Air-Breakdown Triboelectric Nanogenerator Inspired by Transistor Architecture for Low-Force Human–Machine Interfaces
Corresponding Author: Dong‑Weon Lee
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 251
Abstract
Human–machine interface (HMI) systems require energy harvesters that can operate efficiently under low contact forces, yet conventional tactile triboelectric nanogenerators (TENGs) suffer from low surface charge density and unstable output. Here, we propose a human skin electric field-induced air-breakdown TENG (AB-TENG) with a transistor-inspired architecture. The device employs a base terminal to collect electrons from human skin via an ionized air channel formed by air breakdown, enabling efficient conversion of the skin’s electric field through two operational modes: indirect (accumulated output) and direct (instant high output). In direct mode, the AB-TENG delivers 165 V at 2 N and 290 V at 24 N, with a peak power of 22 mW—22 times higher than conventional tactile TENGs. Practical utility is demonstrated through a self-powered infrared remote control and an ultrathin keyboard. This work establishes a new design paradigm that transforms air breakdown from a limitation into a functional mechanism, advancing skin-electricity-enhanced thin-film TENGs toward next-generation self-sustaining HMI platforms.
Highlights:
1 An air-breakdown triboelectric nanogenerator (AB-TENG) is proposed with a transistor-inspired architecture to achieve high electrical output from the electrostatic discharge of skin electrons at a low contact force.
2 The working contact force of AB-TENG is compatible with the day-to-day human–machine interface systems, enabling the fabrication of next-generation thin electronics.
3 Demonstration of AB-TENG-based self-powered infrared remote control and an ultrathin self-powered keyboard with a thickness of 600 µm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.-C. Liu, E. Franke, Y. Mignot, R. Xie, C.W. Yeung et al., Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond. Nat. Electron. 1(10), 562–569 (2018). https://doi.org/10.1038/s41928-018-0147-4
- F. Hui, M. Lanza, Scanning probe microscopy for advanced nanoelectronics. Nat. Electron. 2(6), 221–229 (2019). https://doi.org/10.1038/s41928-019-0264-8
- H. Fahad, N. Gupta, R. Han, S.B. Desai, A. Javey, Highly sensitive bulk silicon chemical sensors with sub-5 nm thin charge inversion layers. ACS Nano 12(3), 2948–2954 (2018). https://doi.org/10.1021/acsnano.8b00580
- Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- T. Someya, M. Amagai, Toward a new generation of smart skins. Nat. Biotechnol. 37(4), 382–388 (2019). https://doi.org/10.1038/s41587-019-0079-1
- J. Shin, Z. Liu, W. Bai, Y. Liu, Y. Yan et al., Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 5(7), eaaw1899 (2019). https://doi.org/10.1126/sciadv.aaw1899
- H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
- J. Kim, A.S. Campbell, B.E. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
- A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti et al., A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4(1), 54–63 (2021). https://doi.org/10.1038/s41928-020-00510-8
- Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
- T. Li, Y. Su, H. Zheng, F. Chen, X. Li et al., An artificial intelligence-motivated skin-like optical fiber tactile sensor. Adv. Intell. Syst. 5(8), 2200460 (2023). https://doi.org/10.1002/aisy.202200460
- Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373–4395 (2016). https://doi.org/10.1002/adma.201504366
- S. Patel, H. Park, P. Bonato, L. Chan, M. Rodgers, A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9, 21 (2012). https://doi.org/10.1186/1743-0003-9-21
- G. Khandelwal, N.P.M.J. Raj, S.-J. Kim, Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators. Adv. Energy Mater. 11(33), 2101170 (2021). https://doi.org/10.1002/aenm.202101170
- W.B. Lee, D.E. Orr, The TriboElectric Effect Series. AlphaLab, Inc. (2022). www.alphalabinc.com
- W. Wang, J. Zhu, H. Zhao, F. Yao, Y. Zhang et al., A reconfigurable omnidirectional triboelectric whisker sensor array for versatile human-machine-environment interaction. Nano-Micro Lett. 18(1), 76 (2025). https://doi.org/10.1007/s40820-025-01930-x
- Z. Song, J. Yin, Z. Wang, C. Lu, Z. Yang et al., A flexible triboelectric tactile sensor for simultaneous material and texture recognition. Nano Energy 93, 106798 (2022). https://doi.org/10.1016/j.nanoen.2021.106798
- Y. Yang, H. Zhang, Z.-H. Lin, Y.S. Zhou, Q. Jing et al., Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7(10), 9213–9222 (2013). https://doi.org/10.1021/nn403838y
- Y. Wang, Z. Gao, W. Wu, Y. Xiong, J. Luo et al., TENG-boosted smart sports with energy autonomy and digital intelligence. Nano-Micro Lett. 17(1), 265 (2025). https://doi.org/10.1007/s40820-025-01778-1
- M. Zhu, Z. Yi, B. Yang, C. Lee, Making use of nanoenergy from human–nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 36, 101016 (2021). https://doi.org/10.1016/j.nantod.2020.101016
- Z. Zhao, Z. Quan, H. Tang, Q. Xu, H. Zhao et al., A broad range triboelectric stiffness sensor for variable inclusions recognition. Nano-Micro Lett. 15(1), 233 (2023). https://doi.org/10.1007/s40820-023-01201-7
- X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15(1), 124 (2023). https://doi.org/10.1007/s40820-023-01094-6
- K.K. Meena, I. Arief, A.K. Ghosh, A. Knapp, M. Nitschke et al., Transfer-printed wrinkled PVDF-based tactile sensor-nanogenerator bundle for hybrid piezoelectric-triboelectric potential generation. Small 21(26), 2502767 (2025). https://doi.org/10.1002/smll.202502767
- H. Wang, J. Cheng, Z. Wang, L. Ji, Z.L. Wang, Triboelectric nanogenerators for human-health care. Sci. Bull. 66(5), 490–511 (2021). https://doi.org/10.1016/j.scib.2020.10.002
- J. Hu, M. Iwamoto, X. Chen, A review of contact electrification at diversified interfaces and related applications on triboelectric nanogenerator. Nano-Micro Lett. 16(1), 7 (2023). https://doi.org/10.1007/s40820-023-01238-8
- O. Verners, A. Šutka, I. Arief, A. Das, K. Mālnieks et al., The effect of surface texture components on the contact electrification of triboelectric materials: a theoretical study. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 317, 118140 (2025). https://doi.org/10.1016/j.mseb.2025.118140
- K.K. Meena, I. Arief, A.K. Ghosh, H. Liebscher, S. Hait et al., 3D-printed stretchable hybrid piezoelectric-triboelectric nanogenerator for smart tire: onboard real-time tread wear monitoring system. Nano Energy 115, 108707 (2023). https://doi.org/10.1016/j.nanoen.2023.108707
- J.-H. Lee, R. Hinchet, T.Y. Kim, H. Ryu, W. Seung et al., Control of skin potential by triboelectrification with ferroelectric polymers. Adv. Mater. 27(37), 5553–5558 (2015). https://doi.org/10.1002/adma.201502463
- R. Zhang, M. Hummelgård, J. Örtegren, M. Olsen, H. Andersson et al., The triboelectricity of the human body. Nano Energy 86, 106041 (2021). https://doi.org/10.1016/j.nanoen.2021.106041
- C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26(22), 3580–3591 (2014). https://doi.org/10.1002/adma.201400207
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- R. Zhang, J. Örtegren, M. Hummelgård, M. Olsen, H. Andersson et al., Harvesting triboelectricity from the human body using non-electrode triboelectric nanogenerators. Nano Energy 45, 298–303 (2018). https://doi.org/10.1016/j.nanoen.2017.12.053
- Y. Long, H. Wei, J. Li, G. Yao, B. Yu et al., Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano 12(12), 12533–12540 (2018). https://doi.org/10.1021/acsnano.8b07038
- R. Zhang, M. Hummelgård, J. Örtegren, M. Olsen, H. Andersson et al., Interaction of the human body with triboelectric nanogenerators. Nano Energy 57, 279–292 (2019). https://doi.org/10.1016/j.nanoen.2018.12.059
- C. Lee, M. Heo, H. Park, H. Joo, W. Seung et al., Electrostatic discharge prevention system via body potential control based on a triboelectric nanogenerator. Nano Energy 103, 107834 (2022). https://doi.org/10.1016/j.nanoen.2022.107834
- Y. Yang, N. Sun, Z. Wen, P. Cheng, H. Zheng et al., Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12(2), 2027–2034 (2018). https://doi.org/10.1021/acsnano.8b00147
- S. Li, W. Peng, J. Wang, L. Lin, Y. Zi et al., All-elastomer-based triboelectric nanogenerator as a keyboard cover to harvest typing energy. ACS Nano 10(8), 7973–7981 (2016). https://doi.org/10.1021/acsnano.6b03926
- X. Pu, Q. Tang, W. Chen, Z. Huang, G. Liu et al., Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy 76, 105047 (2020). https://doi.org/10.1016/j.nanoen.2020.105047
- J. Yun, N. Jayababu, D. Kim, Self-powered transparent and flexible touchpad based on triboelectricity towards artificial intelligence. Nano Energy 78, 105325 (2020). https://doi.org/10.1016/j.nanoen.2020.105325
- S.-R. Kim, J.-H. Yoo, J.-W. Park, Using electrospun AgNW/P(VDF-TrFE) composite nanofibers to create transparent and wearable single-electrode triboelectric nanogenerators for self-powered touch panels. ACS Appl. Mater. Interfaces 11(16), 15088–15096 (2019). https://doi.org/10.1021/acsami.9b03338
- B. Meng, W. Tang, Z.-H. Too, X. Zhang, M. Han et al., A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 6(11), 3235 (2013). https://doi.org/10.1039/c3ee42311e
- B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15(1), 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
- H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett. 15(1), 109 (2023). https://doi.org/10.1007/s40820-023-01081-x
- A.M. Al-Kabbany, Characteristics of a Kapton triboelectric nanogenerator-based touch button’s voltage output. Nano Energy 114, 108620 (2023). https://doi.org/10.1016/j.nanoen.2023.108620
- Z. Su, M. Han, X. Cheng, H. Chen, X. Chen et al., Asymmetrical triboelectric nanogenerator with controllable direct electrostatic discharge. Adv. Funct. Mater. 26(30), 5524–5533 (2016). https://doi.org/10.1002/adfm.201600909
- D. Liu, L. Zhou, S. Cui, Y. Gao, S. Li et al., Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown. Nat. Commun. 13(1), 6019 (2022). https://doi.org/10.1038/s41467-022-33766-z
- J. Luo, L. Xu, W. Tang, T. Jiang, F.R. Fan et al., Direct-current triboelectric nanogenerator realized by air breakdown induced ionized air channel. Adv. Energy Mater. 8(27), 1800889 (2018). https://doi.org/10.1002/aenm.201800889
- D. Liu, X. Yin, H. Guo, L. Zhou, X. Li et al., A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 5(4), eaav6437 (2019). https://doi.org/10.1126/sciadv.aav6437
- J. Chung, D. Heo, G. Shin, D. Choi, K. Choi et al., Ion-enhanced field emission triboelectric nanogenerator. Adv. Energy Mater. 9(37), 1901731 (2019). https://doi.org/10.1002/aenm.201901731
- B. Yang, X.-M. Tao, Z.-H. Peng, Upper limits for output performance of contact-mode triboelectric nanogenerator systems. Nano Energy 57, 66–73 (2019). https://doi.org/10.1016/j.nanoen.2018.12.013
- M. Wu, Z. Gao, K. Yao, S. Hou, Y. Liu et al., Thin, soft, skin-integrated foam-based triboelectric nanogenerators for tactile sensing and energy harvesting. Mater. Today Energy 20, 100657 (2021). https://doi.org/10.1016/j.mtener.2021.100657
- G. Min, Y. Xu, P. Cochran, N. Gadegaard, D.M. Mulvihill et al., Origin of the contact force-dependent response of triboelectric nanogenerators. Nano Energy 83, 105829 (2021). https://doi.org/10.1016/j.nanoen.2021.105829
- T. Li, J. Zou, F. Xing, M. Zhang, X. Cao et al., From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design. ACS Nano 11(4), 3950–3956 (2017). https://doi.org/10.1021/acsnano.7b00396
- D. Rempel, J. Dennerlein, C.D. Mote Jr., T. Armstrong, A method of measuring fingertip loading during keyboard use. J. Biomech. 27(8), 1101–1104 (1994). https://doi.org/10.1016/0021-9290(94)90227-5
- M.-L. Seol, S.-H. Lee, J.-W. Han, D. Kim, G.-H. Cho et al., Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 17, 63–71 (2015). https://doi.org/10.1016/j.nanoen.2015.08.005
- Q. Shi, Z. Zhang, T. Chen, C. Lee, Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch. Nano Energy 62, 355–366 (2019). https://doi.org/10.1016/j.nanoen.2019.05.033
- T. Ficker, Electrification of human body by walking. J. Electrostat. 64(1), 10–16 (2006). https://doi.org/10.1016/j.elstat.2005.04.002
- R. Roth, Simulation of electrostatic discharges. J. Electrostat. 24(2), 207–220 (1990). https://doi.org/10.1016/0304-3886(90)90010-S
- R. Zhang, M. Hummelgård, J. Örtegren, Y. Yang, H. Andersson et al., Sensing body motions based on charges generated on the body. Nano Energy 63, 103842 (2019). https://doi.org/10.1016/j.nanoen.2019.06.038
- F. Paschen, Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure Bei verschiedenen Drucken erforderliche Potentialdifferenz. Ann. Phys. (Berl.) 273(5), 69–96 (1889). https://doi.org/10.1002/andp.18892730505
- D.B. Go, A. Venkattraman, Microscale gas breakdown: ion-enhanced field emission and the modified Paschen’s curve. J. Phys. D Appl. Phys. 47(50), 503001 (2014). https://doi.org/10.1088/0022-3727/47/50/503001
- Y. Gao, D. Liu, Y. Li, J. Liu, L. Zhou et al., Achieving high-efficiency triboelectric nanogenerators by suppressing the electrostatic breakdown effect. Energy Environ. Sci. 16(5), 2304–2315 (2023). https://doi.org/10.1039/d3ee00220a
- J. Chung, S.-H. Chung, Z.-H. Lin, Y. Jin, J. Hong et al., Dielectric liquid-based self-operating switch triboelectric nanogenerator for current amplification via regulating air breakdown. Nano Energy 88, 106292 (2021). https://doi.org/10.1016/j.nanoen.2021.106292
References
C.-C. Liu, E. Franke, Y. Mignot, R. Xie, C.W. Yeung et al., Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond. Nat. Electron. 1(10), 562–569 (2018). https://doi.org/10.1038/s41928-018-0147-4
F. Hui, M. Lanza, Scanning probe microscopy for advanced nanoelectronics. Nat. Electron. 2(6), 221–229 (2019). https://doi.org/10.1038/s41928-019-0264-8
H. Fahad, N. Gupta, R. Han, S.B. Desai, A. Javey, Highly sensitive bulk silicon chemical sensors with sub-5 nm thin charge inversion layers. ACS Nano 12(3), 2948–2954 (2018). https://doi.org/10.1021/acsnano.8b00580
Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
T. Someya, M. Amagai, Toward a new generation of smart skins. Nat. Biotechnol. 37(4), 382–388 (2019). https://doi.org/10.1038/s41587-019-0079-1
J. Shin, Z. Liu, W. Bai, Y. Liu, Y. Yan et al., Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 5(7), eaaw1899 (2019). https://doi.org/10.1126/sciadv.aaw1899
H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
J. Kim, A.S. Campbell, B.E. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti et al., A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4(1), 54–63 (2021). https://doi.org/10.1038/s41928-020-00510-8
Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
T. Li, Y. Su, H. Zheng, F. Chen, X. Li et al., An artificial intelligence-motivated skin-like optical fiber tactile sensor. Adv. Intell. Syst. 5(8), 2200460 (2023). https://doi.org/10.1002/aisy.202200460
Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373–4395 (2016). https://doi.org/10.1002/adma.201504366
S. Patel, H. Park, P. Bonato, L. Chan, M. Rodgers, A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9, 21 (2012). https://doi.org/10.1186/1743-0003-9-21
G. Khandelwal, N.P.M.J. Raj, S.-J. Kim, Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators. Adv. Energy Mater. 11(33), 2101170 (2021). https://doi.org/10.1002/aenm.202101170
W.B. Lee, D.E. Orr, The TriboElectric Effect Series. AlphaLab, Inc. (2022). www.alphalabinc.com
W. Wang, J. Zhu, H. Zhao, F. Yao, Y. Zhang et al., A reconfigurable omnidirectional triboelectric whisker sensor array for versatile human-machine-environment interaction. Nano-Micro Lett. 18(1), 76 (2025). https://doi.org/10.1007/s40820-025-01930-x
Z. Song, J. Yin, Z. Wang, C. Lu, Z. Yang et al., A flexible triboelectric tactile sensor for simultaneous material and texture recognition. Nano Energy 93, 106798 (2022). https://doi.org/10.1016/j.nanoen.2021.106798
Y. Yang, H. Zhang, Z.-H. Lin, Y.S. Zhou, Q. Jing et al., Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7(10), 9213–9222 (2013). https://doi.org/10.1021/nn403838y
Y. Wang, Z. Gao, W. Wu, Y. Xiong, J. Luo et al., TENG-boosted smart sports with energy autonomy and digital intelligence. Nano-Micro Lett. 17(1), 265 (2025). https://doi.org/10.1007/s40820-025-01778-1
M. Zhu, Z. Yi, B. Yang, C. Lee, Making use of nanoenergy from human–nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 36, 101016 (2021). https://doi.org/10.1016/j.nantod.2020.101016
Z. Zhao, Z. Quan, H. Tang, Q. Xu, H. Zhao et al., A broad range triboelectric stiffness sensor for variable inclusions recognition. Nano-Micro Lett. 15(1), 233 (2023). https://doi.org/10.1007/s40820-023-01201-7
X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15(1), 124 (2023). https://doi.org/10.1007/s40820-023-01094-6
K.K. Meena, I. Arief, A.K. Ghosh, A. Knapp, M. Nitschke et al., Transfer-printed wrinkled PVDF-based tactile sensor-nanogenerator bundle for hybrid piezoelectric-triboelectric potential generation. Small 21(26), 2502767 (2025). https://doi.org/10.1002/smll.202502767
H. Wang, J. Cheng, Z. Wang, L. Ji, Z.L. Wang, Triboelectric nanogenerators for human-health care. Sci. Bull. 66(5), 490–511 (2021). https://doi.org/10.1016/j.scib.2020.10.002
J. Hu, M. Iwamoto, X. Chen, A review of contact electrification at diversified interfaces and related applications on triboelectric nanogenerator. Nano-Micro Lett. 16(1), 7 (2023). https://doi.org/10.1007/s40820-023-01238-8
O. Verners, A. Šutka, I. Arief, A. Das, K. Mālnieks et al., The effect of surface texture components on the contact electrification of triboelectric materials: a theoretical study. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 317, 118140 (2025). https://doi.org/10.1016/j.mseb.2025.118140
K.K. Meena, I. Arief, A.K. Ghosh, H. Liebscher, S. Hait et al., 3D-printed stretchable hybrid piezoelectric-triboelectric nanogenerator for smart tire: onboard real-time tread wear monitoring system. Nano Energy 115, 108707 (2023). https://doi.org/10.1016/j.nanoen.2023.108707
J.-H. Lee, R. Hinchet, T.Y. Kim, H. Ryu, W. Seung et al., Control of skin potential by triboelectrification with ferroelectric polymers. Adv. Mater. 27(37), 5553–5558 (2015). https://doi.org/10.1002/adma.201502463
R. Zhang, M. Hummelgård, J. Örtegren, M. Olsen, H. Andersson et al., The triboelectricity of the human body. Nano Energy 86, 106041 (2021). https://doi.org/10.1016/j.nanoen.2021.106041
C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26(22), 3580–3591 (2014). https://doi.org/10.1002/adma.201400207
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
R. Zhang, J. Örtegren, M. Hummelgård, M. Olsen, H. Andersson et al., Harvesting triboelectricity from the human body using non-electrode triboelectric nanogenerators. Nano Energy 45, 298–303 (2018). https://doi.org/10.1016/j.nanoen.2017.12.053
Y. Long, H. Wei, J. Li, G. Yao, B. Yu et al., Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano 12(12), 12533–12540 (2018). https://doi.org/10.1021/acsnano.8b07038
R. Zhang, M. Hummelgård, J. Örtegren, M. Olsen, H. Andersson et al., Interaction of the human body with triboelectric nanogenerators. Nano Energy 57, 279–292 (2019). https://doi.org/10.1016/j.nanoen.2018.12.059
C. Lee, M. Heo, H. Park, H. Joo, W. Seung et al., Electrostatic discharge prevention system via body potential control based on a triboelectric nanogenerator. Nano Energy 103, 107834 (2022). https://doi.org/10.1016/j.nanoen.2022.107834
Y. Yang, N. Sun, Z. Wen, P. Cheng, H. Zheng et al., Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12(2), 2027–2034 (2018). https://doi.org/10.1021/acsnano.8b00147
S. Li, W. Peng, J. Wang, L. Lin, Y. Zi et al., All-elastomer-based triboelectric nanogenerator as a keyboard cover to harvest typing energy. ACS Nano 10(8), 7973–7981 (2016). https://doi.org/10.1021/acsnano.6b03926
X. Pu, Q. Tang, W. Chen, Z. Huang, G. Liu et al., Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy 76, 105047 (2020). https://doi.org/10.1016/j.nanoen.2020.105047
J. Yun, N. Jayababu, D. Kim, Self-powered transparent and flexible touchpad based on triboelectricity towards artificial intelligence. Nano Energy 78, 105325 (2020). https://doi.org/10.1016/j.nanoen.2020.105325
S.-R. Kim, J.-H. Yoo, J.-W. Park, Using electrospun AgNW/P(VDF-TrFE) composite nanofibers to create transparent and wearable single-electrode triboelectric nanogenerators for self-powered touch panels. ACS Appl. Mater. Interfaces 11(16), 15088–15096 (2019). https://doi.org/10.1021/acsami.9b03338
B. Meng, W. Tang, Z.-H. Too, X. Zhang, M. Han et al., A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 6(11), 3235 (2013). https://doi.org/10.1039/c3ee42311e
B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15(1), 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett. 15(1), 109 (2023). https://doi.org/10.1007/s40820-023-01081-x
A.M. Al-Kabbany, Characteristics of a Kapton triboelectric nanogenerator-based touch button’s voltage output. Nano Energy 114, 108620 (2023). https://doi.org/10.1016/j.nanoen.2023.108620
Z. Su, M. Han, X. Cheng, H. Chen, X. Chen et al., Asymmetrical triboelectric nanogenerator with controllable direct electrostatic discharge. Adv. Funct. Mater. 26(30), 5524–5533 (2016). https://doi.org/10.1002/adfm.201600909
D. Liu, L. Zhou, S. Cui, Y. Gao, S. Li et al., Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown. Nat. Commun. 13(1), 6019 (2022). https://doi.org/10.1038/s41467-022-33766-z
J. Luo, L. Xu, W. Tang, T. Jiang, F.R. Fan et al., Direct-current triboelectric nanogenerator realized by air breakdown induced ionized air channel. Adv. Energy Mater. 8(27), 1800889 (2018). https://doi.org/10.1002/aenm.201800889
D. Liu, X. Yin, H. Guo, L. Zhou, X. Li et al., A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 5(4), eaav6437 (2019). https://doi.org/10.1126/sciadv.aav6437
J. Chung, D. Heo, G. Shin, D. Choi, K. Choi et al., Ion-enhanced field emission triboelectric nanogenerator. Adv. Energy Mater. 9(37), 1901731 (2019). https://doi.org/10.1002/aenm.201901731
B. Yang, X.-M. Tao, Z.-H. Peng, Upper limits for output performance of contact-mode triboelectric nanogenerator systems. Nano Energy 57, 66–73 (2019). https://doi.org/10.1016/j.nanoen.2018.12.013
M. Wu, Z. Gao, K. Yao, S. Hou, Y. Liu et al., Thin, soft, skin-integrated foam-based triboelectric nanogenerators for tactile sensing and energy harvesting. Mater. Today Energy 20, 100657 (2021). https://doi.org/10.1016/j.mtener.2021.100657
G. Min, Y. Xu, P. Cochran, N. Gadegaard, D.M. Mulvihill et al., Origin of the contact force-dependent response of triboelectric nanogenerators. Nano Energy 83, 105829 (2021). https://doi.org/10.1016/j.nanoen.2021.105829
T. Li, J. Zou, F. Xing, M. Zhang, X. Cao et al., From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design. ACS Nano 11(4), 3950–3956 (2017). https://doi.org/10.1021/acsnano.7b00396
D. Rempel, J. Dennerlein, C.D. Mote Jr., T. Armstrong, A method of measuring fingertip loading during keyboard use. J. Biomech. 27(8), 1101–1104 (1994). https://doi.org/10.1016/0021-9290(94)90227-5
M.-L. Seol, S.-H. Lee, J.-W. Han, D. Kim, G.-H. Cho et al., Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 17, 63–71 (2015). https://doi.org/10.1016/j.nanoen.2015.08.005
Q. Shi, Z. Zhang, T. Chen, C. Lee, Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch. Nano Energy 62, 355–366 (2019). https://doi.org/10.1016/j.nanoen.2019.05.033
T. Ficker, Electrification of human body by walking. J. Electrostat. 64(1), 10–16 (2006). https://doi.org/10.1016/j.elstat.2005.04.002
R. Roth, Simulation of electrostatic discharges. J. Electrostat. 24(2), 207–220 (1990). https://doi.org/10.1016/0304-3886(90)90010-S
R. Zhang, M. Hummelgård, J. Örtegren, Y. Yang, H. Andersson et al., Sensing body motions based on charges generated on the body. Nano Energy 63, 103842 (2019). https://doi.org/10.1016/j.nanoen.2019.06.038
F. Paschen, Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure Bei verschiedenen Drucken erforderliche Potentialdifferenz. Ann. Phys. (Berl.) 273(5), 69–96 (1889). https://doi.org/10.1002/andp.18892730505
D.B. Go, A. Venkattraman, Microscale gas breakdown: ion-enhanced field emission and the modified Paschen’s curve. J. Phys. D Appl. Phys. 47(50), 503001 (2014). https://doi.org/10.1088/0022-3727/47/50/503001
Y. Gao, D. Liu, Y. Li, J. Liu, L. Zhou et al., Achieving high-efficiency triboelectric nanogenerators by suppressing the electrostatic breakdown effect. Energy Environ. Sci. 16(5), 2304–2315 (2023). https://doi.org/10.1039/d3ee00220a
J. Chung, S.-H. Chung, Z.-H. Lin, Y. Jin, J. Hong et al., Dielectric liquid-based self-operating switch triboelectric nanogenerator for current amplification via regulating air breakdown. Nano Energy 88, 106292 (2021). https://doi.org/10.1016/j.nanoen.2021.106292