Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal–Organic Frameworks
Corresponding Author: Xiguang Han
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 1
Abstract
Porous structures offer highly accessible surfaces and rich pores, which facilitate the exposure of numerous active sites for photocatalytic reactions, leading to excellent performances. Recently, metal–organic frameworks (MOFs) have been considered ideal precursors for well-designed semiconductors with porous structures and/or heterostructures, which have shown enhanced photocatalytic activities. In this review, we summarize the recent development of porous structures, such as metal oxides and metal sulfides, and their heterostructures, derived from MOF-based materials as catalysts for various light-driven energy-/environment-related reactions, including water splitting, CO2 reduction, organic redox reaction, and pollution degradation. A summary and outlook section is also included.
Highlights:
1 In this review, we survey the recent developments in the fabrication of metal–organic framework (MOF)-derived porous semiconductor photocatalysts toward four kinds of energy-/environment-related reactions.
2 A comprehensive summary of highly efficient MOF-derived photocatalysts, particularly porous metal oxides and metal sulfides, and their heterostructures are provided.
3 Enhanced photocatalytic performance achieved with MOF-derived porous heterostructures as the photocatalyst is discussed in detail.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995). https://doi.org/10.1021/cr00033a004
- M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis. Chem. Rev. 93(1), 341–357 (1993). https://doi.org/10.1021/cr00017a016
- A. Mills, S. LeHunte, An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A 108(1), 1–35 (1997). https://doi.org/10.1016/S1010-6030(97)00118-4
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001). https://doi.org/10.1126/science.1061051
- S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42(40), 4908–4911 (2003). https://doi.org/10.1002/anie.200351577
- H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24(2), 229–251 (2012). https://doi.org/10.1002/adma.201102752
- S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10(12), 911–921 (2011). https://doi.org/10.1038/nmat3151
- M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007). https://doi.org/10.1016/j.rser.2005.01.009
- W. Tu, Y. Zhou, Z. Zou, Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26(27), 4607–4626 (2014). https://doi.org/10.1002/adma.201400087
- R. Marschall, Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 24(17), 2421–2440 (2014). https://doi.org/10.1002/adfm.201303214
- K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18), 2655–2661 (2010). https://doi.org/10.1021/jz1007966
- C.-F. Du, Q. Liang, R. Dangol, J. Zhao, H. Ren, S. Madhavi, Q. Yan, Layered trichalcogenidophosphate: a new catalyst family for water splitting. Nano Micro Lett. 10(4), 67 (2018). https://doi.org/10.1007/s40820-018-0220-6
- T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8(3), 2253–2276 (2018). https://doi.org/10.1021/acscatal.7b03437
- C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018). https://doi.org/10.1016/j.rser.2017.08.020
- S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5(5), 3306–3351 (2015). https://doi.org/10.1039/C4RA13299H
- K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016). https://doi.org/10.1016/j.watres.2015.09.045
- E. Rahmanian, R. Malekfar, M. Pumera, Nanohybrids of two-dimensional transition-metal dichalcogenides and titanium dioxide for photocatalytic applications. Chem. Eur. J. 24(1), 18–31 (2018). https://doi.org/10.1002/chem.201703434
- B. Chen, Y. Meng, J. Sha, C. Zhong, W. Hua, N. Zhao, Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale 10(1), 34–68 (2018). https://doi.org/10.1039/C7NR07366F
- X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746–750 (2011). https://doi.org/10.1126/science.1200448
- S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243–2245 (2002). https://doi.org/10.1126/science.1075035
- M. Ge, Q. Li, C. Cao, J. Huang, S. Li et al., One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. (2017). https://doi.org/10.1002/advs.201600152
- Y. Song, N. Li, D. Chen, Q. Xu, H. Li, J. He, J. Lu, 3D ordered mop inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity. Appl. Catal. B Environ. 238, 255–262 (2018). https://doi.org/10.1016/j.apcatb.2018.07.010
- Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133(28), 10878–10884 (2011). https://doi.org/10.1021/ja2025454
- X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130(23), 7176–7177 (2008). https://doi.org/10.1021/ja8007825
- L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B Environ. 217, 388–406 (2017). https://doi.org/10.1016/j.apcatb.2017.06.003
- G. Zhang, Z.-A. Lan, X. Wang, Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 8(8), 5261–5274 (2017). https://doi.org/10.1039/C7SC01747B
- J. Fei, J. Li, Controlled preparation of porous TiO2–Ag nanostructures through supramolecular assembly for plasmon-enhanced photocatalysis. Adv. Mater. 27(2), 314–319 (2015). https://doi.org/10.1002/adma.201404007
- M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, B.L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45(12), 3479–3563 (2016). https://doi.org/10.1039/C6CS00135A
- B. Lu, X. Li, T. Wang, E. Xie, Z. Xu, WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis. J. Mater. Chem. A 1(12), 3900–3906 (2013). https://doi.org/10.1039/c3ta01444d
- S. Wang, X. Wang, Multifunctional metal–organic frameworks for photocatalysis. Small 11(26), 3097–3112 (2015). https://doi.org/10.1002/smll.201500084
- B. Qiu, M. Xing, J. Zhang, Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136(16), 5852–5855 (2014). https://doi.org/10.1021/ja500873u
- J. Yu, Y. Su, B. Cheng, Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Adv. Funct. Mater. 17(12), 1984–1990 (2007). https://doi.org/10.1002/adfm.200600933
- Q. Liang, Z. Li, X. Yu, Z.H. Huang, F. Kang, Q.H. Yang, Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 27(31), 4634–4639 (2015). https://doi.org/10.1002/adma.201502057
- C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4(11), 6425–6432 (2010). https://doi.org/10.1021/nn102130m
- H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234–5244 (2014). https://doi.org/10.1039/C4CS00126E
- Y. Bessekhouad, D. Robert, J.V. Weber, Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal. Today 101(3–4), 315–321 (2005). https://doi.org/10.1016/j.cattod.2005.03.038
- F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W.K. Ho, In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces. 5(21), 11392–11401 (2013). https://doi.org/10.1021/am403653a
- D. Lin, H. Wu, R. Zhang, W. Pan, Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers. Chem. Mater. 21(15), 3479–3484 (2009). https://doi.org/10.1021/cm900225p
- J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. (2017). https://doi.org/10.1002/adma.201601694
- Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl. Mater. Interfaces. 2(10), 2915–2923 (2010). https://doi.org/10.1021/am100618h
- D. Sarkar, C.K. Ghosh, S. Mukherjee, K.K. Chattopadhyay, Three dimensional Ag2O/TiO2 type-II (p–n) nanoheterojunctions for superior photocatalytic activity. ACS Appl. Mater. Interfaces. 5(2), 331–337 (2013). https://doi.org/10.1021/am302136y
- Y. Cho, S. Kim, B. Park, C.L. Lee, J.K. Kim et al., Multiple heterojunction in single titanium dioxide nanoparticles for novel metal-free photocatalysis. Nano Lett. 18(7), 4257–4262 (2018). https://doi.org/10.1021/acs.nanolett.8b01245
- A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R.A. Fischer, Flexible metal–organic frameworks. Chem. Soc. Rev. 43(16), 6062–6096 (2014). https://doi.org/10.1039/C4CS00101J
- M.R. Lohe, K. Gedrich, T. Freudenberg, E. Kockrick, T. Dellmann, S. Kaskel, Heating and separation using nanomagnet-functionalized metal–organic frameworks. Chem. Commun. 47(11), 3075–3077 (2011). https://doi.org/10.1039/c0cc05278g
- X. Zhu, H. Zheng, X. Wei, Z. Lin, L. Guo, B. Qiu, G. Chen, Metal–organic framework (MOF): a novel sensing platform for biomolecules. Chem. Commun. 49(13), 1276–1278 (2013). https://doi.org/10.1039/c2cc36661d
- S. Li, F. Huo, Metal–organic framework composites: from fundamentals to applications. Nanoscale 7(17), 7482–7501 (2015). https://doi.org/10.1039/C5NR00518C
- L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 112(2), 1105–1125 (2012). https://doi.org/10.1021/cr200324t
- H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi et al., Ultrahigh porosity in metal–organic frameworks. Science 329(5990), 424–428 (2010). https://doi.org/10.1126/science.1192160
- G. Maurin, C. Serre, A. Cooper, G. Férey, The new age of MOFs and of their porous-related solids. Chem. Soc. Rev. 46(11), 3104–3107 (2017). https://doi.org/10.1039/C7CS90049J
- Y. Li, H. Xu, S. Ouyang, J. Ye, Metal–organic frameworks for photocatalysis. Phys. Chem. Chem. Phys. 18(11), 7563–7572 (2016). https://doi.org/10.1039/C5CP05885F
- S. Subudhi, D. Rath, K.M. Parida, A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: a review. Catal. Sci. Technol. 8(3), 679–696 (2018). https://doi.org/10.1039/C7CY02094E
- A. Dhakshinamoorthy, Z. Li, H. Garcia, Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 47(22), 8134–8172 (2018). https://doi.org/10.1039/C8CS00256H
- Z. Wu, X. Yuan, J. Zhang, H. Wang, L. Jiang, G. Zeng, Photocatalytic decontamination of wastewater containing organic dyes by metal–organic frameworks and their derivatives. ChemCatChem 9(1), 41–64 (2017). https://doi.org/10.1002/cctc.201600808
- H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F.Q. Zong, Q. Xu, From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133(31), 11854–11857 (2011). https://doi.org/10.1021/ja203184k
- X. Ma, Y.X. Zhou, H. Liu, Y. Li, H.L. Jiang, A MOF-derived Co-CoO@N-doped porous carbon for efficient tandem catalysis: dehydrogenation of ammonia borane and hydrogenation of nitro compounds. Chem. Commun. 52(49), 7719–7722 (2016). https://doi.org/10.1039/C6CC03149H
- B. Ma, P.Y. Guan, Q.Y. Li, M. Zhang, S.Q. Zang, MOF-derived flower-like MoS2@TiO2 nanohybrids with enhanced activity for hydrogen evolution. ACS Appl. Mater. Interfaces. 8(40), 26794–26800 (2016). https://doi.org/10.1021/acsami.6b08740
- X. Han, W.M. Chen, X. Han, Y.Z. Tan, D. Sun, Nitrogen-rich MOF derived porous Co3O4/N-C composites with superior performance in lithium-ion batteries. J. Mater. Chem. A 4(34), 13040–13045 (2016). https://doi.org/10.1039/C6TA05096D
- X. Zhao, H. Yang, P. Jing, W. Shi, G. Yang, P. Cheng, A metal–organic framework approach toward highly nitrogen-doped graphitic carbon as a metal-free photocatalyst for hydrogen evolution. Small 13(9), 1603279 (2017). https://doi.org/10.1002/smll.201603279
- L. Zhang, H.B. Wu, X.W. Lou, Metal–organic-frameworks-derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 135(29), 10664–10672 (2013). https://doi.org/10.1021/ja401727n
- W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8(7), 1837–1866 (2015). https://doi.org/10.1039/C5EE00762C
- Y. Du, R.Z. Chen, J.F. Yao, H.T. Wang, Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity. J. Alloys Compd. 551, 125–130 (2013). https://doi.org/10.1016/j.jallcom.2012.10.045
- L. Pan, T. Muhammad, L. Ma, Z.F. Huang, S. Wang, L. Wang, J.J. Zou, X. Zhang, MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Appl. Catal. B Environ. 189, 181–191 (2016). https://doi.org/10.1016/j.apcatb.2016.02.066
- X. Han, X. He, F. Wang, J. Chen, J. Xu, X. Wang, X. Han, Engineering an N-doped Cu2O@N–C interface with long-lived photo-generated carriers for efficient photoredox catalysts. J. Mater. Chem. A 5(21), 10220–10226 (2017). https://doi.org/10.1039/C7TA01909B
- J. Chen, J. Yu, J. Zhang, Enhanced photocatalytic CO2 reduction activity of MOF-derived ZnO/NiO porous hollow spheres. J. CO2 Util. 24, 548–554 (2018). https://doi.org/10.1016/j.jcou.2018.02.013
- M. Lan, R.M. Guo, Y. Dou, J. Zhou, A. Zhou, J.R. Li, Fabrication of porous Pt-doping heterojunctions by using bimetallic MOF template for photocatalytic hydrogen generation. Nano Energy 33, 238–246 (2017). https://doi.org/10.1016/j.nanoen.2017.01.046
- K.E. deKrafft, C. Wang, W. Lin, Metal–organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv. Mater. 24(15), 2014–2018 (2012). https://doi.org/10.1002/adma.201200330
- L. He, L. Li, T. Wang, H. Gao, G. Li, X. Wu, Z. Su, C. Wang, Fabrication of Au/ZnO nanoparticles derived from ZIF-8 with visible light photocatalytic hydrogen production and degradation dye activities. Dalton Trans. 43(45), 16981–16985 (2014). https://doi.org/10.1039/C4DT02557A
- Y. Zhang, J. Huang, Y. Ding, Porous Co3O4/CuO hollow polyhedral nanocages derived from metal–organic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts. Appl. Catal. B Environ. 198, 447–456 (2016). https://doi.org/10.1016/j.apcatb.2016.05.078
- Y. Su, D. Ao, H. Liu, Y. Wang, MOF-derived yolk–shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. J. Mater. Chem. A 5(18), 8680–8689 (2017). https://doi.org/10.1039/C7TA00855D
- D.P. Kumar, H. Park, E.H. Kim, S. Hong, M. Gopannagari, D.A. Reddy, T.K. Kim, Noble metal-free metal–organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: enhanced activity of CdS for improving photocatalytic hydrogen production. Appl. Catal. B: Environ. 224, 230–238 (2018). https://doi.org/10.1016/j.apcatb.2017.10.051
- Z.F. Huang, J. Song, K. Li, M. Tahir, Y.T. Wang, L. Pan, L. Wang, X. Zhang, J.J. Zou, Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 138(4), 1359–1365 (2016). https://doi.org/10.1021/jacs.5b11986
- X. Zhao, J. Feng, J. Liu, W. Shi, G. Yang, G.C. Wang, P. Cheng, An efficient, visible-light-driven, hydrogen evolution catalyst NiS/ZnxCd1-xS nanocrystal derived from a metal–organic framework. Angew. Chem. Int. Ed. 57(31), 9790–9794 (2018). https://doi.org/10.1002/anie.201805425
- W. Chen, J. Fang, Y. Zhang, G. Chen, S. Zhao et al., CdS nanosphere-decorated hollow polyhedral ZCO derived from a metal–organic framework (MOF) for effective photocatalytic water evolution. Nanoscale 10(9), 4463–4474 (2018). https://doi.org/10.1039/C7NR08943K
- S. Wang, B.Y. Guan, Y. Lu, X.W.D. Lou, Formation of hierarchical In2S3–CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 139(48), 17305–17308 (2017). https://doi.org/10.1021/jacs.7b10733
- K. Meyer, M. Ranocchiari, J.A. van Bokhoven, Metal organic frameworks for photo-catalytic water splitting. Energy Environ. Sci. 8(7), 1923–1937 (2015). https://doi.org/10.1039/C5EE00161G
- W. Wang, X. Xu, W. Zhou, Z. Shao, Recent progress in metal–organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv. Sci. 4(4), 1600371 (2017). https://doi.org/10.1002/advs.201600371
- Y.J. Yuan, D. Chen, Z.T. Yu, Z.G. Zou, Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A 6(25), 11606–11630 (2018). https://doi.org/10.1039/C8TA00671G
- X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–2959 (2007). https://doi.org/10.1021/cr0500535
- B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0
- S. Bala, I. Mondal, A. Goswami, U. Pal, R. Mondal, Synthesis, crystal structure and optical properties of a naphthylbisimide-Ni complex: a framework on TiO2 for visible light H2 production. Dalton Trans. 43(42), 15704–15707 (2014). https://doi.org/10.1039/C4DT02006E
- R. Li, S. Wu, X. Wan, H. Xu, Y. Xiong, Cu/TiO2 octahedral-shell photocatalysts derived from metal–organic framework@semiconductor hybrid structures. Inorg. Chem. Front. 3(1), 104–110 (2016). https://doi.org/10.1039/C5QI00205B
- P. Minh-Hao, D. Cao-Thang, V. Gia-Thanh, T. Ngoc-Don, D. Trong-On, Visible light induced hydrogen generation using a hollow photocatalyst with two cocatalysts separated on two surface sides. Phys. Chem. Chem. Phys. 16(13), 5937–5941 (2014). https://doi.org/10.1039/c3cp54629b
- B. Yan, L. Zhang, Z. Tang, M. Al-Mamun, H. Zhao, X. Su, Palladium-decorated hierarchical titania constructed from the metal–organic frameworks NH2-MIL-125(Ti) as a robust photocatalyst for hydrogen evolution. Appl. Catal. B Environ. 218, 743–750 (2017). https://doi.org/10.1016/j.apcatb.2017.07.020
- S. Bala, I. Mondal, A. Goswami, U. Pal, R. Mondal, Co–MOF as a sacrificial template: manifesting a new Co3O4/TiO2 system with a p–n heterojunction for photocatalytic hydrogen evolution. J. Mater. Chem. A 3(40), 20288–20296 (2015). https://doi.org/10.1039/C5TA05210F
- J. Yao, J. Chen, K. Shen, Y. Li, Phase-controllable synthesis of MOF-templated maghemite–carbonaceous composites for efficient photocatalytic hydrogen production. J. Mater. Chem. A 6(8), 3571–3582 (2018). https://doi.org/10.1039/C7TA10284D
- R. Li, L. Sun, W. Zhan, Y.A. Li, X. Wang, X. Han, Engineering an effective noble-metal-free photocatalyst for hydrogen evolution: hollow hexagonal porous micro-rods assembled from In2O3@carbon core–shell nanoparticles. J. Mater. Chem. A 6(32), 15747–15754 (2018). https://doi.org/10.1039/C8TA04916E
- J.Y. Xu, X.P. Zhai, L.F. Gao, P. Chen, M. Zhao, H.B. Yang, D.F. Cao, Q. Wang, H.L. Zhang, In situ preparation of a MOF-derived magnetic carbonaceous catalyst for visible-light-driven hydrogen evolution. RSC Adv. 6(3), 2011–2018 (2016). https://doi.org/10.1039/C5RA23838B
- J.D. Xiao, H.L. Jiang, Thermally stable metal–organic framework-templated synthesis of hierarchically porous metal sulfides: enhanced photocatalytic hydrogen production. Small 13(28), 1700632 (2017). https://doi.org/10.1002/smll.201700632
- D.P. Kumar, J. Choi, S. Hong, D.A. Reddy, S. Lee, T.K. Kim, Rational synthesis of metal–organic framework-derived noble metal-free nickel phosphide nanoparticles as a highly efficient co-catalyst for photocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 4(12), 7158–7166 (2016). https://doi.org/10.1021/acssuschemeng.6b02032
- X. Tang, J.H. Zhao, Y.H. Li, Z.J. Zhou, K. Li, F.T. Liu, Y.Q. Lan, Co-doped Zn1−xCdxS nanocrystals from metal–organic framework precursors: porous microstructure and efficient photocatalytic hydrogen evolution. Dalton Trans. 46(32), 10553–10557 (2017). https://doi.org/10.1039/C7DT01970J
- H. Chen, Z.G. Gu, S. Mirza, S.H. Zhang, J. Zhang, Hollow Cu–TiO2/C nanospheres derived from a Ti precursor encapsulated MOF coating for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 6(16), 7175–7181 (2018). https://doi.org/10.1039/C8TA01034J
- M. Zhang, Y.L. Huang, J.W. Wang, T.B. Lu, A facile method for the synthesis of a porous cobalt oxide-carbon hybrid as a highly efficient water oxidation catalyst. J. Mater. Chem. A 4(5), 1819–1827 (2016). https://doi.org/10.1039/C5TA07813J
- Q. Lan, Z.M. Zhang, C. Qin, X.L. Wang, Y.G. Li, H.Q. Tan, E.B. Wang, Highly dispersed polyoxometalate-doped porous Co3O4 water oxidation photocatalysts derived from POM@MOF crystalline materials. Chem. Eur. J. 22(43), 15513–15520 (2016). https://doi.org/10.1002/chem.201602127
- Y. Feng, J. Wei, Y. Ding, Efficient photochemical, thermal, and electrochemical water oxidation catalyzed by a porous iron-based oxide derived metal organic framework. J. Phys. Chem. C 120(1), 517–526 (2016). https://doi.org/10.1021/acs.jpcc.5b11533
- J. Wei, Y. Feng, Y. Liu, Y. Ding, MxCo3−xO4 (M = Co, Mn, Fe) porous nanocages derived from metal–organic frameworks as efficient water oxidation catalysts. J. Mater. Chem. A 3(44), 22300–22310 (2015). https://doi.org/10.1039/C5TA06411B
- P. Liang, C. Zhang, H. Sun, S. Liu, M. Tade, S. Wang, Photocatalysis of C,N-doped ZnO derived from ZIF-8 for dye degradation and water oxidation. RSC Adv. 6(98), 95903–95909 (2016). https://doi.org/10.1039/C6RA20667K
- B. Li, F. Li, S. Bai, Z. Wang, L. Sun, Q. Yang, C. Li, Oxygen evolution from water oxidation on molecular catalysts confined in the nanocages of mesoporous silicas. Energy Environ. Sci. 5(8), 8229–8233 (2012). https://doi.org/10.1039/c2ee22059h
- M. Yagi, M. Kaneko, Molecular catalysts for water oxidation. Chem. Rev. 101(1), 21–36 (2001). https://doi.org/10.1021/cr980108l
- F. Jiao, H. Frei, Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 3(8), 1018–1027 (2010). https://doi.org/10.1039/c002074e
- D. Hong, Y. Yamada, T. Nagatomi, Y. Takai, S. Fukuzumi, Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O8 2−. J. Am. Chem. Soc. 134(48), 19572–19575 (2012). https://doi.org/10.1021/ja309771h
- J. Huang, G. Hu, Y. Ding, M. Pang, B. Ma, Mn-doping and NiFe layered double hydroxide coating: effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation. J. Catal. 340, 261–269 (2016). https://doi.org/10.1016/j.jcat.2016.05.007
- D.M. Robinson, Y.B. Go, M. Mui, G. Gardner, Z. Zhang et al., Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J. Am. Chem. Soc. 135(9), 3494–3501 (2013). https://doi.org/10.1021/ja310286h
- F. Lu, M. Zhou, Y. Zhou, X. Zeng, First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances. Small 13(45), 1701931 (2017). https://doi.org/10.1002/smll.201701931
- M. Zhou, Q. Weng, Z.I. Popov, Y. Yang, L.Y. Antipina, P.B. Sorokin, X. Wang, Y. Bando, D. Golberg, Construction of polarized carbon–nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions. ACS Nano 12(5), 4148–4155 (2018). https://doi.org/10.1021/acsnano.7b08724
- M. Zhou, Q. Weng, X. Zhang, X. Wang, Y. Xue, X. Zeng, Y. Bando, D. Golberg, In situ electrochemical formation of core–shell nickel–iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J. Mater. Chem. A 5(9), 4335–4342 (2017). https://doi.org/10.1039/C6TA09366C
- X. Lu, C. Zhao, Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015). https://doi.org/10.1038/ncomms7616
- R. Li, W. Zhang, K. Zhou, Metal–organic-framework-based catalysts for photoreduction of CO2. Adv. Mater. 30(35), 1705512 (2018). https://doi.org/10.1002/adma.201705512
- H. Zhang, T. Wang, J. Wang, H. Liu, T.D. Dao et al., Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal–organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv. Mater. 28(19), 3703–3710 (2016). https://doi.org/10.1002/adma.201505187
- C.Y. Hu, J. Zhou, C.Y. Sun, M.M. Chen, X.L. Wang, Z.M. Su, HKUST-1 derived hollow C–Cu2−xS nanotube/g-C3N4 composites for visible-light CO2 photoreduction with H2O vapor. Chemistry 24, 1–8 (2018). https://doi.org/10.1002/chem.201804925
- K. Khaletskaya, A. Pougin, R. Medishetty, C. Rosler, C. Wiktor, J. Strunk, R.A. Fischer, Fabrication of gold/titania photocatalyst for CO2 reduction based on pyrolytic conversion of the metal–organic framework NH2-MIL-125(Ti) loaded with gold nanoparticles. Chem. Mater. 27(21), 7248–7257 (2015). https://doi.org/10.1021/acs.chemmater.5b03017
- S. Yan, Y. Yu, Y. Cao, Synthesis of porous ZnMn2O4 flower-like microspheres by using MOF as precursors and its application on photoreduction of CO2 into CO. Appl. Surf. Sci. 465, 383–388 (2019). https://doi.org/10.1016/j.apsusc.2018.09.211
- J.M.R. Narayanam, C.R.J. Stephenson, Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40(1), 102–113 (2011). https://doi.org/10.1039/B913880N
- F. Wang, X. He, L. Sun, J. Chen, X. Wang, J. Xu, X. Han, Engineering an N-doped TiO2@N-doped C butterfly-like nanostructure with long-lived photo-generated carriers for efficient photocatalytic selective amine oxidation. J. Mater. Chem. A 6(5), 2091–2099 (2018). https://doi.org/10.1039/C7TA09166D
- X. Han, X. He, L. Sun, X. Han, W. Zhan, J. Xu, X. Wang, J. Chen, Increasing effectiveness of photogenerated carriers by in situ anchoring of Cu2O nanoparticles on a nitrogen-doped porous carbon yolk–shell cuboctahedral framework. ACS Catal. 8(4), 3348–3356 (2018). https://doi.org/10.1021/acscatal.7b04219
- A. Ahmed, M. Forster, J. Jin, P. Myers, H. Zhang, Tuning morphology of nanostructured ZIF-8 on silica microspheres and applications in liquid chromatography and dye degradation. ACS Appl. Mater. Interfaces. 7(32), 18054–18063 (2015). https://doi.org/10.1021/acsami.5b04979
- J. Li, X. Xu, X. Liu, W. Qin, M. Wang, L. Pan, Metal-organic frameworks derived cake-like anatase/rutile mixed phase TiO2 for highly efficient photocatalysis. J. Alloys Compd. 690, 640–646 (2017). https://doi.org/10.1016/j.jallcom.2016.08.176
- Z. Guo, J.K. Cheng, Z. Hu, M. Zhang, Q. Xu, Z. Kang, D. Zhao, Metal–organic frameworks (MOFs) as precursors towards TiOx/C composites for photodegradation of organic dye. RSC Adv. 4(65), 34221–34225 (2014). https://doi.org/10.1039/C4RA05429F
- Q. Xu, Z. Guo, M. Zhang, Z. Hu, Y. Qian, D. Zhao, Highly efficient photocatalysts by pyrolyzing a Zn–Ti heterometallic metal–organic framework. CrystEngComm 18(22), 4046–4052 (2016). https://doi.org/10.1039/C5CE01439E
- H. Chen, K. Shen, J. Chen, X. Chen, Y. Li, Hollow–ZIF-templated formation of a ZnO@C–N–Co core–shell nanostructure for highly efficient pollutant photodegradation. J. Mater. Chem. A 5(20), 9937–9945 (2017). https://doi.org/10.1039/C7TA02184D
- Y. Feng, H. Lu, X. Gu, J. Qiu, M. Jia, C. Huang, J. Yao, ZIF-8 derived porous N-doped ZnO with enhanced visible light-driven photocatalytic activity. J. Phys. Chem. Solids 102, 110–114 (2017). https://doi.org/10.1016/j.jpcs.2016.11.022
- X. Cao, B. Zheng, X. Rui, W. Shi, Q. Yan, H. Zhang, Metal oxide-coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors. Angew. Chem. Int. Ed. 126(5), 1428–1433 (2014). https://doi.org/10.1002/ange.201308013
- G. Zhu, X. Li, H. Wang, L. Zhang, Microwave assisted synthesis of reduced graphene oxide incorporated MOF-derived ZnO composites for photocatalytic application. Catal. Commun. 88, 5–8 (2017). https://doi.org/10.1016/j.catcom.2016.09.024
- N. Salehifar, Z. Zarghami, M. Ramezani, A facile, novel and low-temperature synthesis of MgO nanorods via thermal decomposition using new starting reagent and its photocatalytic activity evaluation. Mater. Lett. 167, 226–229 (2016). https://doi.org/10.1016/j.matlet.2016.01.015
- Q.X. Zeng, G.C. Xu, L. Zhang, H. Lin, Y. Lv, D.Z. Jia, Porous CuO nanofibers derived from a Cu-based coordination polymer as a photocatalyst for the degradation of rhodamine B. New J. Chem. 42(9), 7016–7024 (2018). https://doi.org/10.1039/C8NJ00608C
- H.M. Aly, M.E. Moustafa, M.Y. Nassar, E.A. Abdelrahman, Synthesis and characterization of novel Cu(II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases: a new route to CuO nanoparticles. J. Mol. Struct. 1086, 223–231 (2015). https://doi.org/10.1016/j.molstruc.2015.01.017
- P. Mahata, T. Aarthi, G. Madras, S. Natarajan, Photocatalytic degradation of dyes and organics with nanosized GdCoO3. J. Phys. Chem. C 111(4), 1665–1674 (2007). https://doi.org/10.1021/jp066302q
- J. Xu, J. Gao, Y. Liu, Q. Li, L. Wang, Fabrication of In2O3/Co3O4-palygorskite composites by the pyrolysis of In/Co–MOFs for efficient degradation of methylene blue and tetracycline. Mater. Res. Bull. 91, 1–8 (2017). https://doi.org/10.1016/j.materresbull.2017.03.018
- Y. Lin, H. Wan, F. Chen, X. Liu, R. Ma, T. Sasaki, Two-dimensional porous cuprous oxide nanoplatelets derived from metal–organic frameworks (MOFs) for efficient photocatalytic dye degradation under visible light. Dalton Trans. 47(23), 7694–7700 (2018). https://doi.org/10.1039/C8DT01117F
- C. Zhang, F. Ye, S. Shen, Y. Xiong, L. Su, S. Zhao, From metal–organic frameworks to magnetic nanostructured porous carbon composites: towards highly efficient dye removal and degradation. RSC Adv. 5(11), 8228–8235 (2015). https://doi.org/10.1039/C4RA15942J
- K.Y. Andrew Lin, F.K. Hsu, W.D. Lee, Magnetic cobalt–graphene nanocomposite derived from self-assembly of MOFs with graphene oxide as an activator for peroxymonosulfate. J. Mater. Chem. A 3(18), 9480–9490 (2015). https://doi.org/10.1039/C4TA06516F
- Y.F. Zhang, L.G. Qiu, Y.P. Yuan, Y.J. Zhu, X. Jiang, J.D. Xiao, Magnetic Fe3O4@C/Cu and Fe3O4@CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Appl. Catal. B Environ. 144, 863–869 (2014). https://doi.org/10.1016/j.apcatb.2013.08.019
- Z.X. Li, B.L. Yang, Y.F. Jiang, C.Y. Yu, L. Zhang, Metal-directed assembly of five 4-connected MOFs: one-pot syntheses of MOF-derived MxSy@C composites for photocatalytic degradation and supercapacitors. Cryst. Growth Des. 18(2), 979–992 (2018). https://doi.org/10.1021/acs.cgd.7b01463
- S.K. Batabyal, S.E. Lu, J.J. Vittal, Synthesis, characterization, and photocatalytic properties of In2S3, ZnIn2S4, and CdIn2S4 nanocrystals. Cryst. Growth Des. 16(4), 2231–2238 (2016). https://doi.org/10.1021/acs.cgd.6b00050
- X. Yang, J. Chen, J. Hu, S. Zhao, J. Zhao, X. Luo, Metal organic framework-derived Zn1−xCox–ZIF@Zn1−xCoxO hybrid photocatalyst with enhanced photocatalytic activity through synergistic effect. Catal. Sci. Technol. 8(2), 573–579 (2018). https://doi.org/10.1039/C7CY01979C
- Y. Gong, X. Zhao, H. Zhang, B. Yang, K. Xiao et al., MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol a degradation with peroxymonosulfate under visible light irradiation. Appl. Catal. B Environ. 233, 35–45 (2018). https://doi.org/10.1016/j.apcatb.2018.03.077
- Y. Jing, J. Wang, B. Yu, J. Lun, Y. Cheng et al., A MOF-derived ZIF-8@Zn1−xNixO photocatalyst with enhanced photocatalytic activity. RSC Adv. 7(67), 42030–42035 (2017). https://doi.org/10.1039/C7RA08763B
- C. Yang, J. Cheng, Y. Chen, Y. Hu, CdS nanoparticles immobilized on porous carbon polyhedrons derived from a metal–organic framework with enhanced visible light photocatalytic activity for antibiotic degradation. Appl. Surf. Sci. 420, 252–259 (2017). https://doi.org/10.1016/j.apsusc.2017.05.102
- B. Hu, J.Y. Yuan, J.Y. Tian, M. Wang, X. Wang, L. He, Z. Zhang, Z.W. Wang, C.S. Liu, Co/Fe-bimetallic organic framework-derived carbon-incorporated cobalt–ferric mixed metal phosphide as a highly efficient photocatalyst under visible light. J. Colloid Interface Sci. 531, 148–159 (2018). https://doi.org/10.1016/j.jcis.2018.07.037
- S.J. Yang, J.H. Im, T. Kim, K. Lee, C.R. Park, MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity. J. Hazard. Mater. 186(1), 376–382 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.019
References
M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995). https://doi.org/10.1021/cr00033a004
M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis. Chem. Rev. 93(1), 341–357 (1993). https://doi.org/10.1021/cr00017a016
A. Mills, S. LeHunte, An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A 108(1), 1–35 (1997). https://doi.org/10.1016/S1010-6030(97)00118-4
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001). https://doi.org/10.1126/science.1061051
S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42(40), 4908–4911 (2003). https://doi.org/10.1002/anie.200351577
H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24(2), 229–251 (2012). https://doi.org/10.1002/adma.201102752
S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10(12), 911–921 (2011). https://doi.org/10.1038/nmat3151
M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007). https://doi.org/10.1016/j.rser.2005.01.009
W. Tu, Y. Zhou, Z. Zou, Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26(27), 4607–4626 (2014). https://doi.org/10.1002/adma.201400087
R. Marschall, Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 24(17), 2421–2440 (2014). https://doi.org/10.1002/adfm.201303214
K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18), 2655–2661 (2010). https://doi.org/10.1021/jz1007966
C.-F. Du, Q. Liang, R. Dangol, J. Zhao, H. Ren, S. Madhavi, Q. Yan, Layered trichalcogenidophosphate: a new catalyst family for water splitting. Nano Micro Lett. 10(4), 67 (2018). https://doi.org/10.1007/s40820-018-0220-6
T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8(3), 2253–2276 (2018). https://doi.org/10.1021/acscatal.7b03437
C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018). https://doi.org/10.1016/j.rser.2017.08.020
S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5(5), 3306–3351 (2015). https://doi.org/10.1039/C4RA13299H
K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016). https://doi.org/10.1016/j.watres.2015.09.045
E. Rahmanian, R. Malekfar, M. Pumera, Nanohybrids of two-dimensional transition-metal dichalcogenides and titanium dioxide for photocatalytic applications. Chem. Eur. J. 24(1), 18–31 (2018). https://doi.org/10.1002/chem.201703434
B. Chen, Y. Meng, J. Sha, C. Zhong, W. Hua, N. Zhao, Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale 10(1), 34–68 (2018). https://doi.org/10.1039/C7NR07366F
X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746–750 (2011). https://doi.org/10.1126/science.1200448
S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243–2245 (2002). https://doi.org/10.1126/science.1075035
M. Ge, Q. Li, C. Cao, J. Huang, S. Li et al., One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. (2017). https://doi.org/10.1002/advs.201600152
Y. Song, N. Li, D. Chen, Q. Xu, H. Li, J. He, J. Lu, 3D ordered mop inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity. Appl. Catal. B Environ. 238, 255–262 (2018). https://doi.org/10.1016/j.apcatb.2018.07.010
Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133(28), 10878–10884 (2011). https://doi.org/10.1021/ja2025454
X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130(23), 7176–7177 (2008). https://doi.org/10.1021/ja8007825
L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B Environ. 217, 388–406 (2017). https://doi.org/10.1016/j.apcatb.2017.06.003
G. Zhang, Z.-A. Lan, X. Wang, Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 8(8), 5261–5274 (2017). https://doi.org/10.1039/C7SC01747B
J. Fei, J. Li, Controlled preparation of porous TiO2–Ag nanostructures through supramolecular assembly for plasmon-enhanced photocatalysis. Adv. Mater. 27(2), 314–319 (2015). https://doi.org/10.1002/adma.201404007
M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, B.L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45(12), 3479–3563 (2016). https://doi.org/10.1039/C6CS00135A
B. Lu, X. Li, T. Wang, E. Xie, Z. Xu, WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis. J. Mater. Chem. A 1(12), 3900–3906 (2013). https://doi.org/10.1039/c3ta01444d
S. Wang, X. Wang, Multifunctional metal–organic frameworks for photocatalysis. Small 11(26), 3097–3112 (2015). https://doi.org/10.1002/smll.201500084
B. Qiu, M. Xing, J. Zhang, Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136(16), 5852–5855 (2014). https://doi.org/10.1021/ja500873u
J. Yu, Y. Su, B. Cheng, Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Adv. Funct. Mater. 17(12), 1984–1990 (2007). https://doi.org/10.1002/adfm.200600933
Q. Liang, Z. Li, X. Yu, Z.H. Huang, F. Kang, Q.H. Yang, Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 27(31), 4634–4639 (2015). https://doi.org/10.1002/adma.201502057
C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4(11), 6425–6432 (2010). https://doi.org/10.1021/nn102130m
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234–5244 (2014). https://doi.org/10.1039/C4CS00126E
Y. Bessekhouad, D. Robert, J.V. Weber, Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal. Today 101(3–4), 315–321 (2005). https://doi.org/10.1016/j.cattod.2005.03.038
F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W.K. Ho, In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces. 5(21), 11392–11401 (2013). https://doi.org/10.1021/am403653a
D. Lin, H. Wu, R. Zhang, W. Pan, Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers. Chem. Mater. 21(15), 3479–3484 (2009). https://doi.org/10.1021/cm900225p
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. (2017). https://doi.org/10.1002/adma.201601694
Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl. Mater. Interfaces. 2(10), 2915–2923 (2010). https://doi.org/10.1021/am100618h
D. Sarkar, C.K. Ghosh, S. Mukherjee, K.K. Chattopadhyay, Three dimensional Ag2O/TiO2 type-II (p–n) nanoheterojunctions for superior photocatalytic activity. ACS Appl. Mater. Interfaces. 5(2), 331–337 (2013). https://doi.org/10.1021/am302136y
Y. Cho, S. Kim, B. Park, C.L. Lee, J.K. Kim et al., Multiple heterojunction in single titanium dioxide nanoparticles for novel metal-free photocatalysis. Nano Lett. 18(7), 4257–4262 (2018). https://doi.org/10.1021/acs.nanolett.8b01245
A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R.A. Fischer, Flexible metal–organic frameworks. Chem. Soc. Rev. 43(16), 6062–6096 (2014). https://doi.org/10.1039/C4CS00101J
M.R. Lohe, K. Gedrich, T. Freudenberg, E. Kockrick, T. Dellmann, S. Kaskel, Heating and separation using nanomagnet-functionalized metal–organic frameworks. Chem. Commun. 47(11), 3075–3077 (2011). https://doi.org/10.1039/c0cc05278g
X. Zhu, H. Zheng, X. Wei, Z. Lin, L. Guo, B. Qiu, G. Chen, Metal–organic framework (MOF): a novel sensing platform for biomolecules. Chem. Commun. 49(13), 1276–1278 (2013). https://doi.org/10.1039/c2cc36661d
S. Li, F. Huo, Metal–organic framework composites: from fundamentals to applications. Nanoscale 7(17), 7482–7501 (2015). https://doi.org/10.1039/C5NR00518C
L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 112(2), 1105–1125 (2012). https://doi.org/10.1021/cr200324t
H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi et al., Ultrahigh porosity in metal–organic frameworks. Science 329(5990), 424–428 (2010). https://doi.org/10.1126/science.1192160
G. Maurin, C. Serre, A. Cooper, G. Férey, The new age of MOFs and of their porous-related solids. Chem. Soc. Rev. 46(11), 3104–3107 (2017). https://doi.org/10.1039/C7CS90049J
Y. Li, H. Xu, S. Ouyang, J. Ye, Metal–organic frameworks for photocatalysis. Phys. Chem. Chem. Phys. 18(11), 7563–7572 (2016). https://doi.org/10.1039/C5CP05885F
S. Subudhi, D. Rath, K.M. Parida, A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: a review. Catal. Sci. Technol. 8(3), 679–696 (2018). https://doi.org/10.1039/C7CY02094E
A. Dhakshinamoorthy, Z. Li, H. Garcia, Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 47(22), 8134–8172 (2018). https://doi.org/10.1039/C8CS00256H
Z. Wu, X. Yuan, J. Zhang, H. Wang, L. Jiang, G. Zeng, Photocatalytic decontamination of wastewater containing organic dyes by metal–organic frameworks and their derivatives. ChemCatChem 9(1), 41–64 (2017). https://doi.org/10.1002/cctc.201600808
H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F.Q. Zong, Q. Xu, From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133(31), 11854–11857 (2011). https://doi.org/10.1021/ja203184k
X. Ma, Y.X. Zhou, H. Liu, Y. Li, H.L. Jiang, A MOF-derived Co-CoO@N-doped porous carbon for efficient tandem catalysis: dehydrogenation of ammonia borane and hydrogenation of nitro compounds. Chem. Commun. 52(49), 7719–7722 (2016). https://doi.org/10.1039/C6CC03149H
B. Ma, P.Y. Guan, Q.Y. Li, M. Zhang, S.Q. Zang, MOF-derived flower-like MoS2@TiO2 nanohybrids with enhanced activity for hydrogen evolution. ACS Appl. Mater. Interfaces. 8(40), 26794–26800 (2016). https://doi.org/10.1021/acsami.6b08740
X. Han, W.M. Chen, X. Han, Y.Z. Tan, D. Sun, Nitrogen-rich MOF derived porous Co3O4/N-C composites with superior performance in lithium-ion batteries. J. Mater. Chem. A 4(34), 13040–13045 (2016). https://doi.org/10.1039/C6TA05096D
X. Zhao, H. Yang, P. Jing, W. Shi, G. Yang, P. Cheng, A metal–organic framework approach toward highly nitrogen-doped graphitic carbon as a metal-free photocatalyst for hydrogen evolution. Small 13(9), 1603279 (2017). https://doi.org/10.1002/smll.201603279
L. Zhang, H.B. Wu, X.W. Lou, Metal–organic-frameworks-derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 135(29), 10664–10672 (2013). https://doi.org/10.1021/ja401727n
W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8(7), 1837–1866 (2015). https://doi.org/10.1039/C5EE00762C
Y. Du, R.Z. Chen, J.F. Yao, H.T. Wang, Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity. J. Alloys Compd. 551, 125–130 (2013). https://doi.org/10.1016/j.jallcom.2012.10.045
L. Pan, T. Muhammad, L. Ma, Z.F. Huang, S. Wang, L. Wang, J.J. Zou, X. Zhang, MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Appl. Catal. B Environ. 189, 181–191 (2016). https://doi.org/10.1016/j.apcatb.2016.02.066
X. Han, X. He, F. Wang, J. Chen, J. Xu, X. Wang, X. Han, Engineering an N-doped Cu2O@N–C interface with long-lived photo-generated carriers for efficient photoredox catalysts. J. Mater. Chem. A 5(21), 10220–10226 (2017). https://doi.org/10.1039/C7TA01909B
J. Chen, J. Yu, J. Zhang, Enhanced photocatalytic CO2 reduction activity of MOF-derived ZnO/NiO porous hollow spheres. J. CO2 Util. 24, 548–554 (2018). https://doi.org/10.1016/j.jcou.2018.02.013
M. Lan, R.M. Guo, Y. Dou, J. Zhou, A. Zhou, J.R. Li, Fabrication of porous Pt-doping heterojunctions by using bimetallic MOF template for photocatalytic hydrogen generation. Nano Energy 33, 238–246 (2017). https://doi.org/10.1016/j.nanoen.2017.01.046
K.E. deKrafft, C. Wang, W. Lin, Metal–organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv. Mater. 24(15), 2014–2018 (2012). https://doi.org/10.1002/adma.201200330
L. He, L. Li, T. Wang, H. Gao, G. Li, X. Wu, Z. Su, C. Wang, Fabrication of Au/ZnO nanoparticles derived from ZIF-8 with visible light photocatalytic hydrogen production and degradation dye activities. Dalton Trans. 43(45), 16981–16985 (2014). https://doi.org/10.1039/C4DT02557A
Y. Zhang, J. Huang, Y. Ding, Porous Co3O4/CuO hollow polyhedral nanocages derived from metal–organic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts. Appl. Catal. B Environ. 198, 447–456 (2016). https://doi.org/10.1016/j.apcatb.2016.05.078
Y. Su, D. Ao, H. Liu, Y. Wang, MOF-derived yolk–shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. J. Mater. Chem. A 5(18), 8680–8689 (2017). https://doi.org/10.1039/C7TA00855D
D.P. Kumar, H. Park, E.H. Kim, S. Hong, M. Gopannagari, D.A. Reddy, T.K. Kim, Noble metal-free metal–organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: enhanced activity of CdS for improving photocatalytic hydrogen production. Appl. Catal. B: Environ. 224, 230–238 (2018). https://doi.org/10.1016/j.apcatb.2017.10.051
Z.F. Huang, J. Song, K. Li, M. Tahir, Y.T. Wang, L. Pan, L. Wang, X. Zhang, J.J. Zou, Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 138(4), 1359–1365 (2016). https://doi.org/10.1021/jacs.5b11986
X. Zhao, J. Feng, J. Liu, W. Shi, G. Yang, G.C. Wang, P. Cheng, An efficient, visible-light-driven, hydrogen evolution catalyst NiS/ZnxCd1-xS nanocrystal derived from a metal–organic framework. Angew. Chem. Int. Ed. 57(31), 9790–9794 (2018). https://doi.org/10.1002/anie.201805425
W. Chen, J. Fang, Y. Zhang, G. Chen, S. Zhao et al., CdS nanosphere-decorated hollow polyhedral ZCO derived from a metal–organic framework (MOF) for effective photocatalytic water evolution. Nanoscale 10(9), 4463–4474 (2018). https://doi.org/10.1039/C7NR08943K
S. Wang, B.Y. Guan, Y. Lu, X.W.D. Lou, Formation of hierarchical In2S3–CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 139(48), 17305–17308 (2017). https://doi.org/10.1021/jacs.7b10733
K. Meyer, M. Ranocchiari, J.A. van Bokhoven, Metal organic frameworks for photo-catalytic water splitting. Energy Environ. Sci. 8(7), 1923–1937 (2015). https://doi.org/10.1039/C5EE00161G
W. Wang, X. Xu, W. Zhou, Z. Shao, Recent progress in metal–organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv. Sci. 4(4), 1600371 (2017). https://doi.org/10.1002/advs.201600371
Y.J. Yuan, D. Chen, Z.T. Yu, Z.G. Zou, Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A 6(25), 11606–11630 (2018). https://doi.org/10.1039/C8TA00671G
X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–2959 (2007). https://doi.org/10.1021/cr0500535
B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0
S. Bala, I. Mondal, A. Goswami, U. Pal, R. Mondal, Synthesis, crystal structure and optical properties of a naphthylbisimide-Ni complex: a framework on TiO2 for visible light H2 production. Dalton Trans. 43(42), 15704–15707 (2014). https://doi.org/10.1039/C4DT02006E
R. Li, S. Wu, X. Wan, H. Xu, Y. Xiong, Cu/TiO2 octahedral-shell photocatalysts derived from metal–organic framework@semiconductor hybrid structures. Inorg. Chem. Front. 3(1), 104–110 (2016). https://doi.org/10.1039/C5QI00205B
P. Minh-Hao, D. Cao-Thang, V. Gia-Thanh, T. Ngoc-Don, D. Trong-On, Visible light induced hydrogen generation using a hollow photocatalyst with two cocatalysts separated on two surface sides. Phys. Chem. Chem. Phys. 16(13), 5937–5941 (2014). https://doi.org/10.1039/c3cp54629b
B. Yan, L. Zhang, Z. Tang, M. Al-Mamun, H. Zhao, X. Su, Palladium-decorated hierarchical titania constructed from the metal–organic frameworks NH2-MIL-125(Ti) as a robust photocatalyst for hydrogen evolution. Appl. Catal. B Environ. 218, 743–750 (2017). https://doi.org/10.1016/j.apcatb.2017.07.020
S. Bala, I. Mondal, A. Goswami, U. Pal, R. Mondal, Co–MOF as a sacrificial template: manifesting a new Co3O4/TiO2 system with a p–n heterojunction for photocatalytic hydrogen evolution. J. Mater. Chem. A 3(40), 20288–20296 (2015). https://doi.org/10.1039/C5TA05210F
J. Yao, J. Chen, K. Shen, Y. Li, Phase-controllable synthesis of MOF-templated maghemite–carbonaceous composites for efficient photocatalytic hydrogen production. J. Mater. Chem. A 6(8), 3571–3582 (2018). https://doi.org/10.1039/C7TA10284D
R. Li, L. Sun, W. Zhan, Y.A. Li, X. Wang, X. Han, Engineering an effective noble-metal-free photocatalyst for hydrogen evolution: hollow hexagonal porous micro-rods assembled from In2O3@carbon core–shell nanoparticles. J. Mater. Chem. A 6(32), 15747–15754 (2018). https://doi.org/10.1039/C8TA04916E
J.Y. Xu, X.P. Zhai, L.F. Gao, P. Chen, M. Zhao, H.B. Yang, D.F. Cao, Q. Wang, H.L. Zhang, In situ preparation of a MOF-derived magnetic carbonaceous catalyst for visible-light-driven hydrogen evolution. RSC Adv. 6(3), 2011–2018 (2016). https://doi.org/10.1039/C5RA23838B
J.D. Xiao, H.L. Jiang, Thermally stable metal–organic framework-templated synthesis of hierarchically porous metal sulfides: enhanced photocatalytic hydrogen production. Small 13(28), 1700632 (2017). https://doi.org/10.1002/smll.201700632
D.P. Kumar, J. Choi, S. Hong, D.A. Reddy, S. Lee, T.K. Kim, Rational synthesis of metal–organic framework-derived noble metal-free nickel phosphide nanoparticles as a highly efficient co-catalyst for photocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 4(12), 7158–7166 (2016). https://doi.org/10.1021/acssuschemeng.6b02032
X. Tang, J.H. Zhao, Y.H. Li, Z.J. Zhou, K. Li, F.T. Liu, Y.Q. Lan, Co-doped Zn1−xCdxS nanocrystals from metal–organic framework precursors: porous microstructure and efficient photocatalytic hydrogen evolution. Dalton Trans. 46(32), 10553–10557 (2017). https://doi.org/10.1039/C7DT01970J
H. Chen, Z.G. Gu, S. Mirza, S.H. Zhang, J. Zhang, Hollow Cu–TiO2/C nanospheres derived from a Ti precursor encapsulated MOF coating for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 6(16), 7175–7181 (2018). https://doi.org/10.1039/C8TA01034J
M. Zhang, Y.L. Huang, J.W. Wang, T.B. Lu, A facile method for the synthesis of a porous cobalt oxide-carbon hybrid as a highly efficient water oxidation catalyst. J. Mater. Chem. A 4(5), 1819–1827 (2016). https://doi.org/10.1039/C5TA07813J
Q. Lan, Z.M. Zhang, C. Qin, X.L. Wang, Y.G. Li, H.Q. Tan, E.B. Wang, Highly dispersed polyoxometalate-doped porous Co3O4 water oxidation photocatalysts derived from POM@MOF crystalline materials. Chem. Eur. J. 22(43), 15513–15520 (2016). https://doi.org/10.1002/chem.201602127
Y. Feng, J. Wei, Y. Ding, Efficient photochemical, thermal, and electrochemical water oxidation catalyzed by a porous iron-based oxide derived metal organic framework. J. Phys. Chem. C 120(1), 517–526 (2016). https://doi.org/10.1021/acs.jpcc.5b11533
J. Wei, Y. Feng, Y. Liu, Y. Ding, MxCo3−xO4 (M = Co, Mn, Fe) porous nanocages derived from metal–organic frameworks as efficient water oxidation catalysts. J. Mater. Chem. A 3(44), 22300–22310 (2015). https://doi.org/10.1039/C5TA06411B
P. Liang, C. Zhang, H. Sun, S. Liu, M. Tade, S. Wang, Photocatalysis of C,N-doped ZnO derived from ZIF-8 for dye degradation and water oxidation. RSC Adv. 6(98), 95903–95909 (2016). https://doi.org/10.1039/C6RA20667K
B. Li, F. Li, S. Bai, Z. Wang, L. Sun, Q. Yang, C. Li, Oxygen evolution from water oxidation on molecular catalysts confined in the nanocages of mesoporous silicas. Energy Environ. Sci. 5(8), 8229–8233 (2012). https://doi.org/10.1039/c2ee22059h
M. Yagi, M. Kaneko, Molecular catalysts for water oxidation. Chem. Rev. 101(1), 21–36 (2001). https://doi.org/10.1021/cr980108l
F. Jiao, H. Frei, Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 3(8), 1018–1027 (2010). https://doi.org/10.1039/c002074e
D. Hong, Y. Yamada, T. Nagatomi, Y. Takai, S. Fukuzumi, Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O8 2−. J. Am. Chem. Soc. 134(48), 19572–19575 (2012). https://doi.org/10.1021/ja309771h
J. Huang, G. Hu, Y. Ding, M. Pang, B. Ma, Mn-doping and NiFe layered double hydroxide coating: effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation. J. Catal. 340, 261–269 (2016). https://doi.org/10.1016/j.jcat.2016.05.007
D.M. Robinson, Y.B. Go, M. Mui, G. Gardner, Z. Zhang et al., Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J. Am. Chem. Soc. 135(9), 3494–3501 (2013). https://doi.org/10.1021/ja310286h
F. Lu, M. Zhou, Y. Zhou, X. Zeng, First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances. Small 13(45), 1701931 (2017). https://doi.org/10.1002/smll.201701931
M. Zhou, Q. Weng, Z.I. Popov, Y. Yang, L.Y. Antipina, P.B. Sorokin, X. Wang, Y. Bando, D. Golberg, Construction of polarized carbon–nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions. ACS Nano 12(5), 4148–4155 (2018). https://doi.org/10.1021/acsnano.7b08724
M. Zhou, Q. Weng, X. Zhang, X. Wang, Y. Xue, X. Zeng, Y. Bando, D. Golberg, In situ electrochemical formation of core–shell nickel–iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J. Mater. Chem. A 5(9), 4335–4342 (2017). https://doi.org/10.1039/C6TA09366C
X. Lu, C. Zhao, Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015). https://doi.org/10.1038/ncomms7616
R. Li, W. Zhang, K. Zhou, Metal–organic-framework-based catalysts for photoreduction of CO2. Adv. Mater. 30(35), 1705512 (2018). https://doi.org/10.1002/adma.201705512
H. Zhang, T. Wang, J. Wang, H. Liu, T.D. Dao et al., Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal–organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv. Mater. 28(19), 3703–3710 (2016). https://doi.org/10.1002/adma.201505187
C.Y. Hu, J. Zhou, C.Y. Sun, M.M. Chen, X.L. Wang, Z.M. Su, HKUST-1 derived hollow C–Cu2−xS nanotube/g-C3N4 composites for visible-light CO2 photoreduction with H2O vapor. Chemistry 24, 1–8 (2018). https://doi.org/10.1002/chem.201804925
K. Khaletskaya, A. Pougin, R. Medishetty, C. Rosler, C. Wiktor, J. Strunk, R.A. Fischer, Fabrication of gold/titania photocatalyst for CO2 reduction based on pyrolytic conversion of the metal–organic framework NH2-MIL-125(Ti) loaded with gold nanoparticles. Chem. Mater. 27(21), 7248–7257 (2015). https://doi.org/10.1021/acs.chemmater.5b03017
S. Yan, Y. Yu, Y. Cao, Synthesis of porous ZnMn2O4 flower-like microspheres by using MOF as precursors and its application on photoreduction of CO2 into CO. Appl. Surf. Sci. 465, 383–388 (2019). https://doi.org/10.1016/j.apsusc.2018.09.211
J.M.R. Narayanam, C.R.J. Stephenson, Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40(1), 102–113 (2011). https://doi.org/10.1039/B913880N
F. Wang, X. He, L. Sun, J. Chen, X. Wang, J. Xu, X. Han, Engineering an N-doped TiO2@N-doped C butterfly-like nanostructure with long-lived photo-generated carriers for efficient photocatalytic selective amine oxidation. J. Mater. Chem. A 6(5), 2091–2099 (2018). https://doi.org/10.1039/C7TA09166D
X. Han, X. He, L. Sun, X. Han, W. Zhan, J. Xu, X. Wang, J. Chen, Increasing effectiveness of photogenerated carriers by in situ anchoring of Cu2O nanoparticles on a nitrogen-doped porous carbon yolk–shell cuboctahedral framework. ACS Catal. 8(4), 3348–3356 (2018). https://doi.org/10.1021/acscatal.7b04219
A. Ahmed, M. Forster, J. Jin, P. Myers, H. Zhang, Tuning morphology of nanostructured ZIF-8 on silica microspheres and applications in liquid chromatography and dye degradation. ACS Appl. Mater. Interfaces. 7(32), 18054–18063 (2015). https://doi.org/10.1021/acsami.5b04979
J. Li, X. Xu, X. Liu, W. Qin, M. Wang, L. Pan, Metal-organic frameworks derived cake-like anatase/rutile mixed phase TiO2 for highly efficient photocatalysis. J. Alloys Compd. 690, 640–646 (2017). https://doi.org/10.1016/j.jallcom.2016.08.176
Z. Guo, J.K. Cheng, Z. Hu, M. Zhang, Q. Xu, Z. Kang, D. Zhao, Metal–organic frameworks (MOFs) as precursors towards TiOx/C composites for photodegradation of organic dye. RSC Adv. 4(65), 34221–34225 (2014). https://doi.org/10.1039/C4RA05429F
Q. Xu, Z. Guo, M. Zhang, Z. Hu, Y. Qian, D. Zhao, Highly efficient photocatalysts by pyrolyzing a Zn–Ti heterometallic metal–organic framework. CrystEngComm 18(22), 4046–4052 (2016). https://doi.org/10.1039/C5CE01439E
H. Chen, K. Shen, J. Chen, X. Chen, Y. Li, Hollow–ZIF-templated formation of a ZnO@C–N–Co core–shell nanostructure for highly efficient pollutant photodegradation. J. Mater. Chem. A 5(20), 9937–9945 (2017). https://doi.org/10.1039/C7TA02184D
Y. Feng, H. Lu, X. Gu, J. Qiu, M. Jia, C. Huang, J. Yao, ZIF-8 derived porous N-doped ZnO with enhanced visible light-driven photocatalytic activity. J. Phys. Chem. Solids 102, 110–114 (2017). https://doi.org/10.1016/j.jpcs.2016.11.022
X. Cao, B. Zheng, X. Rui, W. Shi, Q. Yan, H. Zhang, Metal oxide-coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors. Angew. Chem. Int. Ed. 126(5), 1428–1433 (2014). https://doi.org/10.1002/ange.201308013
G. Zhu, X. Li, H. Wang, L. Zhang, Microwave assisted synthesis of reduced graphene oxide incorporated MOF-derived ZnO composites for photocatalytic application. Catal. Commun. 88, 5–8 (2017). https://doi.org/10.1016/j.catcom.2016.09.024
N. Salehifar, Z. Zarghami, M. Ramezani, A facile, novel and low-temperature synthesis of MgO nanorods via thermal decomposition using new starting reagent and its photocatalytic activity evaluation. Mater. Lett. 167, 226–229 (2016). https://doi.org/10.1016/j.matlet.2016.01.015
Q.X. Zeng, G.C. Xu, L. Zhang, H. Lin, Y. Lv, D.Z. Jia, Porous CuO nanofibers derived from a Cu-based coordination polymer as a photocatalyst for the degradation of rhodamine B. New J. Chem. 42(9), 7016–7024 (2018). https://doi.org/10.1039/C8NJ00608C
H.M. Aly, M.E. Moustafa, M.Y. Nassar, E.A. Abdelrahman, Synthesis and characterization of novel Cu(II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases: a new route to CuO nanoparticles. J. Mol. Struct. 1086, 223–231 (2015). https://doi.org/10.1016/j.molstruc.2015.01.017
P. Mahata, T. Aarthi, G. Madras, S. Natarajan, Photocatalytic degradation of dyes and organics with nanosized GdCoO3. J. Phys. Chem. C 111(4), 1665–1674 (2007). https://doi.org/10.1021/jp066302q
J. Xu, J. Gao, Y. Liu, Q. Li, L. Wang, Fabrication of In2O3/Co3O4-palygorskite composites by the pyrolysis of In/Co–MOFs for efficient degradation of methylene blue and tetracycline. Mater. Res. Bull. 91, 1–8 (2017). https://doi.org/10.1016/j.materresbull.2017.03.018
Y. Lin, H. Wan, F. Chen, X. Liu, R. Ma, T. Sasaki, Two-dimensional porous cuprous oxide nanoplatelets derived from metal–organic frameworks (MOFs) for efficient photocatalytic dye degradation under visible light. Dalton Trans. 47(23), 7694–7700 (2018). https://doi.org/10.1039/C8DT01117F
C. Zhang, F. Ye, S. Shen, Y. Xiong, L. Su, S. Zhao, From metal–organic frameworks to magnetic nanostructured porous carbon composites: towards highly efficient dye removal and degradation. RSC Adv. 5(11), 8228–8235 (2015). https://doi.org/10.1039/C4RA15942J
K.Y. Andrew Lin, F.K. Hsu, W.D. Lee, Magnetic cobalt–graphene nanocomposite derived from self-assembly of MOFs with graphene oxide as an activator for peroxymonosulfate. J. Mater. Chem. A 3(18), 9480–9490 (2015). https://doi.org/10.1039/C4TA06516F
Y.F. Zhang, L.G. Qiu, Y.P. Yuan, Y.J. Zhu, X. Jiang, J.D. Xiao, Magnetic Fe3O4@C/Cu and Fe3O4@CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Appl. Catal. B Environ. 144, 863–869 (2014). https://doi.org/10.1016/j.apcatb.2013.08.019
Z.X. Li, B.L. Yang, Y.F. Jiang, C.Y. Yu, L. Zhang, Metal-directed assembly of five 4-connected MOFs: one-pot syntheses of MOF-derived MxSy@C composites for photocatalytic degradation and supercapacitors. Cryst. Growth Des. 18(2), 979–992 (2018). https://doi.org/10.1021/acs.cgd.7b01463
S.K. Batabyal, S.E. Lu, J.J. Vittal, Synthesis, characterization, and photocatalytic properties of In2S3, ZnIn2S4, and CdIn2S4 nanocrystals. Cryst. Growth Des. 16(4), 2231–2238 (2016). https://doi.org/10.1021/acs.cgd.6b00050
X. Yang, J. Chen, J. Hu, S. Zhao, J. Zhao, X. Luo, Metal organic framework-derived Zn1−xCox–ZIF@Zn1−xCoxO hybrid photocatalyst with enhanced photocatalytic activity through synergistic effect. Catal. Sci. Technol. 8(2), 573–579 (2018). https://doi.org/10.1039/C7CY01979C
Y. Gong, X. Zhao, H. Zhang, B. Yang, K. Xiao et al., MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol a degradation with peroxymonosulfate under visible light irradiation. Appl. Catal. B Environ. 233, 35–45 (2018). https://doi.org/10.1016/j.apcatb.2018.03.077
Y. Jing, J. Wang, B. Yu, J. Lun, Y. Cheng et al., A MOF-derived ZIF-8@Zn1−xNixO photocatalyst with enhanced photocatalytic activity. RSC Adv. 7(67), 42030–42035 (2017). https://doi.org/10.1039/C7RA08763B
C. Yang, J. Cheng, Y. Chen, Y. Hu, CdS nanoparticles immobilized on porous carbon polyhedrons derived from a metal–organic framework with enhanced visible light photocatalytic activity for antibiotic degradation. Appl. Surf. Sci. 420, 252–259 (2017). https://doi.org/10.1016/j.apsusc.2017.05.102
B. Hu, J.Y. Yuan, J.Y. Tian, M. Wang, X. Wang, L. He, Z. Zhang, Z.W. Wang, C.S. Liu, Co/Fe-bimetallic organic framework-derived carbon-incorporated cobalt–ferric mixed metal phosphide as a highly efficient photocatalyst under visible light. J. Colloid Interface Sci. 531, 148–159 (2018). https://doi.org/10.1016/j.jcis.2018.07.037
S.J. Yang, J.H. Im, T. Kim, K. Lee, C.R. Park, MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity. J. Hazard. Mater. 186(1), 376–382 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.019