Uniform Fast-Kinetic Anode/Cathode Electrolyte Interphases Enable High Performance 3C Li-Metal Batteries with > 99.9% Coulombic Efficiencies
Corresponding Author: Chengxin Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 243
Abstract
Lithium metal batteries (LMBs) represent one of the most promising energy storage systems due to unparalleled energy density. However, in commercial electrolytes, their practical high-power performance is still hampered by unstable electrolyte interfaces, leading to severe anode dendrite growth and cathode degradation. Here, 4-fluoro-3-nitrophenylboronic acid is introduced as a dual-function additive, contributing to uniform N-/F-rich interphase layers at both electrodes of the LMBs. Therefore, in the optimized electrolyte, Li-metal electrodes demonstrate enhanced plating/stripping reversibility of > 700 h (vs. 250 h at 1 mA cm−2 and 0.5 mAh cm−2) and coulombic efficiency of 98.2% (vs. 84.2%). Moreover, the corresponding LMBs achieve 99.9% capacity retention (vs. 44.7%) after 500 cycles at 3C rate, simultaneously maintaining > 99.9% coulombic efficiencies. The impressive fast-charging performance attributes to not only the uniform and compact Li deposition at the anode, but also the inhibited uncontrolled electrolyte decomposition and active species loss at the cathode due to the robust electrolyte interphases. This work highlights that proper electrolyte additive is crucial for fast-charging metal batteries.
Highlights:
1 4-Fluoro-3-nitrophenylboronic acid, as an additive, has contributed to uniform N-/F-rich interphase layers at both electrodes of the lithium metal batteries.
2 Uniform interphase layers inhibited Li dendrite growth at Li-metal anode, and alleviated uncontrolled electrolyte decomposition and active species loss at the LiFePO4 (LFP) cathode.
3 Li ||Li cells demonstrate enhanced plating/stripping reversibility of >700 h at 1 mA cm−2 and 0.5 mAh cm−2, while Li ||LFP cells can be stably cycled for over 500 cycles at 3C rate with a capacity retention of 99.9%, simultaneously maintaining >99.9% coulombic efficiencies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.C. Fu, Q.Y. Cao, H.W. Song, C.X. Wang, Design and modification for efficient Li-storage in advanced LiFePO4 cathodes. Chin. Sci. Bull. 69(20), 2869–2882 (2024). https://doi.org/10.1360/Tb-2023-1275
- J. Su, H. Song, C. Wang, Morphology reshaping enabling self-densification of manganese oxide hybrid materials for high-density lithium storage anodes. Adv. Funct. Mater. 29(51), 1907154 (2019). https://doi.org/10.1002/adfm.201907154
- Z. Yao, T. Fu, T. Pan, C. Luo, M. Pang et al., Dynamic doping and interphase stabilization for cobalt-free and high-voltage lithium metal batteries. Nat. Commun. 16(1), 2791 (2025). https://doi.org/10.1038/s41467-025-58110-z
- L. Zeng, L. Gao, T. Ou, Y. Xin, J. Du et al., A fluorinated bifunctional additive achieving stable electrode/electrolyte interfaces for high-voltage lithium-metal batteries. J. Mater. Chem. A 13(17), 12471–12481 (2025). https://doi.org/10.1039/d5ta00416k
- N. von Aspern, G.-V. Röschenthaler, M. Winter, I. Cekic-Laskovic, Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes. Angew. Chem. Int. Ed. 58(45), 15978–16000 (2019). https://doi.org/10.1002/anie.201901381
- Z. Li, K.-S. Oh, J.-M. Seo, W. Qin, S. Lee et al., A solvent-free covalent organic framework single-ion conductor based on ion-dipole interaction for all-solid-state lithium organic batteries. Nano-Micro Lett. 16(1), 265 (2024). https://doi.org/10.1007/s40820-024-01485-3
- Y. Lan, L. Xiang, J. Zhou, S. Jiang, Y. Ge et al., Thermal warning and shut-down of lithium metal batteries based on thermoresponsive electrolytes. Adv. Sci. 11(31), 2400953 (2024). https://doi.org/10.1002/advs.202400953
- W. Guo, F. Tian, D. Fu, H. Cui, H. Song et al., High-performance aqueous calcium ion batteries enabled by Zn metal anodes with stable ion-conducting interphases. Nano Lett. 24(39), 12095–12101 (2024). https://doi.org/10.1021/acs.nanolett.4c02778
- H. Ding, J. Wang, J. Zhou, C. Wang, B. Lu, Building electrode skins for ultra-stable potassium metal batteries. Nat. Commun. 14(1), 2305 (2023). https://doi.org/10.1038/s41467-023-38065-9
- S. Li, M. Jiang, Y. Xie, H. Xu, J. Jia et al., Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv. Mater. 30(17), e1706375 (2018). https://doi.org/10.1002/adma.201706375
- S. Liu, Q. Liu, P. Cheng, X. Jia, Y. Jiang et al., Polydopamine chelate modified separators for lithium metal batteries with high-rate capability and ultra-long cycling life. Adv. Sci. 12(25), 2501155 (2025). https://doi.org/10.1002/advs.202501155
- Y. Zhang, Y. Wu, H. Li, J. Chen, D. Lei et al., A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries. Nat. Commun. 13(1), 1297 (2022). https://doi.org/10.1038/s41467-022-28959-5
- X. Li, Z. Li, C. Li, F. Tian, Z. Qiao et al., Facilitating uniform lithium-ion transport via polymer-assisted formation of unique interfaces to achieve a stable 4.7 V Li metal battery. Natl. Sci. Rev. 12(6), nwaf182 (2025). https://doi.org/10.1093/nsr/nwaf182
- H. Song, C. Wang, Current status and challenges of calcium metal batteries. Adv. Energy Sustain. Res. 3(3), 2100192 (2022). https://doi.org/10.1002/aesr.202100192
- P. Li, Z. Cheng, J. Liu, L. Che, Y. Zhou et al., Solvation structure tuning induces LiF/ Li3N -rich CEI and SEI interfaces for superior Li/ CFx batteries. Small 19(49), e2303149 (2023). https://doi.org/10.1002/smll.202303149
- S. Qi, M. Li, Y. Gao, W. Zhang, S. Liu et al., Enabling scalable polymer electrolyte with dual-reinforced stable interface for 4.5 V lithium-metal batteries. Adv. Mater. 35(45), 2304951 (2023). https://doi.org/10.1002/adma.202304951
- Q. Zhang, J. Ma, L. Mei, J. Liu, Z. Li et al., In situ TEM visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter 5(4), 1235–1250 (2022). https://doi.org/10.1016/j.matt.2022.01.015
- X. He, F. Tian, H. Song, C. Wang, Room temperature reversible Ca-metal chemistry in commercial fluorinated calcium salt ester electrolytes enabled by a compact N-rich interphase layer. Chem. Eng. J. 502, 157793 (2024). https://doi.org/10.1016/j.cej.2024.157793
- N. Hu, C. Guo, H. Wang, W. Xu, Y. Wang et al., Polyhydroxy sodium salt additive to regulate Zn2+ solvation structure and Zn deposition texture for high-stability and long-life aqueous zinc batteries. Small 21(14), 2501324 (2025). https://doi.org/10.1002/smll.202501324
- H. Song, Y. Li, F. Tian, C. Wang, Electrolyte optimization and interphase regulation for significantly enhanced storage capability in Ca-metal batteries. Adv. Funct. Mater. 32(21), 2200004 (2022). https://doi.org/10.1002/adfm.202200004
- H. Li, G. Chen, K. Zhang, L. Wang, G. Li, Dually sulphophilic chromium boride nanocatalyst boosting sulfur conversion kinetics toward high-performance lithium–sulfur batteries. Adv. Sci. 10(32), 2303830 (2023). https://doi.org/10.1002/advs.202303830
- J. Li, J. Yang, Z. Ji, M. Su, H. Li et al., Prospective application, mechanism, and deficiency of lithium bis(oxalate)borate as the electrolyte additive for lithium-batteries. Adv. Energy Mater. 13(35), 2301422 (2023). https://doi.org/10.1002/aenm.202301422
- Y. Mu, Y. Chen, B. Wu, Q. Zhang, M. Lin et al., Dual vertically aligned electrode-inspired high-capacity lithium batteries. Adv. Sci. 9(30), 2203321 (2022). https://doi.org/10.1002/advs.202203321
- Y. Zhou, M. Su, X. Yu, Y. Zhang, J.-G. Wang et al., Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15(3), 224–230 (2020). https://doi.org/10.1038/s41565-019-0618-4
- K. Su, P. Luo, Y. Wu, X. Song, L. Huang et al., New nitrate additive enabling highly stable and conductive SEI for fast-charging lithium metal batteries. Adv. Funct. Mater. 34(49), 2409492 (2024). https://doi.org/10.1002/adfm.202409492
- D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C.S. Kelley et al., On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156(8), A694 (2009). https://doi.org/10.1149/1.3148721
- M. Wang, Q. Sun, Y. Liu, Z. Yan, Q. Xu et al., Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chin. J. Struct. Chem. 43(2), 100203 (2024). https://doi.org/10.1016/j.cjsc.2023.100203
- Z. Sun, Z. Wen, Y. Chen, Y. Ma, J. Zhang et al., A gradient solid electrolyte interphase with high Li+ conductivity induced by bisfluoroacetamide additive for stable lithium metal batteries. Nano Res. 16(6), 8425–8432 (2023). https://doi.org/10.1007/s12274-022-5363-6
- N. Hu, J. Tao, Y. Tan, H. Song, D. Huang et al., Comprehensive understanding of steric-hindrance effect on the trade-off between zinc ions transfer and reduction kinetics to enable highly reversible and stable Zn anodes. Adv. Energy Mater. 14(46), 2470206 (2024). https://doi.org/10.1002/aenm.202470206
- X. He, J. Wang, Q. Cao, Y. Huang, H. Li et al., Anion-blocking and multipath-conducting interfaces enable long-life room-temperature ester-based Ca-metal batteries. Adv. Sci. 12(45), e12339 (2025). https://doi.org/10.1002/advs.202512339
- J. Wang, X. Sun, Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8(4), 1110–1138 (2015). https://doi.org/10.1039/c4ee04016c
- H. Moon, D. Kim, G. Park, K. Shin, Y. Cho et al., Balancing ionic and electronic conduction at the LiFePO4 cathode–electrolyte interface and regulating solid electrolyte interphase in lithium-ion batteries. Adv. Funct. Mater. 34(39), 2403261 (2024). https://doi.org/10.1002/adfm.202403261
- Z. Liang, G. Zheng, C. Liu, N. Liu, W. Li et al., Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 15(5), 2910–2916 (2015). https://doi.org/10.1021/nl5046318
- K. Guo, C. Zhu, H. Wang, S. Qi, J. Huang et al., Conductive Li+ moieties-rich cathode electrolyte interphase with electrolyte additive for 4.6 V well-cycled Li||LiCoO2 batteries. Adv. Energy Mater. 13(20), 2204272 (2023). https://doi.org/10.1002/aenm.202204272
- W. Guo, D. Fu, F. Tian, H. Song, C. Wang, Ca-based hybrid interfaces inhibit uncontrolled electrolyte decomposition for efficient ion-storage. Chem. Eng. J. 489, 151116 (2024). https://doi.org/10.1016/j.cej.2024.151116
- X. Li, J. Liu, J. He, H. Wang, S. Qi et al., Hexafluoroisopropyl trifluoromethanesulfonate-driven easily Li+ desolvated electrolyte to afford Li||NCM811 cells with efficient anode/cathode electrolyte interphases. Adv. Funct. Mater. 31(37), 2104395 (2021). https://doi.org/10.1002/adfm.202104395
- Y. Ou, W. Hou, D. Zhu, C. Li, P. Zhou et al., Molecular design of electrolyte additives for high-voltage fast-charging lithium metal batteries. Energy Environ. Sci. 18(3), 1464–1476 (2025). https://doi.org/10.1039/d4ee04282d
- S. Dai, Z. Qin, Y. Gao, T. Zhang, R. Zhao et al., Dual-protection of cathode from HF corrossion enabling high-performance lithium metal batteries. J. Energy Chem. 108, 173–180 (2025). https://doi.org/10.1016/j.jechem.2025.04.028
- J.-E. Zhou, Y. Li, X. Lin, J. Ye, Prussian blue analogue-templated nanocomposites for alkali-ion batteries: progress and perspective. Nano-Micro Lett. 17(1), 9 (2024). https://doi.org/10.1007/s40820-024-01517-y
- X. Weng, Y. Qin, X. Da, Y. Zhao, X. Deng et al., N-fluorobenzenesulfonimide as a multifunctional electrolyte additive for co-stabilizing dual-electrodes of lithium metal batteries with enhanced electrochemical performance. Chem. Eng. J. 466, 143302 (2023). https://doi.org/10.1016/j.cej.2023.143302
- S. Tu, B. Zhang, Y. Zhang, Z. Chen, X. Wang et al., Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase. Nat. Energy 8(12), 1365–1374 (2023). https://doi.org/10.1038/s41560-023-01387-5
- S. Liu, X. Shen, L. Wei, R. Wang, B. Ding et al., Molecular coordination induced high ionic conductivity of composite electrolytes and stable LiF/Li3N interface in long-term cycling all-solid-state lithium metal batteries. Energy Storage Mater. 59, 102773 (2023). https://doi.org/10.1016/j.ensm.2023.102773
- F. Li, J. Liu, H. Wang, Y. Ren, X. Tang et al., Molecule/ion anchoring interphase achieving 4.8 V fast-cycling lithium metal batteries. ACS Energy Lett. 10(2), 779–787 (2025). https://doi.org/10.1021/acsenergylett.4c02979
- D. Aurbach, Y. Gofer, J. Langzam, The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136(11), 3198–3205 (1989). https://doi.org/10.1149/1.2096425
- Z. Hao, C. Wang, Y. Wu, Q. Zhang, H. Xu et al., Electronegative nanochannels accelerating lithium-ion transport for enabling highly stable and high-rate lithium metal anodes. Adv. Energy Mater. 13(28), 2370124 (2023). https://doi.org/10.1002/aenm.202370124
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
- W. Qin, D. Han, X. Zhang, H. Ma, Y. Wu et al., Redox-active metal-covalent organic frameworks for dendrite-free lithium metal batteries. Adv. Mater. 37(14), e2418638 (2025). https://doi.org/10.1002/adma.202418638
- L. Su, X. Zhao, M. Yi, H. Charalambous, H. Celio et al., Uncovering the solvation structure of LiPF6-based localized saturated electrolytes and their effect on LiNiO2-based lithium-metal batteries. Adv. Energy Mater. 12(36), 2201911 (2022). https://doi.org/10.1002/aenm.202201911
- Y. Mu, S. Yu, Y. Chen, Y. Chu, B. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16(1), 86 (2024). https://doi.org/10.1007/s40820-023-01301-4
- Z. Wang, C. Su, R. Xu, K. Li, B. Yang et al., Weak traction effect modulates anionic solvation transition for stable-cycling and fast-charging lithium metal batteries. Energy Storage Mater. 75, 104105 (2025). https://doi.org/10.1016/j.ensm.2025.104105
- H. Yuan, W. Lin, C. Tian, M. Buga, T. Huang et al., Enhancement of Li+ transport through intermediate phase in high-content inorganic composite quasi-solid-state electrolytes. Nano-Micro Lett. 17(1), 288 (2025). https://doi.org/10.1007/s40820-025-01774-5
- K. Cai, F. Li, T. He, X. Wang, M. Zhao et al., Tow-way regulation strategy for in-situ electropolymerization additives coordinated by double bonds and boric acid groups in lithium secondary batteries. Chem. Eng. J. 500, 156790 (2024). https://doi.org/10.1016/j.cej.2024.156790
- M.-Y. Li, B.-B. Zou, Y. Yan, T.-T. Wang, X. Liu et al., Bifunctional macromolecular design for dual interface-passivating regulation towards practical stable lithium-sulfur batteries. J. Energy Chem. 106, 710–717 (2025). https://doi.org/10.1016/j.jechem.2025.03.005
- F. Wang, Z. Zheng, Z. Wen, W. Fang, C. Kuang et al., Storage and release of NO3- and I- via layered double hydroxide in carbonate electrolyte for stable lithium metal battery. Sci. Bull. 70(15), 2493–2503 (2025). https://doi.org/10.1016/j.scib.2025.04.016
- X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27(10), 1605989 (2017). https://doi.org/10.1002/adfm.201605989
- T. Deng, X. Fan, L. Cao, J. Chen, S. Hou et al., Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule 3(10), 2550–2564 (2019). https://doi.org/10.1016/j.joule.2019.08.004
- Z. Sun, J. Yang, H. Xu, C. Jiang, Y. Niu et al., Enabling an inorganic-rich interface via cationic surfactant for high-performance lithium metal batteries. Nano-Micro Lett. 16(1), 141 (2024). https://doi.org/10.1007/s40820-024-01364-x
References
D.C. Fu, Q.Y. Cao, H.W. Song, C.X. Wang, Design and modification for efficient Li-storage in advanced LiFePO4 cathodes. Chin. Sci. Bull. 69(20), 2869–2882 (2024). https://doi.org/10.1360/Tb-2023-1275
J. Su, H. Song, C. Wang, Morphology reshaping enabling self-densification of manganese oxide hybrid materials for high-density lithium storage anodes. Adv. Funct. Mater. 29(51), 1907154 (2019). https://doi.org/10.1002/adfm.201907154
Z. Yao, T. Fu, T. Pan, C. Luo, M. Pang et al., Dynamic doping and interphase stabilization for cobalt-free and high-voltage lithium metal batteries. Nat. Commun. 16(1), 2791 (2025). https://doi.org/10.1038/s41467-025-58110-z
L. Zeng, L. Gao, T. Ou, Y. Xin, J. Du et al., A fluorinated bifunctional additive achieving stable electrode/electrolyte interfaces for high-voltage lithium-metal batteries. J. Mater. Chem. A 13(17), 12471–12481 (2025). https://doi.org/10.1039/d5ta00416k
N. von Aspern, G.-V. Röschenthaler, M. Winter, I. Cekic-Laskovic, Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes. Angew. Chem. Int. Ed. 58(45), 15978–16000 (2019). https://doi.org/10.1002/anie.201901381
Z. Li, K.-S. Oh, J.-M. Seo, W. Qin, S. Lee et al., A solvent-free covalent organic framework single-ion conductor based on ion-dipole interaction for all-solid-state lithium organic batteries. Nano-Micro Lett. 16(1), 265 (2024). https://doi.org/10.1007/s40820-024-01485-3
Y. Lan, L. Xiang, J. Zhou, S. Jiang, Y. Ge et al., Thermal warning and shut-down of lithium metal batteries based on thermoresponsive electrolytes. Adv. Sci. 11(31), 2400953 (2024). https://doi.org/10.1002/advs.202400953
W. Guo, F. Tian, D. Fu, H. Cui, H. Song et al., High-performance aqueous calcium ion batteries enabled by Zn metal anodes with stable ion-conducting interphases. Nano Lett. 24(39), 12095–12101 (2024). https://doi.org/10.1021/acs.nanolett.4c02778
H. Ding, J. Wang, J. Zhou, C. Wang, B. Lu, Building electrode skins for ultra-stable potassium metal batteries. Nat. Commun. 14(1), 2305 (2023). https://doi.org/10.1038/s41467-023-38065-9
S. Li, M. Jiang, Y. Xie, H. Xu, J. Jia et al., Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv. Mater. 30(17), e1706375 (2018). https://doi.org/10.1002/adma.201706375
S. Liu, Q. Liu, P. Cheng, X. Jia, Y. Jiang et al., Polydopamine chelate modified separators for lithium metal batteries with high-rate capability and ultra-long cycling life. Adv. Sci. 12(25), 2501155 (2025). https://doi.org/10.1002/advs.202501155
Y. Zhang, Y. Wu, H. Li, J. Chen, D. Lei et al., A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries. Nat. Commun. 13(1), 1297 (2022). https://doi.org/10.1038/s41467-022-28959-5
X. Li, Z. Li, C. Li, F. Tian, Z. Qiao et al., Facilitating uniform lithium-ion transport via polymer-assisted formation of unique interfaces to achieve a stable 4.7 V Li metal battery. Natl. Sci. Rev. 12(6), nwaf182 (2025). https://doi.org/10.1093/nsr/nwaf182
H. Song, C. Wang, Current status and challenges of calcium metal batteries. Adv. Energy Sustain. Res. 3(3), 2100192 (2022). https://doi.org/10.1002/aesr.202100192
P. Li, Z. Cheng, J. Liu, L. Che, Y. Zhou et al., Solvation structure tuning induces LiF/ Li3N -rich CEI and SEI interfaces for superior Li/ CFx batteries. Small 19(49), e2303149 (2023). https://doi.org/10.1002/smll.202303149
S. Qi, M. Li, Y. Gao, W. Zhang, S. Liu et al., Enabling scalable polymer electrolyte with dual-reinforced stable interface for 4.5 V lithium-metal batteries. Adv. Mater. 35(45), 2304951 (2023). https://doi.org/10.1002/adma.202304951
Q. Zhang, J. Ma, L. Mei, J. Liu, Z. Li et al., In situ TEM visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter 5(4), 1235–1250 (2022). https://doi.org/10.1016/j.matt.2022.01.015
X. He, F. Tian, H. Song, C. Wang, Room temperature reversible Ca-metal chemistry in commercial fluorinated calcium salt ester electrolytes enabled by a compact N-rich interphase layer. Chem. Eng. J. 502, 157793 (2024). https://doi.org/10.1016/j.cej.2024.157793
N. Hu, C. Guo, H. Wang, W. Xu, Y. Wang et al., Polyhydroxy sodium salt additive to regulate Zn2+ solvation structure and Zn deposition texture for high-stability and long-life aqueous zinc batteries. Small 21(14), 2501324 (2025). https://doi.org/10.1002/smll.202501324
H. Song, Y. Li, F. Tian, C. Wang, Electrolyte optimization and interphase regulation for significantly enhanced storage capability in Ca-metal batteries. Adv. Funct. Mater. 32(21), 2200004 (2022). https://doi.org/10.1002/adfm.202200004
H. Li, G. Chen, K. Zhang, L. Wang, G. Li, Dually sulphophilic chromium boride nanocatalyst boosting sulfur conversion kinetics toward high-performance lithium–sulfur batteries. Adv. Sci. 10(32), 2303830 (2023). https://doi.org/10.1002/advs.202303830
J. Li, J. Yang, Z. Ji, M. Su, H. Li et al., Prospective application, mechanism, and deficiency of lithium bis(oxalate)borate as the electrolyte additive for lithium-batteries. Adv. Energy Mater. 13(35), 2301422 (2023). https://doi.org/10.1002/aenm.202301422
Y. Mu, Y. Chen, B. Wu, Q. Zhang, M. Lin et al., Dual vertically aligned electrode-inspired high-capacity lithium batteries. Adv. Sci. 9(30), 2203321 (2022). https://doi.org/10.1002/advs.202203321
Y. Zhou, M. Su, X. Yu, Y. Zhang, J.-G. Wang et al., Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15(3), 224–230 (2020). https://doi.org/10.1038/s41565-019-0618-4
K. Su, P. Luo, Y. Wu, X. Song, L. Huang et al., New nitrate additive enabling highly stable and conductive SEI for fast-charging lithium metal batteries. Adv. Funct. Mater. 34(49), 2409492 (2024). https://doi.org/10.1002/adfm.202409492
D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C.S. Kelley et al., On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156(8), A694 (2009). https://doi.org/10.1149/1.3148721
M. Wang, Q. Sun, Y. Liu, Z. Yan, Q. Xu et al., Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chin. J. Struct. Chem. 43(2), 100203 (2024). https://doi.org/10.1016/j.cjsc.2023.100203
Z. Sun, Z. Wen, Y. Chen, Y. Ma, J. Zhang et al., A gradient solid electrolyte interphase with high Li+ conductivity induced by bisfluoroacetamide additive for stable lithium metal batteries. Nano Res. 16(6), 8425–8432 (2023). https://doi.org/10.1007/s12274-022-5363-6
N. Hu, J. Tao, Y. Tan, H. Song, D. Huang et al., Comprehensive understanding of steric-hindrance effect on the trade-off between zinc ions transfer and reduction kinetics to enable highly reversible and stable Zn anodes. Adv. Energy Mater. 14(46), 2470206 (2024). https://doi.org/10.1002/aenm.202470206
X. He, J. Wang, Q. Cao, Y. Huang, H. Li et al., Anion-blocking and multipath-conducting interfaces enable long-life room-temperature ester-based Ca-metal batteries. Adv. Sci. 12(45), e12339 (2025). https://doi.org/10.1002/advs.202512339
J. Wang, X. Sun, Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8(4), 1110–1138 (2015). https://doi.org/10.1039/c4ee04016c
H. Moon, D. Kim, G. Park, K. Shin, Y. Cho et al., Balancing ionic and electronic conduction at the LiFePO4 cathode–electrolyte interface and regulating solid electrolyte interphase in lithium-ion batteries. Adv. Funct. Mater. 34(39), 2403261 (2024). https://doi.org/10.1002/adfm.202403261
Z. Liang, G. Zheng, C. Liu, N. Liu, W. Li et al., Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 15(5), 2910–2916 (2015). https://doi.org/10.1021/nl5046318
K. Guo, C. Zhu, H. Wang, S. Qi, J. Huang et al., Conductive Li+ moieties-rich cathode electrolyte interphase with electrolyte additive for 4.6 V well-cycled Li||LiCoO2 batteries. Adv. Energy Mater. 13(20), 2204272 (2023). https://doi.org/10.1002/aenm.202204272
W. Guo, D. Fu, F. Tian, H. Song, C. Wang, Ca-based hybrid interfaces inhibit uncontrolled electrolyte decomposition for efficient ion-storage. Chem. Eng. J. 489, 151116 (2024). https://doi.org/10.1016/j.cej.2024.151116
X. Li, J. Liu, J. He, H. Wang, S. Qi et al., Hexafluoroisopropyl trifluoromethanesulfonate-driven easily Li+ desolvated electrolyte to afford Li||NCM811 cells with efficient anode/cathode electrolyte interphases. Adv. Funct. Mater. 31(37), 2104395 (2021). https://doi.org/10.1002/adfm.202104395
Y. Ou, W. Hou, D. Zhu, C. Li, P. Zhou et al., Molecular design of electrolyte additives for high-voltage fast-charging lithium metal batteries. Energy Environ. Sci. 18(3), 1464–1476 (2025). https://doi.org/10.1039/d4ee04282d
S. Dai, Z. Qin, Y. Gao, T. Zhang, R. Zhao et al., Dual-protection of cathode from HF corrossion enabling high-performance lithium metal batteries. J. Energy Chem. 108, 173–180 (2025). https://doi.org/10.1016/j.jechem.2025.04.028
J.-E. Zhou, Y. Li, X. Lin, J. Ye, Prussian blue analogue-templated nanocomposites for alkali-ion batteries: progress and perspective. Nano-Micro Lett. 17(1), 9 (2024). https://doi.org/10.1007/s40820-024-01517-y
X. Weng, Y. Qin, X. Da, Y. Zhao, X. Deng et al., N-fluorobenzenesulfonimide as a multifunctional electrolyte additive for co-stabilizing dual-electrodes of lithium metal batteries with enhanced electrochemical performance. Chem. Eng. J. 466, 143302 (2023). https://doi.org/10.1016/j.cej.2023.143302
S. Tu, B. Zhang, Y. Zhang, Z. Chen, X. Wang et al., Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase. Nat. Energy 8(12), 1365–1374 (2023). https://doi.org/10.1038/s41560-023-01387-5
S. Liu, X. Shen, L. Wei, R. Wang, B. Ding et al., Molecular coordination induced high ionic conductivity of composite electrolytes and stable LiF/Li3N interface in long-term cycling all-solid-state lithium metal batteries. Energy Storage Mater. 59, 102773 (2023). https://doi.org/10.1016/j.ensm.2023.102773
F. Li, J. Liu, H. Wang, Y. Ren, X. Tang et al., Molecule/ion anchoring interphase achieving 4.8 V fast-cycling lithium metal batteries. ACS Energy Lett. 10(2), 779–787 (2025). https://doi.org/10.1021/acsenergylett.4c02979
D. Aurbach, Y. Gofer, J. Langzam, The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136(11), 3198–3205 (1989). https://doi.org/10.1149/1.2096425
Z. Hao, C. Wang, Y. Wu, Q. Zhang, H. Xu et al., Electronegative nanochannels accelerating lithium-ion transport for enabling highly stable and high-rate lithium metal anodes. Adv. Energy Mater. 13(28), 2370124 (2023). https://doi.org/10.1002/aenm.202370124
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
W. Qin, D. Han, X. Zhang, H. Ma, Y. Wu et al., Redox-active metal-covalent organic frameworks for dendrite-free lithium metal batteries. Adv. Mater. 37(14), e2418638 (2025). https://doi.org/10.1002/adma.202418638
L. Su, X. Zhao, M. Yi, H. Charalambous, H. Celio et al., Uncovering the solvation structure of LiPF6-based localized saturated electrolytes and their effect on LiNiO2-based lithium-metal batteries. Adv. Energy Mater. 12(36), 2201911 (2022). https://doi.org/10.1002/aenm.202201911
Y. Mu, S. Yu, Y. Chen, Y. Chu, B. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16(1), 86 (2024). https://doi.org/10.1007/s40820-023-01301-4
Z. Wang, C. Su, R. Xu, K. Li, B. Yang et al., Weak traction effect modulates anionic solvation transition for stable-cycling and fast-charging lithium metal batteries. Energy Storage Mater. 75, 104105 (2025). https://doi.org/10.1016/j.ensm.2025.104105
H. Yuan, W. Lin, C. Tian, M. Buga, T. Huang et al., Enhancement of Li+ transport through intermediate phase in high-content inorganic composite quasi-solid-state electrolytes. Nano-Micro Lett. 17(1), 288 (2025). https://doi.org/10.1007/s40820-025-01774-5
K. Cai, F. Li, T. He, X. Wang, M. Zhao et al., Tow-way regulation strategy for in-situ electropolymerization additives coordinated by double bonds and boric acid groups in lithium secondary batteries. Chem. Eng. J. 500, 156790 (2024). https://doi.org/10.1016/j.cej.2024.156790
M.-Y. Li, B.-B. Zou, Y. Yan, T.-T. Wang, X. Liu et al., Bifunctional macromolecular design for dual interface-passivating regulation towards practical stable lithium-sulfur batteries. J. Energy Chem. 106, 710–717 (2025). https://doi.org/10.1016/j.jechem.2025.03.005
F. Wang, Z. Zheng, Z. Wen, W. Fang, C. Kuang et al., Storage and release of NO3- and I- via layered double hydroxide in carbonate electrolyte for stable lithium metal battery. Sci. Bull. 70(15), 2493–2503 (2025). https://doi.org/10.1016/j.scib.2025.04.016
X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27(10), 1605989 (2017). https://doi.org/10.1002/adfm.201605989
T. Deng, X. Fan, L. Cao, J. Chen, S. Hou et al., Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule 3(10), 2550–2564 (2019). https://doi.org/10.1016/j.joule.2019.08.004
Z. Sun, J. Yang, H. Xu, C. Jiang, Y. Niu et al., Enabling an inorganic-rich interface via cationic surfactant for high-performance lithium metal batteries. Nano-Micro Lett. 16(1), 141 (2024). https://doi.org/10.1007/s40820-024-01364-x