Integrated Circuits on Fiber Substrates: State-of-the-Art System-on-Fiber Technologies for Smart Textiles and Wearables
Corresponding Author: Tae‑Wook Kim
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 232
Abstract
System-on-fiber technologies have emerged as a promising platform for seamless integration sensing, signal processing, and communication functionalities within textile-compatible fiber architectures. Advances in materials science and microscale fabrication have enabled the development of multifunctional fibers that serve as active components in large-scale woven systems. These fibers can perform a range of functions including sensing, data processing, and even neuromorphic computing. Despite their potential applications in wearable electronics, healthcare monitoring, and human–machine interfaces, the practical implementation stays in its infancy. Key challenges include limitation in device encapsulation, interconnect reliability, and scalable manufacturing. This review systematically summarizes recent advancements in manufacturing approaches for fiber-based integrated electronics, device configurations, and integration strategies. Furthermore, key technological hurdles and future opportunities for achieving fully integrated autonomous fiber-based electronic systems are discussed.
Highlights:
1 Presents a hierarchical overview of system-on-fiber (SoF) technologies, linking materials, fabrication methods, and device architectures from single-fiber electronics to system-level intelligent textiles.
2 Establishes a quantitative process–performance correlation framework, integrating AI-driven material optimization and comparative metrics (e.g., yield, endurance, and conductivity retention) across coating, thermal drawing, deposition, and spinning techniques.
3 Proposes a standardization and industrial translation roadmap outlining key steps testing certification, scalable manufacturing, and modular integration to move SoF systems from laboratory prototypes to consumer-ready smart textiles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Peng, C. Cui, L. Li, Y. Wang, Q. Wang et al., Medium-scale flexible integrated circuits based on 2D semiconductors. Nat. Commun. 15(1), 10833 (2024). https://doi.org/10.1038/s41467-024-55142-9
- N.A. Aadit, A. Grimaldi, M. Carpentieri, L. Theogarajan, J.M. Martinis et al., Massively parallel probabilistic computing with sparse Ising machines. Nat. Electron. 5(7), 460–468 (2022). https://doi.org/10.1038/s41928-022-00774-2
- X. Xu, S. Xie, Y. Zhang, H. Peng, The rise of fiber electronics. Angew. Chem. Int. Ed. 58(39), 13643–13653 (2019). https://doi.org/10.1002/anie.201902425
- Y. Zhang, H. Wang, H. Lu, S. Li, Y. Zhang, Electronic fibers and textiles: Recent progress and perspective. iScience 24(7), 102716 (2021). https://doi.org/10.1016/j.isci.2021.102716
- T. Agcayazi, K. Chatterjee, A. Bozkurt, T.K. Ghosh, Flexible interconnects for electronic textiles. Adv. Mater. Technol. 3(10), 1700277 (2018). https://doi.org/10.1002/admt.201700277
- Q. Jiang, M.F. Antwi-Afari, S. Fadaie, H.-Y. Mi, S. Anwer et al., Self-powered wearable Internet of Things sensors for human-machine interfaces: a systematic literature review and science mapping analysis. Nano Energy 131, 110252 (2024). https://doi.org/10.1016/j.nanoen.2024.110252
- C. Chen, J. Feng, J. Li, Y. Guo, X. Shi et al., Functional fiber materials to smart fiber devices. Chem. Rev. 123(2), 613–662 (2023). https://doi.org/10.1021/acs.chemrev.2c00192
- A. Fakharuddin, H. Li, F. Di Giacomo, T. Zhang, N. Gasparini et al., Fiber-shaped electronic devices. Adv. Energy Mater. 11(34), 2101443 (2021). https://doi.org/10.1002/aenm.202101443
- W. Cheng, L. Sun, J. Dong, Z. Han, L. Wei et al., Application progress and challenges of 1D fiber electrodes in wearable devices. Energy Storage Mater. 75, 104059 (2025). https://doi.org/10.1016/j.ensm.2025.104059
- N. Zhao, Y. Feng, H. Fan, P. Fu, S. Tian et al., Recent advancement in metal oxides based fiber-shaped supercapacitors: materials, fabrication, device assembly, and challenges. J. Alloys Compd. 976, 173319 (2024). https://doi.org/10.1016/j.jallcom.2023.173319
- C. Zhu, J. Wu, J. Yan, X. Liu, Advanced fiber materials for wearable electronics. Adv. Fiber Mater. 5(1), 12–35 (2023). https://doi.org/10.1007/s42765-022-00212-0
- W. Weng, J. Yang, Y. Zhang, Y. Li, S. Yang et al., A route toward smart system integration: from fiber design to device construction. Adv. Mater. 32(5), 1902301 (2020). https://doi.org/10.1002/adma.201902301
- W. Zhao, I.I. Nugay, B. Yalcin, M. Cakmak, Flexible, stretchable, transparent and electrically conductive polymer films via a hybrid electrospinning and solution casting process: in-plane anisotropic conductivity for electro-optical applications. Displays 45, 48–57 (2016). https://doi.org/10.1016/j.displa.2016.01.001
- G. Loke, W. Yan, T. Khudiyev, G. Noel, Y. Fink, Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32(1), e1904911 (2020). https://doi.org/10.1002/adma.201904911
- H. Peng, H. Li, G. Tao, L. Xia, W. Xu et al., Smart textile optoelectronics for human-interfaced logic systems. Adv. Funct. Mater. 34(2), 2308136 (2024). https://doi.org/10.1002/adfm.202308136
- J.Y. Lee, J.E. Ju, C. Lee, S.M. Won, K.J. Yu, Novel fabrication techniques for ultra-thin silicon based flexible electronics. Int. J. Extrem. Manuf. 6(4), 042005 (2024). https://doi.org/10.1088/2631-7990/ad492e
- W. Yan, C. Dong, Y. Xiang, S. Jiang, A. Leber et al., Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020). https://doi.org/10.1016/j.mattod.2019.11.006
- S. Tang, X. Zhang, J. Fan, B. Li, Z. Li et al., Fibrillation of well-formed conductive aerogel for soft conductors. Appl. Mater. Today 26, 101399 (2022). https://doi.org/10.1016/j.apmt.2022.101399
- J. Zhou, X. Li, Z. Zhang, T. Hou, J. Xu et al., Bio-based and bio-degradable nanofiber materials: a sustainable platform for energy, environmental, and biomedical applications. Chem. Eng. J. 491, 152105 (2024). https://doi.org/10.1016/j.cej.2024.152105
- H. Liao, S. Guo, S. Cao, L. Wang, F. Gao et al., A general strategy for in situ growth of all-inorganic CsPbX3 (X = Br, I, and Cl) perovskite nanocrystals in polymer fibers toward significantly enhanced water/thermal stabilities. Adv. Opt. Mater. 6(15), 1800346 (2018). https://doi.org/10.1002/adom.201800346
- Y. Park, M.-J. Park, J.-S. Lee, Reduced graphene oxide-based artificial synapse yarns for wearable textile device applications. Adv. Funct. Mater. 28(42), 1804123 (2018). https://doi.org/10.1002/adfm.201804123
- M. Dulal, M.R. Islam, S. Maiti, M.H. Islam, I. Ali et al., Smart and multifunctional fiber-reinforced composites of 2D heterostructure-based textiles. Adv. Funct. Mater. 33(40), 2305901 (2023). https://doi.org/10.1002/adfm.202305901
- A.Q. Shen, B. Gleason, G.H. McKinley, H.A. Stone, Fiber coating with surfactant solutions. Phys. Fluids 14(11), 4055–4068 (2002). https://doi.org/10.1063/1.1512287
- F. Yang, Z. Wang, W. Zhang, S. Wang, Y.-T. Liu et al., Superelastic and washable micro/nanofibrous sponges based on biomimetic helical fibers for efficient thermal insulation. Nano-Micro Lett. 18(1), 42 (2025). https://doi.org/10.1007/s40820-025-01882-2
- S. Li, J. Huang, Z. Chen, G. Chen, Y. Lai, A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J. Mater. Chem. A 5(1), 31–55 (2017). https://doi.org/10.1039/C6TA07984A
- D.H. Shin, Y.S. Choi, S.Y. Park, C.-S. Yeo, Y.Y. Park et al., Fast and complete recovery of TMDs-decorated rGO fiber gas sensors at room temperature. Appl. Surf. Sci. 578, 151832 (2022). https://doi.org/10.1016/j.apsusc.2021.151832
- J. He, C. Lu, H. Jiang, F. Han, X. Shi et al., Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597(7874), 57–63 (2021). https://doi.org/10.1038/s41586-021-03772-0
- Y.H. Hwang, B. Noh, J. Lee, H.S. Lee, Y. Park et al., High-performance and reliable white organic light-emitting fibers for truly wearable textile displays. Adv. Sci. 9(11), 2270067 (2022). https://doi.org/10.1002/advs.202270067
- K. Zhai, Q. Fan, Z. Bai, B. Bao, X. Wu et al., Homogenizing in-built electric field via curved conductive nanonetworks for electrochromic fibers with enhanced switching stability. Adv. Funct. Mater. 34(41), 2404029 (2024). https://doi.org/10.1002/adfm.202404029
- H.M. Kim, H.W. Kang, D.K. Hwang, H.S. Lim, B.-K. Ju et al., Metal–insulator–semiconductor coaxial microfibers based on self-organization of organic semiconductor: polymer blend for weavable, fibriform organic field-effect transistors. Adv. Funct. Mater. 26(16), 2706–2714 (2016). https://doi.org/10.1002/adfm.201504972
- M. Kang, S.-A. Lee, S. Jang, S. Hwang, S.-K. Lee et al., Low-voltage organic transistor memory fiber with a nanograined organic ferroelectric film. ACS Appl. Mater. Interfaces 11(25), 22575–22582 (2019). https://doi.org/10.1021/acsami.9b03564
- A. Canales, X. Jia, U.P. Froriep, R.A. Koppes, C.M. Tringides et al., Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33(3), 277–284 (2015). https://doi.org/10.1038/nbt.3093
- J. Zhang, Z. Wang, Z. Wang, L. Wei, Advanced multi-material optoelectronic fibers: a review. J. Light. Technol. 39(12), 3836–3845 (2021). https://doi.org/10.1109/JLT.2020.3036739
- Z. Zhang, Y. Xue, P. Zhang, X. Yang, X. Wang et al., Thermally drawn flexible fiber sensors: principles, materials, structures, and applications. Nano-Micro Lett. 18(1), 4 (2025). https://doi.org/10.1007/s40820-025-01840-y
- G. Loke, T. Khudiyev, B. Wang, S. Fu, S. Payra et al., Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12(1), 3317 (2021). https://doi.org/10.1038/s41467-021-23628-5
- L. Wei, C. Hou, E. Levy, G. Lestoquoy, A. Gumennik et al., Optoelectronic fibers via selective amplification of in-fiber capillary instabilities. Adv. Mater. 29(1), 1603033 (2017). https://doi.org/10.1002/adma.201603033
- S. Park, Y. Guo, X. Jia, H.K. Choe, B. Grena et al., One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20(4), 612–619 (2017). https://doi.org/10.1038/nn.4510
- Y. Shen, Z. Wang, Z. Wang, J. Wang, X. Yang et al., Thermally drawn multifunctional fibers: toward the next generation of information technology. InfoMat 4(7), e12318 (2022). https://doi.org/10.1002/inf2.12318
- A.F. Abouraddy, M. Bayindir, G. Benoit, S.D. Hart, K. Kuriki et al., Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nature Mater. 6(5), 336–347 (2007). https://doi.org/10.1038/nmat1889
- M. Chen, Z. Wang, K. Li, X. Wang, L. Wei, Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv. Fiber Mater. 3(1), 1–13 (2021). https://doi.org/10.1007/s42765-020-00057-5
- M. Rein, V.D. Favrod, C. Hou, T. Khudiyev, A. Stolyarov et al., Diode fibres for fabric-based optical communications. Nature 560(7717), 214–218 (2018). https://doi.org/10.1038/s41586-018-0390-x
- M. Nie, B. Li, Y.-L. Hsieh, K.K. Fu, J. Zhou, Stretchable one-dimensional conductors for wearable applications. ACS Nano 16(12), 19810–19839 (2022). https://doi.org/10.1021/acsnano.2c08166
- M. Manns, S.M. Raza, D. Morez, F. Schreiber, B. Engel, Embedding optical fiber with laser metal deposition. Prog. Addit. Manuf. 9(6), 2013–2016 (2024). https://doi.org/10.1007/s40964-023-00555-z
- K. Lau, S. Reichheld, M. Xian, S.J. Sharpe, M. Cerruti, Directed assembly of elastic fibers via coacervate droplet deposition on electrospun templates. Biomacromol 25(6), 3519–3531 (2024). https://doi.org/10.1021/acs.biomac.4c00180
- P. Miśkiewicz, I. Frydrych, A. Cichocka, Application of physical vapor deposition in textile industry. Autex Res. J. 22(1), 42–54 (2022). https://doi.org/10.2478/aut-2020-0004
- L. Yang, Y. Chen, Z. Xu, H. Xia, T. Natuski et al., Effect of surface modification of carbon fiber based on magnetron sputtering technology on tensile properties. Carbon 204, 377–386 (2023). https://doi.org/10.1016/j.carbon.2022.12.045
- W. Li, F. Liang, X. Sun, K. Zheng, R. Liu et al., Graphene-skinned alumina fiber fabricated through metalloid-catalytic graphene CVD growth on nonmetallic substrate and its mass production. Nat. Commun. 15(1), 6825 (2024). https://doi.org/10.1038/s41467-024-51118-x
- T. Zaengle, E. Martinez, T.W. Hawkins, C. McMillen, J. Ballato, A novel route to fibers with volatile crystalline semiconductor cores part 2: selenides and phosphides. Opt. Mater. 145, 114388 (2023). https://doi.org/10.1016/j.optmat.2023.114388
- Y. Yang, H. Yuan, Y. Cheng, F. Yang, M. Liu et al., Fluid-dynamics-rectified chemical vapor deposition (CVD) preparing graphene-skinned glass fiber fabric and its application in natural energy harvest. J. Am. Chem. Soc. 146(36), 25035–25046 (2024). https://doi.org/10.1021/jacs.4c07609
- Y. Cheng, K. Wang, Y. Qi, Z. Liu, Chemical vapor deposition method for graphene fiber materials. Acta Phys. Chim. Sin. (2020). https://doi.org/10.3866/pku.whxb202006046
- J. Zeng, X. Ji, Y. Ma, Z. Zhang, S. Wang et al., 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 30(12), e1705380 (2018). https://doi.org/10.1002/adma.201705380
- R. Chen, K. Cao, Y. Wen, F. Yang, J. Wang et al., Atomic layer deposition in advanced display technologies: from photoluminescence to encapsulation. Int. J. Extreme Manuf. 6(2), 022003 (2024). https://doi.org/10.1088/2631-7990/ad15f5
- S. Qiao, Z. Shi, A. Tong, Y. Luo, Y. Zhang et al., Atomic layer deposition paves the way for next-generation smart and functional textiles. Adv. Colloid Interface Sci. 341, 103500 (2025). https://doi.org/10.1016/j.cis.2025.103500
- J. Lu, Y. Li, W. Song, M.D. Losego, R. Monikandan et al., Atomic layer deposition onto thermoplastic polymeric nanofibrous aerogel templates for tailored surface properties. ACS Nano 14(7), 7999–8011 (2020). https://doi.org/10.1021/acsnano.9b09497
- D.-G. Kim, S.-H. Choi, W.-B. Lee, G.M. Jeong, J. Koh et al., Highly robust atomic layer deposition-indium gallium zinc oxide thin-film transistors with hybrid gate insulator fabricated via two-step atomic layer process for high-density integrated all-oxide vertical complementary metal-oxide-semiconductor applications. Small Struct. 5(2), 2300375 (2024). https://doi.org/10.1002/sstr.202300375
- E.O. Atofarati, P.O. Oviroh, O. Folorunso, T.C. Jen, Emerging applications and trends in atomic layer deposition nano-coatings. J. Coat. Technol. Res. 23, 229–254 (2025). https://doi.org/10.1007/s11998-025-01154-z
- D. Zhu, S. Jiang, C. Liao, L. Xu, Y. Wang et al., Ultrafast laser 3D nanolithography of fiber-integrated silica microdevices. Nano Lett. 24(31), 9734–9742 (2024). https://doi.org/10.1021/acs.nanolett.4c02680
- J. Kim, D. Shin, J. Chang, Fiber lithography: a facile lithography platform based on electromagnetic phase modulation using a highly birefringent electrospun fiber. ACS Appl. Mater. Interfaces 12(17), 20056–20066 (2020). https://doi.org/10.1021/acsami.0c01314
- Y. Lee, A. Canales, G. Loke, M. Kanik, Y. Fink et al., Selectively micro-patternable fibers via in-fiber photolithography. ACS Cent. Sci. 6(12), 2319–2325 (2020). https://doi.org/10.1021/acscentsci.0c01188
- A. Jaiswal, C.K. Rastogi, S. Rani, G.P. Singh, S. Saxena et al., Two decades of two-photon lithography: Materials science perspective for additive manufacturing of 2D/3D nano-microstructures. iScience 26(4): 106374 (2023). https://doi.org/10.1016/j.isci.2023.106374
- L. Guan, C. Cao, X. Liu, Q. Liu, Y. Qiu et al., Light and matter co-confined multi-photon lithography. Nat. Commun. 15, 2387 (2024). https://doi.org/10.1038/s41467-024-46743-5
- H. Wang, W. Zhang, D. Ladika, H. Yu, D. Gailevičius et al., Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications. Adv. Funct. Mater. 33(39), 2214211 (2023). https://doi.org/10.1002/adfm.202214211
- Y. Zheng, Z. Wang, P. Chen, H. Peng, Semiconductor fibers for textile integrated electronic systems. Natl. Sci. Rev. 11(6), nwae143 (2024). https://doi.org/10.1093/nsr/nwae143
- P. Wang, X. Ma, Z. Lin, F. Chen, Z. Chen et al., Well-defined in-textile photolithography towards permeable textile electronics. Nat. Commun. 15(1), 887 (2024). https://doi.org/10.1038/s41467-024-45287-y
- Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang et al., All-in-one graphene fiber supercapacitor. Nanoscale 6(12), 6448 (2014). https://doi.org/10.1039/c4nr01220h
- P.T. Nguyen, J. Jang, Y. Lee, S.T. Choi, J.B. In, Laser-assisted fabrication of flexible monofilament fiber supercapacitors. J. Mater. Chem. A 9(8), 4841–4850 (2021). https://doi.org/10.1039/d0ta10283k
- H. Ren, J. Jang, C. Li, A. Aigner, M. Plidschun et al., An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun. 13(1), 4183 (2022). https://doi.org/10.1038/s41467-022-31902-3
- M. He, A. Li, M. Zheng, Z. Lou, J. Yu et al., Shape-controllable nanofiber core-spun yarn for multifunctional applications. Adv. Fiber Mater. 6(4), 1138–1151 (2024). https://doi.org/10.1007/s42765-024-00408-6
- M. Li, K. Chen, D. Zhang, Z. Ye, Z. Yang et al., Wet-spinning carbon nanotube/shape memory polymer composite fibers with high actuation stress and predesigned shape change. Adv. Sci. 11(38), 2404913 (2024). https://doi.org/10.1002/advs.202404913
- Y. Cao, H. Zhang, Y. Zhang, Z. Yang, D. Liu et al., Epitaxial nanofiber separator enabling folding-resistant coaxial fiber-supercapacitor module. Energy Storage Mater. 49, 102–110 (2022). https://doi.org/10.1016/j.ensm.2022.03.011
- X. Chen, J. Wang, J. Zhang, H. Lin, M. Tian et al., Development and application of electrospun fiber-based multifunctional sensors. Chem. Eng. J. 486, 150204 (2024). https://doi.org/10.1016/j.cej.2024.150204
- H.I. Ryu, M.S. Koo, S. Kim, S. Kim, Y.-A. Park et al., Uniform-thickness electrospun nanofiber mat production system based on real-time thickness measurement. Sci. Rep. 10(1), 20847 (2020). https://doi.org/10.1038/s41598-020-77985-0
- J. Dong, J. Hou, Y. Peng, Y. Zhang, H. Liu et al., Breathable and stretchable epidermal electronics for health management: recent advances and challenges. Adv. Mater. 36(49), 2409071 (2024). https://doi.org/10.1002/adma.202409071
- C. Wang, Y. Li, H.-Y. Yu, S.Y.H. Abdalkarim, J. Zhou et al., Continuous meter-scale wet-spinning of cornlike composite fibers for eco-friendly multifunctional electronics. ACS Appl. Mater. Interfaces 13(34), 40953–40963 (2021). https://doi.org/10.1021/acsami.1c12012
- T. Duan, B. Liu, Y. Gao, G. Gao, Wet spinning/UV dual-curing enabled 3D printable fiber for intelligent electronic devices. Chem. Eng. J. 498, 155186 (2024). https://doi.org/10.1016/j.cej.2024.155186
- Y. Chen, J. Meng, Y. Xu, Y. Li, Q. Zhang et al., Integrated ionic-additive assisted wet-spinning of highly conductive and stretchable PEDOT: PSS fiber for fibrous organic electrochemical transistors. Adv. Electron. Mater. 7(8), 2100231 (2021). https://doi.org/10.1002/aelm.202100231
- M. Karaman, S.M. Cam, O. Çelen, M. Özbakış, K. Yılmaz, Reel-to-reel coating of a conductive polymer on synthetic textile yarns in a semi-closed batch oxidative CVD system. Fibres. Polym. 25(7), 2597–2603 (2024). https://doi.org/10.1007/s12221-024-00596-3
- F. Alaimo, A. Sadeqi, H. Rezaei Nejad, Y. Jiang, W. Wang et al., Reel-to-reel fabrication of strain sensing threads and realization of smart insole. Sens. Actuat. A Phys. 301, 111741 (2020). https://doi.org/10.1016/j.sna.2019.111741
- Z. Ma, Q. Huang, N. Zhou, Q. Zhuang, S.-W. Ng et al., Stretchable and conductive fibers fabricated by a continuous method for wearable devices. Cell Rep. Phys. Sci. 4(3), 101300 (2023). https://doi.org/10.1016/j.xcrp.2023.101300
- Z. Feng, S. Yang, S. Jia, Y. Zhang, S. Jiang et al., Scalable, washable and lightweight triboelectric-energy-generating fibers by the thermal drawing process for industrial loom weaving. Nano Energy 74, 104805 (2020). https://doi.org/10.1016/j.nanoen.2020.104805
- A. Lund, Y. Wu, B. Fenech-Salerno, F. Torrisi, T.B. Carmichael et al., Conducting materials as building blocks for electronic textiles. MRS Bull. 46(6), 491–501 (2021). https://doi.org/10.1557/s43577-021-00117-0
- Q. Wei, Y. Xu, Y. Wang, Textile surface functionalization by physical vapor deposition (PVD). In: Surface Modification of Textiles (Elsevier, 2009). pp. 58–90 https://doi.org/10.1533/9781845696689.58
- S. Choi, W. Jo, Y. Jeon, S. Kwon, J.H. Kwon et al., Multi-directionally wrinkle-able textile OLEDs for clothing-type displays. NPJ Flex. Electron. 4, 33 (2020). https://doi.org/10.1038/s41528-020-00096-3
- M.-Y. Liu, Y.-F. Zhang, L.-X. Ou, L.-Y. Zhu, X.-Y. Wu et al., A stretchable tactile sensor based on ALD-prepared conductive composite textile. Appl. Mater. Today 37, 102099 (2024). https://doi.org/10.1016/j.apmt.2024.102099
- S. Jayadevan, A.K. Aliyana, G.K. Stylios, Scalable fabrication of core–sheath nanofiber yarns via NanoTwist spinning for high-performance energy-harvesting E-nanofiber fabrics. ACS Appl. Mater. Interfaces 17(26), 37936–37950 (2025). https://doi.org/10.1021/acsami.5c04482
- F. Sun, H. Jiang, H. Wang, Y. Zhong, Y. Xu et al., Soft fiber electronics based on semiconducting polymer. Chem. Rev. 123(8), 4693–4763 (2023). https://doi.org/10.1021/acs.chemrev.2c00720
- C. Choi, H. Kim, J.-H. Kang, M.-K. Song, H. Yeon et al., Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nat. Electron. 5(6), 386–393 (2022). https://doi.org/10.1038/s41928-022-00778-y
- H. Liu, Y. Shi, Y. Pan, Z. Wang, B. Wang, Sensory interactive fibers and textiles. NPJ Flex. Electron. 9, 23 (2025). https://doi.org/10.1038/s41528-025-00398-4
- R.M. Torrente-Rodríguez, J. Tu, Y. Yang, J. Min, M. Wang et al., Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2(4), 921–937 (2020). https://doi.org/10.1016/j.matt.2020.01.021
- P. Yang, G. Wei, A. Liu, F. Huo, Z. Zhang, A review of sampling, energy supply and intelligent monitoring for long-term sweat sensors. NPJ Flex. Electron. 6, 33 (2022). https://doi.org/10.1038/s41528-022-00165-9
- M. Xue, C. Mackin, W.-H. Weng, J. Zhu, Y. Luo et al., Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 13(1), 5064 (2022). https://doi.org/10.1038/s41467-022-32749-4
- M. Chen, P. Li, R. Wang, Y. Xiang, Z. Huang et al., Multifunctional fiber-enabled intelligent health agents. Adv. Mater. 34(52), e2200985 (2022). https://doi.org/10.1002/adma.202200985
- O. Ozioko, R. Dahiya, Smart tactile gloves for haptic interaction, communication, and rehabilitation. Adv. Intell. Syst. 4(2), 2100091 (2022). https://doi.org/10.1002/aisy.202100091
- Y. Xing, J. Wang, J. Li, Design and manufacturing of soft electronics for in situ biochemical sensing. Int. J. Extreme Manuf. 6(6), 062005 (2024). https://doi.org/10.1088/2631-7990/ad65a0
- C. Tawk, G. Alici, A review of 3D-printable soft pneumatic actuators and sensors: research challenges and opportunities. Adv. Intell. Syst. 3(6), 2000223 (2021). https://doi.org/10.1002/aisy.202000223
- K. Keum, J. Eom, J.H. Lee, J.S. Heo, S.K. Park et al., Fully-integrated wearable pressure sensor array enabled by highly sensitive textile-based capacitive ionotronic devices. Nano Energy 79, 105479 (2021). https://doi.org/10.1016/j.nanoen.2020.105479
- P. Li, S. Lang, L. Xie, Y. Zhang, X. Gou et al., Skin-inspired ultra-linear flexible iontronic pressure sensors for wearable musculoskeletal monitoring. Nano-Micro Lett. 18(1), 55 (2025). https://doi.org/10.1007/s40820-025-01887-x
- Q. Zou, C. Liu, Q. Su, T. Xue, An ionic pressure sensor array with digitizable sensitivity. J. Micromech. Microeng. 33(5), 055005 (2023). https://doi.org/10.1088/1361-6439/acc873
- C. Zhang, Q. Yang, H. Li, Z. Luo, Y. Lu et al., 3D laser structuring of supermetalphobic microstructures inside elastomer for multilayer high-density interconnect soft electronics. Int. J. Extrem. Manuf. 7(3), 035004 (2025). https://doi.org/10.1088/2631-7990/ada835
- S. Wang, H.-Q. Shao, Y. Liu, C.-Y. Tang, X. Zhao et al., Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Compos. Sci. Technol. 202, 108600 (2021). https://doi.org/10.1016/j.compscitech.2020.108600
- S. Liu, Y. Wu, L. Jiang, W. Xie, B. Davis et al., Highly stretchable, tissue-like Ag nanowire-enhanced ionogel nanocomposites as an ionogel-based wearable sensor for body motion monitoring. ACS Appl. Mater. Interfaces 16(35), 46538–46547 (2024). https://doi.org/10.1021/acsami.4c10539
- B. Zhao, X. Li, C. Gu, Y. Wang, H. Liu et al., Highly stretchable and strain sensitive MXene/MXene: MWCNTs@TPU fiber with hierarchical conductive layers and porous elastic core structure. Colloids Surf. A Physicochem. Eng. Aspects 690, 133821 (2024). https://doi.org/10.1016/j.colsurfa.2024.133821
- C. Yang, W. Huang, Y. Lin, S. Cao, H. Wang et al., Stretchable MXene/carbon nanotube bilayer strain sensors with tunable sensitivity and working ranges. ACS Appl. Mater. Interfaces 16(23), 30274–30283 (2024). https://doi.org/10.1021/acsami.4c04770
- X. He, J. Gu, Y. Hao, M. Zheng, L. Wang et al., Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem. Eng. J. 450, 137937 (2022). https://doi.org/10.1016/j.cej.2022.137937
- D. Jang, K.T. Park, S.-S. Lee, H. Kim, Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity. Nano Energy 97, 107143 (2022). https://doi.org/10.1016/j.nanoen.2022.107143
- K. Yoon, S. Lee, C. Kwon, C. Won, S. Cho et al., Highly stretchable thermoelectric fiber with embedded copper(I) iodide nanops for a multimodal temperature, strain, and pressure sensor in wearable electronics. Adv. Funct. Mater. 35(1), 2570001 (2025). https://doi.org/10.1002/adfm.202570001
- J. Wang, W. Yang, Z. Liu, Y. Su, K. Li et al., Ultra-fine self-powered interactive fiber electronics for smart clothing. Nano Energy 107, 108171 (2023). https://doi.org/10.1016/j.nanoen.2023.108171
- Y. Wang, C. Sun, D. Ahmed, A smart acoustic textile for health monitoring. Nat. Electron. 8(6), 485–495 (2025). https://doi.org/10.1038/s41928-025-01386-2
- S.A. Rahman, S.A. Khan, S. Iqbal, I.B. Khadka, M.M. Rehman et al., Hierarchical porous biowaste-based dual humidity/pressure sensor for robotic tactile sensing, sustainable health, and environmental monitoring. Adv. Energy Sustain. Res. 5(11), 2400144 (2024). https://doi.org/10.1002/aesr.202400144
- Y. Wang, W. Niu, C.-Y. Lo, Y. Zhao, X. He et al., Interactively full-color changeable electronic fiber sensor with high stretchability and rapid response. Adv. Funct. Mater. 30(19), 2000356 (2020). https://doi.org/10.1002/adfm.202000356
- J.-H. Lee, K.H. Cho, K. Cho, Emerging trends in soft electronics: integrating machine intelligence with soft acoustic/vibration sensors. Adv. Mater. 35(32), 2209673 (2023). https://doi.org/10.1002/adma.202209673
- Y. Yang, Y. Liu, R. Yin, Fiber/yarn and textile-based piezoresistive pressure sensors. Adv. Fiber Mater. 7(1), 34–71 (2025). https://doi.org/10.1007/s42765-024-00479-5
- Y. Zhang, X. Chen, H. Chen, M. Jia, H. Cai et al., Developing a highly-conductive and strength cotton yarn through dual shell architecture of graphene for smart wearable devices. Chem. Eng. J. 470, 143912 (2023). https://doi.org/10.1016/j.cej.2023.143912
- Y. Cheng, R. Wang, J. Sun, L. Gao, A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 27(45), 7365–7371 (2015). https://doi.org/10.1002/adma.201503558
- Y. Gao, L. Yu, J.C. Yeo, C.T. Lim, Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32(15), 1902133 (2020). https://doi.org/10.1002/adma.201902133
- H. Luo, G. Yang, Z. Jin, Z. Cai, Y. Li et al., Textile hybrid electronics for monolithically multimodal wearable monitoring and therapy. Int. J. Extrem. Manuf. 7(3), 035506 (2025). https://doi.org/10.1088/2631-7990/adb5dd
- Z. Xue, Y. Gai, Y. Wu, Z.Z. liuLi, Wearable mechanical and electrochemical sensors for real-time health monitoring. Commun. Mater. 5, 211 (2024). https://doi.org/10.1038/s43246-024-00658-2
- L. Ji, Y. Xiao, K. Xu, X. Wu, O.W. Ojo et al., Smart bandage with multi-sensor system for wound healing and microenvironment monitoring. Chem. Eng. J. 507, 160509 (2025). https://doi.org/10.1016/j.cej.2025.160509
- G.M. Nazmul Islam, A. Ali, S. Collie, Textile sensors for wearable applications: a comprehensive review. Cellulose 27(11), 6103–6131 (2020). https://doi.org/10.1007/s10570-020-03215-5
- Z. Zhang, L. Wang, F. Jiang, S. Yu, F. Ji et al., Fully integrated wearable control system for micro/nanorobot navigation. Int. J. Extrem. Manuf. 7(3), 035505 (2025). https://doi.org/10.1088/2631-7990/ada8e5
- W. Chen, M. Cai, J. Wu, H. Ma, W. Liu et al., Highly conductive, durable, washable, and scalable composite yarn for multifunctional wearable electronic applications. Compos. Sci. Technol. 241, 110115 (2023). https://doi.org/10.1016/j.compscitech.2023.110115
- S. Zhang, R. Tan, X. Xu, S. Iqbal, J. Hu, Fibers/textiles-based flexible sweat sensors: a review. ACS Mater. Lett. 5(5), 1420–1440 (2023). https://doi.org/10.1021/acsmaterialslett.2c01207
- T. Lim, Y. Kim, S.-M. Jeong, C.-H. Kim, S.-M. Kim et al., Human sweat monitoring using polymer-based fiber. Sci. Rep. 9, 17294 (2019). https://doi.org/10.1038/s41598-019-53677-2
- W. Yang, W. Gong, B. Chang, K. Li, Y. Li et al., Body-coupled luminescent fibers enable wireless visual sensing of contacting media. Matter 7(12), 4309–4318 (2024). https://doi.org/10.1016/j.matt.2024.08.021
- W. Jeong, J. Song, J. Bae, K.R. Nandanapalli, S. Lee, Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl. Mater. Interfaces 11(47), 44758–44763 (2019). https://doi.org/10.1021/acsami.9b17584
- G. Zhao, J. Sun, M. Zhang, S. Guo, X. Wang et al., Highly strain-stable intrinsically stretchable olfactory sensors for imperceptible health monitoring. Adv. Sci. 10(29), 2302974 (2023). https://doi.org/10.1002/advs.202302974
- R.E. Owyeung, M.J. Panzer, S.R. Sonkusale, Colorimetric gas sensing washable threads for smart textiles. Sci. Rep. 9(1), 5607 (2019). https://doi.org/10.1038/s41598-019-42054-8
- W. Eom, J.-S. Jang, S.H. Lee, E. Lee, W. Jeong et al., Effect of metal/metal oxide catalysts on graphene fiber for improved NO2 sensing. Sens. Actuators B Chem. 344, 130231 (2021). https://doi.org/10.1016/j.snb.2021.130231
- K. Lang, T. Liu, D.J. Padilla, M. Nelson, C.W. Landorf et al., Nanofibers enabled advanced gas sensors: a review. Adv. Sens. Energy Mater. 3(2), 100093 (2024). https://doi.org/10.1016/j.asems.2024.100093
- A. Gumennik, A.M. Stolyarov, B.R. Schell, C. Hou, G. Lestoquoy et al., All-in-fiber chemical sensing. Adv. Mater. 24(45), 6005–6009 (2012). https://doi.org/10.1002/adma.201203053
- Q.-F. Li, X. Chen, H. Wang, M. Liu, H.-L. Peng, Pt/MXene-based flexible wearable non-enzymatic electrochemical sensor for continuous glucose detection in sweat. ACS Appl. Mater. Interfaces 15(10), 13290–13298 (2023). https://doi.org/10.1021/acsami.2c20543
- X. Huang, C. Yao, S. Huang, S. Zheng, Z. Liu et al., Technological advances of wearable device for continuous monitoring of in vivo glucose. ACS Sensors 9(3), 1065–1088 (2024). https://doi.org/10.1021/acssensors.3c01947
- F. Zhang, Q. Lin, H. Yang, N. Liu, P. Yang et al., Enhanced room-temperature NO2 sensing via a reduced graphene oxide/CuO composite on flexible nylon fibers. ACS Sens. 10(8), 5644–5654 (2025). https://doi.org/10.1021/acssensors.5c00707
- A. Yadav, A. Sharma, V. Baloria, P. Singh, G. Gupta, Ultrahigh sensitive NO sensor based on WO3 film with ppb-level sensitivity. Ceram. Int. 49(5), 7853–7860 (2023). https://doi.org/10.1016/j.ceramint.2022.10.284
- Y. Lu, H. Zhang, Y. Zhao, H. Liu, Z. Nie et al., Robust fiber-shaped flexible temperature sensors for safety monitoring with ultrahigh sensitivity. Adv. Mater. 36(18), e2310613 (2024). https://doi.org/10.1002/adma.202310613
- F. Khan, Z. Xu, J. Sun, F.M. Khan, A. Ahmed et al., Recent advances in sensors for fire detection. Sensors 22(9), 3310 (2022). https://doi.org/10.3390/s22093310
- A. Khan, M. Rashid, G. Grabher, G. Hossain, Autonomous triboelectric smart textile sensor for vital sign monitoring. ACS Appl. Mater. Interfaces 16(24), 31807–31816 (2024). https://doi.org/10.1021/acsami.4c04689
- W.M. Ryu, Y. Lee, Y. Son, G. Park, S. Park, Thermally drawn multi-material fibers based on polymer nanocomposite for continuous temperature sensing. Adv. Fiber Mater. 5(5), 1712–1724 (2023). https://doi.org/10.1007/s42765-023-00306-3
- J. Tabor, K. Chatterjee, T.K. Ghosh, Smart textile-based personal thermal comfort systems: current status and potential solutions. Adv. Mater. Technol. 5(5), 1901155 (2020). https://doi.org/10.1002/admt.201901155
- J. Wu, M. Wang, L. Dong, J. Shi, M. Ohyama et al., A trimode thermoregulatory flexible fibrous membrane designed with hierarchical core–sheath fiber structure for wearable personal thermal management. ACS Nano 16(8), 12801–12812 (2022). https://doi.org/10.1021/acsnano.2c04971
- K. Zou, P. Bai, K. Li, F. Luo, J. Liang et al., Electronic cooling and energy harvesting using ferroelectric polymer composites. Nat. Commun. 15, 6670 (2024). https://doi.org/10.1038/s41467-024-51147-6
- Z.-Q. Yu, M.-T. Li, B.-Y. Cao, A comprehensive review on microchannel heat sinks for electronics cooling. Int. J. Extrem. Manuf. 6(2), 022005 (2024). https://doi.org/10.1088/2631-7990/ad12d4
- M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A.F. Abouraddy et al., Integrated fibres for self-monitored optical transport. Nature Mater. 4(11), 820–825 (2005). https://doi.org/10.1038/nmat1512
- Y. Wei, L. Zhang, F. Bernasconi, T. Wu, Y. Li et al., Temperature-responsive resonator metafabrics for self-adaptive thermoregulation. Adv. Funct. Mater. 35(40), 2422485 (2025). https://doi.org/10.1002/adfm.202422485
- Q. Fan, H. Fan, H. Han, Z. Bai, X. Wu et al., Dynamic thermoregulatory textiles woven from scalable-manufactured radiative electrochromic fibers. Adv. Funct. Mater. 34(16), 2310858 (2024). https://doi.org/10.1002/adfm.202310858
- H. Xu, Y. Guo, B. Wu, C. Hou, Q. Zhang et al., Highly integrable thermoelectric fiber. ACS Appl. Mater. Interfaces 12(29), 33297–33304 (2020). https://doi.org/10.1021/acsami.0c09446
- W. Gong, Y. Guo, W. Yang, Z. Wu, R. Xing et al., Scalable and reconfigurable green electronic textiles with personalized comfort management. ACS Nano 16(8), 12635–12644 (2022). https://doi.org/10.1021/acsnano.2c04252
- W. Fu, B. Yu, D. Ji, Z. Zhou, X. Li et al., Intelligent fibers and textiles for wearable biosensors. Responsive Mater. 2(4), e20240018 (2024). https://doi.org/10.1002/rpm.20240018
- Y. Zhao, Y. Yuan, H. Zhang, Z. Chen, H. Zhao et al., A fully integrated electronic fabric-enabled multimodal flexible sensors for real-time wireless pressure-humidity-temperature monitoring. Int. J. Extrem. Manuf. 6(6), 065502 (2024). https://doi.org/10.1088/2631-7990/ad6aad
- K. Le, H. Narayana, A. Servati, A. Bahi, S. Soltanian et al., Electronic textiles for electrocardiogram monitoring: a review on the structure–property and performance evaluation from fiber to fabric. Text. Res. J. 93(3–4), 878–910 (2023). https://doi.org/10.1177/00405175221108208
- H. Kim, J.-G. Choi, T. Oh, I. Lee, H. Lee et al., Waterproof and conductive tough fibers for washable e-textile. NPJ Flex. Electron. 9, 28 (2025). https://doi.org/10.1038/s41528-025-00399-3
- S. Ham, M. Kang, S. Jang, J. Jang, S. Choi et al., One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications. Sci. Adv. 6(28), eaba1178 (2020). https://doi.org/10.1126/sciadv.aba1178
- J. Yu, W. Ling, Y. Li, N. Ma, Z. Wu et al., A multichannel flexible optoelectronic fiber device for distributed implantable neurological stimulation and monitoring. Small 17(4), 2005925 (2021). https://doi.org/10.1002/smll.202005925
- J. Lee, E. Georgitzikis, Y. Hermans, N. Papadopoulos, N. Chandrasekaran et al., Thin-film image sensors with a pinned photodiode structure. Nat. Electron. 6(8), 590–598 (2023). https://doi.org/10.1038/s41928-023-01016-9
- M. Zhang, Z. Liu, L. Yang, J. Yao, J. Chen et al., High-temperature reliability of all-oxide self-powered deep UV photodetector based on ϵ-Ga2O3/ZnO heterojunction. J. Phys. D Appl. Phys. 55(37), 375106 (2022). https://doi.org/10.1088/1361-6463/ac7d1c
- F. Mattei, D. Vurro, D. Spoltore, M. Pavesi, P.R. Kalvani et al., Planar hybrid UV-C photodetectors based on aerosol-jet printed PEDOT: PSS on different Ga2O3 thin films. Mater. Today Phys. 51, 101663 (2025). https://doi.org/10.1016/j.mtphys.2025.101663
- Y. Dong, Y. Zou, J. Song, Z. Zhu, J. Li et al., Self-powered fiber-shaped wearable omnidirectional photodetectors. Nano Energy 30, 173–179 (2016). https://doi.org/10.1016/j.nanoen.2016.10.009
- L. Zhuo, P. Fan, S. Zhang, X. Liu, X. Guo et al., A broadband all-fiber integrated graphene photodetector with CNT-enhanced responsivity. Nanoscale 12(26), 14188–14193 (2020). https://doi.org/10.1039/d0nr00139b
- E.R. Hsieh, C.F. Huang, S.Y. Huang, M.L. Miu, S.M. Lu et al., A logic fully comparable single-supply capacitor-less 1-FinFET-1-source-channel-drain-diode (1T1D) embedded DRAM MACRO in 16-nm FinFET. IEEE Solid-State Circuits Lett. 6, 249–252 (2023). https://doi.org/10.1109/LSSC.2023.3311797
- Q. Cheng, J. Li, Q. Zhang, Fibre computer enables more accurate recognition of human activity. Nano-Micro Lett. 17(1), 286 (2025). https://doi.org/10.1007/s40820-025-01809-x
- H. Zhang, Z. Wang, Z. Wang, B. He, M. Chen et al., Recent progress of fiber-based transistors: materials, structures and applications. Front. Optoelectron. 15(1), 2 (2022). https://doi.org/10.1007/s12200-022-00002-x
- X. Zhou, Z. Wang, T. Xiong, B. He, Z. Wang et al., Fiber crossbars: an emerging architecture of smart electronic textiles. Adv. Mater. 35(51), e2300576 (2023). https://doi.org/10.1002/adma.202300576
- K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu, Advances in flexible organic field-effect transistors and their applications for flexible electronics. NPJ Flex. Electron. 6, 1 (2022). https://doi.org/10.1038/s41528-022-00133-3
- X. Zhang, J. Li, J. Lin, W. Li, W. Chu et al., Highly stretchable electronic-skin sensors with porous microstructure for efficient multimodal sensing with wearable comfort. Adv. Mater. Interfaces 10(8), 2201958 (2023). https://doi.org/10.1002/admi.202201958
- W. Lee, Y. Kim, M.Y. Lee, J.H. Oh, J.U. Lee, Highly stretchable fiber transistors with all-stretchable electronic components and graphene hybrid electrodes. Org. Electron. 69, 320–328 (2019). https://doi.org/10.1016/j.orgel.2019.03.056
- D. Liu, Q. Shi, S. Dai, J. Huang, The design of 3D-interface architecture in an ultralow-power, electrospun single-fiber synaptic transistor for neuromorphic computing. Small 16(13), 1907472 (2020). https://doi.org/10.1002/smll.201907472
- S. Danto, F. Sorin, N.D. Orf, Z. Wang, S.A. Speakman et al., Fiber field-effect device via in situ channel crystallization. Adv. Mater. 22(37), 4162–4166 (2010). https://doi.org/10.1002/adma.201000268
- J. Cui, F. Wei, X. Mei, Carbon nanotube integrated circuit technology: purification, assembly and integration. Int. J. Extrem. Manuf. 6(3), 032004 (2024). https://doi.org/10.1088/2631-7990/ad2e12
- Y. Niu, Z. Qin, Y. Zhang, C. Chen, S. Liu et al., Expanding the potential of biosensors: a review on organic field effect transistor (OFET) and organic electrochemical transistor (OECT) biosensors. Mater. Futur. 2(4), 042401 (2023). https://doi.org/10.1088/2752-5724/ace3dd
- Y. Liu, M. Lian, W. Chen, H. Chen, Recent advances in fabrication and functions of neuromorphic system based on organic field effect transistor. Int. J. Extreme Manuf. 6(2), 022008 (2024). https://doi.org/10.1088/2631-7990/ad1e25
- L. Gao, M. Wu, X. Yu, J. Yu, Device design principles and bioelectronic applications for flexible organic electrochemical transistors. Int. J. Extreme Manuf. 6(1), 012005 (2024). https://doi.org/10.1088/2631-7990/acfd69
- Y. Huang, Z. Hu, S. Zhu, B. Fang, Fibre-based organic electrochemical transistors: principle, evaluation, and application. NPJ Flex. Electron. 9, 43 (2025). https://doi.org/10.1038/s41528-025-00417-4
- X. Wang, Z. Zhang, P. Li, J. Xu, Y. Zheng et al., Ultrastable N-type semiconducting fiber organic electrochemical transistors for highly sensitive biosensors. Adv. Mater. 36(24), 2400287 (2024). https://doi.org/10.1002/adma.202400287
- Y. Zhong, Q. Liang, Z. Chen, F. Ye, M. Yao et al., High-performance fiber-shaped vertical organic electrochemical transistors patterned by surface photolithography. Chem. Mater. 35(22), 9739–9746 (2023). https://doi.org/10.1021/acs.chemmater.3c02237
- J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu et al., Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 32(5), 1901958 (2020). https://doi.org/10.1002/adma.201901958
- H. Wang, B. Sun, S.S. Ge, J. Su, M.L. Jin, On non-von Neumann flexible neuromorphic vision sensors. npj Flex. Electron. 8, 28 (2024). https://doi.org/10.1038/s41528-024-00313-3
- J. Zhao, D. Liu, K. Zhao, J. Wang, Y. Shang et al., Optically controlled memristor enabling synergistic sensing-memory-computing for neuromorphic vision systems. Adv. Mater. 38, e11411 (2025). https://doi.org/10.1002/adma.202511411
- T. Wang, J. Meng, X. Zhou, Y. Liu, Z. He et al., Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat. Commun. 13(1), 7432 (2022). https://doi.org/10.1038/s41467-022-35160-1
- Y. Yang, J. Jeon, J. Son, K. Cho, S. Kim, NAND and NOR logic-in-memory comprising silicon nanowire feedback field-effect transistors. Sci. Rep. 12(1), 3643 (2022). https://doi.org/10.1038/s41598-022-07368-0
- Z. Zhou, L. Jiao, Z. Zheng, Y. Chen, K. Han et al., Ferroelectric capacitive memories: devices, arrays, and applications. Nano Converg. 12(1), 3 (2025). https://doi.org/10.1186/s40580-024-00463-0
- D. Kim, I.-J. Kim, J.-S. Lee, Memory devices for flexible and neuromorphic device applications. Adv. Intell. Syst. 3(5), 2000206 (2021). https://doi.org/10.1002/aisy.202000206
- S. Jain, S. Li, H. Zheng, L. Li, X. Fong et al., Heterogeneous integration of 2D memristor arrays and silicon selectors for compute-in-memory hardware in convolutional neural networks. Nat. Commun. 16(1), 2719 (2025). https://doi.org/10.1038/s41467-025-58039-3
- Q. Hua, G. Shen, Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chem. Soc. Rev. 53(3), 1316–1353 (2024). https://doi.org/10.1039/d3cs00918a
- S.-B. Hua, T. Jin, X. Guo, Electrochemical anodic oxidation assisted fabrication of memristors. Int. J. Extrem. Manuf. 6(3), 032008 (2024). https://doi.org/10.1088/2631-7990/ad2c61
- X. Xu, X. Zhou, T. Wang, X. Shi, Y. Liu et al., Robust DNA-bridged memristor for textile chips. Angew. Chem. Int. Ed. 59(31), 12762–12768 (2020). https://doi.org/10.1002/anie.202004333
- Z. Liu, S. Cheng, Y. Li, X. Li, J. Sun et al., Fiber-integrated all-optical signal processing device for storage and computing. ACS Photonics 10(10), 3531–3540 (2023). https://doi.org/10.1021/acsphotonics.3c00540
- W. Wang, Y. Pan, Y. Shui, T. Hasan, I.M. Lei et al., Imperceptible augmentation of living systems with organic bioelectronic fibres. Nat. Electron. 7(7), 586–597 (2024). https://doi.org/10.1038/s41928-024-01174-4
- X. Yu, X. Zhang, J. Wang, Fully electrically controlled van der Waals multiferroic tunnel junctions. ACS Nano 17(24), 25348–25356 (2023). https://doi.org/10.1021/acsnano.3c08747
- S. Dai, X. Liu, Y. Liu, Y. Xu, J. Zhang et al., Emerging iontronic neural devices for neuromorphic sensory computing. Adv. Mater. 35(39), e2300329 (2023). https://doi.org/10.1002/adma.202300329
- Z. Huang, Y. Li, Y. Zhang, J. Chen, J. He et al., 2D multifunctional devices: from material preparation to device fabrication and neuromorphic applications. Int. J. Extrem. Manuf. 6(3), 032003 (2024). https://doi.org/10.1088/2631-7990/ad2e13
- L. Chen, R. Li, S. Yuan, A. Chen, Y. Li et al., Fiber-shaped artificial optoelectronic synapses for wearable visual-memory systems. Matter 6(3), 925–939 (2023). https://doi.org/10.1016/j.matt.2022.12.001
- Y. Xing, M. Zhou, Y. Si, C.-Y. Yang, L.-W. Feng et al., Integrated opposite charge grafting induced ionic-junction fiber. Nat. Commun. 14(1), 2355 (2023). https://doi.org/10.1038/s41467-023-37884-0
- J.M. Lee, S.W. Cho, C. Jo, S.H. Yang, J. Kim et al., Monolithically integrated neuromorphic electronic skin for biomimetic radiation shielding. Sci. Adv. 10(40), eadp9885 (2024). https://doi.org/10.1126/sciadv.adp9885
- D. Wang, B. Yang, Z. Zhou, Z. Zhang, Z. Wu et al., Reconfigurable CMOS-compatible supercapacitor-diode empowering computation efficiency for human-machine interaction. Angew. Chem. Int. Ed. 64(12), e202421913 (2025). https://doi.org/10.1002/anie.202421913
- Z. Zhu, J. Shui, T. Wang, J. Meng, Mechanical properties analysis of flexible memristors for neuromorphic computing. Nano-Micro Lett. 18(1), 2 (2025). https://doi.org/10.1007/s40820-025-01825-x
- H. Zhang, S. Wang, L. Wang, S. Li, H. Liu et al., Bio-inspired retina by regulating ion-confined transport in hydrogels. Adv. Mater. 37(18), e2500809 (2025). https://doi.org/10.1002/adma.202500809
- T.Q. Trung, A. Bag, L.T.N. Huyen, M. Meeseepong, N.-E. Lee, Bio-inspired artificial retinas based on a fibrous inorganic–organic heterostructure for neuromorphic vision. Adv. Funct. Mater. 34(11), 2309378 (2024). https://doi.org/10.1002/adfm.202309378
- Y. Ni, H. Han, J. Liu, Y. Choi, L. Liu et al., A fibrous neuromorphic device for multi-level nerve pathways implementing knee jerk reflex and cognitive activities. Nano Energy 104, 107898 (2022). https://doi.org/10.1016/j.nanoen.2022.107898
- I. Krauhausen, C.-T. Coen, S. Spolaor, P. Gkoupidenis, Y. van de Burgt, Brain-inspired organic electronics: merging neuromorphic computing and bioelectronics using conductive polymers. Adv. Funct. Mater. 34(15), 2307729 (2024). https://doi.org/10.1002/adfm.202307729
- K. Lu, Z. Chen, H. Chen, W. Zhou, Z. Zhang et al., Empowering high-dimensional optical fiber communications with integrated photonic processors. Nat. Commun. 15(1), 3515 (2024). https://doi.org/10.1038/s41467-024-47907-z
- M.-R. Azani, A. Hassanpour, Electronic textiles (E-Textiles): types, fabrication methods, and recent strategies to overcome durability challenges (washability & flexibility). J. Mater. Sci. Mater. Electron. 35(29), 1897 (2024). https://doi.org/10.1007/s10854-024-13347-0
- H.W. Choi, D.-W. Shin, J. Yang, S. Lee, C. Figueiredo et al., Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat. Commun. 13(1), 814 (2022). https://doi.org/10.1038/s41467-022-28459-6
- P. Deng, Y. Wang, R. Yang, Z. He, Y. Tan et al., Self-powered smart textile based on dynamic Schottky diode for human-machine interactions. Adv. Sci. 10(11), 2207298 (2023). https://doi.org/10.1002/advs.202207298
- X. Wang, X. Zhao, T. Takahashi, D. Ohori, S. Samukawa, 3.5 × 3.5 μm2 GaN blue micro-light-emitting diodes with negligible sidewall surface nonradiative recombination. Nat. Commun. 14(1), 7569 (2023). https://doi.org/10.1038/s41467-023-43472-z
- Q. Shan, C. Wei, Y. Jiang, J. Song, Y. Zou et al., Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light Sci. Appl. 9, 163 (2020). https://doi.org/10.1038/s41377-020-00402-8
- S. Woo, H. Kim, J. Kim, H. Ryu, J. Lee, Fiber-based flexible ionic diode with high robustness and rectifying performance: toward electronic textile circuits. Adv. Electron. Mater. 10(3), 2300653 (2024). https://doi.org/10.1002/aelm.202300653
- K.-H. Choi, S.J. Kim, H. Kim, H.W. Jang, H. Yi et al., Fibriform organic electrochemical diodes with rectifying, complementary logic and transient voltage suppression functions for wearable E-textile embedded circuits. ACS Nano 17(6), 5821–5833 (2023). https://doi.org/10.1021/acsnano.2c12418
- L. Wang, X. Fu, J. He, X. Shi, T. Chen et al., Application challenges in fiber and textile electronics. Adv. Mater. 32(5), e1901971 (2020). https://doi.org/10.1002/adma.201901971
- A. Singh, K.S. Sandha, M.K. Rai, Investigation of optical interconnects for nano-scale VLSI applications. Micro and Nanostruct. 196, 207987 (2024). https://doi.org/10.1016/j.micrna.2024.207987
- Y. Deng, F. Bu, Y. Wang, P.S. Chee, X. Liu et al., Stretchable liquid metal based biomedical devices. NPJ Flex. Electron. 8, 12 (2024). https://doi.org/10.1038/s41528-024-00298-z
- H. Zhu, S. Wang, M. Zhang, T. Li, G. Hu et al., Fully solution processed liquid metal features as highly conductive and ultrastretchable conductors. NPJ Flex. Electron. 5, 25 (2021). https://doi.org/10.1038/s41528-021-00123-x
- S.-H. Kang, J.-W. Jo, J.M. Lee, S. Moon, S.B. Shin et al., Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale. Nat. Commun. 15(1), 2814 (2024). https://doi.org/10.1038/s41467-024-47184-w
- S. Shi, Y. Li, B.-N. Ngo-Dinh, J. Markmann, J. Weissmüller, Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science 371(6533), 1026–1033 (2021). https://doi.org/10.1126/science.abd9391
- V. Gaubert, X. Boddaert, T. Djenizian, R. Delattre, Textile electronic circuits from laser-patterned conductive fabric. Adv. Eng. Mater. 25(9), 2201548 (2023). https://doi.org/10.1002/adem.202201548
- X. Qin, B. Zhong, H. Xu, J.A. Jackman, K. Xu et al., Manufacturing high-performance flexible sensors via advanced patterning techniques. Int. J. Extrem. Manuf. (2025). https://doi.org/10.1088/2631-7990/ada857
- M. Liao, C. Wang, Y. Hong, Y. Zhang, X. Cheng et al., Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17(4), 372–377 (2022). https://doi.org/10.1038/s41565-021-01062-4
- F. Seoane, A. Soroudi, K. Lu, D. Nilsson, M. Nilsson et al., Textile-friendly interconnection between wearable measurement instrumentation and sensorized garments-initial performance evaluation for electrocardiogram recordings. Sensors 19(20), 4426 (2019). https://doi.org/10.3390/s19204426
- M. Park, J. Im, M. Shin, Y. Min, J. Park et al., Highly stretchable electric circuits from a composite material of silver nanops and elastomeric fibres. Nat. Nanotechnol. 7(12), 803–809 (2012). https://doi.org/10.1038/nnano.2012.206
- W. Song, Y. Wen, Y. Cho, X. Zhang, D. Kang et al., Advances and prospects in multifunctional composite fibrous materials utilizing porous organic polymers. Adv. Mater. (2025). https://doi.org/10.1002/adma.202513138
- T. Li, T. Zhao, H. Zhang, L. Yuan, C. Cheng et al., A skin-conformal and breathable humidity sensor for emotional mode recognition and non-contact human-machine interface. NPJ Flex. Electron. 8, 3 (2024). https://doi.org/10.1038/s41528-023-00290-z
- D. Fakhry, M. Abdelsalam, M.W. El-Kharashi, M. Safar, A review on computational storage devices and near memory computing for high performance applications. Memories Mater. Devices Circuits Syst. 4, 100051 (2023). https://doi.org/10.1016/j.memori.2023.100051
- P.T. Kalaivaani, R. Krishnamoorthi, Design and implementation of low power bio signal sensors for wireless body sensing network applications. Microprocess. Microsyst. 79, 103271 (2020). https://doi.org/10.1016/j.micpro.2020.103271
- S.Y. Park, S.J. Choi, J.C. Kim, D.J. Joe, H.E. Lee, Self-healable and conductive hydrogel nanocomposite with high environmental stability for electromagnetic-interference-free electrocardiography patches. Energy Environ. Mater. 8(5), e70039 (2025). https://doi.org/10.1002/eem2.70039
- S. Akram, M. Ashraf, A. Javid, H.A. Abid, S. Ahmad et al., Recent advances in electromagnetic interference (EMI) shielding textiles: a comprehensive review. Synth. Met. 294, 117305 (2023). https://doi.org/10.1016/j.synthmet.2023.117305
- H.K. Choi, D.S. Lee, S. Bae, B.J. Moon, S.-K. Lee et al., Recent progress of research into conductive nanomaterials for use in electromagnetic interference shields. Appl. Sci. Converg. Technol. 31(6), 120–127 (2022). https://doi.org/10.5757/asct.2022.31.6.120
- J. Tang, X. Zhang, J. Wang, R. Zou, L. Wang, Achieving flexible and durable electromagnetic interference shielding fabric through lightweight and mechanically strong aramid fiber wrapped in highly conductive multilayer metal. Appl. Surf. Sci. 565, 150577 (2021). https://doi.org/10.1016/j.apsusc.2021.150577
- A. Ishimaru, Electromagnetic wave propagation, radiation, and scattering: from fundamentals to applications. Wiley (2017). https://doi.org/10.1002/9781119079699
- Z. Li, S.K. Sinha, G.M. Treich, Y. Wang, Q. Yang et al., All-organic flexible fabric antenna for wearable electronics. J. Mater. Chem. C 8(17), 5662–5667 (2020). https://doi.org/10.1039/d0tc00691b
- W. Yang, S. Lin, W. Gong, R. Lin, C. Jiang et al., Single body-coupled fiber enables chipless textile electronics. Science 384(6691), 74–81 (2024). https://doi.org/10.1126/science.adk3755
- V. Marterer, M. Radouchová, R. Soukup, S. Hipp, T. Blecha, Wearable textile antennas: investigation on material variants, fabrication methods, design and application. Fash. Text. 11(1), 9 (2024). https://doi.org/10.1186/s40691-023-00369-1
- M. Feng, G. Lu, Z. Wang, Y. Jiang, Wireless technologies in stretchable bioelectronics. J. Mater. Chem. C 13(40), 20334–20366 (2025). https://doi.org/10.1039/d5tc02191j
- S. Rahman, M. Al Haque, M. Solaiman, R.H. Ratul, I. Ahmed et al., Wireless power transfer using electronic textiles: a comparative review. J. Eng. Res. 12(4), 806–824 (2024). https://doi.org/10.1016/j.jer.2024.02.008
- M. Mariello, C.M. Proctor, Wireless power and data transfer technologies for flexible bionic and bioelectronic interfaces: materials and applications. Adv. Mater. Technol. 10(5), 2400797 (2025). https://doi.org/10.1002/admt.202400797
- R. Lin, H.-J. Kim, S. Achavananthadith, S.A. Kurt, S.C.C. Tan et al., Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 11(1), 444 (2020). https://doi.org/10.1038/s41467-020-14311-2
- H. Guo, J. Liu, Collaborative computation offloading for multiaccess edge computing over fiber–wireless networks. IEEE Trans. Veh. Technol. 67(5), 4514–4526 (2018). https://doi.org/10.1109/TVT.2018.2790421
- S. Lee, H.W. Choi, C.L. Figueiredo, D.-W. Shin, F.M. Moncunill et al., Truly form-factor-free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices. Sci. Adv. 9(16), eadf4049 (2023). https://doi.org/10.1126/sciadv.adf4049
- X. Zheng, D. Zhou, Z. Liu, X. Hong, C. Li et al., Skin-inspired textile electronics enable ultrasensitive pressure sensing. Small 20(33), e2310032 (2024). https://doi.org/10.1002/smll.202310032
- Z. He, Y. Wang, H. Xiao, Y. Wu, X. Xia et al., Highly stretchable, deformation-stable wireless powering antenna for wearable electronics. Nano Energy 112, 108461 (2023). https://doi.org/10.1016/j.nanoen.2023.108461
- S. Wang, Y. Nie, H. Zhu, Y. Xu, S. Cao et al., Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8(13), eabll5511 (2022). https://doi.org/10.1126/sciadv.abl5511
- S. Hwang, M. Kang, A. Lee, S. Bae, S.-K. Lee et al., Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat. Commun. 13(1), 3173 (2022). https://doi.org/10.1038/s41467-022-30894-4
- T. Jing, B. Xu, J.H. Xin, X. Guan, Y. Yang, Series to parallel structure of electrode fiber: an effective method to remarkably reduce inner resistance of triboelectric nanogenerator textiles. J. Mater. Chem. A 9(20), 12331–12339 (2021). https://doi.org/10.1039/D1TA01309B
- A. Jamali, C. Lehmann, R.T. Aditya, F. Goldschmidtboeing, P. Woias et al., Stretchable printed circuit boards using a silicone substrate of variable stiffness and conventional PCB fabrication methods. Flex. Print. Electron. 9(4), 045005 (2024). https://doi.org/10.1088/2058-8585/ad8242
- S. Anwar, P. Vashishth, B. Mangla, S.K. Shukla, Future perspective of miniaturization/lab-on-chip for environmental application. In: Nanotechnology in Miniaturization (Springer Nature Switzerland, 2024) pp. 113–135 https://doi.org/10.1007/978-3-031-72004-8_7
- N. Gupta, H. Cheung, S. Payra, G. Loke, J. Li et al., A single-fibre computer enables textile networks and distributed inference. Nature 639(8053), 79–86 (2025). https://doi.org/10.1038/s41586-024-08568-6
- H. Li, R. Qu, Z. Ma, N. Zhou, Q. Huang et al., Permeable and patternable super-stretchable liquid metal fiber for constructing high-integration-density multifunctional electronic fibers. Adv. Funct. Mater. 34(31), 2308120 (2024). https://doi.org/10.1002/adfm.202308120
- D. Chen, K. Jiang, T. Huang, G. Shen, Recent advances in fiber supercapacitors: materials, device configurations, and applications. Adv. Mater. 32(5), e1901806 (2020). https://doi.org/10.1002/adma.201901806
- S. Song, H. Ai, L. Lv, Y. Guo, T. Han et al., Novel smart coaxial electrospinning textiles for efficient thermal interface management and electromagnetic compatibility in electronics. Chem. Eng. J. 472, 144854 (2023). https://doi.org/10.1016/j.cej.2023.144854
- J. Han, C. Xu, J. Zhang, N. Xu, Y. Xiong et al., Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization. ACS Nano 15(1), 1597–1607 (2021). https://doi.org/10.1021/acsnano.0c09146
- Y. Kim, Y. Lee, J. Yoo, K.S. Nam, W. Jeon et al., Multifunctional and flexible neural probe with thermally drawn fibers for bidirectional synaptic probing in the brain. ACS Nano 18(20), 13277–13285 (2024). https://doi.org/10.1021/acsnano.4c02578
- Y. Lee, J. Won, D.-Y. Kim, S. Park, Microsensor-internalized fibers as autonomously controllable soft actuators. Small 21(16), e2409742 (2025). https://doi.org/10.1002/smll.202409742
- A.A. Simegnaw, B. Malengier, G. Rotich, M.G. Tadesse, L. Van Langenhove, Review on the integration of microelectronics for E-textile. Materials 14(17), 5113 (2021). https://doi.org/10.3390/ma14175113
- M. Dulal, S. Afroj, J. Ahn, Y. Cho, C. Carr et al., Toward sustainable wearable electronic textiles. ACS Nano 16(12), 19755–19788 (2022). https://doi.org/10.1021/acsnano.2c07723
- J. Huang, B. Xu, Y. Gao, C. Jiang, X. Guan et al., Surface microstructural engineering of continuous fibers as one-dimensional multifunctional fiber materials for wearable electronic applications. Chem. Eng. J. 446, 137192 (2022). https://doi.org/10.1016/j.cej.2022.137192
- B. Du, J. Lu, G. Wang, M. Han, Y. Gao et al., Combined laser-induced graphene and microcontact printing for processing scalable and stackable micro-stripe patterns toward multifunctional electronic devices. Carbon 225, 119148 (2024). https://doi.org/10.1016/j.carbon.2024.119148
- S. Kwon, T. Lee, H.-J. Choi, J. Ahn, H. Lim et al., Scalable fabrication of inkless, transfer-printed graphene-based textile microsupercapacitors with high rate capabilities. J. Power. Sources 481, 228939 (2021). https://doi.org/10.1016/j.jpowsour.2020.228939
- Z. Chen, C. Zhang, Z. Zheng, Advancements in transfer printing techniques for flexible electronics: adjusting interfaces and promoting versatility. Int. J. Extreme Manuf. 6(5), 052005 (2024). https://doi.org/10.1088/2631-7990/ad5391
- S. Seyedin, T. Carey, A. Arbab, L. Eskandarian, S. Bohm et al., Fibre electronics: towards scaled-up manufacturing of integrated e-textile systems. Nanoscale 13(30), 12818–12847 (2021). https://doi.org/10.1039/d1nr02061g
- S.P. Beeby, R.N. Torah, M. Wagih, B. Isaia, S. Black et al., Heterogeneous E-textiles: materials, manufacturing and sustainability. Adv. Mater. Technol. 10(3), 2400844 (2025). https://doi.org/10.1002/admt.202400844
- Y. Cui, X. He, W. Liu, S. Zhu, M. Zhou et al., Highly stretchable, sensitive, and multifunctional thermoelectric fabric for synergistic-sensing systems of human signal monitoring. Adv. Fiber Mater. 6(1), 170–180 (2024). https://doi.org/10.1007/s42765-023-00339-8
- M. Amarnath, S. Mohite, S. Palaskar, Recent advances and innovations in textile materials for smart sensor applications: a review. Measurement 255, 118057 (2025). https://doi.org/10.1016/j.measurement.2025.118057
- B. Younes, Smart E-textiles: a review of their aspects and applications. J. Ind. Text. 53, 15280837231215493 (2023). https://doi.org/10.1177/15280837231215493
- Y. Liu, L. Chen, W. Li, J. Pu, Z. Wang et al., Scalable production of functional fibers with nanoscale features for smart textiles. ACS Nano 18(43), 29394–29420 (2024). https://doi.org/10.1021/acsnano.4c10111
- Y. Peng, F. Sun, C. Xiao, M.I. Iqbal, Z. Sun et al., Hierarchically structured and scalable artificial muscles for smart textiles. ACS Appl. Mater. Interfaces 13(45), 54386–54395 (2021). https://doi.org/10.1021/acsami.1c16323
- M. Yang, X. Jia, D. He, Y. Ma, Y. Cheng et al., Superhydrophobic and corrosion-resistant electrospun hybrid membrane for high-efficiency electromagnetic interference shielding. ACS Appl. Electron. Mater. 3(5), 2067–2078 (2021). https://doi.org/10.1021/acsaelm.1c00076
- H. Ye, E. Park, S.C. Shin, G. Murali, D. Kim et al., Photopatternable high-k polysilsesquioxane dielectrics for organic integrated devices: effects of UV curing on chemical and electrical properties. Adv. Funct. Mater. 33(19), 2370121 (2023). https://doi.org/10.1002/adfm.202370121
- J. Kim, H.W. Choi, B. Kim, E. Kim, J. Kim, Flexible electrode on e-textile based on screen-printed silver ink carbon nanotube. Int. J. Adv. Manuf. Technol. 134(1), 127–137 (2024). https://doi.org/10.1007/s00170-024-14123-4
- F. Cleary, W. Srisa-An, D.C. Henshall, S. Balasubramaniam, Emerging AI technologies inspiring the next generation of E-textiles. IEEE Access 11, 56494–56508 (2023). https://doi.org/10.1109/ACCESS.2023.3282184
- X. Wang, L. Kong, Y. Feng, H. Liao, L. Weng et al., EGaIn-induced eutectic solvent polymerization of self-healing composite elastomers for flexible strain sensors. Sustain. Mater. Technol. 45, e01624 (2025). https://doi.org/10.1016/j.susmat.2025.e01624
- W.G. Chung, E. Kim, Y.W. Kwon, J. Lee, S. Lee et al., Ga-based liquid metals: versatile and biocompatible solutions for next-generation bioelectronics. Adv. Funct. Mater. 34(31), 307990 (2024). https://doi.org/10.1002/adfm.202307990
- J. Qiu, J. Li, W. Li, K. Wang, T. Xiao et al., Silver nanowire networks with moisture-enhanced learning ability. ACS Appl. Mater. Interfaces 16(8), 10361–10371 (2024). https://doi.org/10.1021/acsami.3c17438
- R. Wang, L. Sun, X. Zhu, W. Ge, H. Li et al., Carbon nanotube-based strain sensors: structures, fabrication, and applications. Adv. Mater. Technol. 8(1), 2200855 (2023). https://doi.org/10.1002/admt.202200855
- H.-W. Lin, C.-W. Chang, C.-C. Chang, T.-Y. Lo, T.-H. Tsai et al., Enhanced stretchability and conductivity in self-healing ionogels: a hybrid PEDOT: PSS/IL/PAA composite. J. Mater. Chem. A 13(37), 31456–31468 (2025). https://doi.org/10.1039/D5TA04186D
- Y. Lu, G. Yang, S. Wang, Y. Zhang, Y. Jian et al., Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7(1), 51–65 (2024). https://doi.org/10.1038/s41928-023-01091-y
- J. Xie, Q. Chen, H. Shen, G. Li, Review: wearable graphene devices for sensing. J. Electrochem. Soc. 167(3), 037541 (2020). https://doi.org/10.1149/1945-7111/ab67a4
- J. Eom, R. Jaisutti, H. Lee, W. Lee, J.-S. Heo et al., Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl. Mater. Interfaces 9(11), 10190–10197 (2017). https://doi.org/10.1021/acsami.7b01771
- K. Chatterjee, J. Tabor, T.K. Ghosh, Electrically conductive coatings for fiber-based E-textiles. Fibers 7(6), 51 (2019). https://doi.org/10.3390/fib7060051
- Y. Cheng, R. Wang, H. Zhai, J. Sun, Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 9(11), 3834–3842 (2017). https://doi.org/10.1039/C7NR00121E
- J.-V. Voutilainen, T. Happonen, J. Häkkinen, T. Fabritius, All silk-screen printed polymer-based remotely readable temperature sensor. IEEE Sens. J. 15(2), 723–733 (2014). https://doi.org/10.1109/JSEN.2014.2350077
- M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12(11), 5714–5718 (2012). https://doi.org/10.1021/nl302959a
- S. Baloda, S.K. Sriram, P. Sharma, S. Singh, N. Gupta, Development of SWCNTs/PDMS composite strain sensors integrated smart glove for human-machine interface applications. IEEE Sens. J. 25(2), 2400–2407 (2025). https://doi.org/10.1109/JSEN.2024.3509494
- C.M. Lochner, Y. Khan, A. Pierre, A.C. Arias, All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 5745 (2014). https://doi.org/10.1038/ncomms6745
- M. Pei, J. Guo, B. Zhang, S. Jiang, Z. Hao et al., Semiconductor/dielectric interface in organic field-effect transistors: charge transport, interfacial effects, and perspectives with 2D molecular crystals. Adv. Phys. X 5(1), 1747945 (2020). https://doi.org/10.1080/23746149.2020.1747945
- P. O’Brien, K. Gradkowski, P.E. Morrissey, S. Latkowski, H. Gehring et al., Packaging and test technologies. In: Integrated Photonics for Data Communication Applications (Elsevier, 2023) pp. 411–437 https://doi.org/10.1016/b978-0-323-91224-2.00007-2
- H.G. van Lier, M.E. Pieterse, A. Garde, M.G. Postel, H.A. de Haan et al., A standardized validity assessment protocol for physiological signals from wearable technology: methodological underpinnings and an application to the E4 biosensor. Behav. Res. Methods 52(2), 607–629 (2020). https://doi.org/10.3758/s13428-019-01263-9
- R.R. Ruckdashel, N. Khadse, J.H. Park, Smart e-textiles: overview of components and outlook. Sensors 22(16), 6055 (2022). https://doi.org/10.3390/s22166055
- M.R. Islam, S. Afroj, J. Yin, K.S. Novoselov, J. Chen et al., Advances in printed electronic textiles. Adv. Sci. 11(6), 2304140 (2024). https://doi.org/10.1002/advs.202304140
- J. Zhang, B. Xu, K. Chen, Y. Li, G. Li et al., Revolutionizing digital healthcare networks with wearable strain sensors using sustainable fibers. SusMat 4(4), e207 (2024). https://doi.org/10.1002/sus2.207
- Y. Wu, S.S. Mechael, T.B. Carmichael, Wearable e-textiles using a textile-centric design approach. Acc. Chem. Res. 54(21), 4051–4064 (2021). https://doi.org/10.1021/acs.accounts.1c00433
- A. Vaseashta, D. Demir, B. Sakım, M. Aşık, N. Bölgen, Hierarchical integration of 3D printing and electrospinning of nanofibers for rapid prototyping. In: Electrospun Nanofibers (Springer International Publishing, 2022) pp. 411–437 https://doi.org/10.1007/978-3-030-99958-2_22
- T. Wan, B. Shao, S. Ma, Y. Zhou, Q. Li et al., In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 35(37), 2203830 (2023). https://doi.org/10.1002/adma.202203830
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li
References
Y. Peng, C. Cui, L. Li, Y. Wang, Q. Wang et al., Medium-scale flexible integrated circuits based on 2D semiconductors. Nat. Commun. 15(1), 10833 (2024). https://doi.org/10.1038/s41467-024-55142-9
N.A. Aadit, A. Grimaldi, M. Carpentieri, L. Theogarajan, J.M. Martinis et al., Massively parallel probabilistic computing with sparse Ising machines. Nat. Electron. 5(7), 460–468 (2022). https://doi.org/10.1038/s41928-022-00774-2
X. Xu, S. Xie, Y. Zhang, H. Peng, The rise of fiber electronics. Angew. Chem. Int. Ed. 58(39), 13643–13653 (2019). https://doi.org/10.1002/anie.201902425
Y. Zhang, H. Wang, H. Lu, S. Li, Y. Zhang, Electronic fibers and textiles: Recent progress and perspective. iScience 24(7), 102716 (2021). https://doi.org/10.1016/j.isci.2021.102716
T. Agcayazi, K. Chatterjee, A. Bozkurt, T.K. Ghosh, Flexible interconnects for electronic textiles. Adv. Mater. Technol. 3(10), 1700277 (2018). https://doi.org/10.1002/admt.201700277
Q. Jiang, M.F. Antwi-Afari, S. Fadaie, H.-Y. Mi, S. Anwer et al., Self-powered wearable Internet of Things sensors for human-machine interfaces: a systematic literature review and science mapping analysis. Nano Energy 131, 110252 (2024). https://doi.org/10.1016/j.nanoen.2024.110252
C. Chen, J. Feng, J. Li, Y. Guo, X. Shi et al., Functional fiber materials to smart fiber devices. Chem. Rev. 123(2), 613–662 (2023). https://doi.org/10.1021/acs.chemrev.2c00192
A. Fakharuddin, H. Li, F. Di Giacomo, T. Zhang, N. Gasparini et al., Fiber-shaped electronic devices. Adv. Energy Mater. 11(34), 2101443 (2021). https://doi.org/10.1002/aenm.202101443
W. Cheng, L. Sun, J. Dong, Z. Han, L. Wei et al., Application progress and challenges of 1D fiber electrodes in wearable devices. Energy Storage Mater. 75, 104059 (2025). https://doi.org/10.1016/j.ensm.2025.104059
N. Zhao, Y. Feng, H. Fan, P. Fu, S. Tian et al., Recent advancement in metal oxides based fiber-shaped supercapacitors: materials, fabrication, device assembly, and challenges. J. Alloys Compd. 976, 173319 (2024). https://doi.org/10.1016/j.jallcom.2023.173319
C. Zhu, J. Wu, J. Yan, X. Liu, Advanced fiber materials for wearable electronics. Adv. Fiber Mater. 5(1), 12–35 (2023). https://doi.org/10.1007/s42765-022-00212-0
W. Weng, J. Yang, Y. Zhang, Y. Li, S. Yang et al., A route toward smart system integration: from fiber design to device construction. Adv. Mater. 32(5), 1902301 (2020). https://doi.org/10.1002/adma.201902301
W. Zhao, I.I. Nugay, B. Yalcin, M. Cakmak, Flexible, stretchable, transparent and electrically conductive polymer films via a hybrid electrospinning and solution casting process: in-plane anisotropic conductivity for electro-optical applications. Displays 45, 48–57 (2016). https://doi.org/10.1016/j.displa.2016.01.001
G. Loke, W. Yan, T. Khudiyev, G. Noel, Y. Fink, Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32(1), e1904911 (2020). https://doi.org/10.1002/adma.201904911
H. Peng, H. Li, G. Tao, L. Xia, W. Xu et al., Smart textile optoelectronics for human-interfaced logic systems. Adv. Funct. Mater. 34(2), 2308136 (2024). https://doi.org/10.1002/adfm.202308136
J.Y. Lee, J.E. Ju, C. Lee, S.M. Won, K.J. Yu, Novel fabrication techniques for ultra-thin silicon based flexible electronics. Int. J. Extrem. Manuf. 6(4), 042005 (2024). https://doi.org/10.1088/2631-7990/ad492e
W. Yan, C. Dong, Y. Xiang, S. Jiang, A. Leber et al., Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020). https://doi.org/10.1016/j.mattod.2019.11.006
S. Tang, X. Zhang, J. Fan, B. Li, Z. Li et al., Fibrillation of well-formed conductive aerogel for soft conductors. Appl. Mater. Today 26, 101399 (2022). https://doi.org/10.1016/j.apmt.2022.101399
J. Zhou, X. Li, Z. Zhang, T. Hou, J. Xu et al., Bio-based and bio-degradable nanofiber materials: a sustainable platform for energy, environmental, and biomedical applications. Chem. Eng. J. 491, 152105 (2024). https://doi.org/10.1016/j.cej.2024.152105
H. Liao, S. Guo, S. Cao, L. Wang, F. Gao et al., A general strategy for in situ growth of all-inorganic CsPbX3 (X = Br, I, and Cl) perovskite nanocrystals in polymer fibers toward significantly enhanced water/thermal stabilities. Adv. Opt. Mater. 6(15), 1800346 (2018). https://doi.org/10.1002/adom.201800346
Y. Park, M.-J. Park, J.-S. Lee, Reduced graphene oxide-based artificial synapse yarns for wearable textile device applications. Adv. Funct. Mater. 28(42), 1804123 (2018). https://doi.org/10.1002/adfm.201804123
M. Dulal, M.R. Islam, S. Maiti, M.H. Islam, I. Ali et al., Smart and multifunctional fiber-reinforced composites of 2D heterostructure-based textiles. Adv. Funct. Mater. 33(40), 2305901 (2023). https://doi.org/10.1002/adfm.202305901
A.Q. Shen, B. Gleason, G.H. McKinley, H.A. Stone, Fiber coating with surfactant solutions. Phys. Fluids 14(11), 4055–4068 (2002). https://doi.org/10.1063/1.1512287
F. Yang, Z. Wang, W. Zhang, S. Wang, Y.-T. Liu et al., Superelastic and washable micro/nanofibrous sponges based on biomimetic helical fibers for efficient thermal insulation. Nano-Micro Lett. 18(1), 42 (2025). https://doi.org/10.1007/s40820-025-01882-2
S. Li, J. Huang, Z. Chen, G. Chen, Y. Lai, A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J. Mater. Chem. A 5(1), 31–55 (2017). https://doi.org/10.1039/C6TA07984A
D.H. Shin, Y.S. Choi, S.Y. Park, C.-S. Yeo, Y.Y. Park et al., Fast and complete recovery of TMDs-decorated rGO fiber gas sensors at room temperature. Appl. Surf. Sci. 578, 151832 (2022). https://doi.org/10.1016/j.apsusc.2021.151832
J. He, C. Lu, H. Jiang, F. Han, X. Shi et al., Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597(7874), 57–63 (2021). https://doi.org/10.1038/s41586-021-03772-0
Y.H. Hwang, B. Noh, J. Lee, H.S. Lee, Y. Park et al., High-performance and reliable white organic light-emitting fibers for truly wearable textile displays. Adv. Sci. 9(11), 2270067 (2022). https://doi.org/10.1002/advs.202270067
K. Zhai, Q. Fan, Z. Bai, B. Bao, X. Wu et al., Homogenizing in-built electric field via curved conductive nanonetworks for electrochromic fibers with enhanced switching stability. Adv. Funct. Mater. 34(41), 2404029 (2024). https://doi.org/10.1002/adfm.202404029
H.M. Kim, H.W. Kang, D.K. Hwang, H.S. Lim, B.-K. Ju et al., Metal–insulator–semiconductor coaxial microfibers based on self-organization of organic semiconductor: polymer blend for weavable, fibriform organic field-effect transistors. Adv. Funct. Mater. 26(16), 2706–2714 (2016). https://doi.org/10.1002/adfm.201504972
M. Kang, S.-A. Lee, S. Jang, S. Hwang, S.-K. Lee et al., Low-voltage organic transistor memory fiber with a nanograined organic ferroelectric film. ACS Appl. Mater. Interfaces 11(25), 22575–22582 (2019). https://doi.org/10.1021/acsami.9b03564
A. Canales, X. Jia, U.P. Froriep, R.A. Koppes, C.M. Tringides et al., Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33(3), 277–284 (2015). https://doi.org/10.1038/nbt.3093
J. Zhang, Z. Wang, Z. Wang, L. Wei, Advanced multi-material optoelectronic fibers: a review. J. Light. Technol. 39(12), 3836–3845 (2021). https://doi.org/10.1109/JLT.2020.3036739
Z. Zhang, Y. Xue, P. Zhang, X. Yang, X. Wang et al., Thermally drawn flexible fiber sensors: principles, materials, structures, and applications. Nano-Micro Lett. 18(1), 4 (2025). https://doi.org/10.1007/s40820-025-01840-y
G. Loke, T. Khudiyev, B. Wang, S. Fu, S. Payra et al., Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12(1), 3317 (2021). https://doi.org/10.1038/s41467-021-23628-5
L. Wei, C. Hou, E. Levy, G. Lestoquoy, A. Gumennik et al., Optoelectronic fibers via selective amplification of in-fiber capillary instabilities. Adv. Mater. 29(1), 1603033 (2017). https://doi.org/10.1002/adma.201603033
S. Park, Y. Guo, X. Jia, H.K. Choe, B. Grena et al., One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20(4), 612–619 (2017). https://doi.org/10.1038/nn.4510
Y. Shen, Z. Wang, Z. Wang, J. Wang, X. Yang et al., Thermally drawn multifunctional fibers: toward the next generation of information technology. InfoMat 4(7), e12318 (2022). https://doi.org/10.1002/inf2.12318
A.F. Abouraddy, M. Bayindir, G. Benoit, S.D. Hart, K. Kuriki et al., Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nature Mater. 6(5), 336–347 (2007). https://doi.org/10.1038/nmat1889
M. Chen, Z. Wang, K. Li, X. Wang, L. Wei, Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv. Fiber Mater. 3(1), 1–13 (2021). https://doi.org/10.1007/s42765-020-00057-5
M. Rein, V.D. Favrod, C. Hou, T. Khudiyev, A. Stolyarov et al., Diode fibres for fabric-based optical communications. Nature 560(7717), 214–218 (2018). https://doi.org/10.1038/s41586-018-0390-x
M. Nie, B. Li, Y.-L. Hsieh, K.K. Fu, J. Zhou, Stretchable one-dimensional conductors for wearable applications. ACS Nano 16(12), 19810–19839 (2022). https://doi.org/10.1021/acsnano.2c08166
M. Manns, S.M. Raza, D. Morez, F. Schreiber, B. Engel, Embedding optical fiber with laser metal deposition. Prog. Addit. Manuf. 9(6), 2013–2016 (2024). https://doi.org/10.1007/s40964-023-00555-z
K. Lau, S. Reichheld, M. Xian, S.J. Sharpe, M. Cerruti, Directed assembly of elastic fibers via coacervate droplet deposition on electrospun templates. Biomacromol 25(6), 3519–3531 (2024). https://doi.org/10.1021/acs.biomac.4c00180
P. Miśkiewicz, I. Frydrych, A. Cichocka, Application of physical vapor deposition in textile industry. Autex Res. J. 22(1), 42–54 (2022). https://doi.org/10.2478/aut-2020-0004
L. Yang, Y. Chen, Z. Xu, H. Xia, T. Natuski et al., Effect of surface modification of carbon fiber based on magnetron sputtering technology on tensile properties. Carbon 204, 377–386 (2023). https://doi.org/10.1016/j.carbon.2022.12.045
W. Li, F. Liang, X. Sun, K. Zheng, R. Liu et al., Graphene-skinned alumina fiber fabricated through metalloid-catalytic graphene CVD growth on nonmetallic substrate and its mass production. Nat. Commun. 15(1), 6825 (2024). https://doi.org/10.1038/s41467-024-51118-x
T. Zaengle, E. Martinez, T.W. Hawkins, C. McMillen, J. Ballato, A novel route to fibers with volatile crystalline semiconductor cores part 2: selenides and phosphides. Opt. Mater. 145, 114388 (2023). https://doi.org/10.1016/j.optmat.2023.114388
Y. Yang, H. Yuan, Y. Cheng, F. Yang, M. Liu et al., Fluid-dynamics-rectified chemical vapor deposition (CVD) preparing graphene-skinned glass fiber fabric and its application in natural energy harvest. J. Am. Chem. Soc. 146(36), 25035–25046 (2024). https://doi.org/10.1021/jacs.4c07609
Y. Cheng, K. Wang, Y. Qi, Z. Liu, Chemical vapor deposition method for graphene fiber materials. Acta Phys. Chim. Sin. (2020). https://doi.org/10.3866/pku.whxb202006046
J. Zeng, X. Ji, Y. Ma, Z. Zhang, S. Wang et al., 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 30(12), e1705380 (2018). https://doi.org/10.1002/adma.201705380
R. Chen, K. Cao, Y. Wen, F. Yang, J. Wang et al., Atomic layer deposition in advanced display technologies: from photoluminescence to encapsulation. Int. J. Extreme Manuf. 6(2), 022003 (2024). https://doi.org/10.1088/2631-7990/ad15f5
S. Qiao, Z. Shi, A. Tong, Y. Luo, Y. Zhang et al., Atomic layer deposition paves the way for next-generation smart and functional textiles. Adv. Colloid Interface Sci. 341, 103500 (2025). https://doi.org/10.1016/j.cis.2025.103500
J. Lu, Y. Li, W. Song, M.D. Losego, R. Monikandan et al., Atomic layer deposition onto thermoplastic polymeric nanofibrous aerogel templates for tailored surface properties. ACS Nano 14(7), 7999–8011 (2020). https://doi.org/10.1021/acsnano.9b09497
D.-G. Kim, S.-H. Choi, W.-B. Lee, G.M. Jeong, J. Koh et al., Highly robust atomic layer deposition-indium gallium zinc oxide thin-film transistors with hybrid gate insulator fabricated via two-step atomic layer process for high-density integrated all-oxide vertical complementary metal-oxide-semiconductor applications. Small Struct. 5(2), 2300375 (2024). https://doi.org/10.1002/sstr.202300375
E.O. Atofarati, P.O. Oviroh, O. Folorunso, T.C. Jen, Emerging applications and trends in atomic layer deposition nano-coatings. J. Coat. Technol. Res. 23, 229–254 (2025). https://doi.org/10.1007/s11998-025-01154-z
D. Zhu, S. Jiang, C. Liao, L. Xu, Y. Wang et al., Ultrafast laser 3D nanolithography of fiber-integrated silica microdevices. Nano Lett. 24(31), 9734–9742 (2024). https://doi.org/10.1021/acs.nanolett.4c02680
J. Kim, D. Shin, J. Chang, Fiber lithography: a facile lithography platform based on electromagnetic phase modulation using a highly birefringent electrospun fiber. ACS Appl. Mater. Interfaces 12(17), 20056–20066 (2020). https://doi.org/10.1021/acsami.0c01314
Y. Lee, A. Canales, G. Loke, M. Kanik, Y. Fink et al., Selectively micro-patternable fibers via in-fiber photolithography. ACS Cent. Sci. 6(12), 2319–2325 (2020). https://doi.org/10.1021/acscentsci.0c01188
A. Jaiswal, C.K. Rastogi, S. Rani, G.P. Singh, S. Saxena et al., Two decades of two-photon lithography: Materials science perspective for additive manufacturing of 2D/3D nano-microstructures. iScience 26(4): 106374 (2023). https://doi.org/10.1016/j.isci.2023.106374
L. Guan, C. Cao, X. Liu, Q. Liu, Y. Qiu et al., Light and matter co-confined multi-photon lithography. Nat. Commun. 15, 2387 (2024). https://doi.org/10.1038/s41467-024-46743-5
H. Wang, W. Zhang, D. Ladika, H. Yu, D. Gailevičius et al., Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications. Adv. Funct. Mater. 33(39), 2214211 (2023). https://doi.org/10.1002/adfm.202214211
Y. Zheng, Z. Wang, P. Chen, H. Peng, Semiconductor fibers for textile integrated electronic systems. Natl. Sci. Rev. 11(6), nwae143 (2024). https://doi.org/10.1093/nsr/nwae143
P. Wang, X. Ma, Z. Lin, F. Chen, Z. Chen et al., Well-defined in-textile photolithography towards permeable textile electronics. Nat. Commun. 15(1), 887 (2024). https://doi.org/10.1038/s41467-024-45287-y
Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang et al., All-in-one graphene fiber supercapacitor. Nanoscale 6(12), 6448 (2014). https://doi.org/10.1039/c4nr01220h
P.T. Nguyen, J. Jang, Y. Lee, S.T. Choi, J.B. In, Laser-assisted fabrication of flexible monofilament fiber supercapacitors. J. Mater. Chem. A 9(8), 4841–4850 (2021). https://doi.org/10.1039/d0ta10283k
H. Ren, J. Jang, C. Li, A. Aigner, M. Plidschun et al., An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun. 13(1), 4183 (2022). https://doi.org/10.1038/s41467-022-31902-3
M. He, A. Li, M. Zheng, Z. Lou, J. Yu et al., Shape-controllable nanofiber core-spun yarn for multifunctional applications. Adv. Fiber Mater. 6(4), 1138–1151 (2024). https://doi.org/10.1007/s42765-024-00408-6
M. Li, K. Chen, D. Zhang, Z. Ye, Z. Yang et al., Wet-spinning carbon nanotube/shape memory polymer composite fibers with high actuation stress and predesigned shape change. Adv. Sci. 11(38), 2404913 (2024). https://doi.org/10.1002/advs.202404913
Y. Cao, H. Zhang, Y. Zhang, Z. Yang, D. Liu et al., Epitaxial nanofiber separator enabling folding-resistant coaxial fiber-supercapacitor module. Energy Storage Mater. 49, 102–110 (2022). https://doi.org/10.1016/j.ensm.2022.03.011
X. Chen, J. Wang, J. Zhang, H. Lin, M. Tian et al., Development and application of electrospun fiber-based multifunctional sensors. Chem. Eng. J. 486, 150204 (2024). https://doi.org/10.1016/j.cej.2024.150204
H.I. Ryu, M.S. Koo, S. Kim, S. Kim, Y.-A. Park et al., Uniform-thickness electrospun nanofiber mat production system based on real-time thickness measurement. Sci. Rep. 10(1), 20847 (2020). https://doi.org/10.1038/s41598-020-77985-0
J. Dong, J. Hou, Y. Peng, Y. Zhang, H. Liu et al., Breathable and stretchable epidermal electronics for health management: recent advances and challenges. Adv. Mater. 36(49), 2409071 (2024). https://doi.org/10.1002/adma.202409071
C. Wang, Y. Li, H.-Y. Yu, S.Y.H. Abdalkarim, J. Zhou et al., Continuous meter-scale wet-spinning of cornlike composite fibers for eco-friendly multifunctional electronics. ACS Appl. Mater. Interfaces 13(34), 40953–40963 (2021). https://doi.org/10.1021/acsami.1c12012
T. Duan, B. Liu, Y. Gao, G. Gao, Wet spinning/UV dual-curing enabled 3D printable fiber for intelligent electronic devices. Chem. Eng. J. 498, 155186 (2024). https://doi.org/10.1016/j.cej.2024.155186
Y. Chen, J. Meng, Y. Xu, Y. Li, Q. Zhang et al., Integrated ionic-additive assisted wet-spinning of highly conductive and stretchable PEDOT: PSS fiber for fibrous organic electrochemical transistors. Adv. Electron. Mater. 7(8), 2100231 (2021). https://doi.org/10.1002/aelm.202100231
M. Karaman, S.M. Cam, O. Çelen, M. Özbakış, K. Yılmaz, Reel-to-reel coating of a conductive polymer on synthetic textile yarns in a semi-closed batch oxidative CVD system. Fibres. Polym. 25(7), 2597–2603 (2024). https://doi.org/10.1007/s12221-024-00596-3
F. Alaimo, A. Sadeqi, H. Rezaei Nejad, Y. Jiang, W. Wang et al., Reel-to-reel fabrication of strain sensing threads and realization of smart insole. Sens. Actuat. A Phys. 301, 111741 (2020). https://doi.org/10.1016/j.sna.2019.111741
Z. Ma, Q. Huang, N. Zhou, Q. Zhuang, S.-W. Ng et al., Stretchable and conductive fibers fabricated by a continuous method for wearable devices. Cell Rep. Phys. Sci. 4(3), 101300 (2023). https://doi.org/10.1016/j.xcrp.2023.101300
Z. Feng, S. Yang, S. Jia, Y. Zhang, S. Jiang et al., Scalable, washable and lightweight triboelectric-energy-generating fibers by the thermal drawing process for industrial loom weaving. Nano Energy 74, 104805 (2020). https://doi.org/10.1016/j.nanoen.2020.104805
A. Lund, Y. Wu, B. Fenech-Salerno, F. Torrisi, T.B. Carmichael et al., Conducting materials as building blocks for electronic textiles. MRS Bull. 46(6), 491–501 (2021). https://doi.org/10.1557/s43577-021-00117-0
Q. Wei, Y. Xu, Y. Wang, Textile surface functionalization by physical vapor deposition (PVD). In: Surface Modification of Textiles (Elsevier, 2009). pp. 58–90 https://doi.org/10.1533/9781845696689.58
S. Choi, W. Jo, Y. Jeon, S. Kwon, J.H. Kwon et al., Multi-directionally wrinkle-able textile OLEDs for clothing-type displays. NPJ Flex. Electron. 4, 33 (2020). https://doi.org/10.1038/s41528-020-00096-3
M.-Y. Liu, Y.-F. Zhang, L.-X. Ou, L.-Y. Zhu, X.-Y. Wu et al., A stretchable tactile sensor based on ALD-prepared conductive composite textile. Appl. Mater. Today 37, 102099 (2024). https://doi.org/10.1016/j.apmt.2024.102099
S. Jayadevan, A.K. Aliyana, G.K. Stylios, Scalable fabrication of core–sheath nanofiber yarns via NanoTwist spinning for high-performance energy-harvesting E-nanofiber fabrics. ACS Appl. Mater. Interfaces 17(26), 37936–37950 (2025). https://doi.org/10.1021/acsami.5c04482
F. Sun, H. Jiang, H. Wang, Y. Zhong, Y. Xu et al., Soft fiber electronics based on semiconducting polymer. Chem. Rev. 123(8), 4693–4763 (2023). https://doi.org/10.1021/acs.chemrev.2c00720
C. Choi, H. Kim, J.-H. Kang, M.-K. Song, H. Yeon et al., Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nat. Electron. 5(6), 386–393 (2022). https://doi.org/10.1038/s41928-022-00778-y
H. Liu, Y. Shi, Y. Pan, Z. Wang, B. Wang, Sensory interactive fibers and textiles. NPJ Flex. Electron. 9, 23 (2025). https://doi.org/10.1038/s41528-025-00398-4
R.M. Torrente-Rodríguez, J. Tu, Y. Yang, J. Min, M. Wang et al., Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2(4), 921–937 (2020). https://doi.org/10.1016/j.matt.2020.01.021
P. Yang, G. Wei, A. Liu, F. Huo, Z. Zhang, A review of sampling, energy supply and intelligent monitoring for long-term sweat sensors. NPJ Flex. Electron. 6, 33 (2022). https://doi.org/10.1038/s41528-022-00165-9
M. Xue, C. Mackin, W.-H. Weng, J. Zhu, Y. Luo et al., Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 13(1), 5064 (2022). https://doi.org/10.1038/s41467-022-32749-4
M. Chen, P. Li, R. Wang, Y. Xiang, Z. Huang et al., Multifunctional fiber-enabled intelligent health agents. Adv. Mater. 34(52), e2200985 (2022). https://doi.org/10.1002/adma.202200985
O. Ozioko, R. Dahiya, Smart tactile gloves for haptic interaction, communication, and rehabilitation. Adv. Intell. Syst. 4(2), 2100091 (2022). https://doi.org/10.1002/aisy.202100091
Y. Xing, J. Wang, J. Li, Design and manufacturing of soft electronics for in situ biochemical sensing. Int. J. Extreme Manuf. 6(6), 062005 (2024). https://doi.org/10.1088/2631-7990/ad65a0
C. Tawk, G. Alici, A review of 3D-printable soft pneumatic actuators and sensors: research challenges and opportunities. Adv. Intell. Syst. 3(6), 2000223 (2021). https://doi.org/10.1002/aisy.202000223
K. Keum, J. Eom, J.H. Lee, J.S. Heo, S.K. Park et al., Fully-integrated wearable pressure sensor array enabled by highly sensitive textile-based capacitive ionotronic devices. Nano Energy 79, 105479 (2021). https://doi.org/10.1016/j.nanoen.2020.105479
P. Li, S. Lang, L. Xie, Y. Zhang, X. Gou et al., Skin-inspired ultra-linear flexible iontronic pressure sensors for wearable musculoskeletal monitoring. Nano-Micro Lett. 18(1), 55 (2025). https://doi.org/10.1007/s40820-025-01887-x
Q. Zou, C. Liu, Q. Su, T. Xue, An ionic pressure sensor array with digitizable sensitivity. J. Micromech. Microeng. 33(5), 055005 (2023). https://doi.org/10.1088/1361-6439/acc873
C. Zhang, Q. Yang, H. Li, Z. Luo, Y. Lu et al., 3D laser structuring of supermetalphobic microstructures inside elastomer for multilayer high-density interconnect soft electronics. Int. J. Extrem. Manuf. 7(3), 035004 (2025). https://doi.org/10.1088/2631-7990/ada835
S. Wang, H.-Q. Shao, Y. Liu, C.-Y. Tang, X. Zhao et al., Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Compos. Sci. Technol. 202, 108600 (2021). https://doi.org/10.1016/j.compscitech.2020.108600
S. Liu, Y. Wu, L. Jiang, W. Xie, B. Davis et al., Highly stretchable, tissue-like Ag nanowire-enhanced ionogel nanocomposites as an ionogel-based wearable sensor for body motion monitoring. ACS Appl. Mater. Interfaces 16(35), 46538–46547 (2024). https://doi.org/10.1021/acsami.4c10539
B. Zhao, X. Li, C. Gu, Y. Wang, H. Liu et al., Highly stretchable and strain sensitive MXene/MXene: MWCNTs@TPU fiber with hierarchical conductive layers and porous elastic core structure. Colloids Surf. A Physicochem. Eng. Aspects 690, 133821 (2024). https://doi.org/10.1016/j.colsurfa.2024.133821
C. Yang, W. Huang, Y. Lin, S. Cao, H. Wang et al., Stretchable MXene/carbon nanotube bilayer strain sensors with tunable sensitivity and working ranges. ACS Appl. Mater. Interfaces 16(23), 30274–30283 (2024). https://doi.org/10.1021/acsami.4c04770
X. He, J. Gu, Y. Hao, M. Zheng, L. Wang et al., Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem. Eng. J. 450, 137937 (2022). https://doi.org/10.1016/j.cej.2022.137937
D. Jang, K.T. Park, S.-S. Lee, H. Kim, Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity. Nano Energy 97, 107143 (2022). https://doi.org/10.1016/j.nanoen.2022.107143
K. Yoon, S. Lee, C. Kwon, C. Won, S. Cho et al., Highly stretchable thermoelectric fiber with embedded copper(I) iodide nanops for a multimodal temperature, strain, and pressure sensor in wearable electronics. Adv. Funct. Mater. 35(1), 2570001 (2025). https://doi.org/10.1002/adfm.202570001
J. Wang, W. Yang, Z. Liu, Y. Su, K. Li et al., Ultra-fine self-powered interactive fiber electronics for smart clothing. Nano Energy 107, 108171 (2023). https://doi.org/10.1016/j.nanoen.2023.108171
Y. Wang, C. Sun, D. Ahmed, A smart acoustic textile for health monitoring. Nat. Electron. 8(6), 485–495 (2025). https://doi.org/10.1038/s41928-025-01386-2
S.A. Rahman, S.A. Khan, S. Iqbal, I.B. Khadka, M.M. Rehman et al., Hierarchical porous biowaste-based dual humidity/pressure sensor for robotic tactile sensing, sustainable health, and environmental monitoring. Adv. Energy Sustain. Res. 5(11), 2400144 (2024). https://doi.org/10.1002/aesr.202400144
Y. Wang, W. Niu, C.-Y. Lo, Y. Zhao, X. He et al., Interactively full-color changeable electronic fiber sensor with high stretchability and rapid response. Adv. Funct. Mater. 30(19), 2000356 (2020). https://doi.org/10.1002/adfm.202000356
J.-H. Lee, K.H. Cho, K. Cho, Emerging trends in soft electronics: integrating machine intelligence with soft acoustic/vibration sensors. Adv. Mater. 35(32), 2209673 (2023). https://doi.org/10.1002/adma.202209673
Y. Yang, Y. Liu, R. Yin, Fiber/yarn and textile-based piezoresistive pressure sensors. Adv. Fiber Mater. 7(1), 34–71 (2025). https://doi.org/10.1007/s42765-024-00479-5
Y. Zhang, X. Chen, H. Chen, M. Jia, H. Cai et al., Developing a highly-conductive and strength cotton yarn through dual shell architecture of graphene for smart wearable devices. Chem. Eng. J. 470, 143912 (2023). https://doi.org/10.1016/j.cej.2023.143912
Y. Cheng, R. Wang, J. Sun, L. Gao, A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 27(45), 7365–7371 (2015). https://doi.org/10.1002/adma.201503558
Y. Gao, L. Yu, J.C. Yeo, C.T. Lim, Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32(15), 1902133 (2020). https://doi.org/10.1002/adma.201902133
H. Luo, G. Yang, Z. Jin, Z. Cai, Y. Li et al., Textile hybrid electronics for monolithically multimodal wearable monitoring and therapy. Int. J. Extrem. Manuf. 7(3), 035506 (2025). https://doi.org/10.1088/2631-7990/adb5dd
Z. Xue, Y. Gai, Y. Wu, Z.Z. liuLi, Wearable mechanical and electrochemical sensors for real-time health monitoring. Commun. Mater. 5, 211 (2024). https://doi.org/10.1038/s43246-024-00658-2
L. Ji, Y. Xiao, K. Xu, X. Wu, O.W. Ojo et al., Smart bandage with multi-sensor system for wound healing and microenvironment monitoring. Chem. Eng. J. 507, 160509 (2025). https://doi.org/10.1016/j.cej.2025.160509
G.M. Nazmul Islam, A. Ali, S. Collie, Textile sensors for wearable applications: a comprehensive review. Cellulose 27(11), 6103–6131 (2020). https://doi.org/10.1007/s10570-020-03215-5
Z. Zhang, L. Wang, F. Jiang, S. Yu, F. Ji et al., Fully integrated wearable control system for micro/nanorobot navigation. Int. J. Extrem. Manuf. 7(3), 035505 (2025). https://doi.org/10.1088/2631-7990/ada8e5
W. Chen, M. Cai, J. Wu, H. Ma, W. Liu et al., Highly conductive, durable, washable, and scalable composite yarn for multifunctional wearable electronic applications. Compos. Sci. Technol. 241, 110115 (2023). https://doi.org/10.1016/j.compscitech.2023.110115
S. Zhang, R. Tan, X. Xu, S. Iqbal, J. Hu, Fibers/textiles-based flexible sweat sensors: a review. ACS Mater. Lett. 5(5), 1420–1440 (2023). https://doi.org/10.1021/acsmaterialslett.2c01207
T. Lim, Y. Kim, S.-M. Jeong, C.-H. Kim, S.-M. Kim et al., Human sweat monitoring using polymer-based fiber. Sci. Rep. 9, 17294 (2019). https://doi.org/10.1038/s41598-019-53677-2
W. Yang, W. Gong, B. Chang, K. Li, Y. Li et al., Body-coupled luminescent fibers enable wireless visual sensing of contacting media. Matter 7(12), 4309–4318 (2024). https://doi.org/10.1016/j.matt.2024.08.021
W. Jeong, J. Song, J. Bae, K.R. Nandanapalli, S. Lee, Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl. Mater. Interfaces 11(47), 44758–44763 (2019). https://doi.org/10.1021/acsami.9b17584
G. Zhao, J. Sun, M. Zhang, S. Guo, X. Wang et al., Highly strain-stable intrinsically stretchable olfactory sensors for imperceptible health monitoring. Adv. Sci. 10(29), 2302974 (2023). https://doi.org/10.1002/advs.202302974
R.E. Owyeung, M.J. Panzer, S.R. Sonkusale, Colorimetric gas sensing washable threads for smart textiles. Sci. Rep. 9(1), 5607 (2019). https://doi.org/10.1038/s41598-019-42054-8
W. Eom, J.-S. Jang, S.H. Lee, E. Lee, W. Jeong et al., Effect of metal/metal oxide catalysts on graphene fiber for improved NO2 sensing. Sens. Actuators B Chem. 344, 130231 (2021). https://doi.org/10.1016/j.snb.2021.130231
K. Lang, T. Liu, D.J. Padilla, M. Nelson, C.W. Landorf et al., Nanofibers enabled advanced gas sensors: a review. Adv. Sens. Energy Mater. 3(2), 100093 (2024). https://doi.org/10.1016/j.asems.2024.100093
A. Gumennik, A.M. Stolyarov, B.R. Schell, C. Hou, G. Lestoquoy et al., All-in-fiber chemical sensing. Adv. Mater. 24(45), 6005–6009 (2012). https://doi.org/10.1002/adma.201203053
Q.-F. Li, X. Chen, H. Wang, M. Liu, H.-L. Peng, Pt/MXene-based flexible wearable non-enzymatic electrochemical sensor for continuous glucose detection in sweat. ACS Appl. Mater. Interfaces 15(10), 13290–13298 (2023). https://doi.org/10.1021/acsami.2c20543
X. Huang, C. Yao, S. Huang, S. Zheng, Z. Liu et al., Technological advances of wearable device for continuous monitoring of in vivo glucose. ACS Sensors 9(3), 1065–1088 (2024). https://doi.org/10.1021/acssensors.3c01947
F. Zhang, Q. Lin, H. Yang, N. Liu, P. Yang et al., Enhanced room-temperature NO2 sensing via a reduced graphene oxide/CuO composite on flexible nylon fibers. ACS Sens. 10(8), 5644–5654 (2025). https://doi.org/10.1021/acssensors.5c00707
A. Yadav, A. Sharma, V. Baloria, P. Singh, G. Gupta, Ultrahigh sensitive NO sensor based on WO3 film with ppb-level sensitivity. Ceram. Int. 49(5), 7853–7860 (2023). https://doi.org/10.1016/j.ceramint.2022.10.284
Y. Lu, H. Zhang, Y. Zhao, H. Liu, Z. Nie et al., Robust fiber-shaped flexible temperature sensors for safety monitoring with ultrahigh sensitivity. Adv. Mater. 36(18), e2310613 (2024). https://doi.org/10.1002/adma.202310613
F. Khan, Z. Xu, J. Sun, F.M. Khan, A. Ahmed et al., Recent advances in sensors for fire detection. Sensors 22(9), 3310 (2022). https://doi.org/10.3390/s22093310
A. Khan, M. Rashid, G. Grabher, G. Hossain, Autonomous triboelectric smart textile sensor for vital sign monitoring. ACS Appl. Mater. Interfaces 16(24), 31807–31816 (2024). https://doi.org/10.1021/acsami.4c04689
W.M. Ryu, Y. Lee, Y. Son, G. Park, S. Park, Thermally drawn multi-material fibers based on polymer nanocomposite for continuous temperature sensing. Adv. Fiber Mater. 5(5), 1712–1724 (2023). https://doi.org/10.1007/s42765-023-00306-3
J. Tabor, K. Chatterjee, T.K. Ghosh, Smart textile-based personal thermal comfort systems: current status and potential solutions. Adv. Mater. Technol. 5(5), 1901155 (2020). https://doi.org/10.1002/admt.201901155
J. Wu, M. Wang, L. Dong, J. Shi, M. Ohyama et al., A trimode thermoregulatory flexible fibrous membrane designed with hierarchical core–sheath fiber structure for wearable personal thermal management. ACS Nano 16(8), 12801–12812 (2022). https://doi.org/10.1021/acsnano.2c04971
K. Zou, P. Bai, K. Li, F. Luo, J. Liang et al., Electronic cooling and energy harvesting using ferroelectric polymer composites. Nat. Commun. 15, 6670 (2024). https://doi.org/10.1038/s41467-024-51147-6
Z.-Q. Yu, M.-T. Li, B.-Y. Cao, A comprehensive review on microchannel heat sinks for electronics cooling. Int. J. Extrem. Manuf. 6(2), 022005 (2024). https://doi.org/10.1088/2631-7990/ad12d4
M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A.F. Abouraddy et al., Integrated fibres for self-monitored optical transport. Nature Mater. 4(11), 820–825 (2005). https://doi.org/10.1038/nmat1512
Y. Wei, L. Zhang, F. Bernasconi, T. Wu, Y. Li et al., Temperature-responsive resonator metafabrics for self-adaptive thermoregulation. Adv. Funct. Mater. 35(40), 2422485 (2025). https://doi.org/10.1002/adfm.202422485
Q. Fan, H. Fan, H. Han, Z. Bai, X. Wu et al., Dynamic thermoregulatory textiles woven from scalable-manufactured radiative electrochromic fibers. Adv. Funct. Mater. 34(16), 2310858 (2024). https://doi.org/10.1002/adfm.202310858
H. Xu, Y. Guo, B. Wu, C. Hou, Q. Zhang et al., Highly integrable thermoelectric fiber. ACS Appl. Mater. Interfaces 12(29), 33297–33304 (2020). https://doi.org/10.1021/acsami.0c09446
W. Gong, Y. Guo, W. Yang, Z. Wu, R. Xing et al., Scalable and reconfigurable green electronic textiles with personalized comfort management. ACS Nano 16(8), 12635–12644 (2022). https://doi.org/10.1021/acsnano.2c04252
W. Fu, B. Yu, D. Ji, Z. Zhou, X. Li et al., Intelligent fibers and textiles for wearable biosensors. Responsive Mater. 2(4), e20240018 (2024). https://doi.org/10.1002/rpm.20240018
Y. Zhao, Y. Yuan, H. Zhang, Z. Chen, H. Zhao et al., A fully integrated electronic fabric-enabled multimodal flexible sensors for real-time wireless pressure-humidity-temperature monitoring. Int. J. Extrem. Manuf. 6(6), 065502 (2024). https://doi.org/10.1088/2631-7990/ad6aad
K. Le, H. Narayana, A. Servati, A. Bahi, S. Soltanian et al., Electronic textiles for electrocardiogram monitoring: a review on the structure–property and performance evaluation from fiber to fabric. Text. Res. J. 93(3–4), 878–910 (2023). https://doi.org/10.1177/00405175221108208
H. Kim, J.-G. Choi, T. Oh, I. Lee, H. Lee et al., Waterproof and conductive tough fibers for washable e-textile. NPJ Flex. Electron. 9, 28 (2025). https://doi.org/10.1038/s41528-025-00399-3
S. Ham, M. Kang, S. Jang, J. Jang, S. Choi et al., One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications. Sci. Adv. 6(28), eaba1178 (2020). https://doi.org/10.1126/sciadv.aba1178
J. Yu, W. Ling, Y. Li, N. Ma, Z. Wu et al., A multichannel flexible optoelectronic fiber device for distributed implantable neurological stimulation and monitoring. Small 17(4), 2005925 (2021). https://doi.org/10.1002/smll.202005925
J. Lee, E. Georgitzikis, Y. Hermans, N. Papadopoulos, N. Chandrasekaran et al., Thin-film image sensors with a pinned photodiode structure. Nat. Electron. 6(8), 590–598 (2023). https://doi.org/10.1038/s41928-023-01016-9
M. Zhang, Z. Liu, L. Yang, J. Yao, J. Chen et al., High-temperature reliability of all-oxide self-powered deep UV photodetector based on ϵ-Ga2O3/ZnO heterojunction. J. Phys. D Appl. Phys. 55(37), 375106 (2022). https://doi.org/10.1088/1361-6463/ac7d1c
F. Mattei, D. Vurro, D. Spoltore, M. Pavesi, P.R. Kalvani et al., Planar hybrid UV-C photodetectors based on aerosol-jet printed PEDOT: PSS on different Ga2O3 thin films. Mater. Today Phys. 51, 101663 (2025). https://doi.org/10.1016/j.mtphys.2025.101663
Y. Dong, Y. Zou, J. Song, Z. Zhu, J. Li et al., Self-powered fiber-shaped wearable omnidirectional photodetectors. Nano Energy 30, 173–179 (2016). https://doi.org/10.1016/j.nanoen.2016.10.009
L. Zhuo, P. Fan, S. Zhang, X. Liu, X. Guo et al., A broadband all-fiber integrated graphene photodetector with CNT-enhanced responsivity. Nanoscale 12(26), 14188–14193 (2020). https://doi.org/10.1039/d0nr00139b
E.R. Hsieh, C.F. Huang, S.Y. Huang, M.L. Miu, S.M. Lu et al., A logic fully comparable single-supply capacitor-less 1-FinFET-1-source-channel-drain-diode (1T1D) embedded DRAM MACRO in 16-nm FinFET. IEEE Solid-State Circuits Lett. 6, 249–252 (2023). https://doi.org/10.1109/LSSC.2023.3311797
Q. Cheng, J. Li, Q. Zhang, Fibre computer enables more accurate recognition of human activity. Nano-Micro Lett. 17(1), 286 (2025). https://doi.org/10.1007/s40820-025-01809-x
H. Zhang, Z. Wang, Z. Wang, B. He, M. Chen et al., Recent progress of fiber-based transistors: materials, structures and applications. Front. Optoelectron. 15(1), 2 (2022). https://doi.org/10.1007/s12200-022-00002-x
X. Zhou, Z. Wang, T. Xiong, B. He, Z. Wang et al., Fiber crossbars: an emerging architecture of smart electronic textiles. Adv. Mater. 35(51), e2300576 (2023). https://doi.org/10.1002/adma.202300576
K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu, Advances in flexible organic field-effect transistors and their applications for flexible electronics. NPJ Flex. Electron. 6, 1 (2022). https://doi.org/10.1038/s41528-022-00133-3
X. Zhang, J. Li, J. Lin, W. Li, W. Chu et al., Highly stretchable electronic-skin sensors with porous microstructure for efficient multimodal sensing with wearable comfort. Adv. Mater. Interfaces 10(8), 2201958 (2023). https://doi.org/10.1002/admi.202201958
W. Lee, Y. Kim, M.Y. Lee, J.H. Oh, J.U. Lee, Highly stretchable fiber transistors with all-stretchable electronic components and graphene hybrid electrodes. Org. Electron. 69, 320–328 (2019). https://doi.org/10.1016/j.orgel.2019.03.056
D. Liu, Q. Shi, S. Dai, J. Huang, The design of 3D-interface architecture in an ultralow-power, electrospun single-fiber synaptic transistor for neuromorphic computing. Small 16(13), 1907472 (2020). https://doi.org/10.1002/smll.201907472
S. Danto, F. Sorin, N.D. Orf, Z. Wang, S.A. Speakman et al., Fiber field-effect device via in situ channel crystallization. Adv. Mater. 22(37), 4162–4166 (2010). https://doi.org/10.1002/adma.201000268
J. Cui, F. Wei, X. Mei, Carbon nanotube integrated circuit technology: purification, assembly and integration. Int. J. Extrem. Manuf. 6(3), 032004 (2024). https://doi.org/10.1088/2631-7990/ad2e12
Y. Niu, Z. Qin, Y. Zhang, C. Chen, S. Liu et al., Expanding the potential of biosensors: a review on organic field effect transistor (OFET) and organic electrochemical transistor (OECT) biosensors. Mater. Futur. 2(4), 042401 (2023). https://doi.org/10.1088/2752-5724/ace3dd
Y. Liu, M. Lian, W. Chen, H. Chen, Recent advances in fabrication and functions of neuromorphic system based on organic field effect transistor. Int. J. Extreme Manuf. 6(2), 022008 (2024). https://doi.org/10.1088/2631-7990/ad1e25
L. Gao, M. Wu, X. Yu, J. Yu, Device design principles and bioelectronic applications for flexible organic electrochemical transistors. Int. J. Extreme Manuf. 6(1), 012005 (2024). https://doi.org/10.1088/2631-7990/acfd69
Y. Huang, Z. Hu, S. Zhu, B. Fang, Fibre-based organic electrochemical transistors: principle, evaluation, and application. NPJ Flex. Electron. 9, 43 (2025). https://doi.org/10.1038/s41528-025-00417-4
X. Wang, Z. Zhang, P. Li, J. Xu, Y. Zheng et al., Ultrastable N-type semiconducting fiber organic electrochemical transistors for highly sensitive biosensors. Adv. Mater. 36(24), 2400287 (2024). https://doi.org/10.1002/adma.202400287
Y. Zhong, Q. Liang, Z. Chen, F. Ye, M. Yao et al., High-performance fiber-shaped vertical organic electrochemical transistors patterned by surface photolithography. Chem. Mater. 35(22), 9739–9746 (2023). https://doi.org/10.1021/acs.chemmater.3c02237
J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu et al., Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 32(5), 1901958 (2020). https://doi.org/10.1002/adma.201901958
H. Wang, B. Sun, S.S. Ge, J. Su, M.L. Jin, On non-von Neumann flexible neuromorphic vision sensors. npj Flex. Electron. 8, 28 (2024). https://doi.org/10.1038/s41528-024-00313-3
J. Zhao, D. Liu, K. Zhao, J. Wang, Y. Shang et al., Optically controlled memristor enabling synergistic sensing-memory-computing for neuromorphic vision systems. Adv. Mater. 38, e11411 (2025). https://doi.org/10.1002/adma.202511411
T. Wang, J. Meng, X. Zhou, Y. Liu, Z. He et al., Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat. Commun. 13(1), 7432 (2022). https://doi.org/10.1038/s41467-022-35160-1
Y. Yang, J. Jeon, J. Son, K. Cho, S. Kim, NAND and NOR logic-in-memory comprising silicon nanowire feedback field-effect transistors. Sci. Rep. 12(1), 3643 (2022). https://doi.org/10.1038/s41598-022-07368-0
Z. Zhou, L. Jiao, Z. Zheng, Y. Chen, K. Han et al., Ferroelectric capacitive memories: devices, arrays, and applications. Nano Converg. 12(1), 3 (2025). https://doi.org/10.1186/s40580-024-00463-0
D. Kim, I.-J. Kim, J.-S. Lee, Memory devices for flexible and neuromorphic device applications. Adv. Intell. Syst. 3(5), 2000206 (2021). https://doi.org/10.1002/aisy.202000206
S. Jain, S. Li, H. Zheng, L. Li, X. Fong et al., Heterogeneous integration of 2D memristor arrays and silicon selectors for compute-in-memory hardware in convolutional neural networks. Nat. Commun. 16(1), 2719 (2025). https://doi.org/10.1038/s41467-025-58039-3
Q. Hua, G. Shen, Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chem. Soc. Rev. 53(3), 1316–1353 (2024). https://doi.org/10.1039/d3cs00918a
S.-B. Hua, T. Jin, X. Guo, Electrochemical anodic oxidation assisted fabrication of memristors. Int. J. Extrem. Manuf. 6(3), 032008 (2024). https://doi.org/10.1088/2631-7990/ad2c61
X. Xu, X. Zhou, T. Wang, X. Shi, Y. Liu et al., Robust DNA-bridged memristor for textile chips. Angew. Chem. Int. Ed. 59(31), 12762–12768 (2020). https://doi.org/10.1002/anie.202004333
Z. Liu, S. Cheng, Y. Li, X. Li, J. Sun et al., Fiber-integrated all-optical signal processing device for storage and computing. ACS Photonics 10(10), 3531–3540 (2023). https://doi.org/10.1021/acsphotonics.3c00540
W. Wang, Y. Pan, Y. Shui, T. Hasan, I.M. Lei et al., Imperceptible augmentation of living systems with organic bioelectronic fibres. Nat. Electron. 7(7), 586–597 (2024). https://doi.org/10.1038/s41928-024-01174-4
X. Yu, X. Zhang, J. Wang, Fully electrically controlled van der Waals multiferroic tunnel junctions. ACS Nano 17(24), 25348–25356 (2023). https://doi.org/10.1021/acsnano.3c08747
S. Dai, X. Liu, Y. Liu, Y. Xu, J. Zhang et al., Emerging iontronic neural devices for neuromorphic sensory computing. Adv. Mater. 35(39), e2300329 (2023). https://doi.org/10.1002/adma.202300329
Z. Huang, Y. Li, Y. Zhang, J. Chen, J. He et al., 2D multifunctional devices: from material preparation to device fabrication and neuromorphic applications. Int. J. Extrem. Manuf. 6(3), 032003 (2024). https://doi.org/10.1088/2631-7990/ad2e13
L. Chen, R. Li, S. Yuan, A. Chen, Y. Li et al., Fiber-shaped artificial optoelectronic synapses for wearable visual-memory systems. Matter 6(3), 925–939 (2023). https://doi.org/10.1016/j.matt.2022.12.001
Y. Xing, M. Zhou, Y. Si, C.-Y. Yang, L.-W. Feng et al., Integrated opposite charge grafting induced ionic-junction fiber. Nat. Commun. 14(1), 2355 (2023). https://doi.org/10.1038/s41467-023-37884-0
J.M. Lee, S.W. Cho, C. Jo, S.H. Yang, J. Kim et al., Monolithically integrated neuromorphic electronic skin for biomimetic radiation shielding. Sci. Adv. 10(40), eadp9885 (2024). https://doi.org/10.1126/sciadv.adp9885
D. Wang, B. Yang, Z. Zhou, Z. Zhang, Z. Wu et al., Reconfigurable CMOS-compatible supercapacitor-diode empowering computation efficiency for human-machine interaction. Angew. Chem. Int. Ed. 64(12), e202421913 (2025). https://doi.org/10.1002/anie.202421913
Z. Zhu, J. Shui, T. Wang, J. Meng, Mechanical properties analysis of flexible memristors for neuromorphic computing. Nano-Micro Lett. 18(1), 2 (2025). https://doi.org/10.1007/s40820-025-01825-x
H. Zhang, S. Wang, L. Wang, S. Li, H. Liu et al., Bio-inspired retina by regulating ion-confined transport in hydrogels. Adv. Mater. 37(18), e2500809 (2025). https://doi.org/10.1002/adma.202500809
T.Q. Trung, A. Bag, L.T.N. Huyen, M. Meeseepong, N.-E. Lee, Bio-inspired artificial retinas based on a fibrous inorganic–organic heterostructure for neuromorphic vision. Adv. Funct. Mater. 34(11), 2309378 (2024). https://doi.org/10.1002/adfm.202309378
Y. Ni, H. Han, J. Liu, Y. Choi, L. Liu et al., A fibrous neuromorphic device for multi-level nerve pathways implementing knee jerk reflex and cognitive activities. Nano Energy 104, 107898 (2022). https://doi.org/10.1016/j.nanoen.2022.107898
I. Krauhausen, C.-T. Coen, S. Spolaor, P. Gkoupidenis, Y. van de Burgt, Brain-inspired organic electronics: merging neuromorphic computing and bioelectronics using conductive polymers. Adv. Funct. Mater. 34(15), 2307729 (2024). https://doi.org/10.1002/adfm.202307729
K. Lu, Z. Chen, H. Chen, W. Zhou, Z. Zhang et al., Empowering high-dimensional optical fiber communications with integrated photonic processors. Nat. Commun. 15(1), 3515 (2024). https://doi.org/10.1038/s41467-024-47907-z
M.-R. Azani, A. Hassanpour, Electronic textiles (E-Textiles): types, fabrication methods, and recent strategies to overcome durability challenges (washability & flexibility). J. Mater. Sci. Mater. Electron. 35(29), 1897 (2024). https://doi.org/10.1007/s10854-024-13347-0
H.W. Choi, D.-W. Shin, J. Yang, S. Lee, C. Figueiredo et al., Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat. Commun. 13(1), 814 (2022). https://doi.org/10.1038/s41467-022-28459-6
P. Deng, Y. Wang, R. Yang, Z. He, Y. Tan et al., Self-powered smart textile based on dynamic Schottky diode for human-machine interactions. Adv. Sci. 10(11), 2207298 (2023). https://doi.org/10.1002/advs.202207298
X. Wang, X. Zhao, T. Takahashi, D. Ohori, S. Samukawa, 3.5 × 3.5 μm2 GaN blue micro-light-emitting diodes with negligible sidewall surface nonradiative recombination. Nat. Commun. 14(1), 7569 (2023). https://doi.org/10.1038/s41467-023-43472-z
Q. Shan, C. Wei, Y. Jiang, J. Song, Y. Zou et al., Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light Sci. Appl. 9, 163 (2020). https://doi.org/10.1038/s41377-020-00402-8
S. Woo, H. Kim, J. Kim, H. Ryu, J. Lee, Fiber-based flexible ionic diode with high robustness and rectifying performance: toward electronic textile circuits. Adv. Electron. Mater. 10(3), 2300653 (2024). https://doi.org/10.1002/aelm.202300653
K.-H. Choi, S.J. Kim, H. Kim, H.W. Jang, H. Yi et al., Fibriform organic electrochemical diodes with rectifying, complementary logic and transient voltage suppression functions for wearable E-textile embedded circuits. ACS Nano 17(6), 5821–5833 (2023). https://doi.org/10.1021/acsnano.2c12418
L. Wang, X. Fu, J. He, X. Shi, T. Chen et al., Application challenges in fiber and textile electronics. Adv. Mater. 32(5), e1901971 (2020). https://doi.org/10.1002/adma.201901971
A. Singh, K.S. Sandha, M.K. Rai, Investigation of optical interconnects for nano-scale VLSI applications. Micro and Nanostruct. 196, 207987 (2024). https://doi.org/10.1016/j.micrna.2024.207987
Y. Deng, F. Bu, Y. Wang, P.S. Chee, X. Liu et al., Stretchable liquid metal based biomedical devices. NPJ Flex. Electron. 8, 12 (2024). https://doi.org/10.1038/s41528-024-00298-z
H. Zhu, S. Wang, M. Zhang, T. Li, G. Hu et al., Fully solution processed liquid metal features as highly conductive and ultrastretchable conductors. NPJ Flex. Electron. 5, 25 (2021). https://doi.org/10.1038/s41528-021-00123-x
S.-H. Kang, J.-W. Jo, J.M. Lee, S. Moon, S.B. Shin et al., Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale. Nat. Commun. 15(1), 2814 (2024). https://doi.org/10.1038/s41467-024-47184-w
S. Shi, Y. Li, B.-N. Ngo-Dinh, J. Markmann, J. Weissmüller, Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science 371(6533), 1026–1033 (2021). https://doi.org/10.1126/science.abd9391
V. Gaubert, X. Boddaert, T. Djenizian, R. Delattre, Textile electronic circuits from laser-patterned conductive fabric. Adv. Eng. Mater. 25(9), 2201548 (2023). https://doi.org/10.1002/adem.202201548
X. Qin, B. Zhong, H. Xu, J.A. Jackman, K. Xu et al., Manufacturing high-performance flexible sensors via advanced patterning techniques. Int. J. Extrem. Manuf. (2025). https://doi.org/10.1088/2631-7990/ada857
M. Liao, C. Wang, Y. Hong, Y. Zhang, X. Cheng et al., Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17(4), 372–377 (2022). https://doi.org/10.1038/s41565-021-01062-4
F. Seoane, A. Soroudi, K. Lu, D. Nilsson, M. Nilsson et al., Textile-friendly interconnection between wearable measurement instrumentation and sensorized garments-initial performance evaluation for electrocardiogram recordings. Sensors 19(20), 4426 (2019). https://doi.org/10.3390/s19204426
M. Park, J. Im, M. Shin, Y. Min, J. Park et al., Highly stretchable electric circuits from a composite material of silver nanops and elastomeric fibres. Nat. Nanotechnol. 7(12), 803–809 (2012). https://doi.org/10.1038/nnano.2012.206
W. Song, Y. Wen, Y. Cho, X. Zhang, D. Kang et al., Advances and prospects in multifunctional composite fibrous materials utilizing porous organic polymers. Adv. Mater. (2025). https://doi.org/10.1002/adma.202513138
T. Li, T. Zhao, H. Zhang, L. Yuan, C. Cheng et al., A skin-conformal and breathable humidity sensor for emotional mode recognition and non-contact human-machine interface. NPJ Flex. Electron. 8, 3 (2024). https://doi.org/10.1038/s41528-023-00290-z
D. Fakhry, M. Abdelsalam, M.W. El-Kharashi, M. Safar, A review on computational storage devices and near memory computing for high performance applications. Memories Mater. Devices Circuits Syst. 4, 100051 (2023). https://doi.org/10.1016/j.memori.2023.100051
P.T. Kalaivaani, R. Krishnamoorthi, Design and implementation of low power bio signal sensors for wireless body sensing network applications. Microprocess. Microsyst. 79, 103271 (2020). https://doi.org/10.1016/j.micpro.2020.103271
S.Y. Park, S.J. Choi, J.C. Kim, D.J. Joe, H.E. Lee, Self-healable and conductive hydrogel nanocomposite with high environmental stability for electromagnetic-interference-free electrocardiography patches. Energy Environ. Mater. 8(5), e70039 (2025). https://doi.org/10.1002/eem2.70039
S. Akram, M. Ashraf, A. Javid, H.A. Abid, S. Ahmad et al., Recent advances in electromagnetic interference (EMI) shielding textiles: a comprehensive review. Synth. Met. 294, 117305 (2023). https://doi.org/10.1016/j.synthmet.2023.117305
H.K. Choi, D.S. Lee, S. Bae, B.J. Moon, S.-K. Lee et al., Recent progress of research into conductive nanomaterials for use in electromagnetic interference shields. Appl. Sci. Converg. Technol. 31(6), 120–127 (2022). https://doi.org/10.5757/asct.2022.31.6.120
J. Tang, X. Zhang, J. Wang, R. Zou, L. Wang, Achieving flexible and durable electromagnetic interference shielding fabric through lightweight and mechanically strong aramid fiber wrapped in highly conductive multilayer metal. Appl. Surf. Sci. 565, 150577 (2021). https://doi.org/10.1016/j.apsusc.2021.150577
A. Ishimaru, Electromagnetic wave propagation, radiation, and scattering: from fundamentals to applications. Wiley (2017). https://doi.org/10.1002/9781119079699
Z. Li, S.K. Sinha, G.M. Treich, Y. Wang, Q. Yang et al., All-organic flexible fabric antenna for wearable electronics. J. Mater. Chem. C 8(17), 5662–5667 (2020). https://doi.org/10.1039/d0tc00691b
W. Yang, S. Lin, W. Gong, R. Lin, C. Jiang et al., Single body-coupled fiber enables chipless textile electronics. Science 384(6691), 74–81 (2024). https://doi.org/10.1126/science.adk3755
V. Marterer, M. Radouchová, R. Soukup, S. Hipp, T. Blecha, Wearable textile antennas: investigation on material variants, fabrication methods, design and application. Fash. Text. 11(1), 9 (2024). https://doi.org/10.1186/s40691-023-00369-1
M. Feng, G. Lu, Z. Wang, Y. Jiang, Wireless technologies in stretchable bioelectronics. J. Mater. Chem. C 13(40), 20334–20366 (2025). https://doi.org/10.1039/d5tc02191j
S. Rahman, M. Al Haque, M. Solaiman, R.H. Ratul, I. Ahmed et al., Wireless power transfer using electronic textiles: a comparative review. J. Eng. Res. 12(4), 806–824 (2024). https://doi.org/10.1016/j.jer.2024.02.008
M. Mariello, C.M. Proctor, Wireless power and data transfer technologies for flexible bionic and bioelectronic interfaces: materials and applications. Adv. Mater. Technol. 10(5), 2400797 (2025). https://doi.org/10.1002/admt.202400797
R. Lin, H.-J. Kim, S. Achavananthadith, S.A. Kurt, S.C.C. Tan et al., Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 11(1), 444 (2020). https://doi.org/10.1038/s41467-020-14311-2
H. Guo, J. Liu, Collaborative computation offloading for multiaccess edge computing over fiber–wireless networks. IEEE Trans. Veh. Technol. 67(5), 4514–4526 (2018). https://doi.org/10.1109/TVT.2018.2790421
S. Lee, H.W. Choi, C.L. Figueiredo, D.-W. Shin, F.M. Moncunill et al., Truly form-factor-free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices. Sci. Adv. 9(16), eadf4049 (2023). https://doi.org/10.1126/sciadv.adf4049
X. Zheng, D. Zhou, Z. Liu, X. Hong, C. Li et al., Skin-inspired textile electronics enable ultrasensitive pressure sensing. Small 20(33), e2310032 (2024). https://doi.org/10.1002/smll.202310032
Z. He, Y. Wang, H. Xiao, Y. Wu, X. Xia et al., Highly stretchable, deformation-stable wireless powering antenna for wearable electronics. Nano Energy 112, 108461 (2023). https://doi.org/10.1016/j.nanoen.2023.108461
S. Wang, Y. Nie, H. Zhu, Y. Xu, S. Cao et al., Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8(13), eabll5511 (2022). https://doi.org/10.1126/sciadv.abl5511
S. Hwang, M. Kang, A. Lee, S. Bae, S.-K. Lee et al., Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat. Commun. 13(1), 3173 (2022). https://doi.org/10.1038/s41467-022-30894-4
T. Jing, B. Xu, J.H. Xin, X. Guan, Y. Yang, Series to parallel structure of electrode fiber: an effective method to remarkably reduce inner resistance of triboelectric nanogenerator textiles. J. Mater. Chem. A 9(20), 12331–12339 (2021). https://doi.org/10.1039/D1TA01309B
A. Jamali, C. Lehmann, R.T. Aditya, F. Goldschmidtboeing, P. Woias et al., Stretchable printed circuit boards using a silicone substrate of variable stiffness and conventional PCB fabrication methods. Flex. Print. Electron. 9(4), 045005 (2024). https://doi.org/10.1088/2058-8585/ad8242
S. Anwar, P. Vashishth, B. Mangla, S.K. Shukla, Future perspective of miniaturization/lab-on-chip for environmental application. In: Nanotechnology in Miniaturization (Springer Nature Switzerland, 2024) pp. 113–135 https://doi.org/10.1007/978-3-031-72004-8_7
N. Gupta, H. Cheung, S. Payra, G. Loke, J. Li et al., A single-fibre computer enables textile networks and distributed inference. Nature 639(8053), 79–86 (2025). https://doi.org/10.1038/s41586-024-08568-6
H. Li, R. Qu, Z. Ma, N. Zhou, Q. Huang et al., Permeable and patternable super-stretchable liquid metal fiber for constructing high-integration-density multifunctional electronic fibers. Adv. Funct. Mater. 34(31), 2308120 (2024). https://doi.org/10.1002/adfm.202308120
D. Chen, K. Jiang, T. Huang, G. Shen, Recent advances in fiber supercapacitors: materials, device configurations, and applications. Adv. Mater. 32(5), e1901806 (2020). https://doi.org/10.1002/adma.201901806
S. Song, H. Ai, L. Lv, Y. Guo, T. Han et al., Novel smart coaxial electrospinning textiles for efficient thermal interface management and electromagnetic compatibility in electronics. Chem. Eng. J. 472, 144854 (2023). https://doi.org/10.1016/j.cej.2023.144854
J. Han, C. Xu, J. Zhang, N. Xu, Y. Xiong et al., Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization. ACS Nano 15(1), 1597–1607 (2021). https://doi.org/10.1021/acsnano.0c09146
Y. Kim, Y. Lee, J. Yoo, K.S. Nam, W. Jeon et al., Multifunctional and flexible neural probe with thermally drawn fibers for bidirectional synaptic probing in the brain. ACS Nano 18(20), 13277–13285 (2024). https://doi.org/10.1021/acsnano.4c02578
Y. Lee, J. Won, D.-Y. Kim, S. Park, Microsensor-internalized fibers as autonomously controllable soft actuators. Small 21(16), e2409742 (2025). https://doi.org/10.1002/smll.202409742
A.A. Simegnaw, B. Malengier, G. Rotich, M.G. Tadesse, L. Van Langenhove, Review on the integration of microelectronics for E-textile. Materials 14(17), 5113 (2021). https://doi.org/10.3390/ma14175113
M. Dulal, S. Afroj, J. Ahn, Y. Cho, C. Carr et al., Toward sustainable wearable electronic textiles. ACS Nano 16(12), 19755–19788 (2022). https://doi.org/10.1021/acsnano.2c07723
J. Huang, B. Xu, Y. Gao, C. Jiang, X. Guan et al., Surface microstructural engineering of continuous fibers as one-dimensional multifunctional fiber materials for wearable electronic applications. Chem. Eng. J. 446, 137192 (2022). https://doi.org/10.1016/j.cej.2022.137192
B. Du, J. Lu, G. Wang, M. Han, Y. Gao et al., Combined laser-induced graphene and microcontact printing for processing scalable and stackable micro-stripe patterns toward multifunctional electronic devices. Carbon 225, 119148 (2024). https://doi.org/10.1016/j.carbon.2024.119148
S. Kwon, T. Lee, H.-J. Choi, J. Ahn, H. Lim et al., Scalable fabrication of inkless, transfer-printed graphene-based textile microsupercapacitors with high rate capabilities. J. Power. Sources 481, 228939 (2021). https://doi.org/10.1016/j.jpowsour.2020.228939
Z. Chen, C. Zhang, Z. Zheng, Advancements in transfer printing techniques for flexible electronics: adjusting interfaces and promoting versatility. Int. J. Extreme Manuf. 6(5), 052005 (2024). https://doi.org/10.1088/2631-7990/ad5391
S. Seyedin, T. Carey, A. Arbab, L. Eskandarian, S. Bohm et al., Fibre electronics: towards scaled-up manufacturing of integrated e-textile systems. Nanoscale 13(30), 12818–12847 (2021). https://doi.org/10.1039/d1nr02061g
S.P. Beeby, R.N. Torah, M. Wagih, B. Isaia, S. Black et al., Heterogeneous E-textiles: materials, manufacturing and sustainability. Adv. Mater. Technol. 10(3), 2400844 (2025). https://doi.org/10.1002/admt.202400844
Y. Cui, X. He, W. Liu, S. Zhu, M. Zhou et al., Highly stretchable, sensitive, and multifunctional thermoelectric fabric for synergistic-sensing systems of human signal monitoring. Adv. Fiber Mater. 6(1), 170–180 (2024). https://doi.org/10.1007/s42765-023-00339-8
M. Amarnath, S. Mohite, S. Palaskar, Recent advances and innovations in textile materials for smart sensor applications: a review. Measurement 255, 118057 (2025). https://doi.org/10.1016/j.measurement.2025.118057
B. Younes, Smart E-textiles: a review of their aspects and applications. J. Ind. Text. 53, 15280837231215493 (2023). https://doi.org/10.1177/15280837231215493
Y. Liu, L. Chen, W. Li, J. Pu, Z. Wang et al., Scalable production of functional fibers with nanoscale features for smart textiles. ACS Nano 18(43), 29394–29420 (2024). https://doi.org/10.1021/acsnano.4c10111
Y. Peng, F. Sun, C. Xiao, M.I. Iqbal, Z. Sun et al., Hierarchically structured and scalable artificial muscles for smart textiles. ACS Appl. Mater. Interfaces 13(45), 54386–54395 (2021). https://doi.org/10.1021/acsami.1c16323
M. Yang, X. Jia, D. He, Y. Ma, Y. Cheng et al., Superhydrophobic and corrosion-resistant electrospun hybrid membrane for high-efficiency electromagnetic interference shielding. ACS Appl. Electron. Mater. 3(5), 2067–2078 (2021). https://doi.org/10.1021/acsaelm.1c00076
H. Ye, E. Park, S.C. Shin, G. Murali, D. Kim et al., Photopatternable high-k polysilsesquioxane dielectrics for organic integrated devices: effects of UV curing on chemical and electrical properties. Adv. Funct. Mater. 33(19), 2370121 (2023). https://doi.org/10.1002/adfm.202370121
J. Kim, H.W. Choi, B. Kim, E. Kim, J. Kim, Flexible electrode on e-textile based on screen-printed silver ink carbon nanotube. Int. J. Adv. Manuf. Technol. 134(1), 127–137 (2024). https://doi.org/10.1007/s00170-024-14123-4
F. Cleary, W. Srisa-An, D.C. Henshall, S. Balasubramaniam, Emerging AI technologies inspiring the next generation of E-textiles. IEEE Access 11, 56494–56508 (2023). https://doi.org/10.1109/ACCESS.2023.3282184
X. Wang, L. Kong, Y. Feng, H. Liao, L. Weng et al., EGaIn-induced eutectic solvent polymerization of self-healing composite elastomers for flexible strain sensors. Sustain. Mater. Technol. 45, e01624 (2025). https://doi.org/10.1016/j.susmat.2025.e01624
W.G. Chung, E. Kim, Y.W. Kwon, J. Lee, S. Lee et al., Ga-based liquid metals: versatile and biocompatible solutions for next-generation bioelectronics. Adv. Funct. Mater. 34(31), 307990 (2024). https://doi.org/10.1002/adfm.202307990
J. Qiu, J. Li, W. Li, K. Wang, T. Xiao et al., Silver nanowire networks with moisture-enhanced learning ability. ACS Appl. Mater. Interfaces 16(8), 10361–10371 (2024). https://doi.org/10.1021/acsami.3c17438
R. Wang, L. Sun, X. Zhu, W. Ge, H. Li et al., Carbon nanotube-based strain sensors: structures, fabrication, and applications. Adv. Mater. Technol. 8(1), 2200855 (2023). https://doi.org/10.1002/admt.202200855
H.-W. Lin, C.-W. Chang, C.-C. Chang, T.-Y. Lo, T.-H. Tsai et al., Enhanced stretchability and conductivity in self-healing ionogels: a hybrid PEDOT: PSS/IL/PAA composite. J. Mater. Chem. A 13(37), 31456–31468 (2025). https://doi.org/10.1039/D5TA04186D
Y. Lu, G. Yang, S. Wang, Y. Zhang, Y. Jian et al., Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7(1), 51–65 (2024). https://doi.org/10.1038/s41928-023-01091-y
J. Xie, Q. Chen, H. Shen, G. Li, Review: wearable graphene devices for sensing. J. Electrochem. Soc. 167(3), 037541 (2020). https://doi.org/10.1149/1945-7111/ab67a4
J. Eom, R. Jaisutti, H. Lee, W. Lee, J.-S. Heo et al., Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl. Mater. Interfaces 9(11), 10190–10197 (2017). https://doi.org/10.1021/acsami.7b01771
K. Chatterjee, J. Tabor, T.K. Ghosh, Electrically conductive coatings for fiber-based E-textiles. Fibers 7(6), 51 (2019). https://doi.org/10.3390/fib7060051
Y. Cheng, R. Wang, H. Zhai, J. Sun, Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 9(11), 3834–3842 (2017). https://doi.org/10.1039/C7NR00121E
J.-V. Voutilainen, T. Happonen, J. Häkkinen, T. Fabritius, All silk-screen printed polymer-based remotely readable temperature sensor. IEEE Sens. J. 15(2), 723–733 (2014). https://doi.org/10.1109/JSEN.2014.2350077
M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12(11), 5714–5718 (2012). https://doi.org/10.1021/nl302959a
S. Baloda, S.K. Sriram, P. Sharma, S. Singh, N. Gupta, Development of SWCNTs/PDMS composite strain sensors integrated smart glove for human-machine interface applications. IEEE Sens. J. 25(2), 2400–2407 (2025). https://doi.org/10.1109/JSEN.2024.3509494
C.M. Lochner, Y. Khan, A. Pierre, A.C. Arias, All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 5745 (2014). https://doi.org/10.1038/ncomms6745
M. Pei, J. Guo, B. Zhang, S. Jiang, Z. Hao et al., Semiconductor/dielectric interface in organic field-effect transistors: charge transport, interfacial effects, and perspectives with 2D molecular crystals. Adv. Phys. X 5(1), 1747945 (2020). https://doi.org/10.1080/23746149.2020.1747945
P. O’Brien, K. Gradkowski, P.E. Morrissey, S. Latkowski, H. Gehring et al., Packaging and test technologies. In: Integrated Photonics for Data Communication Applications (Elsevier, 2023) pp. 411–437 https://doi.org/10.1016/b978-0-323-91224-2.00007-2
H.G. van Lier, M.E. Pieterse, A. Garde, M.G. Postel, H.A. de Haan et al., A standardized validity assessment protocol for physiological signals from wearable technology: methodological underpinnings and an application to the E4 biosensor. Behav. Res. Methods 52(2), 607–629 (2020). https://doi.org/10.3758/s13428-019-01263-9
R.R. Ruckdashel, N. Khadse, J.H. Park, Smart e-textiles: overview of components and outlook. Sensors 22(16), 6055 (2022). https://doi.org/10.3390/s22166055
M.R. Islam, S. Afroj, J. Yin, K.S. Novoselov, J. Chen et al., Advances in printed electronic textiles. Adv. Sci. 11(6), 2304140 (2024). https://doi.org/10.1002/advs.202304140
J. Zhang, B. Xu, K. Chen, Y. Li, G. Li et al., Revolutionizing digital healthcare networks with wearable strain sensors using sustainable fibers. SusMat 4(4), e207 (2024). https://doi.org/10.1002/sus2.207
Y. Wu, S.S. Mechael, T.B. Carmichael, Wearable e-textiles using a textile-centric design approach. Acc. Chem. Res. 54(21), 4051–4064 (2021). https://doi.org/10.1021/acs.accounts.1c00433
A. Vaseashta, D. Demir, B. Sakım, M. Aşık, N. Bölgen, Hierarchical integration of 3D printing and electrospinning of nanofibers for rapid prototyping. In: Electrospun Nanofibers (Springer International Publishing, 2022) pp. 411–437 https://doi.org/10.1007/978-3-030-99958-2_22
T. Wan, B. Shao, S. Ma, Y. Zhou, Q. Li et al., In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 35(37), 2203830 (2023). https://doi.org/10.1002/adma.202203830
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li