Self-Assembled Monolayers in Inverted Perovskite Solar Cells: A Rising Star with Challenges
Corresponding Author: Xunchang Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 241
Abstract
Recently, self-assembled monolayers (SAMs) have been confirmed as a promising hole-selective contact and interfacial modifier for inverted perovskite solar cells (IPSCs), contributing to an inspiring record power conversion efficiency close to 27%, along with excellent stability. This review demonstrates the critical role of SAMs in enhancing the performance of IPSCs. First, the structure–property and structure–stability relationship of SAMs is systematically expounded by examining their electronic structure, spatial configuration, and the resulting intermolecular forces. Second, it concludes the underlying mechanisms how their unique properties promote the performance of IPSCs, including energy-level alignment, defect passivation, improved interface carrier extraction/transport, and the suppression of ion migration. Third, the applications of SAMs in IPSCs are systematically summarized, covering their roles as hole-selective contacts, interface modifiers, and as components in Co-SAMs strategies. Large-scalable fabrication methods are also summarized to promote industrial processing of IPSCs. Finally, the prevailing challenges and future research directions are outlined, proposing a roadmap for designing SAM-based IPSCs with superior longevity. By critically evaluating the pivotal role of SAMs, this review provides a strategic framework to guide future research and accelerate the development of self-assembled molecules in high-performance and stable photovoltaic devices.
Highlights:
1 Structure–property relationship of self-assembled monolayers (SAMs) is thoroughly elucidated, including chain length, anchoring groups, linker groups, terminal functional groups, and packing density—and their resulting physical and electrochemical properties (e.g., wettability, adhesion, and electronic characteristics).
2 The mechanism of SAMs on promoting the performance of inverted perovskite solar cells is discussed from the perspective of energy-level alignment, defect passivation, carrier transfer dynamics, and inhibition of ion migration.
3 Perspectives and challenges of SAMs are proposed, highlighting promising directions in developing new in situ characterizations, advanced molecular designs, and optimized deposition strategies for large-scalable fabrication.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Jiang, G. Qu, X. Huang, X. Chen, L. Chi et al., Toughened self-assembled monolayers for durable perovskite solar cells. Nature 646(8083), 95–101 (2025). https://doi.org/10.1038/s41586-025-09509-7
- A. Magomedov, A. Al-Ashouri, E. Kasparavičius, S. Strazdaite, G. Niaura et al., Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 8(32), 1801892 (2018). https://doi.org/10.1002/aenm.201801892
- W.C. Bigelow, D.L. Pickett, W.A. Zisman, Oleophobic monolayers i. Films adsorbed from solution in non-polar liquids. J. Colloid Sci. 1(6), 513–538 (1946). https://doi.org/10.1016/0095-8522(46)90059-1
- M. Gao, Z. Ou, C. Wang, L. Liu, D. Hu et al., Multifunctional buried molecule-bridge for high-performance inverted perovskite solar cells. Adv. Mater. 38, e14273,(2025). https://doi.org/10.1002/adma.202514273
- H. Zhang, S. Zhang, X. Ji, J. He, H. Guo et al., Formamidinium lead iodide-based inverted perovskite solar cells with efficiency over 25% enabled by an amphiphilic molecular hole-transporter. Angew. Chem. Int. Ed. 63(16), e202401260 (2024). https://doi.org/10.1002/anie.202401260
- A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
- G. Wang, J. Zheng, W. Duan, J. Yang, M.A. Mahmud et al., Molecular engineering of hole-selective layer for high band gap perovskites for highly efficient and stable perovskite-silicon tandem solar cells. Joule 7(11), 2583–2594 (2023). https://doi.org/10.1016/j.joule.2023.09.007
- A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019). https://doi.org/10.1039/C9EE02268F
- J. Yang, G. Qu, Y. Qiao, S. Cai, J. Hu et al., Flexibility meets rigidity: a self-assembled monolayer materials strategy for perovskite solar cells. Nat. Commun. 16(1), 6968 (2025). https://doi.org/10.1038/s41467-025-62388-4
- C.C. Boyd, R.C. Shallcross, T. Moot, R. Kerner, L. Bertoluzzi et al., Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4(8), 1759–1775 (2020). https://doi.org/10.1016/j.joule.2020.06.004
- Y. Zhou, X. Huang, J. Zhang, L. Zhang, H. Wu et al., Interfacial modification of NiOx for highly efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 14(25), 2400616 (2024). https://doi.org/10.1002/aenm.202400616
- S.A. Ok, B. Jo, S. Somasundaram, H.J. Woo, D.W. Lee et al., Management of transition dipoles in organic hole-transporting materials under solar irradiation for perovskite solar cells. Nat. Commun. 9(1), 4537 (2018). https://doi.org/10.1038/s41467-018-06998-1
- Y. Zhao, T. Heumueller, J. Zhang, J. Luo, O. Kasian et al., A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nat. Energy 7(2), 144–152 (2022). https://doi.org/10.1038/s41560-021-00953-z
- F.H. Isikgor, S. Zhumagali, L.V.T. Merino, M. De Bastiani, I. McCulloch et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8(2), 89–108 (2023). https://doi.org/10.1038/s41578-022-00503-3
- H. Li, S. Liu, Revolutionary SAMs: transforming inverted perovskite solar cells. J. Mater. Chem. A 12(17), 9929–9932 (2024). https://doi.org/10.1039/d4ta00962b
- X. Yu, D. Gao, Z. Li, X. Sun, B. Li et al., Green-solvent processable dopant-free hole transporting materials for inverted perovskite solar cells. Angew. Chem. Int. Ed. 62(11), e202218752 (2023). https://doi.org/10.1002/anie.202218752
- K. Zhao, Q. Liu, L. Yao, C. Değer, J. Shen et al., Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature 632(8024), 301–306 (2024). https://doi.org/10.1038/s41586-024-07712-6
- M. Liu, L. Bi, W. Jiang, Z. Zeng, S.-W. Tsang et al., Compact hole-selective self-assembled monolayers enabled by disassembling micelles in solution for efficient perovskite solar cells. Adv. Mater. 35(46), 2304415 (2023). https://doi.org/10.1002/adma.202304415
- S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380(6643), 404–409 (2023). https://doi.org/10.1126/science.adg3755
- J. Du, J. Chen, B. Ouyang, A. Sun, C. Tian et al., Face-on oriented self-assembled molecules with enhanced π–π stacking for highly efficient inverted perovskite solar cells on rough FTO substrates. Energy Environ. Sci. 18(7), 3196–3210 (2025). https://doi.org/10.1039/d4ee05849f
- Z. Lv, Z. Wang, G. Liu, Y. Gao, S. Li et al., Pre-anchored ionic bond mediators enabling controllable monolayer assembly for high-performance perovskite solar cells and modules. Adv. Mater. (2025). https://doi.org/10.1002/adma.202513600
- H. Zhang, Y. Yang, J. Zhao, H. Yang, Y. Lu et al., A self-assembling composite structural design for the conversion of hydroxyl-anchored bonds obtains high efficient and stable perovskite solar cells. Adv. Mater. 37(28), 2420155 (2025). https://doi.org/10.1002/adma.202420155
- Z. Li, X. Sun, X. Zheng, B. Li, D. Gao et al., Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382(6668), 284–289 (2023). https://doi.org/10.1126/science.ade9637
- W. Jiang, F. Li, M. Li, F. Qi, F.R. Lin et al., π-expanded carbazoles as hole-selective self-assembled monolayers for high-performance perovskite solar cells. Angew. Chem. Int. Ed. 61(51), e202213560 (2022). https://doi.org/10.1002/anie.202213560
- A. Ullah, K.H. Park, H.D. Nguyen, Y. Siddique, S.F.A. Shah et al., Novel phenothiazine-based self-assembled monolayer as a hole selective contact for highly efficient and stable p-i-n perovskite solar cells. Adv. Energy Mater. 12(2), 2103175 (2022). https://doi.org/10.1002/aenm.202103175
- Y. Wang, Q. Liao, J. Chen, W. Huang, X. Zhuang et al., Teaching an old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells. J. Am. Chem. Soc. 142(39), 16632–16643 (2020). https://doi.org/10.1021/jacs.0c06373
- E. Li, C. Liu, H. Lin, X. Xu, S. Liu et al., Bonding strength regulates anchoring-based self-assembly monolayers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 31(35), 2103847 (2021). https://doi.org/10.1002/adfm.202103847
- C. Li, Z. Zhang, H. Zhang, W. Yan, Y. Li et al., Fully aromatic self-assembled hole-selective layer toward efficient inverted wide-bandgap perovskite solar cells with ultraviolet resistance. Angew. Chem. Int. Ed. 63(1), e202315281 (2024). https://doi.org/10.1002/anie.202315281
- C.E. Puerto Galvis, D.A. González Ruiz, E. Martínez-Ferrero, E. Palomares, Challenges in the design and synthesis of self-assembling molecules as selective contacts in perovskite solar cells. Chem. Sci. 15(5), 1534–1556 (2024). https://doi.org/10.1039/d3sc04668k
- T.S. Bejitual, K. Ramji, A.J. Kessman, K.A. Sierros, D.R. Cairns, Corrosion of an amorphous indium tin oxide film on polyethylene terephthalate at low concentrations of acrylic acid. Mater. Chem. Phys. 132(2–3), 395–401 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.043
- H. Guo, C. Liu, H. Hu, S. Zhang, X. Ji et al., Neglected acidity pitfall: boric acid-anchoring hole-selective contact for perovskite solar cells. Natl. Sci. Rev. 10(5), nwad057 (2023). https://doi.org/10.1093/nsr/nwad057
- S. Wang, L. Zhan, S. Zhang, H. Zhang, X. Ji et al., Enhancing interfacial contact of hole-collecting monolayer via coassembly with multiped triphenylamine for mechanically stable inverted perovskite solar cells. CCS Chem. (2025). https://doi.org/10.31635/ccschem.025.202506236
- C. Li, Y. Chen, Y. Li, Z. Zhang, J. Yang et al., Achieving 32% efficiency in perovskite/silicon tandem solar cells with bidentate-anchored superwetting self-assembled molecular layers. Angew. Chem. Int. Ed. 64(23), e202502730 (2025). https://doi.org/10.1002/anie.202502730
- D. Gao, B. Li, X. Sun, Q. Liu, C. Zhang et al., High-efficiency perovskite solar cells enabled by suppressing intermolecular aggregation in hole-selective contacts. Nat. Photonics 19(10), 1070–1077 (2025). https://doi.org/10.1038/s41566-025-01725-x
- Y. Zhao, Y. Liu, Z. Ren, Y. Li, Y. Zhang et al., Enhanced interface adhesion with a polymeric hole transporter enabling high-performance air-processed perovskite solar cells. Energy Environ. Sci. 18(3), 1366–1374 (2025). https://doi.org/10.1039/d4ee04481a
- C. Zhao, F. Wang, X. Hu, Y. Zhang, T. Liu et al., Ambient blade-coated perovskite solar cells with high reverse bias stability enabled by polymeric hole transporter design. Nat. Commun. 16(1), 10355 (2025). https://doi.org/10.1038/s41467-025-65341-7
- T. Liu, X. Liao, J. Wu, P. Ding, Z. Shao et al., Dimeric self-assembled molecules modulate phase homogeneity and anchoring stability for high-performance perovskite solar cells. Adv. Funct. Mater. e20189, (2025). https://doi.org/10.1002/adfm.202520189
- F. Wang, T. Liu, Y. Liu, Y. Zhou, X. Dong et al., A polymeric hole transporter with dual-interfacial interactions enables 25%-efficiency blade-coated perovskite solar cells. Adv. Mater. 36(52), e2412059 (2024). https://doi.org/10.1002/adma.202412059
- M.A. Truong, T. Funasaki, L. Ueberricke, W. Nojo, R. Murdey et al., Tripodal triazatruxene derivative as a face-on oriented hole-collecting monolayer for efficient and stable inverted perovskite solar cells. J. Am. Chem. Soc. 145(13), 7528–7539 (2023). https://doi.org/10.1021/jacs.3c00805
- A. Sun, C. Tian, R. Zhuang, C. Chen, Y. Zheng et al., High open-circuit voltage (1.197 V) in large-area (1 cm2) inverted perovskite solar cell via interface planarization and highly polar self-assembled monolayer. Adv. Energy Mater. 14(8), 2303941 (2024). https://doi.org/10.1002/aenm.202303941
- S.N. Afraj, C.-H. Kuan, J.-S. Lin, J.-S. Ni, A. Velusamy et al., Quinoxaline-based X-shaped sensitizers as self-assembled monolayer for tin perovskite solar cells. Adv. Funct. Mater. 33(17), 2213939 (2023). https://doi.org/10.1002/adfm.202213939
- A. Zhang, M. Li, C. Dong, W. Ye, Y. Zhu et al., Role of NiO in wide-bandgap perovskite solar cells based on self-assembled monolayers. Chem. Eng. J. 494, 153253 (2024). https://doi.org/10.1016/j.cej.2024.153253
- H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang et al., Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383(6688), 1236–1240 (2024). https://doi.org/10.1126/science.adj9602
- Y.-H. Lin, F. Vikram, X.-L. Yang, A.D. Cao et al., Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss. Science 384(6697), 767–775 (2024). https://doi.org/10.1126/science.ado2302
- H. Meng, K. Mao, F. Cai, K. Zhang, S. Yuan et al., Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p–i–n perovskite solar cells. Nat. Energy 9(5), 536–547 (2024). https://doi.org/10.1038/s41560-024-01471-4
- C. Luo, Q. Zhou, K. Wang, X. Wang, J. He et al., Engineering bonding sites enables uniform and robust self-assembled monolayer for stable perovskite solar cells. Nat. Mater. 24(8), 1265–1272 (2025). https://doi.org/10.1038/s41563-025-02275-x
- S. Fu, N. Sun, H. Chen, Y. Li, Y. Li et al., Homogenizing SAM deposition via seeding–OH groups for scalable fabrication of perovskite solar cells. Energy Environ. Sci. 18(7), 3305–3312 (2025). https://doi.org/10.1039/d5ee00350d
- S. Yu, Z. Xiong, H. Zhou, Q. Zhang, Z. Wang et al., Homogenized NiOx nanops for improved hole transport in inverted perovskite solar cells. Science 382(6677), 1399–1404 (2023). https://doi.org/10.1126/science.adj8858
- J. He, G. Li, G. Huang, Z. Luo, B. Zhang et al., Improved anchoring of self-assembled monolayer on hydroxylated NiOx film surface for efficient and stable inverted perovskite solar cells. Adv. Funct. Mater. 35(3), 2413104 (2025). https://doi.org/10.1002/adfm.202413104
- I. Levine, A. Al-Ashouri, A. Musiienko, H. Hempel, A. Magomedov et al., Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 5(11), 2915–2933 (2021). https://doi.org/10.1016/j.joule.2021.07.016
- F. Ben Amara, E.R. Dionne, S. Kassir, C. Pellerin, A. Badia, Molecular origin of the odd-even effect of macroscopic properties of n-alkanethiolate self-assembled monolayers: bulk or interface? J. Am. Chem. Soc. 142(30), 13051–13061 (2020). https://doi.org/10.1021/jacs.0c04288
- H.B. Akkerman, S.C.B. Mannsfeld, A.P. Kaushik, E. Verploegen, L. Burnier et al., Effects of odd-even side chain length of alkyl-substituted diphenylbithiophenes on first monolayer thin film packing structure. J. Am. Chem. Soc. 135(30), 11006–11014 (2013). https://doi.org/10.1021/ja400015e
- F. Ali, C. Roldán-Carmona, M. Sohail, M.K. Nazeeruddin, Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10(48), 2002989 (2020). https://doi.org/10.1002/aenm.202002989
- S. Zhang, R. Wu, C. Mu, Y. Wang, L. Han et al., Conjugated self-assembled monolayer as stable hole-selective contact for inverted perovskite solar cells. ACS Mater. Lett. 4(10), 1976–1983 (2022). https://doi.org/10.1021/acsmaterialslett.2c00799
- Q. Liao, Y. Wang, Z. Zhang, K. Yang, Y. Shi et al., Self-assembled donor-acceptor hole contacts for inverted perovskite solar cells with an efficiency approaching 22%: the impact of anchoring groups. J. Energy Chem. 68, 87–95 (2022). https://doi.org/10.1016/j.jechem.2021.11.001
- G. Qu, S. Cai, Y. Qiao, D. Wang, S. Gong et al., Conjugated linker-boosted self-assembled monolayer molecule for inverted perovskite solar cells. Joule 8(7), 2123–2134 (2024). https://doi.org/10.1016/j.joule.2024.05.005
- J. Zhu, Y. Luo, R. He, C. Chen, Y. Wang et al., A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems. Nat. Energy 8(7), 714–724 (2023). https://doi.org/10.1038/s41560-023-01274-z
- J. Zhu, X. Huang, Y. Luo, W. Jiao, Y. Xu et al., Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems. Nat. Commun. 16(1), 240 (2025). https://doi.org/10.1038/s41467-024-55492-4
- P. Han, Y. Zhang, Recent advances in carbazole-based self-assembled monolayer for solution-processed optoelectronic devices. Adv. Mater. 36(33), e2405630 (2024). https://doi.org/10.1002/adma.202405630
- G. Qu, L. Zhang, Y. Qiao, S. Gong, Y. Ding et al., Self-assembled materials with an ordered hydrophilic bilayer for high performance inverted Perovskite solar cells. Nat. Commun. 16(1), 86 (2025). https://doi.org/10.1038/s41467-024-55523-0
- Z. Dai, S. You, D. Chakraborty, S. Li, Y. Zhang et al., Connecting interfacial mechanical adhesion, efficiency, and operational stability in high performance inverted perovskite solar cells. ACS Energy Lett. 9(4), 1880–1887 (2024). https://doi.org/10.1021/acsenergylett.4c00510
- W. Peng, Y. Zhang, X. Zhou, J. Wu, D. Wang et al., A versatile energy-level-tunable hole-transport layer for multi-composition inverted perovskite solar cells. Energy Environ. Sci. 18(2), 874–883 (2025). https://doi.org/10.1039/d4ee03208j
- M. Wróbel, T. Żaba, E. Sauter, M. Krawiec, J. Sobczuk et al., Thermally stable and highly conductive SAMs on Ag substrate: the impact of the anchoring group. Adv. Electron. Mater. 7(2), 2000947 (2021). https://doi.org/10.1002/aelm.202000947
- E. Aktas, R. Pudi, N. Phung, R. Wenisch, L. Gregori et al., Role of terminal group position in triphenylamine-based self-assembled hole-selective molecules in perovskite solar cells. ACS Appl. Mater. Interfaces 14(15), 17461–17469 (2022). https://doi.org/10.1021/acsami.2c01981
- M. Petrović, T. Maksudov, A. Panagiotopoulos, E. Serpetzoglou, I. Konidakis et al., Limitations of a polymer-based hole transporting layer for application in planar inverted perovskite solar cells. Nanoscale Adv. 1(8), 3107–3118 (2019). https://doi.org/10.1039/C9NA00246D
- J.H. Park, O.J. Kwon, T.-H. Kim, J. Mun, Y.D. Park, Ultraviolet irradiation creates morphological order via conformational changes in polythiophene films. Org. Electron. 62, 394–399 (2018). https://doi.org/10.1016/j.orgel.2018.08.033
- C. Fei, A. Kuvayskaya, X. Shi, M. Wang, Z. Shi et al., Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells. Science 384(6700), 1126–1134 (2024). https://doi.org/10.1126/science.adi4531
- J. Mei, F. Yan, Recent advances in wide-bandgap perovskite solar cells. Adv. Mater. 37(48), 2418622 (2025). https://doi.org/10.1002/adma.202418622
- S. Zhang, X. Wang, Y. Wu, X. Li, T. Hou et al., Self-assembled π-conjugated hole-selective molecules for UV-resistant high-efficiency perovskite solar cells. Angew. Chem. Int. Ed. 64(34), e202508782 (2025). https://doi.org/10.1002/anie.202508782
- D.K. Schwartz, Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52, 107–137 (2001). https://doi.org/10.1146/annurev.physchem.52.1.107
- A.F. Raigoza, G. Kolettis, D.A. Villalba, S.A. Kandel, Restructuring of octanethiolate and dialkyldithiocarbamate monolayers in the formation of sequentially adsorbed mixed monolayers. J. Phys. Chem. C 115(41), 20274–20281 (2011). https://doi.org/10.1021/jp206983y
- Z. Shi, S. Li, C. Min, J. Xie, R. Ma, Modification of energy levels by cetyltrimethylammonium bromide at the perovskite/carbon interface for highly efficient and stable perovskite solar cells. Org. Electron. 112, 106689 (2023). https://doi.org/10.1016/j.orgel.2022.106689
- D. Xu, H. Lv, H. Jin, Y. Liu, Y. Ma et al., Crystalline facet-directed generation engineering of ultrathin platinum nanodendrites. J. Phys. Chem. Lett. 10(3), 663–671 (2019). https://doi.org/10.1021/acs.jpclett.8b03861
- R. Nagarajan, Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18(1), 31–38 (2002). https://doi.org/10.1021/la010831y
- A. Kulkarni, R. Sarkar, S. Akel, M. Häser, B. Klingebiel et al., A universal strategy of perovskite ink - substrate interaction to overcome the poor wettability of a self-assembled monolayer for reproducible perovskite solar cells. Adv. Funct. Mater. 33(47), 2305812 (2023). https://doi.org/10.1002/adfm.202305812
- D. Li, Q. Lian, T. Du, R. Ma, H. Liu et al., Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells. Nat. Commun. 15(1), 7605 (2024). https://doi.org/10.1038/s41467-024-51760-5
- S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
- J. Ma, S. Yang, C. Shao, Z. Nie, W. Zhang et al., Homogenizing self-assembled monolayers via covalent organic frameworks for inverted perovskite solar cells. Angew. Chem. Int. Ed. 65, e19875 (2025). https://doi.org/10.1002/anie.202519875
- Q. Tan, H. Wang, S. Tang, Q. Cai, G. Ma et al., Asymmetric dimethyl-indenocarbazole phosphonic acid molecules with expanded π-conjugation for inverted perovskite solar cells. Adv. Funct. Mater. 35(41), 2501147 (2025). https://doi.org/10.1002/adfm.202501147
- X. Wang, J. Li, R. Guo, X. Yin, R. Luo et al., Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photonics 18(12), 1269–1275 (2024). https://doi.org/10.1038/s41566-024-01531-x
- H. Wu, J. Wu, Z. Zhang, X. Guan, L. Wang et al., Tailored lattice-matched carbazole self-assembled molecule for efficient and stable perovskite solar cells. J. Am. Chem. Soc. 147(9), 8004–8011 (2025). https://doi.org/10.1021/jacs.5c00629
- B. Zhao, B. Gothe, A. Groh, T. Schmaltz, J. Will et al., Oligothiophene phosphonic acids for self-assembled monolayer field-effect transistors. ACS Appl. Mater. Interfaces 13(27), 32461–32466 (2021). https://doi.org/10.1021/acsami.1c05764
- X.-M. Li, Y.-H. Wang, J.-W. Seng, J.-F. Zheng, R. Cao et al., Z-piezo pulse-modulated STM break junction: toward single-molecule rectifiers with dissimilar metal electrodes. ACS Appl. Mater. Interfaces 13(7), 8656–8663 (2021). https://doi.org/10.1021/acsami.0c21435
- S.Y. Lee, Y. Choi, E. Ito, M. Hara, H. Lee et al., Growth, solvent effects, and thermal desorption behavior of octylthiocyanate self-assembled monolayers on Au(111). Phys. Chem. Chem. Phys. 15(10), 3609–3617 (2013). https://doi.org/10.1039/c3cp44425b
- S. Mariotti, I.N. Rabehi, C. Zhang, X. Huo, J. Zhang et al., Unraveling the morphological and energetic properties of 2PACz self-assembled monolayers fabricated with upscaling deposition methods. Energy Environ. Mater. 8(2), e12825 (2025). https://doi.org/10.1002/eem2.12825
- D.O. Hutchins, O. Acton, T. Weidner, N. Cernetic, J.E. Baio et al., Spin cast self-assembled monolayer field effect transistors. Org. Electron. 13(3), 464–468 (2012). https://doi.org/10.1016/j.orgel.2011.11.025
- X. Huang, T. Wang, W. Chen, Z. Wang, Z. Lin et al., Bottom-up regulation of perovskite growth and energetics via oligoether functionalized self-assembling molecules for high-performance solar cells. Angew. Chem. Int. Ed. 64(36), e202507513 (2025). https://doi.org/10.1002/anie.202507513
- L.V. Torres Merino, C.E. Petoukhoff, O. Matiash, A.S. Subbiah, C.V. Franco et al., Impact of the valence band energy alignment at the hole-collecting interface on the photostability of wide band-gap perovskite solar cells. Joule 8(9), 2585–2606 (2024). https://doi.org/10.1016/j.joule.2024.06.017
- M. Novak, A. Ebel, T. Meyer-Friedrichsen, A. Jedaa, B.F. Vieweg et al., Low-voltage p- and n-type organic self-assembled monolayer field effect transistors. Nano Lett. 11(1), 156–159 (2011). https://doi.org/10.1021/nl103200r
- W. Wang, X. Li, L. Gao, G. Liu, L. Yang et al., Thermal cross-linking hole-transport self-assembled monolayers for perovskite solar cells. ACS Energy Lett. 10(5), 2250–2258 (2025). https://doi.org/10.1021/acsenergylett.5c00457
- L. Wang, Z. Liu, J. Zou, S. Peng, D. Wang et al., In situ crosslinked self-assembled monolayer as processing stable hole selective contact in perovskite solar cells. Angew. Chem. 137(52), e17058 (2025). https://doi.org/10.1002/ange.202517058
- K. Guo, H. Tang, L. Han, R. Qi, H. Yan et al., Self-assembled monolayer: revolutionizing p-i-n perovskite solar cells. ACS Energy Lett. 10(10), 4882–4910 (2025). https://doi.org/10.1021/acsenergylett.5c02024
- F. Zaera, Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112(5), 2920–2986 (2012). https://doi.org/10.1021/cr2002068
- Y. Wang, B. Yan, L. Chen, SERS tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 113(3), 1391–1428 (2013). https://doi.org/10.1021/cr300120g
- M. Poonia, T. Küster, G.D. Bothun, Organic anion detection with functionalized SERS substrates via coupled electrokinetic preconcentration, analyte capture, and charge transfer. ACS Appl. Mater. Interfaces 14(20), 23964–23972 (2022). https://doi.org/10.1021/acsami.2c02934
- Z.-F. Cai, T. Käser, N. Kumar, R. Zenobi, Visualizing on-surface decomposition chemistry at the nanoscale using tip-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 13(22), 4864–4870 (2022). https://doi.org/10.1021/acs.jpclett.2c01112
- B. de Boer, A. Hadipour, M.M. Mandoc, T. van Woudenbergh, P.W.M. Blom, Tuning of metal work functions with self-assembled monolayers. Adv. Mater. 17(5), 621–625 (2005). https://doi.org/10.1002/adma.200401216
- V.J.Y. Lim, A.J. Knight, R.D.J. Oliver, H.J. Snaith, M.B. Johnston et al., Impact of hole-transport layer and interface passivation on halide segregation in mixed-halide perovskites. Adv. Funct. Mater. 32(41), 2204825 (2022). https://doi.org/10.1002/adfm.202204825
- A.J. Knight, L.M. Herz, Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13(7), 2024–2046 (2020). https://doi.org/10.1039/d0ee00788a
- C.-H. Chen, G.-W. Liu, X. Chen, C. Deger, R.-J. Jin et al., Methylthio substituent in SAM constructing regulatory bridge with photovoltaic perovskites. Angew. Chem. Int. Ed. 64(7), e202419375 (2025). https://doi.org/10.1002/anie.202419375
- T. Liu, C. Luo, R. He, Z. Zhang, X. Lin et al., Advancing self-assembled molecules toward interface-optimized perovskite solar cells: from one to two. Adv. Mater. 37(48), 2502032 (2025). https://doi.org/10.1002/adma.202502032
- Z. Wei, Q. Zhou, X. Niu, S. Liu, Z. Dong et al., Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers. Energy Environ. Sci. 18(4), 1847–1855 (2025). https://doi.org/10.1039/d4ee04029e
- Y. Huang, M. Tao, Y. Zhang, Z. Wang, Z. Sun et al., Asymmetric modification of carbazole based self-assembled monolayers by hybrid strategy for inverted perovskite solar cells. Angew. Chem. Int. Ed. 64(4), e202416188 (2025). https://doi.org/10.1002/anie.202416188
- Z. Zhang, L. Qiao, K. Meng, R. Long, G. Chen et al., Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem. Soc. Rev. 52(1), 163–195 (2023). https://doi.org/10.1039/d2cs00217e
- H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7(9), 632–652 (2023). https://doi.org/10.1038/s41570-023-00510-0
- N. Ahn, K. Kwak, M.S. Jang, H. Yoon, B.Y. Lee et al., Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016). https://doi.org/10.1038/ncomms13422
- R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628(8006), 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
- C. Zhou, F. Wang, X. Ai, Y. Liu, Y. Han et al., Dual interfacial modification with 1D perovskite for self-assembled monolayer based inverted perovskite solar cells. Nano Energy 128, 109811 (2024). https://doi.org/10.1016/j.nanoen.2024.109811
- J. Zhang, J. Yang, R. Dai, W. Sheng, Y. Su et al., Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 12(18), 2103674 (2022). https://doi.org/10.1002/aenm.202103674
- Y. Wang, Y. Feng, H. Yang, S. Li, K. Zhang et al., Covalent tridentate molecule anchoring enhances nickel oxide for efficient perovskite solar cells. Adv. Mater. 37(42), e07730 (2025). https://doi.org/10.1002/adma.202507730
- Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu et al., Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356(6333), 59–62 (2017). https://doi.org/10.1126/science.aam7744
- E. Ugur, J.I. Khan, E. Aydin, M. Wang, M. Kirkus et al., Carrier extraction from perovskite to polymeric charge transport layers probed by ultrafast transient absorption spectroscopy. J. Phys. Chem. Lett. 10(21), 6921–6928 (2019). https://doi.org/10.1021/acs.jpclett.9b02502
- B. Dong, M. Wei, Y. Li, Y. Yang, W. Ma et al., Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses. Nat. Energy 10(3), 342–353 (2025). https://doi.org/10.1038/s41560-024-01689-2
- R. Guo, X. Zhang, X. Zheng, L. Li, M. Li et al., Tailoring multifunctional self-assembled hole transporting molecules for highly efficient and stable inverted perovskite solar cells. Adv. Funct. Mater. 33(10), 2211955 (2023). https://doi.org/10.1002/adfm.202211955
- Y. Guo, H. Tan, B. Xu, Deciphering halide ion migration and performance loss in wide-bandgap perovskite solar cells: connection, mechanism, and solutions. Energy Environ. Sci. 18(19), 8744–8755 (2025). https://doi.org/10.1039/d5ee03136b
- N. Yantara, N. Mathews, Toolsets for assessing ionic migration in halide perovskites. Joule 8(5), 1239–1273 (2024). https://doi.org/10.1016/j.joule.2024.02.022
- C.A. Aranda, A.O. Alvarez, V.S. Chivrony, C. Das, M. Rai et al., Overcoming ionic migration in perovskite solar cells through alkali metals. Joule 8(1), 241–254 (2024). https://doi.org/10.1016/j.joule.2023.11.011
- S. Singh, E. Siliavka, M. Löffler, Y. Vaynzof, Impact of buried interface texture on compositional stratification and ion migration in perovskite solar cells. Adv. Funct. Mater. 34(42), 2402655 (2024). https://doi.org/10.1002/adfm.202402655
- S. Qu, H. Huang, J. Wang, P. Cui, Y. Li et al., Revealing and inhibiting the facet-related ion migration for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 64(4), e202415949 (2025). https://doi.org/10.1002/anie.202415949
- D. He, D. Ma, J. Zhang, Y. Yang, J. Ding et al., Universal ion migration suppression strategy based on supramolecular host–guest interaction for high-performance perovskite solar cells. Adv. Mater. 37(33), 2505115 (2025). https://doi.org/10.1002/adma.202505115
- L. Li, M. Wei, V. Carnevali, H. Zeng, M. Zeng et al., Buried-interface engineering enables efficient and 1960-hour ISOS-L-2I stable inverted perovskite solar cells. Adv. Mater. 36(13), e2303869 (2024). https://doi.org/10.1002/adma.202303869
- Y. Yao, C. Cheng, C. Zhang, H. Hu, K. Wang et al., Organic hole-transport layers for efficient, stable, and scalable inverted perovskite solar cells. Adv. Mater. 34(44), 2203794 (2022). https://doi.org/10.1002/adma.202203794
- Z. He, J. Dai, J. Xiong, Q. Hu, Q. Yang et al., Overcoming the wetting issues of PTAA in inverted perovskite solar cells by cinnamyl alcohol modification. Mater. Today Commun. 47, 113085 (2025). https://doi.org/10.1016/j.mtcomm.2025.113085
- A. Ullah, K.H. Park, Y. Lee, S. Park, A. Bin Faheem et al., Versatile hole selective molecules containing a series of heteroatoms as self-assembled monolayers for efficient p-i-n perovskite and organic solar cells. Adv. Funct. Mater. 32(49), 2208793 (2022). https://doi.org/10.1002/adfm.202208793
- G.D. Kong, J. Jin, M. Thuo, H. Song, J.F. Joung et al., Elucidating the role of molecule-electrode interfacial defects in charge tunneling characteristics of large-area junctions. J. Am. Chem. Soc. 140(38), 12303–12307 (2018). https://doi.org/10.1021/jacs.8b08146
- H.J. Yoon, K.-C. Liao, M.R. Lockett, S.W. Kwok, M. Baghbanzadeh et al., Rectification in tunneling junctions: 2, 2′-bipyridyl-terminated n-alkanethiolates. J. Am. Chem. Soc. 136(49), 17155–17162 (2014). https://doi.org/10.1021/ja509110a
- S. Yuan, C. Ge, T. Zhang, G. Su, Q. Qiu et al., Conjugated bisphosphonic acid self-assembled monolayers for efficient and stable inverted perovskite solar cells. J. Am. Chem. Soc. 147(28), 24662–24671 (2025). https://doi.org/10.1021/jacs.5c05801
- Q. Cao, T. Wang, X. Pu, X. He, M. Xiao et al., Co-self-assembled monolayers modified NiOx for stable inverted perovskite solar cells. Adv. Mater. 36(16), 2311970 (2024). https://doi.org/10.1002/adma.202311970
- J. Warby, F. Zu, S. Zeiske, E. Gutierrez-Partida, L. Frohloff et al., Understanding performance limiting interfacial recombination in pin perovskite solar cells. Adv. Energy Mater. 12(12), 2103567 (2022). https://doi.org/10.1002/aenm.202103567
- D. Zhang, H. Zhang, H. Guo, F. Ye, S. Liu et al., Stable α-FAPbI3 in inverted perovskite solar cells with efficiency exceeding 22% via a self-passivation strategy. Adv. Funct. Mater. 32(27), 2200174 (2022). https://doi.org/10.1002/adfm.202200174
- S. Cacovich, G. Vidon, M. Degani, M. Legrand, L. Gouda et al., Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nat. Commun. 13(1), 2868 (2022). https://doi.org/10.1038/s41467-022-30426-0
- M. Chen, X. Lv, L. Duan, B. Farhadi, C. Yu et al., Reinforced anchor for scalable self-assembled monolayer to attain high-performance perovskite solar modules. Adv. Energy Mater. 15(35), 2502000 (2025). https://doi.org/10.1002/aenm.202502000
- D. Wang, Z. Liu, Y. Qiao, Z. Jiang, P. Zhu et al., Rigid molecules anchoring on NiOx enable >26% efficiency perovskite solar cells. Joule 9(3), 101815 (2025). https://doi.org/10.1016/j.joule.2024.101815
- H. Chen, Q. Cao, X. Pu, Q. Zhao, X. He et al., Strong coupling of NiOx and self-assembled molecules via inserted reductant for high-performance inverted perovskite solar cells. Adv. Mater. 37(43), e10553 (2025). https://doi.org/10.1002/adma.202510553
- C.A.F. Morales, Z. Pizzo, D.M. Sweeney, Z. Hu, G.P. Sharma et al., Multilayer formation, interfacial binding, and stability of self-assembled molecules in perovskite solar cells. J. Am. Chem. Soc. 147(52), 48136–48146 (2025). https://doi.org/10.1021/jacs.5c15955
- H. Gao, D. Khan, I. Muhammad, Y. Zhang, C. Zhang et al., Self-assembled bi-monolayer for inverted perovskite solar cells. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202519073
- Y. Sun, R. Xu, J. Dai, H. Tang, J. Wang et al., In situ coordinated HTL strategy for high-performance and scalable perovskite solar cells. Nat. Commun. 16(1), 9110 (2025). https://doi.org/10.1038/s41467-025-64111-9
- W. Liu, Z. Tan, J. Wang, S. Liu, T. Imran et al., Defect engineering and crystallization kinetics control via dual-functional mercaptoacetamide for high-performance, large-area perovskite solar modules. Adv. Energy Mater. 15(40), e02193 (2025). https://doi.org/10.1002/aenm.202502193
- W. Wang, X. Liu, J. Wang, C. Chen, J. Yu et al., Versatile self-assembled molecule enables high-efficiency wide-bandgap perovskite solar cells and organic solar cells. Adv. Energy Mater. 13(23), 2300694 (2023). https://doi.org/10.1002/aenm.202300694
- H. Zhou, W. Wang, Y. Duan, R. Sun, Y. Li et al., Glycol monomethyl ether-substituted carbazolyl hole-transporting material for stable inverted perovskite solar cells with efficiency of 25.52%. Angew. Chem. Int. Ed. 63(33), e202403068 (2024). https://doi.org/10.1002/anie.202403068
- X. Chen, E. Luais, N. Darwish, S. Ciampi, P. Thordarson et al., Studies on the effect of solvents on self-assembled monolayers formed from organophosphonic acids on indium tin oxide. Langmuir 28(25), 9487–9495 (2012). https://doi.org/10.1021/la3010129
- H. Dietrich, D. Zahn, Molecular mechanisms of solvent-controlled assembly of phosphonate monolayers on oxide surfaces. J. Phys. Chem. C 121(33), 18012–18020 (2017). https://doi.org/10.1021/acs.jpcc.7b05750
- X. Deng, F. Qi, F. Li, S. Wu, F.R. Lin et al., Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability. Angew. Chem. Int. Ed. 61(30), e202203088 (2022). https://doi.org/10.1002/anie.202203088
- D. Song, S. Ramakrishnan, Y. Zhang, Q. Yu, Mixed self-assembled monolayers for high-photovoltage tin perovskite solar cells. ACS Energy Lett. 9(4), 1466–1472 (2024). https://doi.org/10.1021/acsenergylett.4c00155
- J. Chen, X. Wang, T. Wang, J. Li, H.Y. Chia et al., Determining the bonding–degradation trade-off at heterointerfaces for increased efficiency and stability of perovskite solar cells. Nat. Energy 10(2), 181–190 (2025). https://doi.org/10.1038/s41560-024-01680-x
- Q. Chen, K. Sun, L.R. Franco, J. Wu, L. Öhrström et al., Effects of alkyl spacer length in carbazole-based self-assembled monolayer materials on molecular conformation and organic solar cell performance. Adv. Sci. 12(4), 2410277 (2025). https://doi.org/10.1002/advs.202410277
- E.J. Cassella, E.L.K. Spooner, T. Thornber, M.E. O’Kane, T.E. Catley et al., Gas-assisted spray coating of perovskite solar cells incorporating sprayed self-assembled monolayers. Adv. Sci. 9(14), 2104848 (2022). https://doi.org/10.1002/advs.202104848
- K. Schötz, C. Greve, A. Langen, H. Gorter, I. Dogan et al., Understanding differences in the crystallization kinetics between one-step slot-die coating and spin coating of MAPbI3 using multimodal in situ optical spectroscopy. Adv. Opt. Mater. 9(21), 2101161 (2021). https://doi.org/10.1002/adom.202101161
- E. Parvazian, A. Abdollah-zadeh, M. Dehghani, N. Taghavinia, Photovoltaic performance improvement in vacuum-assisted Meniscus printed triple-cation mixed-halide perovskite films by surfactant engineering. ACS Appl. Energy Mater. 2(9), 6209–6217 (2019). https://doi.org/10.1021/acsaem.9b00707
- E. Parvazian, R. Garcia-Rodriguez, D. Beynon, M. Davies, T. Watson, Slot-die coating of self-assembled monolayers: a scalable approach for perovskite solar cells. Mater. Today Energy 52, 101955 (2025). https://doi.org/10.1016/j.mtener.2025.101955
- J. Jang, G.D. Kong, H.J. Yoon, Electrically stable self-assembled monolayers achieved through repeated surface exchange of molecules. Acc. Mater. Res. 5(10), 1251–1262 (2024). https://doi.org/10.1021/accountsmr.4c00190
- Y. Zhao, X. Luan, L. Han, Y. Wang, Post-assembled alkylphosphonic acids for efficient and stable inverted perovskite solar cells. Adv. Funct. Mater. 34(46), 2405646 (2024). https://doi.org/10.1002/adfm.202405646
- X. Zheng, Z. Li, Y. Zhang, M. Chen, T. Liu et al., Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8(5), 462–472 (2023). https://doi.org/10.1038/s41560-023-01227-6
- S.M. Park, M. Wei, N. Lempesis, W. Yu, T. Hossain et al., Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624(7991), 289–294 (2023). https://doi.org/10.1038/s41586-023-06745-7
- A. Al-Ashouri, M. Marčinskas, E. Kasparavičius, T. Malinauskas, A. Palmstrom et al., Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells. ACS Energy Lett. 8(2), 898–900 (2023). https://doi.org/10.1021/acsenergylett.2c02629
- H. Liu, J. Dong, P. Wang, B. Shi, Y. Zhao et al., Suppressing the photoinduced halide segregation in wide-bandgap perovskite solar cells by strain relaxation. Adv. Funct. Mater. 33(41), 2303673 (2023). https://doi.org/10.1002/adfm.202303673
- Y. Wang, S. Akel, B. Klingebiel, T. Kirchartz, Hole transporting bilayers for efficient micrometer-thick perovskite solar cells. Adv. Energy Mater. 14(5), 2302614 (2024). https://doi.org/10.1002/aenm.202302614
- Q. Jiang, R. Tirawat, R.A. Kerner, E.A. Gaulding, Y. Xian et al., Towards linking lab and field lifetimes of perovskite solar cells. Nature 623(7986), 313–318 (2023). https://doi.org/10.1038/s41586-023-06610-7
- Y. Zhang, Y. Liu, Z. Zhao, T. Kong, W. Chen et al., Improving buried interface contact for inverted perovskite solar cells via dual modification strategy. Adv. Funct. Mater. 35(12), 2417575 (2025). https://doi.org/10.1002/adfm.202417575
- Q. Cai, Q. Tan, J. He, S. Tang, Q. Sun et al., Enhancing electron transport for efficiency-recorded HTL-free inverted perovskite solar cells by molecular complementary passivation. Joule 9(5), 101880 (2025). https://doi.org/10.1016/j.joule.2025.101880
- H. Wang, J. Yan, M. Dijkstra, E. Torun, M. Rana et al., Understanding the principles of co-deposition of mixed-SAMs in MAPbI3-based p-i-n structure perovskite solar cells. ACS Appl. Mater. Interfaces 17(49), 67306–67317 (2025). https://doi.org/10.1021/acsami.5c18266
- S. Wang, H. Guo, Y. Wu, Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells. Mater. Futures 2(1), 012105 (2023). https://doi.org/10.1088/2752-5724/acbb5a
- X. Xu, X. Ji, R. Chen, F. Ye, S. Liu et al., Improving contact and passivation of buried interface for high-efficiency and large-area inverted perovskite solar cells. Adv. Funct. Mater. 32(9), 2109968 (2022). https://doi.org/10.1002/adfm.202109968
- Y. Li, S. Yang, S. Yan, X. Liu, G. Shi et al., Open-circuit voltage loss management for efficient inverted wide-bandgap perovskite photovoltaics. Adv. Funct. Mater. 35(7), 2415331 (2025). https://doi.org/10.1002/adfm.202415331
- C. Zhang, S. Mariotti, L.K. Ono, C. Ding, K. Mitrofanov et al., A hole injection monolayer enables cost-effective perovskite light-emitting diodes. J. Mater. Chem. C 11(8), 2851–2862 (2023). https://doi.org/10.1039/d2tc05491d
- M. Li, K. Xie, G. Wang, J. Zheng, Y. Cao et al., An AIE-active ultrathin polymeric self-assembled monolayer sensor for trace volatile explosive detection. Macromol. Rapid Commun. 42(23), 2170074 (2021). https://doi.org/10.1002/marc.202170074
References
W. Jiang, G. Qu, X. Huang, X. Chen, L. Chi et al., Toughened self-assembled monolayers for durable perovskite solar cells. Nature 646(8083), 95–101 (2025). https://doi.org/10.1038/s41586-025-09509-7
A. Magomedov, A. Al-Ashouri, E. Kasparavičius, S. Strazdaite, G. Niaura et al., Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 8(32), 1801892 (2018). https://doi.org/10.1002/aenm.201801892
W.C. Bigelow, D.L. Pickett, W.A. Zisman, Oleophobic monolayers i. Films adsorbed from solution in non-polar liquids. J. Colloid Sci. 1(6), 513–538 (1946). https://doi.org/10.1016/0095-8522(46)90059-1
M. Gao, Z. Ou, C. Wang, L. Liu, D. Hu et al., Multifunctional buried molecule-bridge for high-performance inverted perovskite solar cells. Adv. Mater. 38, e14273,(2025). https://doi.org/10.1002/adma.202514273
H. Zhang, S. Zhang, X. Ji, J. He, H. Guo et al., Formamidinium lead iodide-based inverted perovskite solar cells with efficiency over 25% enabled by an amphiphilic molecular hole-transporter. Angew. Chem. Int. Ed. 63(16), e202401260 (2024). https://doi.org/10.1002/anie.202401260
A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
G. Wang, J. Zheng, W. Duan, J. Yang, M.A. Mahmud et al., Molecular engineering of hole-selective layer for high band gap perovskites for highly efficient and stable perovskite-silicon tandem solar cells. Joule 7(11), 2583–2594 (2023). https://doi.org/10.1016/j.joule.2023.09.007
A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019). https://doi.org/10.1039/C9EE02268F
J. Yang, G. Qu, Y. Qiao, S. Cai, J. Hu et al., Flexibility meets rigidity: a self-assembled monolayer materials strategy for perovskite solar cells. Nat. Commun. 16(1), 6968 (2025). https://doi.org/10.1038/s41467-025-62388-4
C.C. Boyd, R.C. Shallcross, T. Moot, R. Kerner, L. Bertoluzzi et al., Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4(8), 1759–1775 (2020). https://doi.org/10.1016/j.joule.2020.06.004
Y. Zhou, X. Huang, J. Zhang, L. Zhang, H. Wu et al., Interfacial modification of NiOx for highly efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 14(25), 2400616 (2024). https://doi.org/10.1002/aenm.202400616
S.A. Ok, B. Jo, S. Somasundaram, H.J. Woo, D.W. Lee et al., Management of transition dipoles in organic hole-transporting materials under solar irradiation for perovskite solar cells. Nat. Commun. 9(1), 4537 (2018). https://doi.org/10.1038/s41467-018-06998-1
Y. Zhao, T. Heumueller, J. Zhang, J. Luo, O. Kasian et al., A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nat. Energy 7(2), 144–152 (2022). https://doi.org/10.1038/s41560-021-00953-z
F.H. Isikgor, S. Zhumagali, L.V.T. Merino, M. De Bastiani, I. McCulloch et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8(2), 89–108 (2023). https://doi.org/10.1038/s41578-022-00503-3
H. Li, S. Liu, Revolutionary SAMs: transforming inverted perovskite solar cells. J. Mater. Chem. A 12(17), 9929–9932 (2024). https://doi.org/10.1039/d4ta00962b
X. Yu, D. Gao, Z. Li, X. Sun, B. Li et al., Green-solvent processable dopant-free hole transporting materials for inverted perovskite solar cells. Angew. Chem. Int. Ed. 62(11), e202218752 (2023). https://doi.org/10.1002/anie.202218752
K. Zhao, Q. Liu, L. Yao, C. Değer, J. Shen et al., Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature 632(8024), 301–306 (2024). https://doi.org/10.1038/s41586-024-07712-6
M. Liu, L. Bi, W. Jiang, Z. Zeng, S.-W. Tsang et al., Compact hole-selective self-assembled monolayers enabled by disassembling micelles in solution for efficient perovskite solar cells. Adv. Mater. 35(46), 2304415 (2023). https://doi.org/10.1002/adma.202304415
S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380(6643), 404–409 (2023). https://doi.org/10.1126/science.adg3755
J. Du, J. Chen, B. Ouyang, A. Sun, C. Tian et al., Face-on oriented self-assembled molecules with enhanced π–π stacking for highly efficient inverted perovskite solar cells on rough FTO substrates. Energy Environ. Sci. 18(7), 3196–3210 (2025). https://doi.org/10.1039/d4ee05849f
Z. Lv, Z. Wang, G. Liu, Y. Gao, S. Li et al., Pre-anchored ionic bond mediators enabling controllable monolayer assembly for high-performance perovskite solar cells and modules. Adv. Mater. (2025). https://doi.org/10.1002/adma.202513600
H. Zhang, Y. Yang, J. Zhao, H. Yang, Y. Lu et al., A self-assembling composite structural design for the conversion of hydroxyl-anchored bonds obtains high efficient and stable perovskite solar cells. Adv. Mater. 37(28), 2420155 (2025). https://doi.org/10.1002/adma.202420155
Z. Li, X. Sun, X. Zheng, B. Li, D. Gao et al., Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382(6668), 284–289 (2023). https://doi.org/10.1126/science.ade9637
W. Jiang, F. Li, M. Li, F. Qi, F.R. Lin et al., π-expanded carbazoles as hole-selective self-assembled monolayers for high-performance perovskite solar cells. Angew. Chem. Int. Ed. 61(51), e202213560 (2022). https://doi.org/10.1002/anie.202213560
A. Ullah, K.H. Park, H.D. Nguyen, Y. Siddique, S.F.A. Shah et al., Novel phenothiazine-based self-assembled monolayer as a hole selective contact for highly efficient and stable p-i-n perovskite solar cells. Adv. Energy Mater. 12(2), 2103175 (2022). https://doi.org/10.1002/aenm.202103175
Y. Wang, Q. Liao, J. Chen, W. Huang, X. Zhuang et al., Teaching an old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells. J. Am. Chem. Soc. 142(39), 16632–16643 (2020). https://doi.org/10.1021/jacs.0c06373
E. Li, C. Liu, H. Lin, X. Xu, S. Liu et al., Bonding strength regulates anchoring-based self-assembly monolayers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 31(35), 2103847 (2021). https://doi.org/10.1002/adfm.202103847
C. Li, Z. Zhang, H. Zhang, W. Yan, Y. Li et al., Fully aromatic self-assembled hole-selective layer toward efficient inverted wide-bandgap perovskite solar cells with ultraviolet resistance. Angew. Chem. Int. Ed. 63(1), e202315281 (2024). https://doi.org/10.1002/anie.202315281
C.E. Puerto Galvis, D.A. González Ruiz, E. Martínez-Ferrero, E. Palomares, Challenges in the design and synthesis of self-assembling molecules as selective contacts in perovskite solar cells. Chem. Sci. 15(5), 1534–1556 (2024). https://doi.org/10.1039/d3sc04668k
T.S. Bejitual, K. Ramji, A.J. Kessman, K.A. Sierros, D.R. Cairns, Corrosion of an amorphous indium tin oxide film on polyethylene terephthalate at low concentrations of acrylic acid. Mater. Chem. Phys. 132(2–3), 395–401 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.043
H. Guo, C. Liu, H. Hu, S. Zhang, X. Ji et al., Neglected acidity pitfall: boric acid-anchoring hole-selective contact for perovskite solar cells. Natl. Sci. Rev. 10(5), nwad057 (2023). https://doi.org/10.1093/nsr/nwad057
S. Wang, L. Zhan, S. Zhang, H. Zhang, X. Ji et al., Enhancing interfacial contact of hole-collecting monolayer via coassembly with multiped triphenylamine for mechanically stable inverted perovskite solar cells. CCS Chem. (2025). https://doi.org/10.31635/ccschem.025.202506236
C. Li, Y. Chen, Y. Li, Z. Zhang, J. Yang et al., Achieving 32% efficiency in perovskite/silicon tandem solar cells with bidentate-anchored superwetting self-assembled molecular layers. Angew. Chem. Int. Ed. 64(23), e202502730 (2025). https://doi.org/10.1002/anie.202502730
D. Gao, B. Li, X. Sun, Q. Liu, C. Zhang et al., High-efficiency perovskite solar cells enabled by suppressing intermolecular aggregation in hole-selective contacts. Nat. Photonics 19(10), 1070–1077 (2025). https://doi.org/10.1038/s41566-025-01725-x
Y. Zhao, Y. Liu, Z. Ren, Y. Li, Y. Zhang et al., Enhanced interface adhesion with a polymeric hole transporter enabling high-performance air-processed perovskite solar cells. Energy Environ. Sci. 18(3), 1366–1374 (2025). https://doi.org/10.1039/d4ee04481a
C. Zhao, F. Wang, X. Hu, Y. Zhang, T. Liu et al., Ambient blade-coated perovskite solar cells with high reverse bias stability enabled by polymeric hole transporter design. Nat. Commun. 16(1), 10355 (2025). https://doi.org/10.1038/s41467-025-65341-7
T. Liu, X. Liao, J. Wu, P. Ding, Z. Shao et al., Dimeric self-assembled molecules modulate phase homogeneity and anchoring stability for high-performance perovskite solar cells. Adv. Funct. Mater. e20189, (2025). https://doi.org/10.1002/adfm.202520189
F. Wang, T. Liu, Y. Liu, Y. Zhou, X. Dong et al., A polymeric hole transporter with dual-interfacial interactions enables 25%-efficiency blade-coated perovskite solar cells. Adv. Mater. 36(52), e2412059 (2024). https://doi.org/10.1002/adma.202412059
M.A. Truong, T. Funasaki, L. Ueberricke, W. Nojo, R. Murdey et al., Tripodal triazatruxene derivative as a face-on oriented hole-collecting monolayer for efficient and stable inverted perovskite solar cells. J. Am. Chem. Soc. 145(13), 7528–7539 (2023). https://doi.org/10.1021/jacs.3c00805
A. Sun, C. Tian, R. Zhuang, C. Chen, Y. Zheng et al., High open-circuit voltage (1.197 V) in large-area (1 cm2) inverted perovskite solar cell via interface planarization and highly polar self-assembled monolayer. Adv. Energy Mater. 14(8), 2303941 (2024). https://doi.org/10.1002/aenm.202303941
S.N. Afraj, C.-H. Kuan, J.-S. Lin, J.-S. Ni, A. Velusamy et al., Quinoxaline-based X-shaped sensitizers as self-assembled monolayer for tin perovskite solar cells. Adv. Funct. Mater. 33(17), 2213939 (2023). https://doi.org/10.1002/adfm.202213939
A. Zhang, M. Li, C. Dong, W. Ye, Y. Zhu et al., Role of NiO in wide-bandgap perovskite solar cells based on self-assembled monolayers. Chem. Eng. J. 494, 153253 (2024). https://doi.org/10.1016/j.cej.2024.153253
H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang et al., Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383(6688), 1236–1240 (2024). https://doi.org/10.1126/science.adj9602
Y.-H. Lin, F. Vikram, X.-L. Yang, A.D. Cao et al., Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss. Science 384(6697), 767–775 (2024). https://doi.org/10.1126/science.ado2302
H. Meng, K. Mao, F. Cai, K. Zhang, S. Yuan et al., Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p–i–n perovskite solar cells. Nat. Energy 9(5), 536–547 (2024). https://doi.org/10.1038/s41560-024-01471-4
C. Luo, Q. Zhou, K. Wang, X. Wang, J. He et al., Engineering bonding sites enables uniform and robust self-assembled monolayer for stable perovskite solar cells. Nat. Mater. 24(8), 1265–1272 (2025). https://doi.org/10.1038/s41563-025-02275-x
S. Fu, N. Sun, H. Chen, Y. Li, Y. Li et al., Homogenizing SAM deposition via seeding–OH groups for scalable fabrication of perovskite solar cells. Energy Environ. Sci. 18(7), 3305–3312 (2025). https://doi.org/10.1039/d5ee00350d
S. Yu, Z. Xiong, H. Zhou, Q. Zhang, Z. Wang et al., Homogenized NiOx nanops for improved hole transport in inverted perovskite solar cells. Science 382(6677), 1399–1404 (2023). https://doi.org/10.1126/science.adj8858
J. He, G. Li, G. Huang, Z. Luo, B. Zhang et al., Improved anchoring of self-assembled monolayer on hydroxylated NiOx film surface for efficient and stable inverted perovskite solar cells. Adv. Funct. Mater. 35(3), 2413104 (2025). https://doi.org/10.1002/adfm.202413104
I. Levine, A. Al-Ashouri, A. Musiienko, H. Hempel, A. Magomedov et al., Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 5(11), 2915–2933 (2021). https://doi.org/10.1016/j.joule.2021.07.016
F. Ben Amara, E.R. Dionne, S. Kassir, C. Pellerin, A. Badia, Molecular origin of the odd-even effect of macroscopic properties of n-alkanethiolate self-assembled monolayers: bulk or interface? J. Am. Chem. Soc. 142(30), 13051–13061 (2020). https://doi.org/10.1021/jacs.0c04288
H.B. Akkerman, S.C.B. Mannsfeld, A.P. Kaushik, E. Verploegen, L. Burnier et al., Effects of odd-even side chain length of alkyl-substituted diphenylbithiophenes on first monolayer thin film packing structure. J. Am. Chem. Soc. 135(30), 11006–11014 (2013). https://doi.org/10.1021/ja400015e
F. Ali, C. Roldán-Carmona, M. Sohail, M.K. Nazeeruddin, Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10(48), 2002989 (2020). https://doi.org/10.1002/aenm.202002989
S. Zhang, R. Wu, C. Mu, Y. Wang, L. Han et al., Conjugated self-assembled monolayer as stable hole-selective contact for inverted perovskite solar cells. ACS Mater. Lett. 4(10), 1976–1983 (2022). https://doi.org/10.1021/acsmaterialslett.2c00799
Q. Liao, Y. Wang, Z. Zhang, K. Yang, Y. Shi et al., Self-assembled donor-acceptor hole contacts for inverted perovskite solar cells with an efficiency approaching 22%: the impact of anchoring groups. J. Energy Chem. 68, 87–95 (2022). https://doi.org/10.1016/j.jechem.2021.11.001
G. Qu, S. Cai, Y. Qiao, D. Wang, S. Gong et al., Conjugated linker-boosted self-assembled monolayer molecule for inverted perovskite solar cells. Joule 8(7), 2123–2134 (2024). https://doi.org/10.1016/j.joule.2024.05.005
J. Zhu, Y. Luo, R. He, C. Chen, Y. Wang et al., A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems. Nat. Energy 8(7), 714–724 (2023). https://doi.org/10.1038/s41560-023-01274-z
J. Zhu, X. Huang, Y. Luo, W. Jiao, Y. Xu et al., Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems. Nat. Commun. 16(1), 240 (2025). https://doi.org/10.1038/s41467-024-55492-4
P. Han, Y. Zhang, Recent advances in carbazole-based self-assembled monolayer for solution-processed optoelectronic devices. Adv. Mater. 36(33), e2405630 (2024). https://doi.org/10.1002/adma.202405630
G. Qu, L. Zhang, Y. Qiao, S. Gong, Y. Ding et al., Self-assembled materials with an ordered hydrophilic bilayer for high performance inverted Perovskite solar cells. Nat. Commun. 16(1), 86 (2025). https://doi.org/10.1038/s41467-024-55523-0
Z. Dai, S. You, D. Chakraborty, S. Li, Y. Zhang et al., Connecting interfacial mechanical adhesion, efficiency, and operational stability in high performance inverted perovskite solar cells. ACS Energy Lett. 9(4), 1880–1887 (2024). https://doi.org/10.1021/acsenergylett.4c00510
W. Peng, Y. Zhang, X. Zhou, J. Wu, D. Wang et al., A versatile energy-level-tunable hole-transport layer for multi-composition inverted perovskite solar cells. Energy Environ. Sci. 18(2), 874–883 (2025). https://doi.org/10.1039/d4ee03208j
M. Wróbel, T. Żaba, E. Sauter, M. Krawiec, J. Sobczuk et al., Thermally stable and highly conductive SAMs on Ag substrate: the impact of the anchoring group. Adv. Electron. Mater. 7(2), 2000947 (2021). https://doi.org/10.1002/aelm.202000947
E. Aktas, R. Pudi, N. Phung, R. Wenisch, L. Gregori et al., Role of terminal group position in triphenylamine-based self-assembled hole-selective molecules in perovskite solar cells. ACS Appl. Mater. Interfaces 14(15), 17461–17469 (2022). https://doi.org/10.1021/acsami.2c01981
M. Petrović, T. Maksudov, A. Panagiotopoulos, E. Serpetzoglou, I. Konidakis et al., Limitations of a polymer-based hole transporting layer for application in planar inverted perovskite solar cells. Nanoscale Adv. 1(8), 3107–3118 (2019). https://doi.org/10.1039/C9NA00246D
J.H. Park, O.J. Kwon, T.-H. Kim, J. Mun, Y.D. Park, Ultraviolet irradiation creates morphological order via conformational changes in polythiophene films. Org. Electron. 62, 394–399 (2018). https://doi.org/10.1016/j.orgel.2018.08.033
C. Fei, A. Kuvayskaya, X. Shi, M. Wang, Z. Shi et al., Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells. Science 384(6700), 1126–1134 (2024). https://doi.org/10.1126/science.adi4531
J. Mei, F. Yan, Recent advances in wide-bandgap perovskite solar cells. Adv. Mater. 37(48), 2418622 (2025). https://doi.org/10.1002/adma.202418622
S. Zhang, X. Wang, Y. Wu, X. Li, T. Hou et al., Self-assembled π-conjugated hole-selective molecules for UV-resistant high-efficiency perovskite solar cells. Angew. Chem. Int. Ed. 64(34), e202508782 (2025). https://doi.org/10.1002/anie.202508782
D.K. Schwartz, Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52, 107–137 (2001). https://doi.org/10.1146/annurev.physchem.52.1.107
A.F. Raigoza, G. Kolettis, D.A. Villalba, S.A. Kandel, Restructuring of octanethiolate and dialkyldithiocarbamate monolayers in the formation of sequentially adsorbed mixed monolayers. J. Phys. Chem. C 115(41), 20274–20281 (2011). https://doi.org/10.1021/jp206983y
Z. Shi, S. Li, C. Min, J. Xie, R. Ma, Modification of energy levels by cetyltrimethylammonium bromide at the perovskite/carbon interface for highly efficient and stable perovskite solar cells. Org. Electron. 112, 106689 (2023). https://doi.org/10.1016/j.orgel.2022.106689
D. Xu, H. Lv, H. Jin, Y. Liu, Y. Ma et al., Crystalline facet-directed generation engineering of ultrathin platinum nanodendrites. J. Phys. Chem. Lett. 10(3), 663–671 (2019). https://doi.org/10.1021/acs.jpclett.8b03861
R. Nagarajan, Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18(1), 31–38 (2002). https://doi.org/10.1021/la010831y
A. Kulkarni, R. Sarkar, S. Akel, M. Häser, B. Klingebiel et al., A universal strategy of perovskite ink - substrate interaction to overcome the poor wettability of a self-assembled monolayer for reproducible perovskite solar cells. Adv. Funct. Mater. 33(47), 2305812 (2023). https://doi.org/10.1002/adfm.202305812
D. Li, Q. Lian, T. Du, R. Ma, H. Liu et al., Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells. Nat. Commun. 15(1), 7605 (2024). https://doi.org/10.1038/s41467-024-51760-5
S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
J. Ma, S. Yang, C. Shao, Z. Nie, W. Zhang et al., Homogenizing self-assembled monolayers via covalent organic frameworks for inverted perovskite solar cells. Angew. Chem. Int. Ed. 65, e19875 (2025). https://doi.org/10.1002/anie.202519875
Q. Tan, H. Wang, S. Tang, Q. Cai, G. Ma et al., Asymmetric dimethyl-indenocarbazole phosphonic acid molecules with expanded π-conjugation for inverted perovskite solar cells. Adv. Funct. Mater. 35(41), 2501147 (2025). https://doi.org/10.1002/adfm.202501147
X. Wang, J. Li, R. Guo, X. Yin, R. Luo et al., Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photonics 18(12), 1269–1275 (2024). https://doi.org/10.1038/s41566-024-01531-x
H. Wu, J. Wu, Z. Zhang, X. Guan, L. Wang et al., Tailored lattice-matched carbazole self-assembled molecule for efficient and stable perovskite solar cells. J. Am. Chem. Soc. 147(9), 8004–8011 (2025). https://doi.org/10.1021/jacs.5c00629
B. Zhao, B. Gothe, A. Groh, T. Schmaltz, J. Will et al., Oligothiophene phosphonic acids for self-assembled monolayer field-effect transistors. ACS Appl. Mater. Interfaces 13(27), 32461–32466 (2021). https://doi.org/10.1021/acsami.1c05764
X.-M. Li, Y.-H. Wang, J.-W. Seng, J.-F. Zheng, R. Cao et al., Z-piezo pulse-modulated STM break junction: toward single-molecule rectifiers with dissimilar metal electrodes. ACS Appl. Mater. Interfaces 13(7), 8656–8663 (2021). https://doi.org/10.1021/acsami.0c21435
S.Y. Lee, Y. Choi, E. Ito, M. Hara, H. Lee et al., Growth, solvent effects, and thermal desorption behavior of octylthiocyanate self-assembled monolayers on Au(111). Phys. Chem. Chem. Phys. 15(10), 3609–3617 (2013). https://doi.org/10.1039/c3cp44425b
S. Mariotti, I.N. Rabehi, C. Zhang, X. Huo, J. Zhang et al., Unraveling the morphological and energetic properties of 2PACz self-assembled monolayers fabricated with upscaling deposition methods. Energy Environ. Mater. 8(2), e12825 (2025). https://doi.org/10.1002/eem2.12825
D.O. Hutchins, O. Acton, T. Weidner, N. Cernetic, J.E. Baio et al., Spin cast self-assembled monolayer field effect transistors. Org. Electron. 13(3), 464–468 (2012). https://doi.org/10.1016/j.orgel.2011.11.025
X. Huang, T. Wang, W. Chen, Z. Wang, Z. Lin et al., Bottom-up regulation of perovskite growth and energetics via oligoether functionalized self-assembling molecules for high-performance solar cells. Angew. Chem. Int. Ed. 64(36), e202507513 (2025). https://doi.org/10.1002/anie.202507513
L.V. Torres Merino, C.E. Petoukhoff, O. Matiash, A.S. Subbiah, C.V. Franco et al., Impact of the valence band energy alignment at the hole-collecting interface on the photostability of wide band-gap perovskite solar cells. Joule 8(9), 2585–2606 (2024). https://doi.org/10.1016/j.joule.2024.06.017
M. Novak, A. Ebel, T. Meyer-Friedrichsen, A. Jedaa, B.F. Vieweg et al., Low-voltage p- and n-type organic self-assembled monolayer field effect transistors. Nano Lett. 11(1), 156–159 (2011). https://doi.org/10.1021/nl103200r
W. Wang, X. Li, L. Gao, G. Liu, L. Yang et al., Thermal cross-linking hole-transport self-assembled monolayers for perovskite solar cells. ACS Energy Lett. 10(5), 2250–2258 (2025). https://doi.org/10.1021/acsenergylett.5c00457
L. Wang, Z. Liu, J. Zou, S. Peng, D. Wang et al., In situ crosslinked self-assembled monolayer as processing stable hole selective contact in perovskite solar cells. Angew. Chem. 137(52), e17058 (2025). https://doi.org/10.1002/ange.202517058
K. Guo, H. Tang, L. Han, R. Qi, H. Yan et al., Self-assembled monolayer: revolutionizing p-i-n perovskite solar cells. ACS Energy Lett. 10(10), 4882–4910 (2025). https://doi.org/10.1021/acsenergylett.5c02024
F. Zaera, Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112(5), 2920–2986 (2012). https://doi.org/10.1021/cr2002068
Y. Wang, B. Yan, L. Chen, SERS tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 113(3), 1391–1428 (2013). https://doi.org/10.1021/cr300120g
M. Poonia, T. Küster, G.D. Bothun, Organic anion detection with functionalized SERS substrates via coupled electrokinetic preconcentration, analyte capture, and charge transfer. ACS Appl. Mater. Interfaces 14(20), 23964–23972 (2022). https://doi.org/10.1021/acsami.2c02934
Z.-F. Cai, T. Käser, N. Kumar, R. Zenobi, Visualizing on-surface decomposition chemistry at the nanoscale using tip-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 13(22), 4864–4870 (2022). https://doi.org/10.1021/acs.jpclett.2c01112
B. de Boer, A. Hadipour, M.M. Mandoc, T. van Woudenbergh, P.W.M. Blom, Tuning of metal work functions with self-assembled monolayers. Adv. Mater. 17(5), 621–625 (2005). https://doi.org/10.1002/adma.200401216
V.J.Y. Lim, A.J. Knight, R.D.J. Oliver, H.J. Snaith, M.B. Johnston et al., Impact of hole-transport layer and interface passivation on halide segregation in mixed-halide perovskites. Adv. Funct. Mater. 32(41), 2204825 (2022). https://doi.org/10.1002/adfm.202204825
A.J. Knight, L.M. Herz, Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13(7), 2024–2046 (2020). https://doi.org/10.1039/d0ee00788a
C.-H. Chen, G.-W. Liu, X. Chen, C. Deger, R.-J. Jin et al., Methylthio substituent in SAM constructing regulatory bridge with photovoltaic perovskites. Angew. Chem. Int. Ed. 64(7), e202419375 (2025). https://doi.org/10.1002/anie.202419375
T. Liu, C. Luo, R. He, Z. Zhang, X. Lin et al., Advancing self-assembled molecules toward interface-optimized perovskite solar cells: from one to two. Adv. Mater. 37(48), 2502032 (2025). https://doi.org/10.1002/adma.202502032
Z. Wei, Q. Zhou, X. Niu, S. Liu, Z. Dong et al., Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers. Energy Environ. Sci. 18(4), 1847–1855 (2025). https://doi.org/10.1039/d4ee04029e
Y. Huang, M. Tao, Y. Zhang, Z. Wang, Z. Sun et al., Asymmetric modification of carbazole based self-assembled monolayers by hybrid strategy for inverted perovskite solar cells. Angew. Chem. Int. Ed. 64(4), e202416188 (2025). https://doi.org/10.1002/anie.202416188
Z. Zhang, L. Qiao, K. Meng, R. Long, G. Chen et al., Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem. Soc. Rev. 52(1), 163–195 (2023). https://doi.org/10.1039/d2cs00217e
H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7(9), 632–652 (2023). https://doi.org/10.1038/s41570-023-00510-0
N. Ahn, K. Kwak, M.S. Jang, H. Yoon, B.Y. Lee et al., Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016). https://doi.org/10.1038/ncomms13422
R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628(8006), 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
C. Zhou, F. Wang, X. Ai, Y. Liu, Y. Han et al., Dual interfacial modification with 1D perovskite for self-assembled monolayer based inverted perovskite solar cells. Nano Energy 128, 109811 (2024). https://doi.org/10.1016/j.nanoen.2024.109811
J. Zhang, J. Yang, R. Dai, W. Sheng, Y. Su et al., Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 12(18), 2103674 (2022). https://doi.org/10.1002/aenm.202103674
Y. Wang, Y. Feng, H. Yang, S. Li, K. Zhang et al., Covalent tridentate molecule anchoring enhances nickel oxide for efficient perovskite solar cells. Adv. Mater. 37(42), e07730 (2025). https://doi.org/10.1002/adma.202507730
Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu et al., Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356(6333), 59–62 (2017). https://doi.org/10.1126/science.aam7744
E. Ugur, J.I. Khan, E. Aydin, M. Wang, M. Kirkus et al., Carrier extraction from perovskite to polymeric charge transport layers probed by ultrafast transient absorption spectroscopy. J. Phys. Chem. Lett. 10(21), 6921–6928 (2019). https://doi.org/10.1021/acs.jpclett.9b02502
B. Dong, M. Wei, Y. Li, Y. Yang, W. Ma et al., Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses. Nat. Energy 10(3), 342–353 (2025). https://doi.org/10.1038/s41560-024-01689-2
R. Guo, X. Zhang, X. Zheng, L. Li, M. Li et al., Tailoring multifunctional self-assembled hole transporting molecules for highly efficient and stable inverted perovskite solar cells. Adv. Funct. Mater. 33(10), 2211955 (2023). https://doi.org/10.1002/adfm.202211955
Y. Guo, H. Tan, B. Xu, Deciphering halide ion migration and performance loss in wide-bandgap perovskite solar cells: connection, mechanism, and solutions. Energy Environ. Sci. 18(19), 8744–8755 (2025). https://doi.org/10.1039/d5ee03136b
N. Yantara, N. Mathews, Toolsets for assessing ionic migration in halide perovskites. Joule 8(5), 1239–1273 (2024). https://doi.org/10.1016/j.joule.2024.02.022
C.A. Aranda, A.O. Alvarez, V.S. Chivrony, C. Das, M. Rai et al., Overcoming ionic migration in perovskite solar cells through alkali metals. Joule 8(1), 241–254 (2024). https://doi.org/10.1016/j.joule.2023.11.011
S. Singh, E. Siliavka, M. Löffler, Y. Vaynzof, Impact of buried interface texture on compositional stratification and ion migration in perovskite solar cells. Adv. Funct. Mater. 34(42), 2402655 (2024). https://doi.org/10.1002/adfm.202402655
S. Qu, H. Huang, J. Wang, P. Cui, Y. Li et al., Revealing and inhibiting the facet-related ion migration for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 64(4), e202415949 (2025). https://doi.org/10.1002/anie.202415949
D. He, D. Ma, J. Zhang, Y. Yang, J. Ding et al., Universal ion migration suppression strategy based on supramolecular host–guest interaction for high-performance perovskite solar cells. Adv. Mater. 37(33), 2505115 (2025). https://doi.org/10.1002/adma.202505115
L. Li, M. Wei, V. Carnevali, H. Zeng, M. Zeng et al., Buried-interface engineering enables efficient and 1960-hour ISOS-L-2I stable inverted perovskite solar cells. Adv. Mater. 36(13), e2303869 (2024). https://doi.org/10.1002/adma.202303869
Y. Yao, C. Cheng, C. Zhang, H. Hu, K. Wang et al., Organic hole-transport layers for efficient, stable, and scalable inverted perovskite solar cells. Adv. Mater. 34(44), 2203794 (2022). https://doi.org/10.1002/adma.202203794
Z. He, J. Dai, J. Xiong, Q. Hu, Q. Yang et al., Overcoming the wetting issues of PTAA in inverted perovskite solar cells by cinnamyl alcohol modification. Mater. Today Commun. 47, 113085 (2025). https://doi.org/10.1016/j.mtcomm.2025.113085
A. Ullah, K.H. Park, Y. Lee, S. Park, A. Bin Faheem et al., Versatile hole selective molecules containing a series of heteroatoms as self-assembled monolayers for efficient p-i-n perovskite and organic solar cells. Adv. Funct. Mater. 32(49), 2208793 (2022). https://doi.org/10.1002/adfm.202208793
G.D. Kong, J. Jin, M. Thuo, H. Song, J.F. Joung et al., Elucidating the role of molecule-electrode interfacial defects in charge tunneling characteristics of large-area junctions. J. Am. Chem. Soc. 140(38), 12303–12307 (2018). https://doi.org/10.1021/jacs.8b08146
H.J. Yoon, K.-C. Liao, M.R. Lockett, S.W. Kwok, M. Baghbanzadeh et al., Rectification in tunneling junctions: 2, 2′-bipyridyl-terminated n-alkanethiolates. J. Am. Chem. Soc. 136(49), 17155–17162 (2014). https://doi.org/10.1021/ja509110a
S. Yuan, C. Ge, T. Zhang, G. Su, Q. Qiu et al., Conjugated bisphosphonic acid self-assembled monolayers for efficient and stable inverted perovskite solar cells. J. Am. Chem. Soc. 147(28), 24662–24671 (2025). https://doi.org/10.1021/jacs.5c05801
Q. Cao, T. Wang, X. Pu, X. He, M. Xiao et al., Co-self-assembled monolayers modified NiOx for stable inverted perovskite solar cells. Adv. Mater. 36(16), 2311970 (2024). https://doi.org/10.1002/adma.202311970
J. Warby, F. Zu, S. Zeiske, E. Gutierrez-Partida, L. Frohloff et al., Understanding performance limiting interfacial recombination in pin perovskite solar cells. Adv. Energy Mater. 12(12), 2103567 (2022). https://doi.org/10.1002/aenm.202103567
D. Zhang, H. Zhang, H. Guo, F. Ye, S. Liu et al., Stable α-FAPbI3 in inverted perovskite solar cells with efficiency exceeding 22% via a self-passivation strategy. Adv. Funct. Mater. 32(27), 2200174 (2022). https://doi.org/10.1002/adfm.202200174
S. Cacovich, G. Vidon, M. Degani, M. Legrand, L. Gouda et al., Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nat. Commun. 13(1), 2868 (2022). https://doi.org/10.1038/s41467-022-30426-0
M. Chen, X. Lv, L. Duan, B. Farhadi, C. Yu et al., Reinforced anchor for scalable self-assembled monolayer to attain high-performance perovskite solar modules. Adv. Energy Mater. 15(35), 2502000 (2025). https://doi.org/10.1002/aenm.202502000
D. Wang, Z. Liu, Y. Qiao, Z. Jiang, P. Zhu et al., Rigid molecules anchoring on NiOx enable >26% efficiency perovskite solar cells. Joule 9(3), 101815 (2025). https://doi.org/10.1016/j.joule.2024.101815
H. Chen, Q. Cao, X. Pu, Q. Zhao, X. He et al., Strong coupling of NiOx and self-assembled molecules via inserted reductant for high-performance inverted perovskite solar cells. Adv. Mater. 37(43), e10553 (2025). https://doi.org/10.1002/adma.202510553
C.A.F. Morales, Z. Pizzo, D.M. Sweeney, Z. Hu, G.P. Sharma et al., Multilayer formation, interfacial binding, and stability of self-assembled molecules in perovskite solar cells. J. Am. Chem. Soc. 147(52), 48136–48146 (2025). https://doi.org/10.1021/jacs.5c15955
H. Gao, D. Khan, I. Muhammad, Y. Zhang, C. Zhang et al., Self-assembled bi-monolayer for inverted perovskite solar cells. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202519073
Y. Sun, R. Xu, J. Dai, H. Tang, J. Wang et al., In situ coordinated HTL strategy for high-performance and scalable perovskite solar cells. Nat. Commun. 16(1), 9110 (2025). https://doi.org/10.1038/s41467-025-64111-9
W. Liu, Z. Tan, J. Wang, S. Liu, T. Imran et al., Defect engineering and crystallization kinetics control via dual-functional mercaptoacetamide for high-performance, large-area perovskite solar modules. Adv. Energy Mater. 15(40), e02193 (2025). https://doi.org/10.1002/aenm.202502193
W. Wang, X. Liu, J. Wang, C. Chen, J. Yu et al., Versatile self-assembled molecule enables high-efficiency wide-bandgap perovskite solar cells and organic solar cells. Adv. Energy Mater. 13(23), 2300694 (2023). https://doi.org/10.1002/aenm.202300694
H. Zhou, W. Wang, Y. Duan, R. Sun, Y. Li et al., Glycol monomethyl ether-substituted carbazolyl hole-transporting material for stable inverted perovskite solar cells with efficiency of 25.52%. Angew. Chem. Int. Ed. 63(33), e202403068 (2024). https://doi.org/10.1002/anie.202403068
X. Chen, E. Luais, N. Darwish, S. Ciampi, P. Thordarson et al., Studies on the effect of solvents on self-assembled monolayers formed from organophosphonic acids on indium tin oxide. Langmuir 28(25), 9487–9495 (2012). https://doi.org/10.1021/la3010129
H. Dietrich, D. Zahn, Molecular mechanisms of solvent-controlled assembly of phosphonate monolayers on oxide surfaces. J. Phys. Chem. C 121(33), 18012–18020 (2017). https://doi.org/10.1021/acs.jpcc.7b05750
X. Deng, F. Qi, F. Li, S. Wu, F.R. Lin et al., Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability. Angew. Chem. Int. Ed. 61(30), e202203088 (2022). https://doi.org/10.1002/anie.202203088
D. Song, S. Ramakrishnan, Y. Zhang, Q. Yu, Mixed self-assembled monolayers for high-photovoltage tin perovskite solar cells. ACS Energy Lett. 9(4), 1466–1472 (2024). https://doi.org/10.1021/acsenergylett.4c00155
J. Chen, X. Wang, T. Wang, J. Li, H.Y. Chia et al., Determining the bonding–degradation trade-off at heterointerfaces for increased efficiency and stability of perovskite solar cells. Nat. Energy 10(2), 181–190 (2025). https://doi.org/10.1038/s41560-024-01680-x
Q. Chen, K. Sun, L.R. Franco, J. Wu, L. Öhrström et al., Effects of alkyl spacer length in carbazole-based self-assembled monolayer materials on molecular conformation and organic solar cell performance. Adv. Sci. 12(4), 2410277 (2025). https://doi.org/10.1002/advs.202410277
E.J. Cassella, E.L.K. Spooner, T. Thornber, M.E. O’Kane, T.E. Catley et al., Gas-assisted spray coating of perovskite solar cells incorporating sprayed self-assembled monolayers. Adv. Sci. 9(14), 2104848 (2022). https://doi.org/10.1002/advs.202104848
K. Schötz, C. Greve, A. Langen, H. Gorter, I. Dogan et al., Understanding differences in the crystallization kinetics between one-step slot-die coating and spin coating of MAPbI3 using multimodal in situ optical spectroscopy. Adv. Opt. Mater. 9(21), 2101161 (2021). https://doi.org/10.1002/adom.202101161
E. Parvazian, A. Abdollah-zadeh, M. Dehghani, N. Taghavinia, Photovoltaic performance improvement in vacuum-assisted Meniscus printed triple-cation mixed-halide perovskite films by surfactant engineering. ACS Appl. Energy Mater. 2(9), 6209–6217 (2019). https://doi.org/10.1021/acsaem.9b00707
E. Parvazian, R. Garcia-Rodriguez, D. Beynon, M. Davies, T. Watson, Slot-die coating of self-assembled monolayers: a scalable approach for perovskite solar cells. Mater. Today Energy 52, 101955 (2025). https://doi.org/10.1016/j.mtener.2025.101955
J. Jang, G.D. Kong, H.J. Yoon, Electrically stable self-assembled monolayers achieved through repeated surface exchange of molecules. Acc. Mater. Res. 5(10), 1251–1262 (2024). https://doi.org/10.1021/accountsmr.4c00190
Y. Zhao, X. Luan, L. Han, Y. Wang, Post-assembled alkylphosphonic acids for efficient and stable inverted perovskite solar cells. Adv. Funct. Mater. 34(46), 2405646 (2024). https://doi.org/10.1002/adfm.202405646
X. Zheng, Z. Li, Y. Zhang, M. Chen, T. Liu et al., Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8(5), 462–472 (2023). https://doi.org/10.1038/s41560-023-01227-6
S.M. Park, M. Wei, N. Lempesis, W. Yu, T. Hossain et al., Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624(7991), 289–294 (2023). https://doi.org/10.1038/s41586-023-06745-7
A. Al-Ashouri, M. Marčinskas, E. Kasparavičius, T. Malinauskas, A. Palmstrom et al., Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells. ACS Energy Lett. 8(2), 898–900 (2023). https://doi.org/10.1021/acsenergylett.2c02629
H. Liu, J. Dong, P. Wang, B. Shi, Y. Zhao et al., Suppressing the photoinduced halide segregation in wide-bandgap perovskite solar cells by strain relaxation. Adv. Funct. Mater. 33(41), 2303673 (2023). https://doi.org/10.1002/adfm.202303673
Y. Wang, S. Akel, B. Klingebiel, T. Kirchartz, Hole transporting bilayers for efficient micrometer-thick perovskite solar cells. Adv. Energy Mater. 14(5), 2302614 (2024). https://doi.org/10.1002/aenm.202302614
Q. Jiang, R. Tirawat, R.A. Kerner, E.A. Gaulding, Y. Xian et al., Towards linking lab and field lifetimes of perovskite solar cells. Nature 623(7986), 313–318 (2023). https://doi.org/10.1038/s41586-023-06610-7
Y. Zhang, Y. Liu, Z. Zhao, T. Kong, W. Chen et al., Improving buried interface contact for inverted perovskite solar cells via dual modification strategy. Adv. Funct. Mater. 35(12), 2417575 (2025). https://doi.org/10.1002/adfm.202417575
Q. Cai, Q. Tan, J. He, S. Tang, Q. Sun et al., Enhancing electron transport for efficiency-recorded HTL-free inverted perovskite solar cells by molecular complementary passivation. Joule 9(5), 101880 (2025). https://doi.org/10.1016/j.joule.2025.101880
H. Wang, J. Yan, M. Dijkstra, E. Torun, M. Rana et al., Understanding the principles of co-deposition of mixed-SAMs in MAPbI3-based p-i-n structure perovskite solar cells. ACS Appl. Mater. Interfaces 17(49), 67306–67317 (2025). https://doi.org/10.1021/acsami.5c18266
S. Wang, H. Guo, Y. Wu, Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells. Mater. Futures 2(1), 012105 (2023). https://doi.org/10.1088/2752-5724/acbb5a
X. Xu, X. Ji, R. Chen, F. Ye, S. Liu et al., Improving contact and passivation of buried interface for high-efficiency and large-area inverted perovskite solar cells. Adv. Funct. Mater. 32(9), 2109968 (2022). https://doi.org/10.1002/adfm.202109968
Y. Li, S. Yang, S. Yan, X. Liu, G. Shi et al., Open-circuit voltage loss management for efficient inverted wide-bandgap perovskite photovoltaics. Adv. Funct. Mater. 35(7), 2415331 (2025). https://doi.org/10.1002/adfm.202415331
C. Zhang, S. Mariotti, L.K. Ono, C. Ding, K. Mitrofanov et al., A hole injection monolayer enables cost-effective perovskite light-emitting diodes. J. Mater. Chem. C 11(8), 2851–2862 (2023). https://doi.org/10.1039/d2tc05491d
M. Li, K. Xie, G. Wang, J. Zheng, Y. Cao et al., An AIE-active ultrathin polymeric self-assembled monolayer sensor for trace volatile explosive detection. Macromol. Rapid Commun. 42(23), 2170074 (2021). https://doi.org/10.1002/marc.202170074