Bioinspired Vascular Bundle Structured Nanocellulose/PVDF-HFP Composite Membranes for Efficient Ion Transport and Stable All-Solid-State Lithium Batteries
Corresponding Author: Xiaoyan Ma
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 254
Abstract
In-situ polymerization of solid-state polymer electrolytes is a promising approach for achieving mass production of all-solid-state batteries. However, inferior ionic conductivity and separator infiltration limit practical applications. Inspired by the nutrient-transporting vascular bundles in plants, a biomimetic fluorinated nanocellulose/PVDF-HFP porous composite membrane of stacked parallel nanocellulose bundles wrapped by PVDF-HFP sheaths is designed and prepared. The nanocellulose bundles assembled of fluorinated cellulose nanocrystals and cellulose nanofibers through shear-induced alignment create low-curvature ion transport channels, while the PVDF-HFP sheath facilitates lithium salt dissociation and reinforces structural stability. Benefiting from this bundle-sheath structure, the composite membrane exhibits excellent ionic conductivity, stability, and electrolyte wettability. The polymer electrolyte prepared with this composite membrane has a high ionic conductivity of 2.46 × 10−4 S cm−1 (30 °C), an electrochemical stability window (5.3 V), and cycle stability. Consequently, Li||LFP cells can retain a superior capacity of 77.48% after 1000 cycles at 1 C, and Li||NCM811 cells can maintain 83.94% capacity after 300 cycles at 0.1 C. Moreover, pouch cells can withstand temperatures up to 130 °C without thermal runaway. This biomimetic strategy provides a promising pathway to advance cellulose separators for high-performance all-solid-state batteries.
Highlights:
1 Bioinspired bundle-sheath structure improves electrochemical and thermal stability; nanocellulose composite membranes can be used as high-performance all-solid-state lithium batteries separators.
2 The FFP/ASSPE has a high ionic conductivity of 2.46 × 10−4 S cm−1 at 30 °C.
3 Li|FFP/ASSPE|LFP cells can maintain 77.48% capacity after 1000 cycles at 1 C, and Li|FFP/ASSPE|NCM811 cells maintain 83.94% capacity after 300 cycles of 0.1 C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Xiong, Y. Liu, P. Jankowski, Q. Liu, F. Nitze et al., Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries. Adv. Funct. Mater. 30(22), 2001444 (2020). https://doi.org/10.1002/adfm.202001444
- X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
- N. Zhang, X. Zhao, G. Liu, Z. Peng, J. Wu et al., Solid electrolyte membranes for all-solid-state rechargeable batteries. eTransportation 20, 100319 (2024). https://doi.org/10.1016/j.etran.2024.100319
- Y. Chen, P. Qiu, J. Li, T. Liu, J. Wu, Mixed liquid-phase synthesis of high voltage halide electrolytes for high-performance all-solid-state lithium batteries. Chem. Eng. J. 515, 163713 (2025). https://doi.org/10.1016/j.cej.2025.163713
- P. Lei, G. Wu, H. Liu, X. Qi, M. Wu et al., Boosting ion conduction and moisture stability through Zn2+ substitution of chloride electrolytes for all-solid-state lithium batteries. Adv. Energy Mater. 15(24), 2405760 (2025). https://doi.org/10.1002/aenm.202405760
- H. Liu, S. Luo, Y. Yang, X. Zhao, G. Huang et al., In-situ polymerization formed self-healing quasi-solid electrolyte for high-loading lithium batteries. Energy Storage Mater. 78, 104250 (2025). https://doi.org/10.1016/j.ensm.2025.104250
- H. Gao, Y. Zhou, K. Wang, B. Li, S. Wang et al., An in situ polymerized solid-state electrolyte for uniform lithium deposition via the piezoelectric effects. Adv. Energy Mater. 15(28), 2501379 (2025). https://doi.org/10.1002/aenm.202501379
- H. Gao, V. Riesgo-Gonzalez, J.R. Runge, K. Yiamsawat, D. Spencer-Jolly et al., Recyclable Li-metal battery electrolytes via in situ cyclic carbonate polymerization. Adv. Sci. 12(32), e04206 (2025). https://doi.org/10.1002/advs.202504206
- N. Lingappan, W. Lee, S. Passerini, M. Pecht, A comprehensive review of separator membranes in lithium-ion batteries. Renew. Sustain. Energy Rev. 187, 113726 (2023). https://doi.org/10.1016/j.rser.2023.113726
- S.-W. Kim, K.-H. Lee, Y.-H. Lee, W.-J. Youe, J.-G. Gwon et al., Transparent and multi-foldable nanocellulose paper microsupercapacitors. Adv. Sci. 9(34), 2203720 (2022). https://doi.org/10.1002/advs.202203720
- P. Chen, X. Lin, B. Yang, Y. Gao, Y. Xiao et al., Cellulose separators for rechargeable batteries with high safety: advantages, strategies, and perspectives. Adv. Funct. Mater. 34(49), 2409368 (2024). https://doi.org/10.1002/adfm.202409368
- J.-Y. Seo, Y.-H. Lee, J.-H. Kim, Y.-K. Hong, W. Chen et al., Electrode-customized separator membranes based on self-assembled chiral nematic liquid crystalline cellulose nanocrystals as a natural material strategy for sustainable Li-metal batteries. Energy Storage Mater. 50, 783–791 (2022). https://doi.org/10.1016/j.ensm.2022.06.013
- W. Ping, B. Xue, F. Zhang, X. Huang, L. Chen et al., Ultrathin cellulose composite separator for high-energy density lithium-ion batteries. Adv. Funct. Mater. 36(1), e09803 (2026). https://doi.org/10.1002/adfm.202509803
- S. Yin, Y. Huang, Y. Liu, L. Cheng, M. Chen et al., Advanced composite solid electrolyte architecture constructed with amino-modified cellulose and carbon nitride via biosynthetic avenue. Adv. Funct. Mater. 34(24), 2314976 (2024). https://doi.org/10.1002/adfm.202314976
- S. Yin, Y. Huang, J. Han, Y. Wang, Y. Xu et al., Cellulosic all-solid-state electrolyte for lithium batteries fabricated via bio-synthetic avenue. Compos. Part B Eng. 254, 110566 (2023). https://doi.org/10.1016/j.compositesb.2023.110566
- S. Lv, J. Wang, Y. Zhai, Y. Chen, J. Yang et al., Lithium-ion dynamic interface engineering of nano-charged composite polymer electrolytes for solid-state lithium-metal batteries. Nano-Micro Lett. 18(1), 46 (2025). https://doi.org/10.1007/s40820-025-01899-7
- R. Wang, W. Dong, Z. Song, J. Tan, Q. Liu et al., Ion-conducting molecular-grafted sustainable cellulose quasi-solid composite electrolyte for high stability solid-state lithium-metal batteries. Adv. Funct. Mater. 34(37), 2402461 (2024). https://doi.org/10.1002/adfm.202402461
- Y. Liu, C. Li, C. Li, L. Xu, S. Zhou et al., Porous, robust, thermally stable, and flame retardant nanocellulose/polyimide separators for safe lithium-ion batteries. J. Mater. Chem. A 11(43), 23360–23369 (2023). https://doi.org/10.1039/d3ta05148j
- Z. Liang, C. Liang, W. Li, Z. Huang, H. Hu et al., Self-assembly construction of biomass aerogel with tip-to-based gradient porous structure to break trade-off effect for efficient water/oil separation. Adv. Funct. Mater. 35(24), 2424873 (2025). https://doi.org/10.1002/adfm.202424873
- J. Li, M. Yang, D. He, Z. Luo, B. Li et al., Genome-wide association study of stem structural characteristics that extracted by a high-throughput phenotypic analysis “LabelmeP rice” in rice. Plant J. 119(4), 2080–2095 (2024). https://doi.org/10.1111/tpj.16872
- Q. Zhu, T. Wang, X. Sun, Y. Wei, S. Zhang et al., Effects of fluorine-based modification on triboelectric properties of cellulose. Polymers 14(17), 3536 (2022). https://doi.org/10.3390/polym14173536
- G. Liu, C. Ji, J. Li, X. Pan, Facile preparation and properties of superhydrophobic nanocellulose membrane. Arab. J. Chem. 15(8), 103964 (2022). https://doi.org/10.1016/j.arabjc.2022.103964
- Q. Chen, C. Ouyang, Y. Liang, H. Liu, H. Duan, Composite polymer electrolyte with vertically aligned garnet scaffolds for quasi solid-state lithium batteries. Energy Storage Mater. 69, 103418 (2024). https://doi.org/10.1016/j.ensm.2024.103418
- X.-X. Wang, L.-N. Song, L.-J. Zheng, D.-H. Guan, C.-L. Miao et al., Polymers with intrinsic microporosity as solid ion conductors for solid-state lithium batteries. Angew. Chem. Int. Ed. 62(37), e202308837 (2023). https://doi.org/10.1002/anie.202308837
- Y. Yin, F. Yan, S. Li, Y. Chen, D. Guo et al., Nature-inspired strategy: novel borohydride-based solid electrolytes extracted from cathode-electrolyte interphase. Adv. Mater. 36(35), e2406632 (2024). https://doi.org/10.1002/adma.202406632
- Q. Wu, M. Fang, S. Jiao, S. Li, S. Zhang et al., Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 6296 (2023). https://doi.org/10.1038/s41467-023-41808-3
- Y. Wang, L. Wu, Z. Lin, M. Tang, P. Ding et al., Hydrogen bonds enhanced composite polymer electrolyte for high-voltage cathode of solid-state lithium battery. Nano Energy 96, 107105 (2022). https://doi.org/10.1016/j.nanoen.2022.107105
- W. Kou, Y. Zhang, W. Wu, Z. Guo, Q. Hua et al., Thin polymer electrolyte with MXene functional layer for uniform Li+ deposition in all-solid-state lithium battery. Green Energy Environ. 9(1), 71–80 (2024). https://doi.org/10.1016/j.gee.2022.05.002
- G. Tedeschi, S. Guzman-Puyol, L. Ceseracciu, J.J. Benitez, L. Goldoni et al., Waterproof-breathable films from multi-branched fluorinated cellulose esters. Carbohydr. Polym. 271, 118031 (2021). https://doi.org/10.1016/j.carbpol.2021.118031
- T. Wang, Y. Wang, C. Ji, Y. Li, H. Yang, All-cellulose-based flexible photonic films. Adv. Funct. Mater. 34(48), 2408464 (2024). https://doi.org/10.1002/adfm.202408464
- N. Das, I. Hafez, D.W. Bousfield, M. Tajvidi, Enhancement of cellulose nanofibril (CNF) film barrier properties by nanofibril alignment. Cellulose 31(12), 7385–7403 (2024). https://doi.org/10.1007/s10570-024-06078-2
- L. Li, P. Chen, L. Medina, L. Yang, Y. Nishiyama et al., Residual strain and nanostructural effects during drying of nanocellulose/clay nanosheet hybrids: synchrotron X-ray scattering results. ACS Nano 17(16), 15810–15820 (2023). https://doi.org/10.1021/acsnano.3c03664
- J. Xie, S.-Y. Sun, X. Chen, L.-P. Hou, B.-Q. Li et al., Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew. Chem. Int. Ed. 61(29), e202204776 (2022). https://doi.org/10.1002/anie.202204776
- Z. Ye, S. Xie, Z. Cao, L. Wang, D. Xu et al., High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater. 37, 378–386 (2021). https://doi.org/10.1016/j.ensm.2021.02.022
- Y. Liao, M. Zhou, L. Yuan, K. Huang, D. Wang et al., Eco-friendly tetrahydropyran enables weakly solvating “4S” electrolytes for lithium-metal batteries. Adv. Energy Mater. 13(32), 2301477 (2023). https://doi.org/10.1002/aenm.202301477
- S. Kalnaus, N.J. Dudney, A.S. Westover, E. Herbert, S. Hackney, Solid-state batteries: the critical role of mechanics. Science 381(6664), eabg5998 (2023). https://doi.org/10.1126/science.abg5998
- A. Szczęsna-Chrzan, M. Marczewski, J. Syzdek, M.K. Kochaniec, M. Smoliński et al., Lithium polymer electrolytes for novel batteries application: the review perspective. Appl. Phys. A 129(1), 37 (2022). https://doi.org/10.1007/s00339-022-06269-3
- T.M.W.J. Bandara, D.G.N. Karunathilaka, J.L. Ratnasekera, L. Ajith De Silva, A.C. Herath et al., Electrical and complex dielectric behaviour of composite polymer electrolyte based on PEO, alumina and tetrapropylammonium iodide. Ionics 23(7), 1711–1719 (2017). https://doi.org/10.1007/s11581-017-2016-y
- Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei et al., Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10(10), 2201718 (2023). https://doi.org/10.1002/advs.202201718
- S.C. Sand, J.L.M. Rupp, B. Yildiz, A critical review on Li-ion transport, chemistry and structure of ceramic–polymer composite electrolytes for solid state batteries. Chem. Soc. Rev. 54(1), 178–200 (2025). https://doi.org/10.1039/D4CS00214H
- J. Fu, Z. Li, X. Zhou, X. Guo, Ion transport in composite polymer electrolytes. Mater. Adv. 3(9), 3809–3819 (2022). https://doi.org/10.1039/d2ma00215a
- K. Daems, P. Yadav, K.B. Dermenci, J. Van Mierlo, M. Berecibar, Advances in inorganic, polymer and composite electrolytes: mechanisms of Lithium-ion transport and pathways to enhanced performance. Renew. Sustain. Energy Rev. 191, 114136 (2024). https://doi.org/10.1016/j.rser.2023.114136
- Y.-F. Huang, T. Gu, G. Rui, P. Shi, W. Fu et al., A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 14(11), 6021–6029 (2021). https://doi.org/10.1039/d1ee02663a
- Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4), 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
- Y.-T. Xu, S.-J. Dai, X.-F. Wang, X.-W. Wu, Y.-G. Guo et al., An ion-percolating electrolyte membrane for ultrahigh efficient and dendrite-free lithium metal batteries. InfoMat 5(12), e12498 (2023). https://doi.org/10.1002/inf2.12498
- P. Zhou, X. Zhang, Y. Xiang, K. Liu, Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries. Nano Res. 16(6), 8055–8071 (2023). https://doi.org/10.1007/s12274-022-4833-1
- G. Zhang, T. Zhang, Z. Zhang, R. He, Q. Wang et al., High-energy and fast-charging lithium metal batteries enabled by tuning Li+-solvation via electron-withdrawing and lithiophobicity functionality. Nat. Commun. 16(1), 4722 (2025). https://doi.org/10.1038/s41467-025-59967-w
- G. Hernández, T.K. Lee, M. Erdélyi, D. Brandell, J. Mindemark, Do non-coordinating polymers function as host materials for solid polymer electrolytes? The case of PVdF-HFP. J. Mater. Chem. A 11(28), 15329–15335 (2023). https://doi.org/10.1039/d3ta01853a
- D. Li, D. Zhang, Y. Ma, X. Yang, J. Xu et al., Janus-structured composite nanofiber membranes with heterointerfacial engineering for high-performance all-solid-state lithium metal batteries. Nano Energy 141, 111136 (2025). https://doi.org/10.1016/j.nanoen.2025.111136
- R. Feng, X. Zhang, S. Qing, M. Zheng, H. Wang, Stability of soluble bulk nanobubbles: many-body dissipative p dynamics analysis. J. Mol. Liq. 370, 120979 (2023). https://doi.org/10.1016/j.molliq.2022.120979
- Y. Cheng, Z. Cai, J. Xu, Z. Sun, X. Wu et al., Zwitterionic cellulose-based polymer electrolyte enabled by aqueous solution casting for high-performance solid-state batteries. Angew. Chem. Int. Ed. 63(30), e202400477 (2024). https://doi.org/10.1002/anie.202400477
- Y. Pan, H. Yu, Y. Zhang, Z. Wang, S. Wang et al., In-depth exploration of the effect mechanisms of various lithium salt anions in solid-state and liquid lithium metal batteries. J. Mater. Chem. A 12(27), 16447–16456 (2024). https://doi.org/10.1039/D4TA01939C
- X. Zhang, X. Cui, Y. Li, J. Yang, Q. Pan, A star-structured polymer electrolyte for low-temperature solid-state lithium batteries. Small Methods 8(12), e2400356 (2024). https://doi.org/10.1002/smtd.202400356
- Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
- M. Narayanasamy, S. Zaman, J.S. Kim, S. Jung, S.M. Naqvi et al., Synergistically inducing ultrafast ion diffusion and reversible charge transfer in lithium metal batteries using bimetallic molybdenum–titanium MXenes. ACS Nano 19(1), 1689–1701 (2025). https://doi.org/10.1021/acsnano.4c15493
- Z. Li, R. Yu, S. Weng, Q. Zhang, X. Wang et al., Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries. Nat. Commun. 14, 482 (2023). https://doi.org/10.1038/s41467-023-35857-x
- Y. Mu, Y. Chu, Y. Shi, C. Huang, L. Yang et al., Constructing robust LiF-enriched interfaces in high-voltage solid-state lithium batteries utilizing tailored oriented ceramic fiber electrolytes. Adv. Energy Mater. 14(25), 2400725 (2024). https://doi.org/10.1002/aenm.202400725
- Y. Jin, Q. He, G. Liu, Z. Gu, M. Wu et al., Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteries. Adv. Mater. 35(19), 2211047 (2023). https://doi.org/10.1002/adma.202211047
- H. Wang, Y. Yang, C. Gao, T. Chen, J. Song et al., An entanglement association polymer electrolyte for Li-metal batteries. Nat. Commun. 15(1), 2500 (2024). https://doi.org/10.1038/s41467-024-46883-8
- Y. Wang, Z. Wu, F.M. Azad, Y. Zhu, L. Wang et al., Fluorination in advanced battery design. Nat. Rev. Mater. 9(2), 119–133 (2024). https://doi.org/10.1038/s41578-023-00623-4
- X.X. Liu, L. Pan, H. Zhang, C. Liu, M. Cao et al., Indium-MOF as multifunctional promoter to remove ionic conductivity and electrochemical stability constraints on fluoropolymer electrolytes for all-solid-state lithium metal battery. Nano-Micro Lett. 17(1), 249 (2025). https://doi.org/10.1007/s40820-025-01760-x
References
S. Xiong, Y. Liu, P. Jankowski, Q. Liu, F. Nitze et al., Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries. Adv. Funct. Mater. 30(22), 2001444 (2020). https://doi.org/10.1002/adfm.202001444
X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
N. Zhang, X. Zhao, G. Liu, Z. Peng, J. Wu et al., Solid electrolyte membranes for all-solid-state rechargeable batteries. eTransportation 20, 100319 (2024). https://doi.org/10.1016/j.etran.2024.100319
Y. Chen, P. Qiu, J. Li, T. Liu, J. Wu, Mixed liquid-phase synthesis of high voltage halide electrolytes for high-performance all-solid-state lithium batteries. Chem. Eng. J. 515, 163713 (2025). https://doi.org/10.1016/j.cej.2025.163713
P. Lei, G. Wu, H. Liu, X. Qi, M. Wu et al., Boosting ion conduction and moisture stability through Zn2+ substitution of chloride electrolytes for all-solid-state lithium batteries. Adv. Energy Mater. 15(24), 2405760 (2025). https://doi.org/10.1002/aenm.202405760
H. Liu, S. Luo, Y. Yang, X. Zhao, G. Huang et al., In-situ polymerization formed self-healing quasi-solid electrolyte for high-loading lithium batteries. Energy Storage Mater. 78, 104250 (2025). https://doi.org/10.1016/j.ensm.2025.104250
H. Gao, Y. Zhou, K. Wang, B. Li, S. Wang et al., An in situ polymerized solid-state electrolyte for uniform lithium deposition via the piezoelectric effects. Adv. Energy Mater. 15(28), 2501379 (2025). https://doi.org/10.1002/aenm.202501379
H. Gao, V. Riesgo-Gonzalez, J.R. Runge, K. Yiamsawat, D. Spencer-Jolly et al., Recyclable Li-metal battery electrolytes via in situ cyclic carbonate polymerization. Adv. Sci. 12(32), e04206 (2025). https://doi.org/10.1002/advs.202504206
N. Lingappan, W. Lee, S. Passerini, M. Pecht, A comprehensive review of separator membranes in lithium-ion batteries. Renew. Sustain. Energy Rev. 187, 113726 (2023). https://doi.org/10.1016/j.rser.2023.113726
S.-W. Kim, K.-H. Lee, Y.-H. Lee, W.-J. Youe, J.-G. Gwon et al., Transparent and multi-foldable nanocellulose paper microsupercapacitors. Adv. Sci. 9(34), 2203720 (2022). https://doi.org/10.1002/advs.202203720
P. Chen, X. Lin, B. Yang, Y. Gao, Y. Xiao et al., Cellulose separators for rechargeable batteries with high safety: advantages, strategies, and perspectives. Adv. Funct. Mater. 34(49), 2409368 (2024). https://doi.org/10.1002/adfm.202409368
J.-Y. Seo, Y.-H. Lee, J.-H. Kim, Y.-K. Hong, W. Chen et al., Electrode-customized separator membranes based on self-assembled chiral nematic liquid crystalline cellulose nanocrystals as a natural material strategy for sustainable Li-metal batteries. Energy Storage Mater. 50, 783–791 (2022). https://doi.org/10.1016/j.ensm.2022.06.013
W. Ping, B. Xue, F. Zhang, X. Huang, L. Chen et al., Ultrathin cellulose composite separator for high-energy density lithium-ion batteries. Adv. Funct. Mater. 36(1), e09803 (2026). https://doi.org/10.1002/adfm.202509803
S. Yin, Y. Huang, Y. Liu, L. Cheng, M. Chen et al., Advanced composite solid electrolyte architecture constructed with amino-modified cellulose and carbon nitride via biosynthetic avenue. Adv. Funct. Mater. 34(24), 2314976 (2024). https://doi.org/10.1002/adfm.202314976
S. Yin, Y. Huang, J. Han, Y. Wang, Y. Xu et al., Cellulosic all-solid-state electrolyte for lithium batteries fabricated via bio-synthetic avenue. Compos. Part B Eng. 254, 110566 (2023). https://doi.org/10.1016/j.compositesb.2023.110566
S. Lv, J. Wang, Y. Zhai, Y. Chen, J. Yang et al., Lithium-ion dynamic interface engineering of nano-charged composite polymer electrolytes for solid-state lithium-metal batteries. Nano-Micro Lett. 18(1), 46 (2025). https://doi.org/10.1007/s40820-025-01899-7
R. Wang, W. Dong, Z. Song, J. Tan, Q. Liu et al., Ion-conducting molecular-grafted sustainable cellulose quasi-solid composite electrolyte for high stability solid-state lithium-metal batteries. Adv. Funct. Mater. 34(37), 2402461 (2024). https://doi.org/10.1002/adfm.202402461
Y. Liu, C. Li, C. Li, L. Xu, S. Zhou et al., Porous, robust, thermally stable, and flame retardant nanocellulose/polyimide separators for safe lithium-ion batteries. J. Mater. Chem. A 11(43), 23360–23369 (2023). https://doi.org/10.1039/d3ta05148j
Z. Liang, C. Liang, W. Li, Z. Huang, H. Hu et al., Self-assembly construction of biomass aerogel with tip-to-based gradient porous structure to break trade-off effect for efficient water/oil separation. Adv. Funct. Mater. 35(24), 2424873 (2025). https://doi.org/10.1002/adfm.202424873
J. Li, M. Yang, D. He, Z. Luo, B. Li et al., Genome-wide association study of stem structural characteristics that extracted by a high-throughput phenotypic analysis “LabelmeP rice” in rice. Plant J. 119(4), 2080–2095 (2024). https://doi.org/10.1111/tpj.16872
Q. Zhu, T. Wang, X. Sun, Y. Wei, S. Zhang et al., Effects of fluorine-based modification on triboelectric properties of cellulose. Polymers 14(17), 3536 (2022). https://doi.org/10.3390/polym14173536
G. Liu, C. Ji, J. Li, X. Pan, Facile preparation and properties of superhydrophobic nanocellulose membrane. Arab. J. Chem. 15(8), 103964 (2022). https://doi.org/10.1016/j.arabjc.2022.103964
Q. Chen, C. Ouyang, Y. Liang, H. Liu, H. Duan, Composite polymer electrolyte with vertically aligned garnet scaffolds for quasi solid-state lithium batteries. Energy Storage Mater. 69, 103418 (2024). https://doi.org/10.1016/j.ensm.2024.103418
X.-X. Wang, L.-N. Song, L.-J. Zheng, D.-H. Guan, C.-L. Miao et al., Polymers with intrinsic microporosity as solid ion conductors for solid-state lithium batteries. Angew. Chem. Int. Ed. 62(37), e202308837 (2023). https://doi.org/10.1002/anie.202308837
Y. Yin, F. Yan, S. Li, Y. Chen, D. Guo et al., Nature-inspired strategy: novel borohydride-based solid electrolytes extracted from cathode-electrolyte interphase. Adv. Mater. 36(35), e2406632 (2024). https://doi.org/10.1002/adma.202406632
Q. Wu, M. Fang, S. Jiao, S. Li, S. Zhang et al., Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 6296 (2023). https://doi.org/10.1038/s41467-023-41808-3
Y. Wang, L. Wu, Z. Lin, M. Tang, P. Ding et al., Hydrogen bonds enhanced composite polymer electrolyte for high-voltage cathode of solid-state lithium battery. Nano Energy 96, 107105 (2022). https://doi.org/10.1016/j.nanoen.2022.107105
W. Kou, Y. Zhang, W. Wu, Z. Guo, Q. Hua et al., Thin polymer electrolyte with MXene functional layer for uniform Li+ deposition in all-solid-state lithium battery. Green Energy Environ. 9(1), 71–80 (2024). https://doi.org/10.1016/j.gee.2022.05.002
G. Tedeschi, S. Guzman-Puyol, L. Ceseracciu, J.J. Benitez, L. Goldoni et al., Waterproof-breathable films from multi-branched fluorinated cellulose esters. Carbohydr. Polym. 271, 118031 (2021). https://doi.org/10.1016/j.carbpol.2021.118031
T. Wang, Y. Wang, C. Ji, Y. Li, H. Yang, All-cellulose-based flexible photonic films. Adv. Funct. Mater. 34(48), 2408464 (2024). https://doi.org/10.1002/adfm.202408464
N. Das, I. Hafez, D.W. Bousfield, M. Tajvidi, Enhancement of cellulose nanofibril (CNF) film barrier properties by nanofibril alignment. Cellulose 31(12), 7385–7403 (2024). https://doi.org/10.1007/s10570-024-06078-2
L. Li, P. Chen, L. Medina, L. Yang, Y. Nishiyama et al., Residual strain and nanostructural effects during drying of nanocellulose/clay nanosheet hybrids: synchrotron X-ray scattering results. ACS Nano 17(16), 15810–15820 (2023). https://doi.org/10.1021/acsnano.3c03664
J. Xie, S.-Y. Sun, X. Chen, L.-P. Hou, B.-Q. Li et al., Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew. Chem. Int. Ed. 61(29), e202204776 (2022). https://doi.org/10.1002/anie.202204776
Z. Ye, S. Xie, Z. Cao, L. Wang, D. Xu et al., High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater. 37, 378–386 (2021). https://doi.org/10.1016/j.ensm.2021.02.022
Y. Liao, M. Zhou, L. Yuan, K. Huang, D. Wang et al., Eco-friendly tetrahydropyran enables weakly solvating “4S” electrolytes for lithium-metal batteries. Adv. Energy Mater. 13(32), 2301477 (2023). https://doi.org/10.1002/aenm.202301477
S. Kalnaus, N.J. Dudney, A.S. Westover, E. Herbert, S. Hackney, Solid-state batteries: the critical role of mechanics. Science 381(6664), eabg5998 (2023). https://doi.org/10.1126/science.abg5998
A. Szczęsna-Chrzan, M. Marczewski, J. Syzdek, M.K. Kochaniec, M. Smoliński et al., Lithium polymer electrolytes for novel batteries application: the review perspective. Appl. Phys. A 129(1), 37 (2022). https://doi.org/10.1007/s00339-022-06269-3
T.M.W.J. Bandara, D.G.N. Karunathilaka, J.L. Ratnasekera, L. Ajith De Silva, A.C. Herath et al., Electrical and complex dielectric behaviour of composite polymer electrolyte based on PEO, alumina and tetrapropylammonium iodide. Ionics 23(7), 1711–1719 (2017). https://doi.org/10.1007/s11581-017-2016-y
Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei et al., Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10(10), 2201718 (2023). https://doi.org/10.1002/advs.202201718
S.C. Sand, J.L.M. Rupp, B. Yildiz, A critical review on Li-ion transport, chemistry and structure of ceramic–polymer composite electrolytes for solid state batteries. Chem. Soc. Rev. 54(1), 178–200 (2025). https://doi.org/10.1039/D4CS00214H
J. Fu, Z. Li, X. Zhou, X. Guo, Ion transport in composite polymer electrolytes. Mater. Adv. 3(9), 3809–3819 (2022). https://doi.org/10.1039/d2ma00215a
K. Daems, P. Yadav, K.B. Dermenci, J. Van Mierlo, M. Berecibar, Advances in inorganic, polymer and composite electrolytes: mechanisms of Lithium-ion transport and pathways to enhanced performance. Renew. Sustain. Energy Rev. 191, 114136 (2024). https://doi.org/10.1016/j.rser.2023.114136
Y.-F. Huang, T. Gu, G. Rui, P. Shi, W. Fu et al., A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 14(11), 6021–6029 (2021). https://doi.org/10.1039/d1ee02663a
Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4), 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
Y.-T. Xu, S.-J. Dai, X.-F. Wang, X.-W. Wu, Y.-G. Guo et al., An ion-percolating electrolyte membrane for ultrahigh efficient and dendrite-free lithium metal batteries. InfoMat 5(12), e12498 (2023). https://doi.org/10.1002/inf2.12498
P. Zhou, X. Zhang, Y. Xiang, K. Liu, Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries. Nano Res. 16(6), 8055–8071 (2023). https://doi.org/10.1007/s12274-022-4833-1
G. Zhang, T. Zhang, Z. Zhang, R. He, Q. Wang et al., High-energy and fast-charging lithium metal batteries enabled by tuning Li+-solvation via electron-withdrawing and lithiophobicity functionality. Nat. Commun. 16(1), 4722 (2025). https://doi.org/10.1038/s41467-025-59967-w
G. Hernández, T.K. Lee, M. Erdélyi, D. Brandell, J. Mindemark, Do non-coordinating polymers function as host materials for solid polymer electrolytes? The case of PVdF-HFP. J. Mater. Chem. A 11(28), 15329–15335 (2023). https://doi.org/10.1039/d3ta01853a
D. Li, D. Zhang, Y. Ma, X. Yang, J. Xu et al., Janus-structured composite nanofiber membranes with heterointerfacial engineering for high-performance all-solid-state lithium metal batteries. Nano Energy 141, 111136 (2025). https://doi.org/10.1016/j.nanoen.2025.111136
R. Feng, X. Zhang, S. Qing, M. Zheng, H. Wang, Stability of soluble bulk nanobubbles: many-body dissipative p dynamics analysis. J. Mol. Liq. 370, 120979 (2023). https://doi.org/10.1016/j.molliq.2022.120979
Y. Cheng, Z. Cai, J. Xu, Z. Sun, X. Wu et al., Zwitterionic cellulose-based polymer electrolyte enabled by aqueous solution casting for high-performance solid-state batteries. Angew. Chem. Int. Ed. 63(30), e202400477 (2024). https://doi.org/10.1002/anie.202400477
Y. Pan, H. Yu, Y. Zhang, Z. Wang, S. Wang et al., In-depth exploration of the effect mechanisms of various lithium salt anions in solid-state and liquid lithium metal batteries. J. Mater. Chem. A 12(27), 16447–16456 (2024). https://doi.org/10.1039/D4TA01939C
X. Zhang, X. Cui, Y. Li, J. Yang, Q. Pan, A star-structured polymer electrolyte for low-temperature solid-state lithium batteries. Small Methods 8(12), e2400356 (2024). https://doi.org/10.1002/smtd.202400356
Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
M. Narayanasamy, S. Zaman, J.S. Kim, S. Jung, S.M. Naqvi et al., Synergistically inducing ultrafast ion diffusion and reversible charge transfer in lithium metal batteries using bimetallic molybdenum–titanium MXenes. ACS Nano 19(1), 1689–1701 (2025). https://doi.org/10.1021/acsnano.4c15493
Z. Li, R. Yu, S. Weng, Q. Zhang, X. Wang et al., Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries. Nat. Commun. 14, 482 (2023). https://doi.org/10.1038/s41467-023-35857-x
Y. Mu, Y. Chu, Y. Shi, C. Huang, L. Yang et al., Constructing robust LiF-enriched interfaces in high-voltage solid-state lithium batteries utilizing tailored oriented ceramic fiber electrolytes. Adv. Energy Mater. 14(25), 2400725 (2024). https://doi.org/10.1002/aenm.202400725
Y. Jin, Q. He, G. Liu, Z. Gu, M. Wu et al., Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteries. Adv. Mater. 35(19), 2211047 (2023). https://doi.org/10.1002/adma.202211047
H. Wang, Y. Yang, C. Gao, T. Chen, J. Song et al., An entanglement association polymer electrolyte for Li-metal batteries. Nat. Commun. 15(1), 2500 (2024). https://doi.org/10.1038/s41467-024-46883-8
Y. Wang, Z. Wu, F.M. Azad, Y. Zhu, L. Wang et al., Fluorination in advanced battery design. Nat. Rev. Mater. 9(2), 119–133 (2024). https://doi.org/10.1038/s41578-023-00623-4
X.X. Liu, L. Pan, H. Zhang, C. Liu, M. Cao et al., Indium-MOF as multifunctional promoter to remove ionic conductivity and electrochemical stability constraints on fluoropolymer electrolytes for all-solid-state lithium metal battery. Nano-Micro Lett. 17(1), 249 (2025). https://doi.org/10.1007/s40820-025-01760-x