Optical Switching of Robust Ferroelectric Polarization on Epitaxial Hf0.5Zr0.5O2 Integrated with BaTiO3
Corresponding Author: Ignasi Fina
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 239
Abstract
Optical switching of ferroelectric polarization is of interest for wireless and energy-efficient control of logic states. So far, this phenomenon has been widely demonstrated only in ferroelectric perovskites, while studies on other emerging ferroelectrics remain limited. In this regard, the paradigmatic example of a technologically relevant ferroelectric material is HfO2. However, HfO2 has a very wide bandgap, limiting light absorption. So far, the proposed strategies to enhance light absorption in HfO2-based systems are detrimental to ferroelectric properties, i.e., bandgap lowering or on-purpose defect introduction, which reduce switchable polarization and increase the presence of leakage currents. Here, we show that good ferroelectric properties, i.e., sizeable polarization (up to 15 μC cm−2), low leakage current (under 10–6 A cm−2), high endurance (up to 108 cycles) and fast switching (< 50 ns), can be achieved in epitaxial Hf0.5Zr0.5O2 films through an alternative strategy, BaTiO3 capping. While ferroelectric properties are remarkable, we demonstrate that the presence of BaTiO3 allows light absorption and the concomitant electric field generation, as supported by density functional theory calculations, which enables optical switching of polarization in Hf0.5Zr0.5O2 under 405 nm illumination. It is observed that optical switching is more efficient in films with thicker BaTiO3 capping layer. The high polarizability of BaTiO3 contributes to minimizing degradation in the ferroelectric response of the system. The results presented here indicate that appropriate designs can be followed to obtain optical switching of polarization in ferroelectric HfO2 while preserving main functional properties.
Highlights:
1 Integration of perovskite BaTiO3 with epitaxial fluorite Hf0.5Zr0.5O2 is demonstrated.
2 Polarization up to 15 μC cm−2, leakage current densities below 10–6 A cm−2, endurance up to 108 cycles, and switching times shorter than 50 ns are achieved.
3 Remote optical switching of the polarization is demonstrated, and it is shown to be controlled by the thickness of the BaTiO3 capping layer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O. Auciello, J.F. Scott, R. Ramesh, The physics of ferroelectric memories. Phys. Today 51(7), 22–27 (1998). https://doi.org/10.1063/1.882324
- T. Mikolajick, S. Slesazeck, M.H. Park, U. Schroeder, Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull. 43(5), 340–346 (2018). https://doi.org/10.1557/mrs.2018.92
- M.H. Park, Y.H. Lee, T. Mikolajick, U. Schroeder, C.S. Hwang, Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Commun. 8(3), 795–808 (2018). https://doi.org/10.1557/mrc.2018.175
- M.H. Park, D. Kwon, U. Schroeder, T. Mikolajick, Binary ferroelectric oxides for future computing paradigms. MRS Bull. 46(11), 1071–1079 (2021). https://doi.org/10.1557/s43577-021-00210-4
- Y. Sun, H. Li, F. Yu, J. Zhao, Y. Li et al., 1T1C 3D HZO FeRAM with high retention (>125 °C) and high endurance (>1E13) for embedded nonvolatile memory application, in 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., IEEE (2025). pp. 1–3 https://doi.org/10.23919/vlsitechnologyandcir65189.2025.11074853
- N. Ramaswamy, A. Calderoni, J. Zahurak, G. Servalli, A. Chavan et al., NVDRAM: a 32Gb dual layer 3D stacked non-volatile ferroelectric memory with near-DRAM performance for demanding AI workloads, in 2023 International Electron Devices Meeting (IEDM). San Francisco. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413848
- Y. Sun, H. Wang, D. Xie, Recent advance in synaptic plasticity modulation techniques for neuromorphic applications. Nano-Micro Lett. 16(1), 211 (2024). https://doi.org/10.1007/s40820-024-01445-x
- T. Schenk, M. Pešić, S. Slesazeck, U. Schroeder, T. Mikolajick, Memory technology: a primer for material scientists. Rep. Prog. Phys. 83(8), 086501 (2020). https://doi.org/10.1088/1361-6633/ab8f86
- S. Manipatruni, D.E. Nikonov, C.-C. Lin, T.A. Gosavi, H. Liu et al., Scalable energy-efficient magnetoelectric spin-orbit logic. Nature 565(7737), 35–42 (2019). https://doi.org/10.1038/s41586-018-0770-2
- R. Guo, L. You, Y. Zhou, Z.S. Lim, X. Zou et al., Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4, 1990 (2013). https://doi.org/10.1038/ncomms2990
- B. Kundys, M. Viret, D. Colson, D.O. Kundys, Light-induced size changes in BiFeO3 crystals. Nat. Mater. 9(10), 803–805 (2010). https://doi.org/10.1038/nmat2807
- S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.-H. Yang et al., Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5(2), 143–147 (2010). https://doi.org/10.1038/nnano.2009.451
- V. Iurchuk, D. Schick, J. Bran, D. Colson, A. Forget et al., Optical writing of magnetic properties by remanent photostriction. Phys. Rev. Lett. 117(10), 107403 (2016). https://doi.org/10.1103/PhysRevLett.117.107403
- X. Zhang, X. Guo, B. Cui, J. Yun, J. Mao et al., Light modulation of magnetization switching in PMN-PT/Ni heterostructure. Appl. Phys. Lett. 116(13), 132405 (2020). https://doi.org/10.1063/1.5145284
- D.A. Ochoa, E. Menéndez, J. López-Sánchez, A. Del Campo, Z. Ma et al., Reversible optical control of magnetism in engineered artificial multiferroics. Nanoscale 16(9), 4900–4908 (2024). https://doi.org/10.1039/d3nr05520e
- M.A. Iqbal, H. Xie, L. Qi, W.-C. Jiang, Y.-J. Zeng, Recent advances in ferroelectric-enhanced low-dimensional optoelectronic devices. Small 19(16), e2205347 (2023). https://doi.org/10.1002/smll.202205347
- Y. Wen, Y. Cao, H. Ren, X. Du, J. Guo et al., Ferroelectric optical memristors enabled by non-volatile electro-optic effect. Adv. Mater. 37(8), e2417658 (2025). https://doi.org/10.1002/adma.202417658
- J.H. Wei, Z. Wang, W. Yu, T. Wu, Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions. Nat. Commun. 7, 10808 (2016). https://doi.org/10.1038/ncomms10808
- F. Rubio-Marcos, A. Del Campo, P. Marchet, J.F. Fernández, Ferroelectric domain wall motion induced by polarized light. Nat. Commun. 6, 6594 (2015). https://doi.org/10.1038/ncomms7594
- F. Rubio-Marcos, D.A. Ochoa, A. Del Campo, M.A. García, G.R. Castro et al., Reversible optical control of macroscopic polarization in ferroelectrics. Nat. Photonics 12(1), 29–32 (2018). https://doi.org/10.1038/s41566-017-0068-1
- H. Akamatsu, Y. Yuan, V.A. Stoica, G. Stone, T. Yang et al., Light-activated gigahertz ferroelectric domain dynamics. Phys. Rev. Lett. 120(9), 096101 (2018). https://doi.org/10.1103/PhysRevLett.120.096101
- M.-M. Yang, M. Alexe, Light-induced reversible control of ferroelectric polarization in BiFeO3. Adv. Mater. 30(14), e1704908 (2018). https://doi.org/10.1002/adma.201704908
- Z.-D. Luo, D.-S. Park, M.-M. Yang, M. Alexe, Light-controlled nanoscopic writing of electronic memories using the tip-enhanced bulk photovoltaic effect. ACS Appl. Mater. Interfaces 11(8), 8276–8283 (2019). https://doi.org/10.1021/acsami.8b22638
- A. Lipatov, P. Sharma, A. Gruverman, A. Sinitskii, Optoelectrical molybdenum disulfide (MoS2): ferroelectric memories. ACS Nano 9(8), 8089–8098 (2015). https://doi.org/10.1021/acsnano.5b02078
- Z.-D. Luo, X. Xia, M.-M. Yang, N.R. Wilson, A. Gruverman et al., Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 14(1), 746–754 (2020). https://doi.org/10.1021/acsnano.9b07687
- X. Long, H. Tan, F. Sánchez, I. Fina, J. Fontcuberta, Non-volatile optical switch of resistance in photoferroelectric tunnel junctions. Nat. Commun. 12(1), 382 (2021). https://doi.org/10.1038/s41467-020-20660-9
- X. Long, H. Tan, F. Sánchez, I. Fina, J. Fontcuberta, Disentangling electronic and thermal contributions to light-induced resistance switching in BaTiO3 ferroelectric tunnel junction. J. Appl. Phys. 132(21), 214103 (2022). https://doi.org/10.1063/5.0125040
- H. Tan, G. Castro, J. Lyu, P. Loza-Alvarez, F. Sánchez et al., Control of up-to-down/down-to-up light-induced ferroelectric polarization reversal. Mater. Horiz. 9(9), 2345–2352 (2022). https://doi.org/10.1039/d2mh00644h
- Y.H. Wong, K.Y. Cheong, Band alignment and enhanced breakdown field of simultaneously oxidized and nitrided Zr film on Si. Nanoscale Res. Lett. 6(1), 489 (2011). https://doi.org/10.1186/1556-276X-6-489
- N.V. Nguyen, A.V. Davydov, D. Chandler-Horowitz, M.M. Frank, Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon. Appl. Phys. Lett. 87(19), 192903 (2005). https://doi.org/10.1063/1.2126136
- M. Kumar, H. Seo, High-performing self-powered photosensing and reconfigurable pyro-photoelectric memory with ferroelectric hafnium oxide. Adv. Mater. 34(5), 2270041 (2022). https://doi.org/10.1002/adma.202270041
- H. Tan, A. Quintana, N. Dix, S. Estandía, J. Sort et al., Photovoltaic-driven dual optical writing and non-destructive voltage-less reading of polarization in ferroelectric Hf0.5Zr0.5O2 for energy efficient memory devices. Nano Energy 123, 109384 (2024). https://doi.org/10.1016/j.nanoen.2024.109384
- A. Imran, X. He, H. Tabassum, Q. Zhu, G. Dastgeer et al., Neuromorphic vision sensor driven by ferroelectric HfAlO. Materials Today Nano 26, 100473 (2024). https://doi.org/10.1016/j.mtnano.2024.100473
- R. Eskandari, X. Zhang, L.M. Malkinski, Polarization-dependent photovoltaic effect in ferroelectric-semiconductor system. Appl. Phys. Lett. 110(12), 121105 (2017). https://doi.org/10.1063/1.4978749
- N.E. Silva, A.R. Jayakrishnan, A. Kaim, K. Gwozdz, L. Domingues et al., Ultra-sensitive, self-powered, CMOS-compatible near-infrared photodetectors for wide-ranging applications. Adv. Funct. Mater. 35(14), 2416979 (2025). https://doi.org/10.1002/adfm.202416979
- J. Lyu, I. Fina, R. Solanas, J. Fontcuberta, F. Sánchez, Robust ferroelectricity in epitaxial Hf1/2Zr1/2O2 thin films. Appl. Phys. Lett. 113(8), 082902 (2018). https://doi.org/10.1063/1.5041715
- Y. Wei, P. Nukala, M. Salverda, S. Matzen, H.J. Zhao et al., A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat. Mater. 17(12), 1095–1100 (2018). https://doi.org/10.1038/s41563-018-0196-0
- J. Lyu, I. Fina, F. Sánchez, Fatigue and retention in the growth window of ferroelectric Hf0.5Zr0.5O2 thin films. Appl. Phys. Lett. 117(7), 072901 (2020). https://doi.org/10.1063/5.0017738
- I. Fina, F. Sánchez, Epitaxial ferroelectric HfO2 films: growth, properties, and devices. ACS Appl. Electron. Mater. 3(4), 1530–1549 (2021). https://doi.org/10.1021/acsaelm.1c00110
- S. Estandía, N. Dix, M.F. Chisholm, I. Fina, F. Sánchez, Domain-matching epitaxy of ferroelectric Hf0.5Zr0.5O2(111) on La2/3Sr1/3MnO3(001). Cryst. Growth Des. 20(6), 3801–3806 (2020). https://doi.org/10.1021/acs.cgd.0c00095
- S. Estandía, J. Gàzquez, M. Varela, N. Dix, M. Qian et al., Critical effect of the bottom electrode on the ferroelectricity of epitaxial Hf0.5Zr0.5O2 thin films. J. Mater. Chem. C 9(10), 3486–3492 (2021). https://doi.org/10.1039/d0tc05853j
- J. Sun, L. Ding, Linearly polarization-sensitive perovskite photodetectors. Nano-Micro Lett. 15(1), 90 (2023). https://doi.org/10.1007/s40820-023-01048-y
- L. Zhang, L. Mei, K. Wang, Y. Lv, S. Zhang et al., Advances in the application of perovskite materials. Nano-Micro Lett. 15(1), 177 (2023). https://doi.org/10.1007/s40820-023-01140-3
- X. Li, S. Aftab, M. Mukhtar, F. Kabir, M.F. Khan et al., Exploring nanoscale perovskite materials for next-generation photodetectors: a comprehensive review and future directions. Nano-Micro Lett. 17(1), 28 (2024). https://doi.org/10.1007/s40820-024-01501-6
- J.Y. Chang, C.R. Chinjen, R.H. Tsou, C.Y. Huang, C.C. Sun et al., Photorefractive effect in hydrogen-reduced BaTiO3. Opt. Commun. 138(1–3), 101–104 (1997). https://doi.org/10.1016/S0030-4018(97)00036-9
- W.L. Warren, D. Dimos, Photoinduced hysteresis changes and charge trapping in BaTiO3 dielectrics. Appl. Phys. Lett. 64(7), 866–868 (1994). https://doi.org/10.1063/1.110978
- W.T.H. Koch, R. Munser, W. Ruppel, P. Würfel, Bulk photovoltaic effect in BaTiO3. Solid State Commun. 17(7), 847–850 (1975). https://doi.org/10.1016/0038-1098(75)90735-8
- A.J. Garza, G.E. Scuseria, Predicting band gaps with hybrid density functionals. J. Phys. Chem. Lett. 7(20), 4165–4170 (2016). https://doi.org/10.1021/acs.jpclett.6b01807
- Z. Liu, C. Menéndez, J. Shenoy, J.N. Hart, C.C. Sorrell et al., Strain engineering of oxide thin films for photocatalytic applications. Nano Energy 72, 104732 (2020). https://doi.org/10.1016/j.nanoen.2020.104732
- Z. Liu, B. Wang, D. Chu, C. Cazorla, First-principles high-throughput screening of bulk piezo-photocatalytic materials for sunlight-driven hydrogen production. J. Mater. Chem. A 10(35), 18132–18146 (2022). https://doi.org/10.1039/d2ta05941j
- R. Rurali, C. Escorihuela-Sayalero, J.L. Tamarit, J. Íñiguez-González, C. Cazorla, Giant photocaloric effects across a vast temperature range in ferroelectric perovskites. Phys. Rev. Lett. 133(11), 116401 (2024). https://doi.org/10.1103/PhysRevLett.133.116401
- C. Cazorla, C. Escorihuela-Sayalero, J. Carrete, J. Íñiguez-González, R. Rurali, Optical control of the thermal conductivity in BaTiO3. Adv. Funct. Mater. 35(48), e2425424 (2025). https://doi.org/10.1002/adfm.202425424
- F. Liu, I. Fina, D. Gutiérrez, G. Radaelli, R. Bertacco et al., Selecting steady and transient photocurrent response in BaTiO3 films. Adv. Electron. Mater. 1(9), 1500171 (2015). https://doi.org/10.1002/aelm.201500171
- R. Meyer, R. Waser, K. Prume, T. Schmitz, S. Tiedke, Dynamic leakage current compensation in ferroelectric thin-film capacitor structures. Appl. Phys. Lett. 86(14), 142907 (2005). https://doi.org/10.1063/1.1897425
- I. Fina, L. Fàbrega, E. Langenberg, X. Martí, F. Sánchez et al., Nonferroelectric contributions to the hysteresis cycles in manganite thin films: a comparative study of measurement techniques. J. Appl. Phys. 109(7), 074105 (2011). https://doi.org/10.1063/1.3555098
- T. Song, F. Sánchez, I. Fina, Impact of non-ferroelectric phases on switching dynamics in epitaxial ferroelectric Hf0.5Zr0.5O2 films. APL Mater. 10(3), 031108 (2022). https://doi.org/10.1063/5.0083661
- M.N. Polyanskiy, Refractive index database. 25/03/2022.
- S.H. Wemple, Polarization fluctuations and the optical-absorption edge in BaTiO3. Phys. Rev. B 2(7), 2679–2689 (1970). https://doi.org/10.1103/physrevb.2.2679
- M.L. Moreira, M.F.C. Gurgel, G.P. Mambrini, E.R. Leite, P.S. Pizani et al., Photoluminescence of barium titanate and barium zirconate in multilayer disordered thin films at room temperature. J. Phys. Chem. A 112(38), 8938–8942 (2008). https://doi.org/10.1021/jp801610y
- J.Y. Chang, M.H. Garrett, H.P. Jenssen, C. Warde, Intensity dependent absorption/transparency of a reducing BaTiO3. Appl. Phys. Lett. 63(26), 3598–3600 (1993). https://doi.org/10.1063/1.110108
- T. Zhao, Z.-H. Chen, F. Chen, H.-B. Lu, G.-Z. Yang et al., Electrical and optical properties of strongly reduced epitaxial BaTiO3-x thin films. Appl. Phys. Lett. 77(26), 4338–4340 (2000). https://doi.org/10.1063/1.1334353
- V.V. Laguta, A.M. Slipenyuk, I.P. Bykov, M.D. Glinchuk, M. Maglione et al., Electron spin resonance investigation of oxygen-vacancy-related defects in BaTiO3 thin films. Appl. Phys. Lett. 87(2), 022903 (2005). https://doi.org/10.1063/1.1954900
- M. Choi, F. Oba, I. Tanaka, Electronic and structural properties of the oxygen vacancy in BaTiO3. Appl. Phys. Lett. 98(17), 172901 (2011). https://doi.org/10.1063/1.3583460
- B.J. Rodriguez, C. Callahan, S.V. Kalinin, R. Proksch, Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18(47), 475504 (2007). https://doi.org/10.1088/0957-4484/18/47/475504
- H. Tan, J. Lyu, Y. Sheng, P. Machado, T. Song et al., A transversal approach to predict surface charge compensation in piezoelectric force microscopy. Appl. Surf. Sci. 607, 154991 (2023). https://doi.org/10.1016/j.apsusc.2022.154991
- C. Cazorla, J. Boronat, Simulation and understanding of atomic and molecular quantum crystals. Rev. Mod. Phys. 89(3), 035003 (2017). https://doi.org/10.1103/revmodphys.89.035003
- J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria et al., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- S. Estandía, T. Cao, R. Mishra, I. Fina, F. Sánchez et al., Insights into the atomic structure of the interface of ferroelectric Hf0.5Zr0.5O2 grown epitaxially on La2/3Sr1/3MnO3. Phys. Rev. Mater. 5(7), 074410 (2021). https://doi.org/10.1103/physrevmaterials.5.074410
- A.K. Tagantsev, G. Gerra, Interface-induced phenomena in polarization response of ferroelectric thin films. J. Appl. Phys. 100(5), 051607 (2006). https://doi.org/10.1063/1.2337009
- J. Lyu, I. Fina, R. Solanas, J. Fontcuberta, F. Sánchez, Growth window of ferroelectric epitaxial Hf0.5Zr0.5O2 thin films. ACS Appl. Electron. Mater. 1(2), 220–228 (2019). https://doi.org/10.1021/acsaelm.8b00065
- T. Song, R. Bachelet, G. Saint-Girons, R. Solanas, I. Fina et al., Epitaxial ferroelectric La-doped Hf0.5Zr0.5O2 thin films. ACS Appl. Electron. Mater. 2(10), 3221–3232 (2020). https://doi.org/10.1021/acsaelm.0c00560
- T.D. Huan, V. Sharma, G.A. Rossetti, R. Ramprasad, Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90(6), 064111 (2014). https://doi.org/10.1103/physrevb.90.064111
- F. Delodovici, P. Barone, S. Picozzi, Trilinear-coupling-driven ferroelectricity in HfO2. Phys. Rev. Mater. 5(6), 064405 (2021). https://doi.org/10.1103/physrevmaterials.5.064405
- S. Estandía, N. Dix, J. Gazquez, I. Fina, J. Lyu et al., Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress. ACS Appl. Electron. Mater. 1(8), 1449–1457 (2019). https://doi.org/10.1021/acsaelm.9b00256
- T. Song, H. Tan, A.-C. Robert, S. Estandia, J. Gázquez et al., Synergetic contributions of chemical doping and epitaxial stress to polarization in ferroelectric HfO2 films. Appl. Mater. Today 29, 101621 (2022). https://doi.org/10.1016/j.apmt.2022.101621
- T. Song, H. Tan, S. Estandía, J. Gàzquez, M. Gich et al., Improved polarization and endurance in ferroelectric Hf0.5Zr0.5O2 films on SrTiO3(110). Nanoscale 14(6), 2337–2343 (2022). https://doi.org/10.1039/D1NR06983G
- T. Song, R. Solanas, M. Qian, I. Fina, F. Sánchez, Large enhancement of ferroelectric polarization in Hf0.5Zr0.5O2 films by low plasma energy pulsed laser deposition. J. Mater. Chem. C 10(3), 1084–1089 (2022). https://doi.org/10.1039/d1tc05387f
- N. Liu, Y. Liu, H. Wu, J. Fang, W. Tang et al., Reliable high-temperature ferroelectric memories based on Hf0.5Zr0.5O2 film. Ceram. Int. 51(14), 19138–19144 (2025). https://doi.org/10.1016/j.ceramint.2025.02.092
- M. Cervo Sulzbach, H. Tan, S. Estandía, J. Gàzquez, F. Sánchez et al., Polarization and resistive switching in epitaxial 2 nm Hf0.5Zr0.5O2 tunnel junctions. ACS Appl. Electron. Mater. 3(8), 3657–3666 (2021). https://doi.org/10.1021/acsaelm.1c00604
- B. Prasad, V. Thakare, A. Kalitsov, Z. Zhang, B. Terris et al., Large tunnel electroresistance with ultrathin Hf0.5Zr0.5O2 ferroelectric tunnel barriers. Adv. Electron. Mater. 7(6), 2001074 (2021). https://doi.org/10.1002/aelm.202001074
- Y. Sheng, I. Fina, M. Gospodinov, J. Fontcuberta, Switchable photovoltaic response in hexagonal LuMnO3 single crystals. Appl. Phys. Lett. 118(23), 232902 (2021). https://doi.org/10.1063/5.0053379
- Y. Sheng, H. Tan, A. Quintana, M. Villa, J. Gázquez et al., Untwining polar contributions from light-polarization dependent photovoltaic response of based ferroelectric capacitors. Acta Mater. 245, 118601 (2023). https://doi.org/10.1016/j.actamat.2022.118601
- P. Machado, P. Salles, A. Frebel, G. De Luca, E. Ros et al., Interface engineering in all-oxide photovoltaic devices based on photoferroelectric BiFe0.9Co0.1O3 thin films. ACS Appl. Electron. Mater. 6(11), 8251–8259 (2024). https://doi.org/10.1021/acsaelm.4c01533
- T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.-W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324(5923), 63–66 (2009). https://doi.org/10.1126/science.1168636
- S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu et al., Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 95(6), 062909 (2009). https://doi.org/10.1063/1.3204695
- G. Chen, J. Chen, W. Pei, Y. Lu, Q. Zhang et al., Bismuth ferrite materials for solar cells: current status and prospects. Mater. Res. Bull. 110, 39–49 (2019). https://doi.org/10.1016/j.materresbull.2018.10.011
- L. You, A. Abdelsamie, Y. Zhou, L. Chang, Z.S. Lim et al., Revisiting the ferroelectric photovoltaic properties of vertical BiFeO3 capacitors: a comprehensive study. ACS Appl. Mater. Interfaces 15(9), 12070–12077 (2023). https://doi.org/10.1021/acsami.2c23023
- C.H. Peng, J.-F. Chang, S.B. Desu, Optical properties of PZT, PLZT, and PNZT thin films. MRS Online Proc. Libr. 243(1), 21–26 (1991). https://doi.org/10.1557/PROC-243-21
- Y.P. Jiang, X.G. Tang, Q.X. Liu, Q. Li, A.L. Ding, Optical properties of Pb(Zr0.53Ti0.47)O3 thin films on Pt-coated Si substrates measured by spectroscopic ellipsometry in the UV–vis–NIR region. Mater. Sci. Eng. B 137(1–3), 304–309 (2007). https://doi.org/10.1016/j.mseb.2006.11.025
- Y. Sheng, I. Fina, M. Gospodinov, A.M. Schankler, A.M. Rappe et al., Bulk photovoltaic effect in hexagonal LuMnO3- single crystals. Phys. Rev. B 104(18), 184116 (2021). https://doi.org/10.1103/physrevb.104.184116
- K. Miura, L. Zhang, D. Kiriya, A. Ashida, T. Yoshimura et al., Origin of the photoinduced current of strongly correlated YMnO3ferroelectric epitaxial films. Jpn. J. Appl. Phys. 56(10S), 10PB08 (2017). https://doi.org/10.7567/jjap.56.10pb08
- C. Wang, Y. Zhang, D. Zhang, Y. Sun, T. Zhang et al., 2D van der Waals sliding ferroelectrics toward novel electronic devices. Small 21(8), e2408375 (2025). https://doi.org/10.1002/smll.202408375
- C. Wang, L. You, D. Cobden, J. Wang, Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 22(5), 542–552 (2023). https://doi.org/10.1038/s41563-022-01422-y
- J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. Process. Measure. and Phenomena 18(3), 1785–1791 (2000). https://doi.org/10.1116/1.591472
- L.J. Berberich, M.E. Bell, The dielectric properties of the rutile form of TiO2. J. Appl. Phys. 11(10), 681–692 (1940). https://doi.org/10.1063/1.1712721
- S.K. Kim, W.-D. Kim, K.-M. Kim, C.S. Hwang, J. Jeong, High dielectric constant TiO2 thin films on a Ru electrode grown at 250 °C by atomic-layer deposition. Appl. Phys. Lett. 85(18), 4112–4114 (2004). https://doi.org/10.1063/1.1812832
References
O. Auciello, J.F. Scott, R. Ramesh, The physics of ferroelectric memories. Phys. Today 51(7), 22–27 (1998). https://doi.org/10.1063/1.882324
T. Mikolajick, S. Slesazeck, M.H. Park, U. Schroeder, Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull. 43(5), 340–346 (2018). https://doi.org/10.1557/mrs.2018.92
M.H. Park, Y.H. Lee, T. Mikolajick, U. Schroeder, C.S. Hwang, Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Commun. 8(3), 795–808 (2018). https://doi.org/10.1557/mrc.2018.175
M.H. Park, D. Kwon, U. Schroeder, T. Mikolajick, Binary ferroelectric oxides for future computing paradigms. MRS Bull. 46(11), 1071–1079 (2021). https://doi.org/10.1557/s43577-021-00210-4
Y. Sun, H. Li, F. Yu, J. Zhao, Y. Li et al., 1T1C 3D HZO FeRAM with high retention (>125 °C) and high endurance (>1E13) for embedded nonvolatile memory application, in 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)., IEEE (2025). pp. 1–3 https://doi.org/10.23919/vlsitechnologyandcir65189.2025.11074853
N. Ramaswamy, A. Calderoni, J. Zahurak, G. Servalli, A. Chavan et al., NVDRAM: a 32Gb dual layer 3D stacked non-volatile ferroelectric memory with near-DRAM performance for demanding AI workloads, in 2023 International Electron Devices Meeting (IEDM). San Francisco. IEEE, (2023). pp. 1–4. https://doi.org/10.1109/iedm45741.2023.10413848
Y. Sun, H. Wang, D. Xie, Recent advance in synaptic plasticity modulation techniques for neuromorphic applications. Nano-Micro Lett. 16(1), 211 (2024). https://doi.org/10.1007/s40820-024-01445-x
T. Schenk, M. Pešić, S. Slesazeck, U. Schroeder, T. Mikolajick, Memory technology: a primer for material scientists. Rep. Prog. Phys. 83(8), 086501 (2020). https://doi.org/10.1088/1361-6633/ab8f86
S. Manipatruni, D.E. Nikonov, C.-C. Lin, T.A. Gosavi, H. Liu et al., Scalable energy-efficient magnetoelectric spin-orbit logic. Nature 565(7737), 35–42 (2019). https://doi.org/10.1038/s41586-018-0770-2
R. Guo, L. You, Y. Zhou, Z.S. Lim, X. Zou et al., Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4, 1990 (2013). https://doi.org/10.1038/ncomms2990
B. Kundys, M. Viret, D. Colson, D.O. Kundys, Light-induced size changes in BiFeO3 crystals. Nat. Mater. 9(10), 803–805 (2010). https://doi.org/10.1038/nmat2807
S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.-H. Yang et al., Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5(2), 143–147 (2010). https://doi.org/10.1038/nnano.2009.451
V. Iurchuk, D. Schick, J. Bran, D. Colson, A. Forget et al., Optical writing of magnetic properties by remanent photostriction. Phys. Rev. Lett. 117(10), 107403 (2016). https://doi.org/10.1103/PhysRevLett.117.107403
X. Zhang, X. Guo, B. Cui, J. Yun, J. Mao et al., Light modulation of magnetization switching in PMN-PT/Ni heterostructure. Appl. Phys. Lett. 116(13), 132405 (2020). https://doi.org/10.1063/1.5145284
D.A. Ochoa, E. Menéndez, J. López-Sánchez, A. Del Campo, Z. Ma et al., Reversible optical control of magnetism in engineered artificial multiferroics. Nanoscale 16(9), 4900–4908 (2024). https://doi.org/10.1039/d3nr05520e
M.A. Iqbal, H. Xie, L. Qi, W.-C. Jiang, Y.-J. Zeng, Recent advances in ferroelectric-enhanced low-dimensional optoelectronic devices. Small 19(16), e2205347 (2023). https://doi.org/10.1002/smll.202205347
Y. Wen, Y. Cao, H. Ren, X. Du, J. Guo et al., Ferroelectric optical memristors enabled by non-volatile electro-optic effect. Adv. Mater. 37(8), e2417658 (2025). https://doi.org/10.1002/adma.202417658
J.H. Wei, Z. Wang, W. Yu, T. Wu, Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions. Nat. Commun. 7, 10808 (2016). https://doi.org/10.1038/ncomms10808
F. Rubio-Marcos, A. Del Campo, P. Marchet, J.F. Fernández, Ferroelectric domain wall motion induced by polarized light. Nat. Commun. 6, 6594 (2015). https://doi.org/10.1038/ncomms7594
F. Rubio-Marcos, D.A. Ochoa, A. Del Campo, M.A. García, G.R. Castro et al., Reversible optical control of macroscopic polarization in ferroelectrics. Nat. Photonics 12(1), 29–32 (2018). https://doi.org/10.1038/s41566-017-0068-1
H. Akamatsu, Y. Yuan, V.A. Stoica, G. Stone, T. Yang et al., Light-activated gigahertz ferroelectric domain dynamics. Phys. Rev. Lett. 120(9), 096101 (2018). https://doi.org/10.1103/PhysRevLett.120.096101
M.-M. Yang, M. Alexe, Light-induced reversible control of ferroelectric polarization in BiFeO3. Adv. Mater. 30(14), e1704908 (2018). https://doi.org/10.1002/adma.201704908
Z.-D. Luo, D.-S. Park, M.-M. Yang, M. Alexe, Light-controlled nanoscopic writing of electronic memories using the tip-enhanced bulk photovoltaic effect. ACS Appl. Mater. Interfaces 11(8), 8276–8283 (2019). https://doi.org/10.1021/acsami.8b22638
A. Lipatov, P. Sharma, A. Gruverman, A. Sinitskii, Optoelectrical molybdenum disulfide (MoS2): ferroelectric memories. ACS Nano 9(8), 8089–8098 (2015). https://doi.org/10.1021/acsnano.5b02078
Z.-D. Luo, X. Xia, M.-M. Yang, N.R. Wilson, A. Gruverman et al., Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 14(1), 746–754 (2020). https://doi.org/10.1021/acsnano.9b07687
X. Long, H. Tan, F. Sánchez, I. Fina, J. Fontcuberta, Non-volatile optical switch of resistance in photoferroelectric tunnel junctions. Nat. Commun. 12(1), 382 (2021). https://doi.org/10.1038/s41467-020-20660-9
X. Long, H. Tan, F. Sánchez, I. Fina, J. Fontcuberta, Disentangling electronic and thermal contributions to light-induced resistance switching in BaTiO3 ferroelectric tunnel junction. J. Appl. Phys. 132(21), 214103 (2022). https://doi.org/10.1063/5.0125040
H. Tan, G. Castro, J. Lyu, P. Loza-Alvarez, F. Sánchez et al., Control of up-to-down/down-to-up light-induced ferroelectric polarization reversal. Mater. Horiz. 9(9), 2345–2352 (2022). https://doi.org/10.1039/d2mh00644h
Y.H. Wong, K.Y. Cheong, Band alignment and enhanced breakdown field of simultaneously oxidized and nitrided Zr film on Si. Nanoscale Res. Lett. 6(1), 489 (2011). https://doi.org/10.1186/1556-276X-6-489
N.V. Nguyen, A.V. Davydov, D. Chandler-Horowitz, M.M. Frank, Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon. Appl. Phys. Lett. 87(19), 192903 (2005). https://doi.org/10.1063/1.2126136
M. Kumar, H. Seo, High-performing self-powered photosensing and reconfigurable pyro-photoelectric memory with ferroelectric hafnium oxide. Adv. Mater. 34(5), 2270041 (2022). https://doi.org/10.1002/adma.202270041
H. Tan, A. Quintana, N. Dix, S. Estandía, J. Sort et al., Photovoltaic-driven dual optical writing and non-destructive voltage-less reading of polarization in ferroelectric Hf0.5Zr0.5O2 for energy efficient memory devices. Nano Energy 123, 109384 (2024). https://doi.org/10.1016/j.nanoen.2024.109384
A. Imran, X. He, H. Tabassum, Q. Zhu, G. Dastgeer et al., Neuromorphic vision sensor driven by ferroelectric HfAlO. Materials Today Nano 26, 100473 (2024). https://doi.org/10.1016/j.mtnano.2024.100473
R. Eskandari, X. Zhang, L.M. Malkinski, Polarization-dependent photovoltaic effect in ferroelectric-semiconductor system. Appl. Phys. Lett. 110(12), 121105 (2017). https://doi.org/10.1063/1.4978749
N.E. Silva, A.R. Jayakrishnan, A. Kaim, K. Gwozdz, L. Domingues et al., Ultra-sensitive, self-powered, CMOS-compatible near-infrared photodetectors for wide-ranging applications. Adv. Funct. Mater. 35(14), 2416979 (2025). https://doi.org/10.1002/adfm.202416979
J. Lyu, I. Fina, R. Solanas, J. Fontcuberta, F. Sánchez, Robust ferroelectricity in epitaxial Hf1/2Zr1/2O2 thin films. Appl. Phys. Lett. 113(8), 082902 (2018). https://doi.org/10.1063/1.5041715
Y. Wei, P. Nukala, M. Salverda, S. Matzen, H.J. Zhao et al., A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat. Mater. 17(12), 1095–1100 (2018). https://doi.org/10.1038/s41563-018-0196-0
J. Lyu, I. Fina, F. Sánchez, Fatigue and retention in the growth window of ferroelectric Hf0.5Zr0.5O2 thin films. Appl. Phys. Lett. 117(7), 072901 (2020). https://doi.org/10.1063/5.0017738
I. Fina, F. Sánchez, Epitaxial ferroelectric HfO2 films: growth, properties, and devices. ACS Appl. Electron. Mater. 3(4), 1530–1549 (2021). https://doi.org/10.1021/acsaelm.1c00110
S. Estandía, N. Dix, M.F. Chisholm, I. Fina, F. Sánchez, Domain-matching epitaxy of ferroelectric Hf0.5Zr0.5O2(111) on La2/3Sr1/3MnO3(001). Cryst. Growth Des. 20(6), 3801–3806 (2020). https://doi.org/10.1021/acs.cgd.0c00095
S. Estandía, J. Gàzquez, M. Varela, N. Dix, M. Qian et al., Critical effect of the bottom electrode on the ferroelectricity of epitaxial Hf0.5Zr0.5O2 thin films. J. Mater. Chem. C 9(10), 3486–3492 (2021). https://doi.org/10.1039/d0tc05853j
J. Sun, L. Ding, Linearly polarization-sensitive perovskite photodetectors. Nano-Micro Lett. 15(1), 90 (2023). https://doi.org/10.1007/s40820-023-01048-y
L. Zhang, L. Mei, K. Wang, Y. Lv, S. Zhang et al., Advances in the application of perovskite materials. Nano-Micro Lett. 15(1), 177 (2023). https://doi.org/10.1007/s40820-023-01140-3
X. Li, S. Aftab, M. Mukhtar, F. Kabir, M.F. Khan et al., Exploring nanoscale perovskite materials for next-generation photodetectors: a comprehensive review and future directions. Nano-Micro Lett. 17(1), 28 (2024). https://doi.org/10.1007/s40820-024-01501-6
J.Y. Chang, C.R. Chinjen, R.H. Tsou, C.Y. Huang, C.C. Sun et al., Photorefractive effect in hydrogen-reduced BaTiO3. Opt. Commun. 138(1–3), 101–104 (1997). https://doi.org/10.1016/S0030-4018(97)00036-9
W.L. Warren, D. Dimos, Photoinduced hysteresis changes and charge trapping in BaTiO3 dielectrics. Appl. Phys. Lett. 64(7), 866–868 (1994). https://doi.org/10.1063/1.110978
W.T.H. Koch, R. Munser, W. Ruppel, P. Würfel, Bulk photovoltaic effect in BaTiO3. Solid State Commun. 17(7), 847–850 (1975). https://doi.org/10.1016/0038-1098(75)90735-8
A.J. Garza, G.E. Scuseria, Predicting band gaps with hybrid density functionals. J. Phys. Chem. Lett. 7(20), 4165–4170 (2016). https://doi.org/10.1021/acs.jpclett.6b01807
Z. Liu, C. Menéndez, J. Shenoy, J.N. Hart, C.C. Sorrell et al., Strain engineering of oxide thin films for photocatalytic applications. Nano Energy 72, 104732 (2020). https://doi.org/10.1016/j.nanoen.2020.104732
Z. Liu, B. Wang, D. Chu, C. Cazorla, First-principles high-throughput screening of bulk piezo-photocatalytic materials for sunlight-driven hydrogen production. J. Mater. Chem. A 10(35), 18132–18146 (2022). https://doi.org/10.1039/d2ta05941j
R. Rurali, C. Escorihuela-Sayalero, J.L. Tamarit, J. Íñiguez-González, C. Cazorla, Giant photocaloric effects across a vast temperature range in ferroelectric perovskites. Phys. Rev. Lett. 133(11), 116401 (2024). https://doi.org/10.1103/PhysRevLett.133.116401
C. Cazorla, C. Escorihuela-Sayalero, J. Carrete, J. Íñiguez-González, R. Rurali, Optical control of the thermal conductivity in BaTiO3. Adv. Funct. Mater. 35(48), e2425424 (2025). https://doi.org/10.1002/adfm.202425424
F. Liu, I. Fina, D. Gutiérrez, G. Radaelli, R. Bertacco et al., Selecting steady and transient photocurrent response in BaTiO3 films. Adv. Electron. Mater. 1(9), 1500171 (2015). https://doi.org/10.1002/aelm.201500171
R. Meyer, R. Waser, K. Prume, T. Schmitz, S. Tiedke, Dynamic leakage current compensation in ferroelectric thin-film capacitor structures. Appl. Phys. Lett. 86(14), 142907 (2005). https://doi.org/10.1063/1.1897425
I. Fina, L. Fàbrega, E. Langenberg, X. Martí, F. Sánchez et al., Nonferroelectric contributions to the hysteresis cycles in manganite thin films: a comparative study of measurement techniques. J. Appl. Phys. 109(7), 074105 (2011). https://doi.org/10.1063/1.3555098
T. Song, F. Sánchez, I. Fina, Impact of non-ferroelectric phases on switching dynamics in epitaxial ferroelectric Hf0.5Zr0.5O2 films. APL Mater. 10(3), 031108 (2022). https://doi.org/10.1063/5.0083661
M.N. Polyanskiy, Refractive index database. 25/03/2022.
S.H. Wemple, Polarization fluctuations and the optical-absorption edge in BaTiO3. Phys. Rev. B 2(7), 2679–2689 (1970). https://doi.org/10.1103/physrevb.2.2679
M.L. Moreira, M.F.C. Gurgel, G.P. Mambrini, E.R. Leite, P.S. Pizani et al., Photoluminescence of barium titanate and barium zirconate in multilayer disordered thin films at room temperature. J. Phys. Chem. A 112(38), 8938–8942 (2008). https://doi.org/10.1021/jp801610y
J.Y. Chang, M.H. Garrett, H.P. Jenssen, C. Warde, Intensity dependent absorption/transparency of a reducing BaTiO3. Appl. Phys. Lett. 63(26), 3598–3600 (1993). https://doi.org/10.1063/1.110108
T. Zhao, Z.-H. Chen, F. Chen, H.-B. Lu, G.-Z. Yang et al., Electrical and optical properties of strongly reduced epitaxial BaTiO3-x thin films. Appl. Phys. Lett. 77(26), 4338–4340 (2000). https://doi.org/10.1063/1.1334353
V.V. Laguta, A.M. Slipenyuk, I.P. Bykov, M.D. Glinchuk, M. Maglione et al., Electron spin resonance investigation of oxygen-vacancy-related defects in BaTiO3 thin films. Appl. Phys. Lett. 87(2), 022903 (2005). https://doi.org/10.1063/1.1954900
M. Choi, F. Oba, I. Tanaka, Electronic and structural properties of the oxygen vacancy in BaTiO3. Appl. Phys. Lett. 98(17), 172901 (2011). https://doi.org/10.1063/1.3583460
B.J. Rodriguez, C. Callahan, S.V. Kalinin, R. Proksch, Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18(47), 475504 (2007). https://doi.org/10.1088/0957-4484/18/47/475504
H. Tan, J. Lyu, Y. Sheng, P. Machado, T. Song et al., A transversal approach to predict surface charge compensation in piezoelectric force microscopy. Appl. Surf. Sci. 607, 154991 (2023). https://doi.org/10.1016/j.apsusc.2022.154991
C. Cazorla, J. Boronat, Simulation and understanding of atomic and molecular quantum crystals. Rev. Mod. Phys. 89(3), 035003 (2017). https://doi.org/10.1103/revmodphys.89.035003
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria et al., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
S. Estandía, T. Cao, R. Mishra, I. Fina, F. Sánchez et al., Insights into the atomic structure of the interface of ferroelectric Hf0.5Zr0.5O2 grown epitaxially on La2/3Sr1/3MnO3. Phys. Rev. Mater. 5(7), 074410 (2021). https://doi.org/10.1103/physrevmaterials.5.074410
A.K. Tagantsev, G. Gerra, Interface-induced phenomena in polarization response of ferroelectric thin films. J. Appl. Phys. 100(5), 051607 (2006). https://doi.org/10.1063/1.2337009
J. Lyu, I. Fina, R. Solanas, J. Fontcuberta, F. Sánchez, Growth window of ferroelectric epitaxial Hf0.5Zr0.5O2 thin films. ACS Appl. Electron. Mater. 1(2), 220–228 (2019). https://doi.org/10.1021/acsaelm.8b00065
T. Song, R. Bachelet, G. Saint-Girons, R. Solanas, I. Fina et al., Epitaxial ferroelectric La-doped Hf0.5Zr0.5O2 thin films. ACS Appl. Electron. Mater. 2(10), 3221–3232 (2020). https://doi.org/10.1021/acsaelm.0c00560
T.D. Huan, V. Sharma, G.A. Rossetti, R. Ramprasad, Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90(6), 064111 (2014). https://doi.org/10.1103/physrevb.90.064111
F. Delodovici, P. Barone, S. Picozzi, Trilinear-coupling-driven ferroelectricity in HfO2. Phys. Rev. Mater. 5(6), 064405 (2021). https://doi.org/10.1103/physrevmaterials.5.064405
S. Estandía, N. Dix, J. Gazquez, I. Fina, J. Lyu et al., Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress. ACS Appl. Electron. Mater. 1(8), 1449–1457 (2019). https://doi.org/10.1021/acsaelm.9b00256
T. Song, H. Tan, A.-C. Robert, S. Estandia, J. Gázquez et al., Synergetic contributions of chemical doping and epitaxial stress to polarization in ferroelectric HfO2 films. Appl. Mater. Today 29, 101621 (2022). https://doi.org/10.1016/j.apmt.2022.101621
T. Song, H. Tan, S. Estandía, J. Gàzquez, M. Gich et al., Improved polarization and endurance in ferroelectric Hf0.5Zr0.5O2 films on SrTiO3(110). Nanoscale 14(6), 2337–2343 (2022). https://doi.org/10.1039/D1NR06983G
T. Song, R. Solanas, M. Qian, I. Fina, F. Sánchez, Large enhancement of ferroelectric polarization in Hf0.5Zr0.5O2 films by low plasma energy pulsed laser deposition. J. Mater. Chem. C 10(3), 1084–1089 (2022). https://doi.org/10.1039/d1tc05387f
N. Liu, Y. Liu, H. Wu, J. Fang, W. Tang et al., Reliable high-temperature ferroelectric memories based on Hf0.5Zr0.5O2 film. Ceram. Int. 51(14), 19138–19144 (2025). https://doi.org/10.1016/j.ceramint.2025.02.092
M. Cervo Sulzbach, H. Tan, S. Estandía, J. Gàzquez, F. Sánchez et al., Polarization and resistive switching in epitaxial 2 nm Hf0.5Zr0.5O2 tunnel junctions. ACS Appl. Electron. Mater. 3(8), 3657–3666 (2021). https://doi.org/10.1021/acsaelm.1c00604
B. Prasad, V. Thakare, A. Kalitsov, Z. Zhang, B. Terris et al., Large tunnel electroresistance with ultrathin Hf0.5Zr0.5O2 ferroelectric tunnel barriers. Adv. Electron. Mater. 7(6), 2001074 (2021). https://doi.org/10.1002/aelm.202001074
Y. Sheng, I. Fina, M. Gospodinov, J. Fontcuberta, Switchable photovoltaic response in hexagonal LuMnO3 single crystals. Appl. Phys. Lett. 118(23), 232902 (2021). https://doi.org/10.1063/5.0053379
Y. Sheng, H. Tan, A. Quintana, M. Villa, J. Gázquez et al., Untwining polar contributions from light-polarization dependent photovoltaic response of based ferroelectric capacitors. Acta Mater. 245, 118601 (2023). https://doi.org/10.1016/j.actamat.2022.118601
P. Machado, P. Salles, A. Frebel, G. De Luca, E. Ros et al., Interface engineering in all-oxide photovoltaic devices based on photoferroelectric BiFe0.9Co0.1O3 thin films. ACS Appl. Electron. Mater. 6(11), 8251–8259 (2024). https://doi.org/10.1021/acsaelm.4c01533
T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.-W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324(5923), 63–66 (2009). https://doi.org/10.1126/science.1168636
S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu et al., Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 95(6), 062909 (2009). https://doi.org/10.1063/1.3204695
G. Chen, J. Chen, W. Pei, Y. Lu, Q. Zhang et al., Bismuth ferrite materials for solar cells: current status and prospects. Mater. Res. Bull. 110, 39–49 (2019). https://doi.org/10.1016/j.materresbull.2018.10.011
L. You, A. Abdelsamie, Y. Zhou, L. Chang, Z.S. Lim et al., Revisiting the ferroelectric photovoltaic properties of vertical BiFeO3 capacitors: a comprehensive study. ACS Appl. Mater. Interfaces 15(9), 12070–12077 (2023). https://doi.org/10.1021/acsami.2c23023
C.H. Peng, J.-F. Chang, S.B. Desu, Optical properties of PZT, PLZT, and PNZT thin films. MRS Online Proc. Libr. 243(1), 21–26 (1991). https://doi.org/10.1557/PROC-243-21
Y.P. Jiang, X.G. Tang, Q.X. Liu, Q. Li, A.L. Ding, Optical properties of Pb(Zr0.53Ti0.47)O3 thin films on Pt-coated Si substrates measured by spectroscopic ellipsometry in the UV–vis–NIR region. Mater. Sci. Eng. B 137(1–3), 304–309 (2007). https://doi.org/10.1016/j.mseb.2006.11.025
Y. Sheng, I. Fina, M. Gospodinov, A.M. Schankler, A.M. Rappe et al., Bulk photovoltaic effect in hexagonal LuMnO3- single crystals. Phys. Rev. B 104(18), 184116 (2021). https://doi.org/10.1103/physrevb.104.184116
K. Miura, L. Zhang, D. Kiriya, A. Ashida, T. Yoshimura et al., Origin of the photoinduced current of strongly correlated YMnO3ferroelectric epitaxial films. Jpn. J. Appl. Phys. 56(10S), 10PB08 (2017). https://doi.org/10.7567/jjap.56.10pb08
C. Wang, Y. Zhang, D. Zhang, Y. Sun, T. Zhang et al., 2D van der Waals sliding ferroelectrics toward novel electronic devices. Small 21(8), e2408375 (2025). https://doi.org/10.1002/smll.202408375
C. Wang, L. You, D. Cobden, J. Wang, Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 22(5), 542–552 (2023). https://doi.org/10.1038/s41563-022-01422-y
J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. Process. Measure. and Phenomena 18(3), 1785–1791 (2000). https://doi.org/10.1116/1.591472
L.J. Berberich, M.E. Bell, The dielectric properties of the rutile form of TiO2. J. Appl. Phys. 11(10), 681–692 (1940). https://doi.org/10.1063/1.1712721
S.K. Kim, W.-D. Kim, K.-M. Kim, C.S. Hwang, J. Jeong, High dielectric constant TiO2 thin films on a Ru electrode grown at 250 °C by atomic-layer deposition. Appl. Phys. Lett. 85(18), 4112–4114 (2004). https://doi.org/10.1063/1.1812832