.K. Hadi, Y. Liu et al., All-in-one energy storage devices supported and interfacially cross-linked by gel polymeric electrolyte. Energy Storage Mater. 37, 587–597 (2021). https://doi.org/10.1016/j.ensm.2021.02.044
Y. Liu, X. Zhou, Y. Bai, R. Liu, X. Li et al., Engineering integrated structure for high-performance flexible zinc-ion batteries. Chem. Eng. J. 417, 127955 (2021). https://doi.org/10.1016/j.cej.2020.127955
J. Zhao, K.K. Sonigara, J. Li, J. Zhang, B. Chen et al., A smart flexible zinc battery with cooling recovery ability. Angew. Chem. Int. Ed. 56(27), 7871–7875 (2017). https://doi.org/10.1002/anie.201704373
S. Zhao, T. Liu, Y. Dai, Y. Wang, Z. Guo et al., All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries. Chem. Eng. J. 430, 132718 (2022). https://doi.org/10.1016/j.cej.2021.132718
Y. Zuo, K. Wang, S. Zhao, M. Wei, X. Liu et al., A high areal capacity solid-state zinc-air battery via interface optimization of electrode and electrolyte. Chem. Eng. J. 430, 132996 (2022). https://doi.org/10.1016/j.cej.2021.132996
Z. Shao, S. Cheng, Y. Zhang, H. Guo, X. Cui et al., Wearable and fully biocompatible all-in-one structured ″Paper-like″ zinc ion battery. ACS Appl. Mater. Interfaces 13(29), 34349–34356 (2021). https://doi.org/10.1021/acsami.1c08388
W.-J. Song, C. Hwang, S. Lee, M. Kong, J. Kim et al., Design of a Janus-faced electrode for highly stretchable zinc–silver rechargeable batteries. Adv. Funct. Mater. 30(42), 2004137 (2020). https://doi.org/10.1002/adfm.202004137
G. Du, S. Wang, Z. Tong, X. Ji, X. Wei et al., Dual thermal-stimulated self-adhesive mixed-phase interface to enable ultra-long cycle life of solid-state sodium metal batteries. Energy Environ. Sci. 18(8), 3689–3698 (2025). https://doi.org/10.1039/d4ee05140h
Y. Yan, J. Ju, S. Dong, Y. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8(9), 2003887 (2021). https://doi.org/10.1002/advs.202003887
Z. Bi, W. Huang, S. Mu, W. Sun, N. Zhao et al., Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy 90, 106498 (2021). https://doi.org/10.1016/j.nanoen.2021.106498
M. Liao, C. Wang, Y. Hong, Y. Zhang, X. Cheng et al., Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17(4), 372–377 (2022). https://doi.org/10.1038/s41565-021-01062-4
C. Liu, F. Zhu, Z. Huang, W. Liao, X. Guan et al., An integrate and ultra-flexible solid-state lithium battery enabled by in situ polymerized solid electrolyte. Chem. Eng. J. 434, 134644 (2022). https://doi.org/10.1016/j.cej.2022.134644
B. Ying, R.Z. Chen, R. Zuo, J. Li, X. Liu, An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv. Funct. Mater. 31(42), 2104665 (2021). https://doi.org/10.1002/adfm.202104665
Q. Zhang, X. Hou, X. Liu, X. Xie, L. Duan et al., Nucleotide-tackified organohydrogel electrolyte for environmentally self-adaptive flexible supercapacitor with robust electrolyte/electrode interface. Small 17(46), 2103091 (2021). https://doi.org/10.1002/smll.202103091
Z. Zhao, F. Li, J. Zhao, G. Ding, J. Wang et al., Ionic-association-assisted viscoelastic nylon electrolytes enable synchronously coupled interface for solid batteries. Adv. Funct. Mater. 30(21), 2000347 (2020). https://doi.org/10.1002/adfm.202000347
H. Mu, X. Huang, W. Wang, X. Tian, Z. An et al., High-performance-integrated stretchable supercapacitors based on a polyurethane organo/hydrogel electrolyte. ACS Appl. Mater. Interfaces 14(1), 622–632 (2022). https://doi.org/10.1021/acsami.1c17186
W. Zhang, F. Guo, H. Mi, Z.-S. Wu, C. Ji et al., Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors. Adv. Energy Mater. 12(40), 2202219 (2022). https://doi.org/10.1002/aenm.202202219
Y. Wang, Z. Wu, R. Zhang, Z. Chen, Z. Wei et al., Spider silk inspired polymer electrolyte with well bonded interface and fast kinetics for solid-state lithium-ion batteries. Mater. Today 76, 1–8 (2024). https://doi.org/10.1016/j.mattod.2024.05.001
J. Zeng, L. Dong, W. Sha, L. Wei, X. Guo, Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chem. Eng. J. 383, 123098 (2020). https://doi.org/10.1016/j.cej.2019.123098
T. Ye, J. Wang, Y. Jiao, L. Li, E. He et al., A tissue-like soft all-hydrogel battery. Adv. Mater. 34(4), e2105120 (2022). https://doi.org/10.1002/adma.202105120
R. Xu, J. Yao, Z. Zhang, L. Li, Z. Wang et al., Room temperature halide-eutectic solid electrolytes with viscous feature and ultrahigh ionic conductivity. Adv. Sci. 9(35), 2204633 (2022). https://doi.org/10.1002/advs.202204633
Q. Fu, S. Hao, X. Zhang, H. Zhao, F. Xu et al., All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ. Sci. 16(3), 1291–1311 (2023). https://doi.org/10.1039/D2EE03793A
H. Zou, X. Meng, X. Zhao, J. Qiu, Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 35(5), e2207262 (2023). https://doi.org/10.1002/adma.202207262
B. Kang, H. Tang, Z. Zhao, S. Song, Hofmeister series: insights of ion specificity from amphiphilic assembly and interface property. ACS Omega 5(12), 6229–6239 (2020). https://doi.org/10.1021/acsomega.0c00237
M. Hua, S. Wu, Y. Ma, Y. Zhao, Z. Chen et al., Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590(7847), 594–599 (2021). https://doi.org/10.1038/s41586-021-03212-z
Q. He, Y. Huang, S. Wang, Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 28(5), 1705069 (2018). https://doi.org/10.1002/adfm.201705069
M. Jaspers, A.E. Rowan, P.H.J. Kouwer, Tuning hydrogel mechanics using the hofmeister effect. Adv. Funct. Mater. 25(41), 6503–6510 (2015). https://doi.org/10.1002/adfm.201502241
Y. Du, F. Mo, C. Qin, D. Ho, H. Hu, A Hofmeister effect induced hydrogel electrolyte–electrode interfacial adhesion enhancement strategy for energy-efficient and mechanically robust redoxcapacitors. J. Mater. Chem. A 11(34), 18135–18145 (2023). https://doi.org/10.1039/D3TA02790B
K. Tang, J. Fu, M. Wu, T. Hua, J. Liu et al., Synergetic chemistry and interface engineering of hydrogel electrolyte to strengthen durability of solid-state Zn–air batteries. Small Methods 6(2), 2101276 (2022). https://doi.org/10.1002/smtd.202101276
C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
Y. Liu, R. Hu, D. Zhang, J. Liu, F. Liu et al., Constructing Li-rich artificial SEI layer in alloy–polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries. Adv. Mater. 33(11), 2004711 (2021). https://doi.org/10.1002/adma.202004711
C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598(7882), 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
P. Chen, W. Zhou, Z. Xiao, S. Li, Z. Wang et al., An integrated configuration with robust interfacial contact for durable and flexible zinc ion batteries. Nano Energy 74, 104905 (2020). https://doi.org/10.1016/j.nanoen.2020.104905
Z. Zhou, Z. He, S. Yin, X. Xie, W. Yuan, Adhesive, stretchable and antibacterial hydrogel with external/self-power for flexible sensitive sensor used as human motion detection. Compos. B Eng. 220, 108984 (2021). https://doi.org/10.1016/j.compositesb.2021.108984
X. Wang, M. Yang, Z. Ren, L. Zhou, Z. Wang et al., Mussel-inspired, hydrophobic association-regulated hydrogel electrolytes with super-adhesive and self-healing properties for durable and flexible zinc-ion batteries. Energy Storage Mater. 70, 103523 (2024). https://doi.org/10.1016/j.ensm.2024.103523
W. Zhang, R. Wang, Z. Sun, X. Zhu, Q. Zhao et al., Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 49(2), 433–464 (2020). https://doi.org/10.1039/c9cs00285e
Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15(1), 205 (2023). https://doi.org/10.1007/s40820-023-01171-w
Z. Shang, H. Zhang, J. Liang, Z. You, R. Wang et al., Highly adhesive hydrogel electrolytes driven by adenosine monophosphate and Fe3+ for high-voltage asymmetric flexible zinc-air batteries. Energy Storage Mater. 71, 103599 (2024). https://doi.org/10.1016/j.ensm.2024.103599
G. Cao, L. Zhao, X. Ji, Y. Peng, M. Yu et al., “Salting out” in hofmeister effect enhancing mechanical and electrochemical performance of amide-based hydrogel electrolytes for flexible zinc-ion battery (small 30/2023). Small 19(30), 2370233 (2023). https://doi.org/10.1002/smll.202370233
X. He, Z. Zhu, G. Wen, S. Lv, S. Yang et al., Design of high-entropy tape electrolytes for compression-free solid-state batteries. Adv. Mater. 36(16), e2307599 (2024). https://doi.org/10.1002/adma.202307599
Z. Shang, H. Zhang, M. Qu, R. Wang, L. Wan et al., High adhesion hydrogel electrolytes enhanced by multifunctional group polymer enable high performance of flexible zinc-air batteries in wide temperature range. Chem. Eng. J. 468, 143836 (2023). https://doi.org/10.1016/j.cej.2023.143836
Y. Deng, Y. Wu, L. Wang, K. Zhang, Y. Wang et al., Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth. J. Colloid Interface Sci. 633, 142–154 (2023). https://doi.org/10.1016/j.jcis.2022.11.086
Z.-J. Chen, T.-Y. Shen, M.-H. Zhang, X. Xiao, H.-Q. Wang et al., Tough, anti-fatigue, self-adhesive, and anti-freezing hydrogel electrolytes for dendrite-free flexible zinc ion batteries and strain sensors. Adv. Funct. Mater. 34(26), 2314864 (2024). https://doi.org/10.1002/adfm.202314864
C. Li, W. Wang, J. Luo, W. Zhuang, J. Zhou et al., High-fluidity/high-strength dual-layer gel electrolytes enable ultra-flexible and dendrite-free fiber-shaped aqueous zinc metal battery. Adv. Mater. 36(21), 2313772 (2024). https://doi.org/10.1002/adma.202313772
D.G. Mackanic, M. Kao, Z. Bao, Enabling deformable and stretchable batteries. Adv. Energy Mater. 10(29), 2001424 (2020). https://doi.org/10.1002/aenm.202001424
L. Mao, G. Li, B. Zhang, K. Wen, C. Wang et al., Functional hydrogels for aqueous zinc-based batteries: progress and perspectives. Adv. Mater. 37(46), 2416345 (2025). https://doi.org/10.1002/adma.202416345
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
J. Rao, N. Liu, Z. Zhang, J. Su, L. Li et al., All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability. Nano Energy 51, 425–433 (2018). https://doi.org/10.1016/j.nanoen.2018.06.067
X. Wan, T. Mu, G. Yin, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15(1), 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629(8010), 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang et al., Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12(4), 3140–3148 (2018). https://doi.org/10.1021/acsnano.7b09003
J. He, C. Lu, H. Jiang, F. Han, X. Shi et al., Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597(7874), 57–63 (2021). https://doi.org/10.1038/s41586-021-03772-0
L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo et al., Super-stretchable zinc–air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 9(12), 1803046 (2019). https://doi.org/10.1002/aenm.201803046
Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19(6), 4035–4042 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
F. Mo, G. Liang, Z. Huang, H. Li, D. Wang et al., An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater. 32(5), e1902151 (2020). https://doi.org/10.1002/adma.201902151
X. Wang, Z. Pan, J. Yang, Z. Lyu, Y. Zhong et al., Stretchable fiber-shaped lithium metal anode. Energy Storage Mater. 22, 179–184 (2019). https://doi.org/10.1016/j.ensm.2019.01.013
Y. Wang, C. Chen, H. Xie, T. Gao, Y. Yao et al., 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 27(43), 1703140 (2017). https://doi.org/10.1002/adfm.201703140
S. Praveen, G.S. Sim, C.W. Ho, C.W. Lee, 3D-printed twisted yarn-type Li-ion battery towards smart fabrics. Energy Storage Mater. 41, 748–757 (2021). https://doi.org/10.1016/j.ensm.2021.07.024
C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
J. Zhang, Y. Hu, L. Zhang, J. Zhou, A. Lu, Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nano-Micro Lett. 15(1), 8 (2022). https://doi.org/10.1007/s40820-022-00980-9
X. Ma, X. Zhou, J. Ding, B. Huang, P. Wang et al., Hydrogels for underwater adhesion: adhesion mechanism, design strategies and applications. J. Mater. Chem. A 10(22), 11823–11853 (2022). https://doi.org/10.1039/d2ta01960d
B. Xue, J. Gu, L. Li, W. Yu, S. Yin et al., Hydrogel tapes for fault-tolerant strong wet adhesion. Nat. Commun. 12(1), 7156 (2021). https://doi.org/10.1038/s41467-021-27529-5
J. Yang, R. Bai, Z. Suo, Topological adhesion of wet materials. Adv. Mater. 30(25), 1800671 (2018). https://doi.org/10.1002/adma.201800671
L.C. Bradley, N.D. Bade, L.M. Mariani, K.T. Turner, D. Lee et al., Rough adhesive hydrogels (RAd gels) for underwater adhesion. ACS Appl. Mater. Interfaces 9(33), 27409–27413 (2017). https://doi.org/10.1021/acsami.7b08916
P. Rao, T.L. Sun, L. Chen, R. Takahashi, G. Shinohara et al., Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv. Mater. 30(32), e1801884 (2018). https://doi.org/10.1002/adma.201801884
J. Chang, Q. Huang, Z. Zheng, A figure of merit for flexible batteries. Joule 4(7), 1346–1349 (2020). https://doi.org/10.1016/j.joule.2020.05.015
T. Shimura, S. Sato, P. Zalar, N. Matsuhisa, Engineering the comfort-of-wear for next generation wearables. Adv. Electron. Mater. 9(9), 2200512 (2023). https://doi.org/10.1002/aelm.202200512
D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011). https://doi.org/10.1126/science.1206157
Y. Mengüç, Y.-L. Park, H. Pei, D. Vogt, P.M. Aubin et al., Wearable soft sensing suit for human gait measurement. Int. J. Rob. Res. 33(14), 1748–1764 (2014). https://doi.org/10.1177/0278364914543793
X. Song, Y. Lu, F. Wang, X. Zhao, H. Chen, A coupled electro-chemo-mechanical model for all-solid-state thin film Li-ion batteries: the effects of bending on battery performances. J. Power. Sources 452, 227803 (2020). https://doi.org/10.1016/j.jpowsour.2020.227803
Y. Zhou, Z. Wang, Y.C. Lu, Flexible aqueous lithium-ion batteries with ultrahigh areal capacity and long cycle life. Mater. Today Energy 19, 100570 (2021). https://doi.org/10.1016/j.mtener.2020.100570
S.H. Ha, K.H. Shin, H.W. Park, Y.J. Lee, Flexible lithium-ion batteries with high areal capacity enabled by smart conductive textiles. Small 14(43), 1703418 (2018). https://doi.org/10.1002/smll.201703418
L. Yin, J. Scharf, J. Ma, J.-M. Doux, C. Redquest et al., High performance printed AgO-Zn rechargeable battery for flexible electronics. Joule 5(1), 228–248 (2021). https://doi.org/10.1016/j.joule.2020.11.008
D. Wei, W. Shen, T. Xu, K. Li, L. Yang et al., Ultra-flexible and foldable gel polymer lithium–ion batteries enabling scalable production. Mater. Today Energy 23, 100889 (2022). https://doi.org/10.1016/j.mtener.2021.100889
C. Xie, J. Chang, J. Shang, L. Wang, Y. Gao et al., Hybrid lithium-ion/metal electrodes enable long cycle stability and high energy density of flexible batteries. Adv. Funct. Mater. 32(34), 2203242 (2022). https://doi.org/10.1002/adfm.202203242
G. Qian, B. Zhu, X. Liao, H. Zhai, A. Srinivasan et al., Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density. Adv. Mater. 30(12), 1704947 (2018). https://doi.org/10.1002/adma.201704947
C. Hwang, W.-J. Song, J.-G. Han, S. Bae, G. Song et al., Foldable electrode architectures based on silver-nanowire-wound or carbon-nanotube-webbed micrometer-scale fibers of polyethylene terephthalate mats for flexible lithium-ion batteries. Adv. Mater. 30(7), 1705445 (2018). https://doi.org/10.1002/adma.201705445
H. Wang, R. Guo, H. Li, J. Wang, C. Du et al., 2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries. Chem. Eng. J. 429, 132196 (2022). https://doi.org/10.1016/j.cej.2021.132196
M.-H. Kim, S. Nam, M. Oh, H.-J. Lee, B. Jang et al., Bioinspired, shape-morphing scale battery for untethered soft robots. Soft Robot. 9(3), 486–496 (2022). https://doi.org/10.1089/soro.2020.0175
J.-H. Kim, Y.-H. Lee, S.-J. Cho, J.-G. Gwon, H.-J. Cho et al., Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12(1), 177–186 (2019). https://doi.org/10.1039/c8ee01879k