Facilitated Polysulfide Redox Conversion by Delocalized Electrons in MBene Heterointerface for Highly Stable Lithium–Sulfur Batteries
Corresponding Author: Jun Pu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 252
Abstract
The shuttle effect of lithium polysulfides (LiPSs) and sluggish redox kinetics severely restrict the development of high-energy lithium–sulfur (Li–S) batteries. To alleviate this issue, this study adopts an in situ design strategy to construct tungsten carbide (WC) nanocrystals on the surface of two-dimensional (2D) tungsten boride (WB)-based MBene, creatively forming a WB@WC heterostructure to optimize the adsorption–migration–catalysis mechanism of LiPSs. The WB–WC heterointerface reduces the reaction energy barrier of LiPSs due to the electron delocalization effect and promotes the deposition/dissociation of Li2S and the transfer of charge. In situ Raman verified that WB@WC can effectively inhibit LiPSs shuttling. In situ X-ray absorption fine structure spectroscopy (XAFS) characterizations further explored the dynamic change of W valence state during LiPSs redox cycle. Encouragingly, the WB@WC-modified Li–S cell delivers an initial capacity of 1277 mAh g−1 at 0.2 C. It exhibits extremely stable cycling performance at 2 C, with a low-capacity decay rate of only ~ 0.024% per cycle. Even under sulfur loading of 7.92 mg cm−2, high capacity of 7.9 mAh cm−2 can still be achieved. This work provides an effective method for regulating the activity of MBene-based catalysts.
Highlights:
1 A multifunctional 2D tungsten boride (WB)@tungsten carbide (WC) heterostructure was innovatively fabricated by a fluorine-free MBene etching process and in situ carbonization technology.
2 The enhanced local electron delocalization effect at the heterointerface effectively suppressed the shuttle effect and improved the reaction kinetics, achieving an area capacity of up to 7.9 mAh cm−2 and a capacity attenuation as low as ~ 0.024% per cycle.
3 In situ X-ray absorption spectroscopy verified the catalytic mechanism of WB-based MBene.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Zhao, Y. Pan, S. Yi, Z. Su, H. Chen et al., Enhanced electron delocalization within coherent nano-heterocrystal ensembles for optimizing polysulfide conversion in high-energy-density Li-S batteries. Adv. Mater. 36(13), 2310052 (2024). https://doi.org/10.1002/adma.202310052
- H. Zhang, M. Zhang, R. Liu, T. He, L. Xiang et al., Fe3O4-doped mesoporous carbon cathode with a plumber’s nightmare structure for high-performance Li-S batteries. Nat. Commun. 15(1), 5451 (2024). https://doi.org/10.1038/s41467-024-49826-5
- X. Wu, M. Wang, H. Pan, X. Sun, S. Tang et al., Developing high-energy, stable all-solid-state lithium batteries using aluminum-based anodes and high-nickel cathodes. Nano-Micro Lett. 17(1), 239 (2025). https://doi.org/10.1007/s40820-025-01751-y
- L. Ren, J. Liu, A.H. Pato, Y. Wang, X. Lu et al., Rational design of nanoarray structures for lithium–sulfur batteries: recent advances and future prospects. Mater. Futures 2(4), 042103 (2023). https://doi.org/10.1088/2752-5724/ace7e4
- J. Zhang, F. Liu, R. He, Q. Guan, N. Tian et al., Taming interfacial ion-dipole interactions with d-orbital delocalized electron catalysis expediates low-temperature Li metal batteries. Adv. Mater. (2025). https://doi.org/10.1002/adma.202510894
- Z. Zhou, L. Cui, J. Wang, H. Wang, C. Ma et al., Constructing a conductive Mott-Schottky heterostructure with built-in electric field effect as modified separator to accelerate bidirectional redox kinetics for high-performance lithium–sulfur batteries. ACS Sustainable Chem. Eng. 13(32), 13009–13019 (2025). https://doi.org/10.1021/acssuschemeng.5c04283
- J. Wu, B. Zhang, Z. Zhao, Y. Hou, Y. Wang et al., Breaking boundaries: advancing trisulfur radical-mediated catalysis for high-performance lithium-sulfur batteries. Nano-Micro Lett. 17(1), 213 (2025). https://doi.org/10.1007/s40820-025-01710-7
- X. Liu, X.-R. Sun, R. Yan, J. Yang, M. Wu et al., Structural and functional optimization of lithium-sulfur battery separators by sulfur-containing of covalent organic frameworks. Adv. Funct. Mater. 35(41), 2505986 (2025). https://doi.org/10.1002/adfm.202505986
- S. Xia, X. Xu, W. Wu, Y. Chen, L. Liu et al., Advancements in functionalized high-performance separators for lithium-sulfur batteries. Mater. Sci. Eng. R. Rep. 163, 100924 (2025). https://doi.org/10.1016/j.mser.2025.100924
- J. Offermann, S.N. Ul Haq, K.-X. Wang, R. Adelung, S.-H. Chang et al., Fast-charging lithium–sulfur batteries. Adv. Energy Mater. 15(26), 2404383 (2025). https://doi.org/10.1002/aenm.202404383
- Q. Gu, Y. Cao, J. Chen, Y. Qi, Z. Zhai et al., Fluorine-modulated MXene-derived catalysts for multiphase sulfur conversion in lithium-sulfur battery. Nano-Micro Lett. 16(1), 266 (2024). https://doi.org/10.1007/s40820-024-01482-6
- Y. Zhuang, H. Yang, Y. Li, Y. Zhao, H. Min et al., Curvature-induced electron delocalization activates the bifunctional catalytic activity of COF/MXene for high-performance lithium–sulfur batteries. ACS Nano 19(11), 11058–11074 (2025). https://doi.org/10.1021/acsnano.4c17087
- L. Zhao, Z. Jiang, Z. Peng, T. Ding, G. Yan et al., High catalytic performance of M2B2 MBenes in aqueous Li–N2 battery cathodes: a theoretical study. Langmuir 41(37), 25416–25430 (2025). https://doi.org/10.1021/acs.langmuir.5c03170
- J. Zhou, J. Palisaitis, J. Halim, M. Dahlqvist, Q. Tao et al., Boridene: two-dimensional Mo4/3B2-x with ordered metal vacancies obtained by chemical exfoliation. Science 373(6556), 801–805 (2021). https://doi.org/10.1126/science.abf6239
- Z. Li, P. Li, X. Meng, Z. Lin, R. Wang, The interfacial electronic engineering in binary sulfiphilic cobalt boride heterostructure nanosheets for upgrading energy density and longevity of lithium-sulfur batteries. Adv. Mater. 33(42), 2102338 (2021). https://doi.org/10.1002/adma.202102338
- B. Guan, Y. Zhang, L. Fan, X. Wu, M. Wang et al., Blocking polysulfide with Co2B@CNT via “synergetic adsorptive effect” toward ultrahigh-rate capability and robust lithium–sulfur battery. ACS Nano 13(6), 6742–6750 (2019). https://doi.org/10.1021/acsnano.9b01329
- X.-H. Zha, P. Xu, Q. Huang, S. Du, R.-Q. Zhang, Mo2B, an MBene member with high electrical and thermal conductivities, and satisfactory performances in lithium ion batteries. Nanoscale Adv. 2(1), 347–355 (2020). https://doi.org/10.1039/c9na00610a
- L. Chkhartishvili, I. Murusidze, R. Becker, Electronic structure of boron flat holeless sheet. Condensed Matter 4(1), 28 (2019). https://doi.org/10.3390/condmat4010028
- H. Qin, A. Liu, K. Ouyang, S. Chen, S. Wei et al., An MBene-based colloidal electrolyte for high depth-of-discharge and energy-density 2 Ah-scale Zn metal batteries. Energy Environ. Sci. 18(19), 8941–8951 (2025). https://doi.org/10.1039/d5ee02723c
- Y. Zhao, C. Liu, C. Zha, J. Li, C. Lyu et al., Tailoring WB morphology enables d-band centers to be highly active for high-performance lithium-sulfur battery. Chin. Chem. Lett. 34(11), 108189 (2023). https://doi.org/10.1016/j.cclet.2023.108189
- G. Wu, Y. Fan, Z. Shen, J. Li, S. Yang et al., Boron vacancy engineering in 2D WB-based MBene catalysts for optimizing lithium polysulfide reactions. Small 21(37), e05919 (2025). https://doi.org/10.1002/smll.202505919
- T. Wang, J. He, Z. Zhu, X.-B. Cheng, J. Zhu et al., Heterostructures regulating lithium polysulfides for advanced lithium-sulfur batteries. Adv. Mater. 35(47), e2303520 (2023). https://doi.org/10.1002/adma.202303520
- L. Zhang, Y. Liu, Z. Zhao, P. Jiang, T. Zhang et al., Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal–organic frameworks toward high-performance Li–S batteries. ACS Nano 14(7), 8495–8507 (2020). https://doi.org/10.1021/acsnano.0c02762
- J. Pu, Z. Wang, P. Xue, K. Zhu, J. Li et al., The effect of NiO-Ni3N interfaces in in-situ formed heterostructure ultrafine nanops on enhanced polysulfide regulation in lithium-sulfur batteries. J. Energy Chem. 68, 762–770 (2022). https://doi.org/10.1016/j.jechem.2021.12.043
- W. Wang, L. Bai, N. Li, S. Zhao, X. Shi et al., Selenium-doping metal phosphides as bifunctional catalyst carrier for durable lithium-sulfur batteries. Chin. Chem. Lett. 36(10), 110938 (2025). https://doi.org/10.1016/j.cclet.2025.110938
- L. Liang, L. Niu, T. Wu, D. Zhou, Z. Xiao, Fluorine-free fabrication of MXene via photo-Fenton approach for advanced lithium-sulfur batteries. ACS Nano 16(5), 7971–7981 (2022). https://doi.org/10.1021/acsnano.2c00779
- J. Pu, S. Fan, Z. Shen, J. Yin, Y. Tan et al., F-free fabrication novel 2D Mo-based MBene catalyst for advanced lithium–sulfur batteries. Adv. Funct. Mater. 35(25), 2424215 (2025). https://doi.org/10.1002/adfm.202424215
- M. Li, Y. Wang, T. Li, J. Li, L. Huang et al., Hierarchical few-layer fluorine-free Ti3C2Tx (T = O, OH)/MoS2 hybrid for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 9(2), 922–927 (2021). https://doi.org/10.1039/D0TA08762A
- W. Hua, T. Shang, H. Li, Y. Sun, Y. Guo et al., Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis. Nat. Catal. 6(2), 174–184 (2023). https://doi.org/10.1038/s41929-023-00912-9
- C. Roy, S. Mondal, P. Banerjee, S. Bhattacharyya, Low temperature atmospheric synthesis of WAlB and Mn2AlB2 MAB phases by modified molten salt shielded synthesis method. Adv. Powder Technol. 34(4), 103983 (2023). https://doi.org/10.1016/j.apt.2023.103983
- P.J. Richardson, V.J. Keast, D.T. Cuskelly, E.H. Kisi, Theoretical and experimental investigation of the W-Al-B and Mo-Al-B systems to approach bulk WAlB synthesis. J. Eur. Ceram. Soc. 41(3), 1859–1868 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.066
- L. Wang, Z. Xu, C.-H. Kuo, J. Peng, F. Hu et al., Stabilizing low-valence single atoms by constructing metalloid tungsten carbide supports for efficient hydrogen oxidation and evolution. Angew. Chem. Int. Ed. 62(42), e202311937 (2023). https://doi.org/10.1002/anie.202311937
- Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang et al., Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett. 15(6), 3780–3786 (2015). https://doi.org/10.1021/acs.nanolett.5b00367
- Y. Chen, X. Zhang, Q. Chen, D. Cai, C. Zhang et al., Self-supported tungsten nitride and carbide heterostructures with vanadium doping tandemly catalyze the conversion of polysulfides for lithium-sulfur batteries. Adv. Funct. Mater. 35(1), 2411941 (2025). https://doi.org/10.1002/adfm.202411941
- B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou et al., Optimized catalytic WS2–WO3 heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 10(15), 2000091 (2020). https://doi.org/10.1002/aenm.202000091
- S.-H. Moon, J.-H. Kim, J.-H. Shin, J.-S. Jang, S.-B. Kim et al., High absorption and fast polysulfides conversion of duel functional separator based on mesoporous-WC/rGO composite for lithium-sulfur batteries. J. Alloys Compd. 904, 164120 (2022). https://doi.org/10.1016/j.jallcom.2022.164120
- Z. Shen, M. Cao, Z. Zhang, J. Pu, C. Zhong et al., Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium–sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 30(3), 1906661 (2020). https://doi.org/10.1002/adfm.201906661
- H. Li, G. Chen, K. Zhang, L. Wang, G. Li, Dually sulphophilic chromium boride nanocatalyst boosting sulfur conversion kinetics toward high-performance lithium–sulfur batteries. Adv. Sci. 10(32), 2303830 (2023). https://doi.org/10.1002/advs.202303830
- L. He, Y. Cheng, Q. Li, H. Zhao, M. Wang et al., Intermetallic niobium boride toward efficient adsorption and catalysis of polysulfides in Lithium-Sulfur batteries. Chem. Eng. J. 453, 139566 (2023). https://doi.org/10.1016/j.cej.2022.139566
- Y. van der Meer, E.J.M. Hensen, J.A.R. van Veen, A.M. van der Kraan, Characterization and thiophene hydrodesulfurization activity of amorphous-silica–alumina-supported NiW catalysts. J. Catal. 228(2), 433–446 (2004). https://doi.org/10.1016/j.jcat.2004.09.019
- Y. Zhu, S. Yang, Z. Wei, H. He, Y. Zhu et al., Revealing dynamic sulfidation of WC-WO3 heterogeneous nanops: in situ formation of WS2 facilitates sulfur redox in Li–S battery. Carbon 232, 119790 (2025). https://doi.org/10.1016/j.carbon.2024.119790
- M. Xi, H. Zhang, L. Yang, Y. Long, Y. Zhao et al., Electronic structure engineering of single-atom tungsten on vacancy-enriched V3S4 nanosheets for efficient hydrogen evolution. Adv. Sci. 12(1), 2409855 (2025). https://doi.org/10.1002/advs.202409855
- J. Guo, L. Chen, L. Wang, K. Liu, T. He et al., Te-modulated Fe single atom with synergistic bidirectional catalysis for high-rate and long-cycling lithium-sulfur battery. Nano-Micro Lett. 18(1), 31 (2025). https://doi.org/10.1007/s40820-025-01873-3
- J. Pu, T. Wang, X. Zhu, Y. Tan, L. Gao et al., Multifunctional Ni/NiO heterostructure nanops doped carbon nanorods modified separator for enhancing Li–S battery performance. Electrochim. Acta 435, 141396 (2022). https://doi.org/10.1016/j.electacta.2022.141396
- X. Kang, T. He, H. Dang, X. Li, Y. Wang et al., Designing amino functionalized titanium-organic framework on separators toward sieving and redistribution of polysulfides in lithium-sulfur batteries. Nano-Micro Lett. 17(1), 277 (2025). https://doi.org/10.1007/s40820-025-01733-0
- G. Zeng, Y. Liu, D. Chen, C. Zhen, Y. Han et al., Natural lepidolite enables fast polysulfide redox for high-rate lithium sulfur batteries. Adv. Energy Mater. 11(44), 2102058 (2021). https://doi.org/10.1002/aenm.202102058
- Y.-Q. Feng, Q.-Q. Lu, H. Liu, Defective MnO2 functional separator coating as effective polysulfide mediators for lithium–sulfur batteries. Tungsten 6(3), 536–543 (2024). https://doi.org/10.1007/s42864-023-00259-5
- N. Lingappan, W. Lee, S. Passerini, M. Pecht, A comprehensive review of separator membranes in lithium-ion batteries. Renew. Sustain. Energy Rev. 187, 113726 (2023). https://doi.org/10.1016/j.rser.2023.113726
- Y. Mao, Y. Zhang, M. Su, Y. Ning, J. Shao et al., Synergetic insights into Nb single atoms and lithiophilic support for high-efficiency sulfur catalysis in Li–S batteries. Energy Environ. Sci. 18(18), 8631–8644 (2025). https://doi.org/10.1039/d5ee02048d
- M. Canini, D. Callegari, M. Bianchini, E. Quartarone, Solid-state vs. spray-drying synthesis for Mg-doped P2–Na0.67Fe0.5Mn0.5O2 as a cathode material for sodium-ion batteries. J. Mater. Chem. A 13(37), 31221–31235 (2025). https://doi.org/10.1039/d5ta04988a
- C. Xi, S. Hao, X. Wang, L. Bi, Z. Lin et al., Harnessing supercooled liquid sulfur for enhanced electrochemical performance in nanoporous metal-based lithium–sulfur batteries. ACS Mater. Lett. 7(11), 3611–3618 (2025). https://doi.org/10.1021/acsmaterialslett.5c01173
- L. Zheng, Z. Li, R. Liu, L. Xiong, M. Hao et al., Nanoconfined VO2 in hierarchical mesoporous carbon nanotube for high-performance lithium-sulfur batteries. Nano Lett. 25(33), 12685–12693 (2025). https://doi.org/10.1021/acs.nanolett.5c03086
- Y. Li, F. Lu, K. Zong, J. Wang, L. Pan et al., Fe3O4/Fe2N heterostructured hollow microspheres as functional electrocatalysts for high stability lithium-sulfur batteries. Nano Energy 139, 110949 (2025). https://doi.org/10.1016/j.nanoen.2025.110949
- P. Xue, K. Zhu, W. Gong, J. Pu, X. Li et al., One stone two birds” design for dual-functional TiO2-TiN heterostructures enabled dendrite-free and kinetics-enhanced lithium–sulfur batteries. Adv. Energy Mater. 12(18), 2200308 (2022). https://doi.org/10.1002/aenm.202200308
- T. You, H. Sun, W. Hua, S. Geng, Z. Hu et al., Insights into co-catalytic single-atom-support interactions for boosting sulfur reduction electrocatalysis. Angew. Chem. Int. Ed. 64(16), e202425144 (2025). https://doi.org/10.1002/anie.202425144
- W. Hua, H. Li, Z. Hu, T. You, J. Qie et al., Phase engineering of 2D telluride crystals for sulfur catalysis in batteries. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202501963
- Y. Li, Y. Zuo, X. Li, Y. Zhang, C. Ma et al., Electron delocalization-enhanced sulfur reduction kinetics on an MXene-derived heterostructured electrocatalyst. Nano Res. 17(8), 7153–7162 (2024). https://doi.org/10.1007/s12274-024-6682-6
- Q. He, W. Chen, B. Fan, Q. Wei, Y. Zou, Abundant adsorption and catalytic sites of the CoS2/MoS2 heterostructure for enhanced reversible kinetics in polysulfide conversion. J. Energy Chem. 107, 570–581 (2025). https://doi.org/10.1016/j.jechem.2025.03.050
- G. Cai, H. Lv, G. Zhang, D. Liu, J. Zhang et al., A volcano correlation between catalytic activity for sulfur reduction reaction and Fe atom count in metal center. J. Am. Chem. Soc. 146(19), 13055–13065 (2024). https://doi.org/10.1021/jacs.3c14312
- C. Huang, J. Yu, Y.Z. Chao, Z. Cui, R. He et al., Anionic doping in layered transition metal chalcogenides for robust lithium-sulfur batteries. Angew. Chem. Int. Ed. 64(8), e202420488 (2025). https://doi.org/10.1002/anie.202420488
- P. Zhang, Y. Yu, K. Li, R. Yang, R. Hou et al., Trifunctional P-doping of FeS1-x for greatly enhanced electrochemical kinetics and highly resilient Li-S batteries. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202501940
References
Z. Zhao, Y. Pan, S. Yi, Z. Su, H. Chen et al., Enhanced electron delocalization within coherent nano-heterocrystal ensembles for optimizing polysulfide conversion in high-energy-density Li-S batteries. Adv. Mater. 36(13), 2310052 (2024). https://doi.org/10.1002/adma.202310052
H. Zhang, M. Zhang, R. Liu, T. He, L. Xiang et al., Fe3O4-doped mesoporous carbon cathode with a plumber’s nightmare structure for high-performance Li-S batteries. Nat. Commun. 15(1), 5451 (2024). https://doi.org/10.1038/s41467-024-49826-5
X. Wu, M. Wang, H. Pan, X. Sun, S. Tang et al., Developing high-energy, stable all-solid-state lithium batteries using aluminum-based anodes and high-nickel cathodes. Nano-Micro Lett. 17(1), 239 (2025). https://doi.org/10.1007/s40820-025-01751-y
L. Ren, J. Liu, A.H. Pato, Y. Wang, X. Lu et al., Rational design of nanoarray structures for lithium–sulfur batteries: recent advances and future prospects. Mater. Futures 2(4), 042103 (2023). https://doi.org/10.1088/2752-5724/ace7e4
J. Zhang, F. Liu, R. He, Q. Guan, N. Tian et al., Taming interfacial ion-dipole interactions with d-orbital delocalized electron catalysis expediates low-temperature Li metal batteries. Adv. Mater. (2025). https://doi.org/10.1002/adma.202510894
Z. Zhou, L. Cui, J. Wang, H. Wang, C. Ma et al., Constructing a conductive Mott-Schottky heterostructure with built-in electric field effect as modified separator to accelerate bidirectional redox kinetics for high-performance lithium–sulfur batteries. ACS Sustainable Chem. Eng. 13(32), 13009–13019 (2025). https://doi.org/10.1021/acssuschemeng.5c04283
J. Wu, B. Zhang, Z. Zhao, Y. Hou, Y. Wang et al., Breaking boundaries: advancing trisulfur radical-mediated catalysis for high-performance lithium-sulfur batteries. Nano-Micro Lett. 17(1), 213 (2025). https://doi.org/10.1007/s40820-025-01710-7
X. Liu, X.-R. Sun, R. Yan, J. Yang, M. Wu et al., Structural and functional optimization of lithium-sulfur battery separators by sulfur-containing of covalent organic frameworks. Adv. Funct. Mater. 35(41), 2505986 (2025). https://doi.org/10.1002/adfm.202505986
S. Xia, X. Xu, W. Wu, Y. Chen, L. Liu et al., Advancements in functionalized high-performance separators for lithium-sulfur batteries. Mater. Sci. Eng. R. Rep. 163, 100924 (2025). https://doi.org/10.1016/j.mser.2025.100924
J. Offermann, S.N. Ul Haq, K.-X. Wang, R. Adelung, S.-H. Chang et al., Fast-charging lithium–sulfur batteries. Adv. Energy Mater. 15(26), 2404383 (2025). https://doi.org/10.1002/aenm.202404383
Q. Gu, Y. Cao, J. Chen, Y. Qi, Z. Zhai et al., Fluorine-modulated MXene-derived catalysts for multiphase sulfur conversion in lithium-sulfur battery. Nano-Micro Lett. 16(1), 266 (2024). https://doi.org/10.1007/s40820-024-01482-6
Y. Zhuang, H. Yang, Y. Li, Y. Zhao, H. Min et al., Curvature-induced electron delocalization activates the bifunctional catalytic activity of COF/MXene for high-performance lithium–sulfur batteries. ACS Nano 19(11), 11058–11074 (2025). https://doi.org/10.1021/acsnano.4c17087
L. Zhao, Z. Jiang, Z. Peng, T. Ding, G. Yan et al., High catalytic performance of M2B2 MBenes in aqueous Li–N2 battery cathodes: a theoretical study. Langmuir 41(37), 25416–25430 (2025). https://doi.org/10.1021/acs.langmuir.5c03170
J. Zhou, J. Palisaitis, J. Halim, M. Dahlqvist, Q. Tao et al., Boridene: two-dimensional Mo4/3B2-x with ordered metal vacancies obtained by chemical exfoliation. Science 373(6556), 801–805 (2021). https://doi.org/10.1126/science.abf6239
Z. Li, P. Li, X. Meng, Z. Lin, R. Wang, The interfacial electronic engineering in binary sulfiphilic cobalt boride heterostructure nanosheets for upgrading energy density and longevity of lithium-sulfur batteries. Adv. Mater. 33(42), 2102338 (2021). https://doi.org/10.1002/adma.202102338
B. Guan, Y. Zhang, L. Fan, X. Wu, M. Wang et al., Blocking polysulfide with Co2B@CNT via “synergetic adsorptive effect” toward ultrahigh-rate capability and robust lithium–sulfur battery. ACS Nano 13(6), 6742–6750 (2019). https://doi.org/10.1021/acsnano.9b01329
X.-H. Zha, P. Xu, Q. Huang, S. Du, R.-Q. Zhang, Mo2B, an MBene member with high electrical and thermal conductivities, and satisfactory performances in lithium ion batteries. Nanoscale Adv. 2(1), 347–355 (2020). https://doi.org/10.1039/c9na00610a
L. Chkhartishvili, I. Murusidze, R. Becker, Electronic structure of boron flat holeless sheet. Condensed Matter 4(1), 28 (2019). https://doi.org/10.3390/condmat4010028
H. Qin, A. Liu, K. Ouyang, S. Chen, S. Wei et al., An MBene-based colloidal electrolyte for high depth-of-discharge and energy-density 2 Ah-scale Zn metal batteries. Energy Environ. Sci. 18(19), 8941–8951 (2025). https://doi.org/10.1039/d5ee02723c
Y. Zhao, C. Liu, C. Zha, J. Li, C. Lyu et al., Tailoring WB morphology enables d-band centers to be highly active for high-performance lithium-sulfur battery. Chin. Chem. Lett. 34(11), 108189 (2023). https://doi.org/10.1016/j.cclet.2023.108189
G. Wu, Y. Fan, Z. Shen, J. Li, S. Yang et al., Boron vacancy engineering in 2D WB-based MBene catalysts for optimizing lithium polysulfide reactions. Small 21(37), e05919 (2025). https://doi.org/10.1002/smll.202505919
T. Wang, J. He, Z. Zhu, X.-B. Cheng, J. Zhu et al., Heterostructures regulating lithium polysulfides for advanced lithium-sulfur batteries. Adv. Mater. 35(47), e2303520 (2023). https://doi.org/10.1002/adma.202303520
L. Zhang, Y. Liu, Z. Zhao, P. Jiang, T. Zhang et al., Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal–organic frameworks toward high-performance Li–S batteries. ACS Nano 14(7), 8495–8507 (2020). https://doi.org/10.1021/acsnano.0c02762
J. Pu, Z. Wang, P. Xue, K. Zhu, J. Li et al., The effect of NiO-Ni3N interfaces in in-situ formed heterostructure ultrafine nanops on enhanced polysulfide regulation in lithium-sulfur batteries. J. Energy Chem. 68, 762–770 (2022). https://doi.org/10.1016/j.jechem.2021.12.043
W. Wang, L. Bai, N. Li, S. Zhao, X. Shi et al., Selenium-doping metal phosphides as bifunctional catalyst carrier for durable lithium-sulfur batteries. Chin. Chem. Lett. 36(10), 110938 (2025). https://doi.org/10.1016/j.cclet.2025.110938
L. Liang, L. Niu, T. Wu, D. Zhou, Z. Xiao, Fluorine-free fabrication of MXene via photo-Fenton approach for advanced lithium-sulfur batteries. ACS Nano 16(5), 7971–7981 (2022). https://doi.org/10.1021/acsnano.2c00779
J. Pu, S. Fan, Z. Shen, J. Yin, Y. Tan et al., F-free fabrication novel 2D Mo-based MBene catalyst for advanced lithium–sulfur batteries. Adv. Funct. Mater. 35(25), 2424215 (2025). https://doi.org/10.1002/adfm.202424215
M. Li, Y. Wang, T. Li, J. Li, L. Huang et al., Hierarchical few-layer fluorine-free Ti3C2Tx (T = O, OH)/MoS2 hybrid for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 9(2), 922–927 (2021). https://doi.org/10.1039/D0TA08762A
W. Hua, T. Shang, H. Li, Y. Sun, Y. Guo et al., Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis. Nat. Catal. 6(2), 174–184 (2023). https://doi.org/10.1038/s41929-023-00912-9
C. Roy, S. Mondal, P. Banerjee, S. Bhattacharyya, Low temperature atmospheric synthesis of WAlB and Mn2AlB2 MAB phases by modified molten salt shielded synthesis method. Adv. Powder Technol. 34(4), 103983 (2023). https://doi.org/10.1016/j.apt.2023.103983
P.J. Richardson, V.J. Keast, D.T. Cuskelly, E.H. Kisi, Theoretical and experimental investigation of the W-Al-B and Mo-Al-B systems to approach bulk WAlB synthesis. J. Eur. Ceram. Soc. 41(3), 1859–1868 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.066
L. Wang, Z. Xu, C.-H. Kuo, J. Peng, F. Hu et al., Stabilizing low-valence single atoms by constructing metalloid tungsten carbide supports for efficient hydrogen oxidation and evolution. Angew. Chem. Int. Ed. 62(42), e202311937 (2023). https://doi.org/10.1002/anie.202311937
Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang et al., Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett. 15(6), 3780–3786 (2015). https://doi.org/10.1021/acs.nanolett.5b00367
Y. Chen, X. Zhang, Q. Chen, D. Cai, C. Zhang et al., Self-supported tungsten nitride and carbide heterostructures with vanadium doping tandemly catalyze the conversion of polysulfides for lithium-sulfur batteries. Adv. Funct. Mater. 35(1), 2411941 (2025). https://doi.org/10.1002/adfm.202411941
B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou et al., Optimized catalytic WS2–WO3 heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 10(15), 2000091 (2020). https://doi.org/10.1002/aenm.202000091
S.-H. Moon, J.-H. Kim, J.-H. Shin, J.-S. Jang, S.-B. Kim et al., High absorption and fast polysulfides conversion of duel functional separator based on mesoporous-WC/rGO composite for lithium-sulfur batteries. J. Alloys Compd. 904, 164120 (2022). https://doi.org/10.1016/j.jallcom.2022.164120
Z. Shen, M. Cao, Z. Zhang, J. Pu, C. Zhong et al., Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium–sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 30(3), 1906661 (2020). https://doi.org/10.1002/adfm.201906661
H. Li, G. Chen, K. Zhang, L. Wang, G. Li, Dually sulphophilic chromium boride nanocatalyst boosting sulfur conversion kinetics toward high-performance lithium–sulfur batteries. Adv. Sci. 10(32), 2303830 (2023). https://doi.org/10.1002/advs.202303830
L. He, Y. Cheng, Q. Li, H. Zhao, M. Wang et al., Intermetallic niobium boride toward efficient adsorption and catalysis of polysulfides in Lithium-Sulfur batteries. Chem. Eng. J. 453, 139566 (2023). https://doi.org/10.1016/j.cej.2022.139566
Y. van der Meer, E.J.M. Hensen, J.A.R. van Veen, A.M. van der Kraan, Characterization and thiophene hydrodesulfurization activity of amorphous-silica–alumina-supported NiW catalysts. J. Catal. 228(2), 433–446 (2004). https://doi.org/10.1016/j.jcat.2004.09.019
Y. Zhu, S. Yang, Z. Wei, H. He, Y. Zhu et al., Revealing dynamic sulfidation of WC-WO3 heterogeneous nanops: in situ formation of WS2 facilitates sulfur redox in Li–S battery. Carbon 232, 119790 (2025). https://doi.org/10.1016/j.carbon.2024.119790
M. Xi, H. Zhang, L. Yang, Y. Long, Y. Zhao et al., Electronic structure engineering of single-atom tungsten on vacancy-enriched V3S4 nanosheets for efficient hydrogen evolution. Adv. Sci. 12(1), 2409855 (2025). https://doi.org/10.1002/advs.202409855
J. Guo, L. Chen, L. Wang, K. Liu, T. He et al., Te-modulated Fe single atom with synergistic bidirectional catalysis for high-rate and long-cycling lithium-sulfur battery. Nano-Micro Lett. 18(1), 31 (2025). https://doi.org/10.1007/s40820-025-01873-3
J. Pu, T. Wang, X. Zhu, Y. Tan, L. Gao et al., Multifunctional Ni/NiO heterostructure nanops doped carbon nanorods modified separator for enhancing Li–S battery performance. Electrochim. Acta 435, 141396 (2022). https://doi.org/10.1016/j.electacta.2022.141396
X. Kang, T. He, H. Dang, X. Li, Y. Wang et al., Designing amino functionalized titanium-organic framework on separators toward sieving and redistribution of polysulfides in lithium-sulfur batteries. Nano-Micro Lett. 17(1), 277 (2025). https://doi.org/10.1007/s40820-025-01733-0
G. Zeng, Y. Liu, D. Chen, C. Zhen, Y. Han et al., Natural lepidolite enables fast polysulfide redox for high-rate lithium sulfur batteries. Adv. Energy Mater. 11(44), 2102058 (2021). https://doi.org/10.1002/aenm.202102058
Y.-Q. Feng, Q.-Q. Lu, H. Liu, Defective MnO2 functional separator coating as effective polysulfide mediators for lithium–sulfur batteries. Tungsten 6(3), 536–543 (2024). https://doi.org/10.1007/s42864-023-00259-5
N. Lingappan, W. Lee, S. Passerini, M. Pecht, A comprehensive review of separator membranes in lithium-ion batteries. Renew. Sustain. Energy Rev. 187, 113726 (2023). https://doi.org/10.1016/j.rser.2023.113726
Y. Mao, Y. Zhang, M. Su, Y. Ning, J. Shao et al., Synergetic insights into Nb single atoms and lithiophilic support for high-efficiency sulfur catalysis in Li–S batteries. Energy Environ. Sci. 18(18), 8631–8644 (2025). https://doi.org/10.1039/d5ee02048d
M. Canini, D. Callegari, M. Bianchini, E. Quartarone, Solid-state vs. spray-drying synthesis for Mg-doped P2–Na0.67Fe0.5Mn0.5O2 as a cathode material for sodium-ion batteries. J. Mater. Chem. A 13(37), 31221–31235 (2025). https://doi.org/10.1039/d5ta04988a
C. Xi, S. Hao, X. Wang, L. Bi, Z. Lin et al., Harnessing supercooled liquid sulfur for enhanced electrochemical performance in nanoporous metal-based lithium–sulfur batteries. ACS Mater. Lett. 7(11), 3611–3618 (2025). https://doi.org/10.1021/acsmaterialslett.5c01173
L. Zheng, Z. Li, R. Liu, L. Xiong, M. Hao et al., Nanoconfined VO2 in hierarchical mesoporous carbon nanotube for high-performance lithium-sulfur batteries. Nano Lett. 25(33), 12685–12693 (2025). https://doi.org/10.1021/acs.nanolett.5c03086
Y. Li, F. Lu, K. Zong, J. Wang, L. Pan et al., Fe3O4/Fe2N heterostructured hollow microspheres as functional electrocatalysts for high stability lithium-sulfur batteries. Nano Energy 139, 110949 (2025). https://doi.org/10.1016/j.nanoen.2025.110949
P. Xue, K. Zhu, W. Gong, J. Pu, X. Li et al., One stone two birds” design for dual-functional TiO2-TiN heterostructures enabled dendrite-free and kinetics-enhanced lithium–sulfur batteries. Adv. Energy Mater. 12(18), 2200308 (2022). https://doi.org/10.1002/aenm.202200308
T. You, H. Sun, W. Hua, S. Geng, Z. Hu et al., Insights into co-catalytic single-atom-support interactions for boosting sulfur reduction electrocatalysis. Angew. Chem. Int. Ed. 64(16), e202425144 (2025). https://doi.org/10.1002/anie.202425144
W. Hua, H. Li, Z. Hu, T. You, J. Qie et al., Phase engineering of 2D telluride crystals for sulfur catalysis in batteries. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202501963
Y. Li, Y. Zuo, X. Li, Y. Zhang, C. Ma et al., Electron delocalization-enhanced sulfur reduction kinetics on an MXene-derived heterostructured electrocatalyst. Nano Res. 17(8), 7153–7162 (2024). https://doi.org/10.1007/s12274-024-6682-6
Q. He, W. Chen, B. Fan, Q. Wei, Y. Zou, Abundant adsorption and catalytic sites of the CoS2/MoS2 heterostructure for enhanced reversible kinetics in polysulfide conversion. J. Energy Chem. 107, 570–581 (2025). https://doi.org/10.1016/j.jechem.2025.03.050
G. Cai, H. Lv, G. Zhang, D. Liu, J. Zhang et al., A volcano correlation between catalytic activity for sulfur reduction reaction and Fe atom count in metal center. J. Am. Chem. Soc. 146(19), 13055–13065 (2024). https://doi.org/10.1021/jacs.3c14312
C. Huang, J. Yu, Y.Z. Chao, Z. Cui, R. He et al., Anionic doping in layered transition metal chalcogenides for robust lithium-sulfur batteries. Angew. Chem. Int. Ed. 64(8), e202420488 (2025). https://doi.org/10.1002/anie.202420488
P. Zhang, Y. Yu, K. Li, R. Yang, R. Hou et al., Trifunctional P-doping of FeS1-x for greatly enhanced electrochemical kinetics and highly resilient Li-S batteries. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202501940