Modularly-Assembled Smart Microneedle Platform for Machine Learning-Driven Personalized Health Monitoring
Corresponding Author: Guoyue Shi
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 248
Abstract
Given the inherent complexity of metabolic pathways and disease-associated agents, next-generation healthcare necessitates wearable, non-invasive, and customized approaches to continuously monitor a broad spectrum of physiologically relevant biomarkers for personalized health management. Moreover, existing data-based analytical strategies remain inadequate for delivering quantitative and predictive evaluations of health status in real-life settings. Here, we report an electronic multiplexed microneedle-based biosensor patch (eMPatch) that enables real-time, minimally invasive monitoring of key metabolic biomarkers in interstitial fluid, including glucose, uric acid, cholesterol, sodium, potassium, and pH. By integrating modular microneedle (MN) sensors into a skin-interfaced flexible platform, the eMPatch achieves robust mechanical stability and seamless skin conformity, thereby ensuring reliable and continuous sensing within the dermal space. In vivo validation in animal models under metabolic intervention highlights the strong capability of the eMPatch for real-time physiological tracking across diverse daily activities. Implemented with a machine learning algorithm, the eMPatch enables automatic feature extraction and multi-task health assessment, achieving a classification accuracy of 0.996 in distinguishing normal and diet-induced metabolic disorder for health condition identification and an R2 score of 0.977 for the corresponding degree evaluation. This study highlights the potential of the MN-integrated, machine learning-enhanced biosensing platform toward personalized health management.
Highlights:
1 A skin-interfaced microneedle patch simultaneously and continuously measures six metabolic biomarkers from dermal interstitial fluid—glucose, uric acid, cholesterol, sodium, potassium, and pH.
2 Modular microneedle units assembled on a compliant polystyrene-isoprene-polystyrene substrate offer mechanical robustness and excellent flexibility, enabling seamless adhesion, stable skin-sensor coupling, and user-specific configuration, which delivers durable, conformal wear with high signal fidelity in daily use.
3 An end-to-end personalized health evaluation system: high-dimensional multiplexed signals are processed by an optimized machine-learning pipeline to quantify and predict metabolic responses to daily behaviors, supporting personalized guidance (e.g., postprandial control, electrolyte balance).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Someya, M. Amagai, Toward a new generation of smart skins. Nat. Biotechnol. 37(4), 382–388 (2019). https://doi.org/10.1038/s41587-019-0079-1
- J. Xu, X. Chen, S. Li, Y. Luo, S. Deng et al., On-skin epidermal electronics for next-generation health management. Nano-Micro Lett. 18(1), 25 (2025). https://doi.org/10.1007/s40820-025-01871-5
- Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-Micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
- J. Wu, H. Liu, W. Chen, B. Ma, H. Ju, Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 1(5), 346–360 (2023). https://doi.org/10.1038/s44222-023-00032-w
- Y. Wang, H. Haick, S. Guo, C. Wang, S. Lee et al., Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 51(9), 3759–3793 (2022). https://doi.org/10.1039/d2cs00207h
- C.D. Flynn, D. Chang, A. Mahmud, H. Yousefi, J. Das et al., Biomolecular sensors for advanced physiological monitoring. Nat. Rev. Bioeng. 1(8), 560–575 (2023). https://doi.org/10.1038/s44222-023-00067-z
- J. Kim, A.S. Campbell, B.E. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
- Y. Yang, W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48(6), 1465–1491 (2019). https://doi.org/10.1039/c7cs00730b
- T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
- M.C. Brothers, M. DeBrosse, C.C. Grigsby, R.R. Naik, S.M. Hussain et al., Achievements and challenges for real-time sensing of analytes in sweat within wearable platforms. Acc. Chem. Res. 52(2), 297–306 (2019). https://doi.org/10.1021/acs.accounts.8b00555
- J. Heikenfeld, A. Jajack, B. Feldman, S.W. Granger, S. Gaitonde et al., Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37(4), 407–419 (2019). https://doi.org/10.1038/s41587-019-0040-3
- Y. Kim, M.R. Prausnitz, Sensitive sensing of biomarkers in interstitial fluid. Nat. Biomed. Eng. 5(1), 3–5 (2021). https://doi.org/10.1038/s41551-020-00679-5
- L.K. Vora, A.H. Sabri, P.E. McKenna, A. Himawan, A.R.J. Hutton et al., Microneedle-based biosensing. Nat. Rev. Bioeng. 2(1), 64–81 (2024). https://doi.org/10.1038/s44222-023-00108-7
- H. Sun, Y. Zheng, G. Shi, H. Haick, M. Zhang, Wearable clinic: from microneedle-based sensors to next-generation healthcare platforms. Small 19(51), 2207539 (2023). https://doi.org/10.1002/smll.202207539
- G. Zhong, Q. Liu, Q. Wang, H. Qiu, H. Li et al., Fully integrated microneedle biosensor array for wearable multiplexed fitness biomarkers monitoring. Biosens. Bioelectron. 265, 116697 (2024). https://doi.org/10.1016/j.bios.2024.116697
- M. Friedel, I.A.P. Thompson, G. Kasting, R. Polsky, D. Cunningham et al., Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng 7(12), 1541–1555 (2023). https://doi.org/10.1038/s41551-022-00998-9
- F. Tehrani, H. Teymourian, B. Wuerstle, J. Kavner, R. Patel et al., An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6(11), 1214–1224 (2022). https://doi.org/10.1038/s41551-022-00887-1
- Z. Liu, C. Yao, X. Xu, X. Huang, S. Huang et al., Wearable systems of reconfigurable microneedle electrode array for subcutaneous multiplexed recording of myoelectric and electrochemical signals. Adv. Sci. 12(24), 2409075 (2025). https://doi.org/10.1002/advs.202409075
- S. Lin, X. Cheng, J. Zhu, B. Wang, D. Jelinek et al., Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. Sci. Adv. 8(38), eabq4539 (2022). https://doi.org/10.1126/sciadv.abq4539
- M. Zheng, T. Sheng, J. Yu, Z. Gu, C. Xu, Microneedle biomedical devices. Nat. Rev. Bioeng. 2(4), 324–342 (2024). https://doi.org/10.1038/s44222-023-00141-6
- H. Teymourian, F. Tehrani, K. Mahato, J. Wang, Lab under the skin: microneedle based wearable devices. Adv. Healthc. Mater. 10(17), 2002255 (2021). https://doi.org/10.1002/adhm.202002255
- M. Parrilla, A. Steijlen, R. Kerremans, J. Jacobs, L. den Haan et al., Wearable platform based on 3D-printed solid microneedle potentiometric pH sensor for plant monitoring. Chem. Eng. J. 500, 157254 (2024). https://doi.org/10.1016/j.cej.2024.157254
- M. Parrilla, N. Claes, C. Toyos-Rodríguez, C.E.M.K. Dricot, A. Steijlen et al., Wearable 3D-printed solid microneedle voltammetric sensors based on nanostructured gold for uric acid monitoring. Biosens. Bioelectron. 289, 117934 (2025). https://doi.org/10.1016/j.bios.2025.117934
- S. Yin, Z. Yu, N. Song, Z. Guo, W. Li et al., A long lifetime and highly sensitive wearable microneedle sensor for the continuous real-time monitoring of glucose in interstitial fluid. Biosens. Bioelectron. 244, 115822 (2024). https://doi.org/10.1016/j.bios.2023.115822
- L. Zheng, D. Zhu, W. Wang, J. Liu, S.T.G. Thng et al., A silk-microneedle patch to detect glucose in the interstitial fluid of skin or plant tissue. Sensors Actuators B Chem. 372, 132626 (2022). https://doi.org/10.1016/j.snb.2022.132626
- J. Yang, X. Gong, S. Chen, Y. Zheng, L. Peng et al., Development of smartphone-controlled and microneedle-based wearable continuous glucose monitoring system for home-care diabetes management. ACS Sens. 8(3), 1241–1251 (2023). https://doi.org/10.1021/acssensors.2c02635
- F. Bakhshandeh, H. Zheng, N.G. Barra, S. Sadeghzadeh, I. Ausri et al., Wearable aptalyzer integrates microneedle and electrochemical sensing for in vivo monitoring of glucose and lactate in live animals. Adv. Mater. 36(35), 2313743 (2024). https://doi.org/10.1002/adma.202313743
- R. Omar, M. Yuan, J. Wang, M. Sublaban, W. Saliba et al., Self-powered freestanding multifunctional microneedle-based extended gate device for personalized health monitoring. Sensors Actuators B Chem. 398, 134788 (2024). https://doi.org/10.1016/j.snb.2023.134788
- H. Sun, S. Wang, A. Zhu, T. Wang, H. Wang et al., NiHCF@PDAP-enhanced wearable microneedle biosensor for continuous and lifetime-prolonged monitoring of uric acid in interstitial fluid. ACS Sens. 10(7), 4906–4916 (2025). https://doi.org/10.1021/acssensors.5c00271
- J.R. Sempionatto, J.A. Lasalde-Ramírez, K. Mahato, J. Wang, W. Gao, Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6(12), 899–915 (2022). https://doi.org/10.1038/s41570-022-00439-w
- K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
- H. Sun, S. Wang, H. Wang, Q. Zeng, F. Wang et al., Stick-and-sensing microneedle patch for personalized nutrition management. Sens. Actuat. B Chem. 418, 136207 (2024). https://doi.org/10.1016/j.snb.2024.136207
- Y. Zheng, R. Omar, R. Zhang, N. Tang, M. Khatib et al., A wearable microneedle-based extended gate transistor for real-time detection of sodium in interstitial fluids. Adv. Mater. 34(10), 2108607 (2022). https://doi.org/10.1002/adma.202108607
- M.A. Ali, C. Hu, B. Yuan, S. Jahan, M.S. Saleh et al., Breaking the barrier to biomolecule limit-of-detection via 3D printed multi-length-scale graphene-coated electrodes. Nat. Commun. 12, 7077 (2021). https://doi.org/10.1038/s41467-021-27361-x
- Z. Li, F. Chen, N. Zhu, L. Zhang, Z. Xie, Tip-enhanced sub-femtomolar steroid immunosensing via micropyramidal flexible conducting polymer electrodes for at-home monitoring of salivary sex hormones. ACS Nano 17(21), 21935–21946 (2023). https://doi.org/10.1021/acsnano.3c08315
- L. Ventrelli, L. Marsilio Strambini, G. Barillaro, Microneedles for transdermal biosensing: current picture and future direction. Adv. Healthc. Mater. 4(17), 2606–2640 (2015). https://doi.org/10.1002/adhm.201500450
- H. Mousavi, L.M. Ferrari, A. Whiteley, E. Ismailova, Kinetics and physicochemical characteristics of electrodeposited PEDOT: PSS thin film growth. Adv. Electron. Mater. 9(9), 2201282 (2023). https://doi.org/10.1002/aelm.202201282
- Y. Song, R.Y. Tay, J. Li, C. Xu, J. Min et al., 3D-printed epifluidic electronic skin for machine learning–powered multimodal health surveillance. Sci. Adv. 9(37), eadi6492 (2023). https://doi.org/10.1126/sciadv.adi6492
- J. Rivnay, S. Inal, B.A. Collins, M. Sessolo, E. Stavrinidou et al., Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016). https://doi.org/10.1038/ncomms11287
- S. Odinotski, K. Dhingra, A. GhavamiNejad, H. Zheng, P. GhavamiNejad et al., A conductive hydrogel-based microneedle platform for real-time pH measurement in live animals. Small 18(45), 2200201 (2022). https://doi.org/10.1002/smll.202200201
- J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108(2), 814–825 (2008). https://doi.org/10.1021/cr068123a
- J. Gao, W. Huang, Z. Chen, C. Yi, L. Jiang, Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sens. Actuat. B Chem. 287, 102–110 (2019). https://doi.org/10.1016/j.snb.2019.02.020
- Z. Li, S. Kadian, R.K. Mishra, T. Huang, C. Zhou et al., Electrochemical detection of cholesterol in human biofluid using microneedle sensor. J. Mater. Chem. B 11(26), 6075–6081 (2023). https://doi.org/10.1039/d2tb02142k
- D.D. Zhu, Y.R. Tan, L.W. Zheng, J.Z. Lao, J.Y. Liu et al., Microneedle-coupled epidermal sensors for in-situ-multiplexed ion detection in interstitial fluids. ACS Appl. Mater. Interfaces 15, 14146–14154 (2023). https://doi.org/10.1021/acsami.3c00573
- Y. Marunaka, Roles of interstitial fluid pH in diabetes mellitus: glycolysis and mitochondrial function. World J. Diabetes 6(1), 125 (2015). https://doi.org/10.4239/wjd.v6.i1.125
- X. Luo, Q. Yu, Y. Liu, W. Gai, L. Ye et al., Closed-loop diabetes minipatch based on a biosensor and an electroosmotic pump on hollow biodegradable microneedles. ACS Sens. 7(5), 1347–1360 (2022). https://doi.org/10.1021/acssensors.1c02337
- R. Shi, J. Ye, H. Fan, C. Xiao, D. Wang et al., Lactobacillus plantarum LLY-606 supplementation ameliorates hyperuricemia via modulating intestinal homeostasis and relieving inflammation. Food Funct. 14(12), 5663–5677 (2023). https://doi.org/10.1039/d2fo03411e
References
T. Someya, M. Amagai, Toward a new generation of smart skins. Nat. Biotechnol. 37(4), 382–388 (2019). https://doi.org/10.1038/s41587-019-0079-1
J. Xu, X. Chen, S. Li, Y. Luo, S. Deng et al., On-skin epidermal electronics for next-generation health management. Nano-Micro Lett. 18(1), 25 (2025). https://doi.org/10.1007/s40820-025-01871-5
Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-Micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
J. Wu, H. Liu, W. Chen, B. Ma, H. Ju, Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 1(5), 346–360 (2023). https://doi.org/10.1038/s44222-023-00032-w
Y. Wang, H. Haick, S. Guo, C. Wang, S. Lee et al., Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 51(9), 3759–3793 (2022). https://doi.org/10.1039/d2cs00207h
C.D. Flynn, D. Chang, A. Mahmud, H. Yousefi, J. Das et al., Biomolecular sensors for advanced physiological monitoring. Nat. Rev. Bioeng. 1(8), 560–575 (2023). https://doi.org/10.1038/s44222-023-00067-z
J. Kim, A.S. Campbell, B.E. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
Y. Yang, W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48(6), 1465–1491 (2019). https://doi.org/10.1039/c7cs00730b
T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
M.C. Brothers, M. DeBrosse, C.C. Grigsby, R.R. Naik, S.M. Hussain et al., Achievements and challenges for real-time sensing of analytes in sweat within wearable platforms. Acc. Chem. Res. 52(2), 297–306 (2019). https://doi.org/10.1021/acs.accounts.8b00555
J. Heikenfeld, A. Jajack, B. Feldman, S.W. Granger, S. Gaitonde et al., Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37(4), 407–419 (2019). https://doi.org/10.1038/s41587-019-0040-3
Y. Kim, M.R. Prausnitz, Sensitive sensing of biomarkers in interstitial fluid. Nat. Biomed. Eng. 5(1), 3–5 (2021). https://doi.org/10.1038/s41551-020-00679-5
L.K. Vora, A.H. Sabri, P.E. McKenna, A. Himawan, A.R.J. Hutton et al., Microneedle-based biosensing. Nat. Rev. Bioeng. 2(1), 64–81 (2024). https://doi.org/10.1038/s44222-023-00108-7
H. Sun, Y. Zheng, G. Shi, H. Haick, M. Zhang, Wearable clinic: from microneedle-based sensors to next-generation healthcare platforms. Small 19(51), 2207539 (2023). https://doi.org/10.1002/smll.202207539
G. Zhong, Q. Liu, Q. Wang, H. Qiu, H. Li et al., Fully integrated microneedle biosensor array for wearable multiplexed fitness biomarkers monitoring. Biosens. Bioelectron. 265, 116697 (2024). https://doi.org/10.1016/j.bios.2024.116697
M. Friedel, I.A.P. Thompson, G. Kasting, R. Polsky, D. Cunningham et al., Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng 7(12), 1541–1555 (2023). https://doi.org/10.1038/s41551-022-00998-9
F. Tehrani, H. Teymourian, B. Wuerstle, J. Kavner, R. Patel et al., An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6(11), 1214–1224 (2022). https://doi.org/10.1038/s41551-022-00887-1
Z. Liu, C. Yao, X. Xu, X. Huang, S. Huang et al., Wearable systems of reconfigurable microneedle electrode array for subcutaneous multiplexed recording of myoelectric and electrochemical signals. Adv. Sci. 12(24), 2409075 (2025). https://doi.org/10.1002/advs.202409075
S. Lin, X. Cheng, J. Zhu, B. Wang, D. Jelinek et al., Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. Sci. Adv. 8(38), eabq4539 (2022). https://doi.org/10.1126/sciadv.abq4539
M. Zheng, T. Sheng, J. Yu, Z. Gu, C. Xu, Microneedle biomedical devices. Nat. Rev. Bioeng. 2(4), 324–342 (2024). https://doi.org/10.1038/s44222-023-00141-6
H. Teymourian, F. Tehrani, K. Mahato, J. Wang, Lab under the skin: microneedle based wearable devices. Adv. Healthc. Mater. 10(17), 2002255 (2021). https://doi.org/10.1002/adhm.202002255
M. Parrilla, A. Steijlen, R. Kerremans, J. Jacobs, L. den Haan et al., Wearable platform based on 3D-printed solid microneedle potentiometric pH sensor for plant monitoring. Chem. Eng. J. 500, 157254 (2024). https://doi.org/10.1016/j.cej.2024.157254
M. Parrilla, N. Claes, C. Toyos-Rodríguez, C.E.M.K. Dricot, A. Steijlen et al., Wearable 3D-printed solid microneedle voltammetric sensors based on nanostructured gold for uric acid monitoring. Biosens. Bioelectron. 289, 117934 (2025). https://doi.org/10.1016/j.bios.2025.117934
S. Yin, Z. Yu, N. Song, Z. Guo, W. Li et al., A long lifetime and highly sensitive wearable microneedle sensor for the continuous real-time monitoring of glucose in interstitial fluid. Biosens. Bioelectron. 244, 115822 (2024). https://doi.org/10.1016/j.bios.2023.115822
L. Zheng, D. Zhu, W. Wang, J. Liu, S.T.G. Thng et al., A silk-microneedle patch to detect glucose in the interstitial fluid of skin or plant tissue. Sensors Actuators B Chem. 372, 132626 (2022). https://doi.org/10.1016/j.snb.2022.132626
J. Yang, X. Gong, S. Chen, Y. Zheng, L. Peng et al., Development of smartphone-controlled and microneedle-based wearable continuous glucose monitoring system for home-care diabetes management. ACS Sens. 8(3), 1241–1251 (2023). https://doi.org/10.1021/acssensors.2c02635
F. Bakhshandeh, H. Zheng, N.G. Barra, S. Sadeghzadeh, I. Ausri et al., Wearable aptalyzer integrates microneedle and electrochemical sensing for in vivo monitoring of glucose and lactate in live animals. Adv. Mater. 36(35), 2313743 (2024). https://doi.org/10.1002/adma.202313743
R. Omar, M. Yuan, J. Wang, M. Sublaban, W. Saliba et al., Self-powered freestanding multifunctional microneedle-based extended gate device for personalized health monitoring. Sensors Actuators B Chem. 398, 134788 (2024). https://doi.org/10.1016/j.snb.2023.134788
H. Sun, S. Wang, A. Zhu, T. Wang, H. Wang et al., NiHCF@PDAP-enhanced wearable microneedle biosensor for continuous and lifetime-prolonged monitoring of uric acid in interstitial fluid. ACS Sens. 10(7), 4906–4916 (2025). https://doi.org/10.1021/acssensors.5c00271
J.R. Sempionatto, J.A. Lasalde-Ramírez, K. Mahato, J. Wang, W. Gao, Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6(12), 899–915 (2022). https://doi.org/10.1038/s41570-022-00439-w
K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
H. Sun, S. Wang, H. Wang, Q. Zeng, F. Wang et al., Stick-and-sensing microneedle patch for personalized nutrition management. Sens. Actuat. B Chem. 418, 136207 (2024). https://doi.org/10.1016/j.snb.2024.136207
Y. Zheng, R. Omar, R. Zhang, N. Tang, M. Khatib et al., A wearable microneedle-based extended gate transistor for real-time detection of sodium in interstitial fluids. Adv. Mater. 34(10), 2108607 (2022). https://doi.org/10.1002/adma.202108607
M.A. Ali, C. Hu, B. Yuan, S. Jahan, M.S. Saleh et al., Breaking the barrier to biomolecule limit-of-detection via 3D printed multi-length-scale graphene-coated electrodes. Nat. Commun. 12, 7077 (2021). https://doi.org/10.1038/s41467-021-27361-x
Z. Li, F. Chen, N. Zhu, L. Zhang, Z. Xie, Tip-enhanced sub-femtomolar steroid immunosensing via micropyramidal flexible conducting polymer electrodes for at-home monitoring of salivary sex hormones. ACS Nano 17(21), 21935–21946 (2023). https://doi.org/10.1021/acsnano.3c08315
L. Ventrelli, L. Marsilio Strambini, G. Barillaro, Microneedles for transdermal biosensing: current picture and future direction. Adv. Healthc. Mater. 4(17), 2606–2640 (2015). https://doi.org/10.1002/adhm.201500450
H. Mousavi, L.M. Ferrari, A. Whiteley, E. Ismailova, Kinetics and physicochemical characteristics of electrodeposited PEDOT: PSS thin film growth. Adv. Electron. Mater. 9(9), 2201282 (2023). https://doi.org/10.1002/aelm.202201282
Y. Song, R.Y. Tay, J. Li, C. Xu, J. Min et al., 3D-printed epifluidic electronic skin for machine learning–powered multimodal health surveillance. Sci. Adv. 9(37), eadi6492 (2023). https://doi.org/10.1126/sciadv.adi6492
J. Rivnay, S. Inal, B.A. Collins, M. Sessolo, E. Stavrinidou et al., Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016). https://doi.org/10.1038/ncomms11287
S. Odinotski, K. Dhingra, A. GhavamiNejad, H. Zheng, P. GhavamiNejad et al., A conductive hydrogel-based microneedle platform for real-time pH measurement in live animals. Small 18(45), 2200201 (2022). https://doi.org/10.1002/smll.202200201
J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108(2), 814–825 (2008). https://doi.org/10.1021/cr068123a
J. Gao, W. Huang, Z. Chen, C. Yi, L. Jiang, Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sens. Actuat. B Chem. 287, 102–110 (2019). https://doi.org/10.1016/j.snb.2019.02.020
Z. Li, S. Kadian, R.K. Mishra, T. Huang, C. Zhou et al., Electrochemical detection of cholesterol in human biofluid using microneedle sensor. J. Mater. Chem. B 11(26), 6075–6081 (2023). https://doi.org/10.1039/d2tb02142k
D.D. Zhu, Y.R. Tan, L.W. Zheng, J.Z. Lao, J.Y. Liu et al., Microneedle-coupled epidermal sensors for in-situ-multiplexed ion detection in interstitial fluids. ACS Appl. Mater. Interfaces 15, 14146–14154 (2023). https://doi.org/10.1021/acsami.3c00573
Y. Marunaka, Roles of interstitial fluid pH in diabetes mellitus: glycolysis and mitochondrial function. World J. Diabetes 6(1), 125 (2015). https://doi.org/10.4239/wjd.v6.i1.125
X. Luo, Q. Yu, Y. Liu, W. Gai, L. Ye et al., Closed-loop diabetes minipatch based on a biosensor and an electroosmotic pump on hollow biodegradable microneedles. ACS Sens. 7(5), 1347–1360 (2022). https://doi.org/10.1021/acssensors.1c02337
R. Shi, J. Ye, H. Fan, C. Xiao, D. Wang et al., Lactobacillus plantarum LLY-606 supplementation ameliorates hyperuricemia via modulating intestinal homeostasis and relieving inflammation. Food Funct. 14(12), 5663–5677 (2023). https://doi.org/10.1039/d2fo03411e