Comprehensive Application of Graphene: Emphasis on Biomedical Concerns
Corresponding Author: P. V. Mohanan
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 6
Abstract
Graphene, sp2 hybridized carbon framework of one atom thickness, is reputed as the strongest material to date. It has marked its impact in manifold applications including electronics, sensors, composites, and catalysis. Current state-of-the-art graphene research revolves around its biomedical applications. The two-dimensional (2D) planar structure of graphene provides a large surface area for loading drugs/biomolecules and the possibility of conjugating fluorescent dyes for bioimaging. The high near-infrared absorbance makes graphene ideal for photothermal therapy. Henceforth, graphene turns out to be a reliable multifunctional material for use in diagnosis and treatment. It exhibits antibacterial property by directly interacting with the cell membrane. Potential application of graphene as a scaffold for the attachment and proliferation of stem cells and neuronal cells is captivating in a tissue regeneration scenario. Fabrication of 2D graphene into a 3D structure is made possible with the help of 3D printing, a revolutionary technology having promising applications in tissue and organ engineering. However, apart from its advantageous application scope, use of graphene raises toxicity concerns. Several reports have confirmed the potential toxicity of graphene and its derivatives, and the inconsistency may be due to the lack of standardized consensus protocols. The present review focuses on the hidden facts of graphene and its biomedical application, with special emphasis on drug delivery, biosensing, bioimaging, antibacterial, tissue engineering, and 3D printing applications.
Highlights:
1 The introduction of graphene will certainly uncover new advanced materials, and many more future technologies will become realistic in the forthcoming years.
2 The present review article includes more recent publications about the biomedical application and cellular interaction of graphene. It is also updated with modern approaches such as use of graphene inks for 3D printing application.
3 Moreover, the importance of protein corona in modulating the cellular interaction, which was overlooked in previous review publications, is also included in this article.
4 The possible biological outcomes and toxicity when graphene is exposed to living organisms at the cellular and organ level are explained.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Liu, L. Cui, D. Losic, Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9(12), 9243–9257 (2013). https://doi.org/10.1016/j.actbio.2013.08.016
- A. Lerf, J. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H.P. Boehm, Hydration behavior and dynamics of water molecules in graphite oxide. J. Phys. Chem. Solids 67(5–6), 1106–1110 (2006). https://doi.org/10.1016/j.jpcs.2006.01.031
- A. Buchsteiner, A. Lerf, J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110(45), 22328–22338 (2006). https://doi.org/10.1021/jp0641132
- K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2(12), 1015–1024 (2010). https://doi.org/10.1038/nchem.907
- M. Konios, M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014). https://doi.org/10.1016/j.jcis.2014.05.033
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
- G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008). https://doi.org/10.1021/jp710931h
- M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010). https://doi.org/10.1021/jp100603h
- H.J. Shin, K.K. Sim, A. Benayad, S.M. Yoon, H.K. Park et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009). https://doi.org/10.1002/adfm.200900167
- X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008). https://doi.org/10.1002/adma.200801306
- H.P. Boehm, A. Clauss, G.O. Fischer, U.Z. Hofmann, The adsorption behavior of very thin carbon films. Anorg. Allg. Chem. 316, 119–127 (1962). https://doi.org/10.1002/zaac.19623160303
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). https://doi.org/10.1021/ja01539a017
- K.R. Koch, Oxidation by Mn207: an impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide. J. Chem. Educ. 59(11), 973 (1982). https://doi.org/10.1021/ed059p973.3
- B.C. Brodie, On the atomic weight of graphite. Proc. R. Soc. Lond. 10, 11–12 (1859)
- V. Kampars, M. Legzdina, Thermal deoxygenation of graphite oxide at low temperature. IOP Conf. Ser. Mater. Sci. Eng. 77, 012033 (2015). https://doi.org/10.1088/1757-899X/77/1/012033
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). https://doi.org/10.1021/nn1006368
- D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). https://doi.org/10.1039/B917103G
- M.S. Khan, A. Shakoor, G.T. Khan, S. Sultana, A. Zia, A study of stable graphene oxide dispersions in various solvents. J. Chem. Soc. Pak. 37(01), 62–67 (2015)
- J. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560–10564 (2008). https://doi.org/10.1021/la801744a
- T.Y. Zhang, D. Zhang, Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication. Bull. Mater. Sci. 34(1), 25–28 (2011). https://doi.org/10.1007/s12034-011-0048-x
- G. Gonçalves, M. Vila, I. Bdikin, A. de Andrés, N. Emami, R.A. Ferreira, L.D. Carlos, J. Gracio, P.A. Marques, Breakdown into nanoscale of graphene oxide: confined hot spot atomic reduction and fragmentation. Sci. Rep. 4, 6735 (2014). https://doi.org/10.1038/srep06735
- Z.S. Wu, W. Ren, L. Ago, B. Liu, C. Jiang, H.M. Cheng, Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2), 493–499 (2009). https://doi.org/10.1016/j.carbon.2008.10.031
- M. McAllister, J. Li, D. Adamson, H. Schniepp, H. Abdala et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007). https://doi.org/10.1021/cm0630800
- M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry 15(25), 6116–6120 (2009). https://doi.org/10.1002/chem.200900596
- A. Kumar, C.H. Lee, in Advances in Graphene Science, ed. by M. Aliofkhazraei (InTech, Croatia, 2013), pp. 55–75
- J. Gao, F. Lui, Y. Lui, N. Ma, Z. Wang, X. Zhang, Environment-friendly method to produce graphene that employs Vitamin C and amino acid. Chem. Mater. 22(7), 2213–2218 (2010). https://doi.org/10.1021/cm902635j
- O. Akhavan, M. Kalaee, Z.S. Alavi, S.M.A. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 50(8), 3015–3025 (2012). https://doi.org/10.1016/j.carbon.2012.02.087
- Y. Wang, Z. Shi, J. Yin, Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mater. Interface 3(4), 1127–1133 (2011). https://doi.org/10.1021/am1012613
- A. Esfandiar, O. Akhavan, A. Irajizad, Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem. 21(29), 10907–10914 (2011). https://doi.org/10.1039/c1jm10151j
- O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, A. Talebi, The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J. Mater. Chem. 22(27), 13773–13781 (2012). https://doi.org/10.1039/c2jm31396k
- C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010). https://doi.org/10.1021/nn1002387
- J. Liu, S. Fu, B. Yuan, Y. Li, Z. Deng, Toward a universal “Adhesive Nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132(21), 7279–7281 (2010). https://doi.org/10.1021/ja100938r
- E.C. Salas, Z. Sun, A. Luttge, J.M. Tour, Reduction of graphene oxide via bacterial respiration. ACS Nano 4(8), 4852–4856 (2010). https://doi.org/10.1021/nn101081t
- S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50(14), 5331–5339 (2012). https://doi.org/10.1016/j.carbon.2012.07.023
- Y. Hong, Z. Wang, X. Jin, Sulfuric acid intercalated graphite oxide for graphene preparation. Sci. Rep. 3(1), 3439 (2013). https://doi.org/10.1038/srep03439
- O. Jankovský, P. Marvan, M. Nováček, J. Luxa, V. Mazánek, K. Klímová, D. Sedmidubský, Z. Sofer, Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Appl. Mater. Today 4, 45–53 (2016). https://doi.org/10.1016/j.apmt.2016.06.001
- T.D. Dao, H.M. Jeong, Graphene prepared by thermal reduction–exfoliation of graphite oxide: effect of raw graphite particle size on the properties of graphite oxide and graphene. Mater. Res. Bull. 70, 651–657 (2015). https://doi.org/10.1016/j.materresbull.2015.05.038
- C.H.A. Wong, O. Jankovský, Z. Sofer, M. Pumera, Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide. Carbon 77, 508–517 (2014). https://doi.org/10.1016/j.carbon.2014.05.056
- Z. Lin, Y. Yao, Z. Li, Y. Liu, Z. Li, C.P. Wong, Solvent-assisted thermal reduction of graphite oxide. J. Phys. Chem. C 114(35), 14819–14825 (2010). https://doi.org/10.1021/jp1049843
- B. Yuan, C. Bao, X. Qian, P. Wen, W. Xing, L. Song, Y. Hu, A facile approach to prepare graphene via solvothermal reduction of graphite oxide. Mater. Res. Bull. 55, 48–52 (2014). https://doi.org/10.1016/j.materresbull.2014.04.016
- D.R. Dreyer, S. Murali, Y. Zhu, R.S. Ruoff, C.W. Bielawski, Reduction of graphite oxide using alcohols. J. Mater. Chem. 21(10), 3443–3447 (2011). https://doi.org/10.1039/C0JM02704A
- C. Cai, N. Sang, Z. Shen, X. Zhao, Facile and size-controllable preparation of graphene oxide nanosheets using high shear method and ultrasonic method. J. Exp. Nanosci. 12(1), 247–262 (2017). https://doi.org/10.1080/17458080.2017.1303853
- N. Blomquist, A.C. Engstrom, M. Hummelgard, B. Andres, S. Frosberg, H. Olin, Large-scale production of nanographite by tube-shear exfoliation in water. PLoS ONE 11(4), e0154686 (2016). https://doi.org/10.1371/journal.pone.0154686
- X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1(3), 203–212 (2008). https://doi.org/10.1007/s12274-008-8021-8
- Z. Liu, J.T. Robinson, X.M. Sun, H. Dai, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130(33), 10876–10877 (2008). https://doi.org/10.1021/ja803688x
- X. Yang, X. Zhang, Z. Liu, Y. Ma, Y. Huang, Y. Chen, High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C 112(45), 17554–17558 (2008). https://doi.org/10.1021/jp806751k
- C.S. Wang, J.Y. Li, C. Amatore, Y. Chen, H. Jiang, X.M. Wang, Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem. Int. Ed. 50(49), 11644–11648 (2011). https://doi.org/10.1002/anie.201105573
- M. de Sousa, L.A. Visani de Luna, L. Fonseca, S. Giorgio, O.L. Alves, Folic acid-functionalized graphene oxide nanocarrier: synthetic approaches, characterization, drug delivery study and anti-tumor screening. ACS Appl. Nano Mater. 1(2), 922–932 (2018). https://doi.org/10.1021/acsanm.7b00324
- B. Saifullah, K. Buskaran, R.B. Shaikh, F. Barahuie, S. Fakurazi, M.A. Mohd Moklas, M.Z. Hussein, Graphene oxide–PEG–protocatechuic acid nanocomposite formulation with improved anticancer properties. Nanomaterials 8(10), 8100820 (2018). https://doi.org/10.3390/nano8100820
- L.M. Zhang, J. Xia, Q. Zhao, L. Liu, Z. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4), 537–544 (2010). https://doi.org/10.1002/smll.200901680
- Y. Tang, H. Hu, M.G. Zhang, J. Song, L. Nie et al., An aptamer-targeting photoresponsive drug delivery system using “off–on” graphene oxide wrapped mesoporous silica nanoparticles. Nanoscale 7(14), 6304–6310 (2015). https://doi.org/10.1039/C4NR07493A
- L.Z. Feng, S. Zhang, Z. Liu, Graphene based gene transfection. Nanoscale 3(3), 1252–1257 (2011). https://doi.org/10.1039/c0nr00680g
- L. Zhang, Z. Lu, Q. Zhao, J. Huang, H. Shen, Z. Zhang, Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7(4), 460–464 (2011). https://doi.org/10.1002/smll.201001522
- K. Yang, L. Feng, X. Shi, Z. Liu, Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 42(2), 530–547 (2013). https://doi.org/10.1039/C2CS35342C
- A. Paul, A. Hasan, H.A. Kindi, A.K. Gaharwar, V.T. Rao et al., Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8(8), 8050–8062 (2014). https://doi.org/10.1021/nn5020787
- W.G. La, M. Jin, S. Park, H.H. Yoon, G.J. Jeong, S.H. Bhang, H. Park, K. Char, B.S. Kim, Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. Int. J. Nanomedicine 9(1), 107–116 (2014). https://doi.org/10.2147/IJN.S50742
- F. Emadi, A. Amini, A. Gholami, Y. Ghasemi, Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity. Sci. Rep. 10(7), 42258 (2017). https://doi.org/10.1038/srep42258
- Y. Liu, Y. Qi, C. Yin, S. Wang, S. Zhang, A. Xu, W. Chen, S. Liu, Bio-transformation of graphene oxide in lung fluids significantly enhances its photothermal efficacy. Nanotheranostics 2(3), 222–232 (2018). https://doi.org/10.7150/ntno.25719
- A.M. Jastrzębska, P. Kurtycz, A.R. Olszyna, Recent advances in graphene family materials toxicity investigations. J. Nanopart. Res. 14(12), 1320 (2012). https://doi.org/10.1007/s11051-012-1320-8
- K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10(9), 3318–3323 (2010). https://doi.org/10.1021/nl100996u
- X. Shi, H. Gong, Y. Li, C. Wang, L. Cheng, Z. Liu, Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 34(20), 4786–4793 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.023
- J.L. Li, X.L. Hou, H.C. Bao, L. Sun, B. Tang, J.F. Wang, X.G. Wang, M. Gu, Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. J. Biomed. Mater. Res. A 102(7), 2181–2188 (2014). https://doi.org/10.1002/jbm.a.34871
- X. Zhang, X. Nan, W. Shi, Y. Sun, H. Su, Y. He, X. Liu, Z. Zhang, D. Ge, Polydopamine-functionalized nanographene oxide: a versatile nanocarrier for chemotherapy and photothermal therapy. Nanotechnology 28(29), 295102 (2017). https://doi.org/10.1088/1361-6528/aa761b
- Y.A. Cheon, J.H. Bae, B.G. Chung, Reduced graphene oxide nanosheet for chemo-photothermal therapy. Langmuir 32(11), 2731–2736 (2016). https://doi.org/10.1021/acs.langmuir.6b00315
- P. Huang, C. Xu, J. Lin, C. Wang, X. Wang, C. Zhang, X. Zhou, S. Guo, D. Cui, Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 1, 240–250 (2011). https://doi.org/10.7150/thno/v01p0240
- S. Su, J. Wang, J. Wei, R. Martínez-Zaguilán, J. Qiu, S. Wang, Efficient photothermal therapy of brain cancer through porphyrin functionalized graphene oxide. New J. Chem. 39(7), 5743–5749 (2015). https://doi.org/10.1039/C5NJ00122F
- P. Rong, K. Yang, A. Srivastan, D.O. Kiesewetter, X. Yue et al., Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics 4(3), 229–239 (2014). https://doi.org/10.7150/thno.8070
- Y.W. Chen, Y.L. Su, S.H. Hu, S.Y. Chen, Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliv. Rev. 105(Pt B), 190–204 (2016). https://doi.org/10.1016/j.addr.2016.05.022
- I. Ocsoy, N. Isiklan, S. Cansiz, N. Ozdemir, W. Tan, ICG-Conjugated magnetic graphene oxide for dual photothermal and photodynamic therapy. RSC Adv. 6(36), 30285–30292 (2016). https://doi.org/10.1039/C6RA06798K
- M.S.C. dos Santos, A.L. Gouvêa, L.D. de Moura, L.G. Paterno, P.E.N. de Souza et al., Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model. J. Nanobiotechnology 16(9), 29382332 (2018). https://doi.org/10.1186/s12951-018-0333-6
- Q. Li, L. Hong, H. Li, C. Liu, Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosens. Bioelectron. 89(1), 477–482 (2017). https://doi.org/10.1016/j.bios.2016.03.072
- D.Y. Zhang, Y. Zhang, C.P. Tan, J.H. Sun, W. Zhang, L.N. Ji, Z.W. Mao, Graphene oxide decorated with Ru(II)–polyethylene glycol complex for lysosome-targeted imaging and photodynamic/photothermal therapy. ACS Appl. Mater. Interfaces 9(8), 6761–6771 (2017). https://doi.org/10.1021/acsami.6b13808
- J.H. Lim, D.E. Kim, E.J. Kim, C.D. Ahrberg, B.G. Chung, Functional graphene oxide-based nanosheets for photothermal therapy. Macromol. Res. 26(6), 557–565 (2018). https://doi.org/10.1007/s13233-018-6067-3
- Y. Jang, S. Kim, S. Lee, C.M. Yoon, I. Lee, J. Jang, Graphene oxide wrapped SiO2/TiO2 hollow nanoparticles loaded with photosensitizer for photothermal and photodynamic combination therapy. Chem. Eur. J. 23, 3719–3727 (2017). https://doi.org/10.1002/chem.201605112
- A. Gulzar, J. Xu, D. Yang, L. Xu, F. He, S. Gai, P. Yang, Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Trans. 47(11), 3931–3939 (2018). https://doi.org/10.1039/C7DT04141A
- X. Yan, G. Niu, J. Lin, A.J. Jin, H. Hu et al., Enhanced fluorescence imaging guided photodynamic therapy of sinoporphyrin sodium loaded graphene oxide. Biomaterials 42, 94–102 (2015). https://doi.org/10.1016/j.biomaterials.2014.11.040
- P. Huang, S. Wang, X. Wang, G. Shen, J. Lin et al., Surface functionalization of chemically reduced graphene oxide for targeted photodynamic therapy. J. Biomed. Nanotechnol. 11(1), 117–125 (2015). https://doi.org/10.1166/jbn.2015.2055
- Y. Wei, F. Zhou, D. Zhang, Q. Chen, D. Xing, A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy. Nanoscale 8(6), 3530–3538 (2016). https://doi.org/10.1039/C5NR07785K
- L. Hou, Y. Shi, G. Jiang, W. Liu, H. Han et al., Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery. Nanotechnology 27(31), 315105 (2016). https://doi.org/10.1088/0957-4484/27/31/315105
- Z. Xu, S. Wang, Y. Li, M. Wang, P. Shi, X. Huang, Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl. Mater. Interfaces 6(19), 17268–17276 (2014). https://doi.org/10.1021/am505308f
- H. Hu, J. Yu, Y. Li, J. Zhao, H. Dong, Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. J. Biomed. Mater. Res. A 100(1), 141–148 (2012). https://doi.org/10.1002/jbm.a.33252
- H. Bao, Y. Pan, Y. Ping, N.G. Sahoo, T. Wu, L. Li, J. Li, L.H. Gan, Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7(11), 1569–1578 (2011). https://doi.org/10.1002/smll.201100191
- M. Alibolandi, M. Mohammadi, S.M. Taghdisi, M. Ramezani, K. Abnous, Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr. Polym. 155, 218–229 (2017). https://doi.org/10.1016/j.carbpol.2016.08.046
- C. Wang, J. Li, C. Amatore, Y. Chen, H. Jiang, X.M. Wang, Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem. Int. Ed. 50(49), 11644–11648 (2011). https://doi.org/10.1002/anie.201105573
- X. Wang, X. Sun, J. Lao, H. He, T. Cheng, M. Wang, S. Wang, F. Huang, Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf. B 122, 638–644 (2014). https://doi.org/10.1016/j.colsurfb.2014.07.043
- G. Russel-Jones, K. McTavish, J. McEvan, J. Rice, D. Nowotnik, Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumors. J. Inorg. Biochem. 98(10), 1625–1633 (2004). https://doi.org/10.1016/j.jinorgbio.2004.07.009
- N.R. Ko, M. Nafiujjaman, J.S. Lee, H.N. Lim, Y.K. Lee, I.K. Kwon, Graphene quantum dot-based theranostic agents for active targeting of breast cancer. RSC Adv. 7(19), 11420–11427 (2017). https://doi.org/10.1039/C6RA25949A
- A. Jafarizad, A. Aghanejad, M. Sevim, Ö. Metin, J. Barar, Y. Omidi, D. Ekinci, Gold nanoparticles and reduced graphene oxide-gold nanoparticle composite materials as covalent drug delivery systems for breast cancer treatment. Chem. Sel. 2(23), 6663–6672 (2017). https://doi.org/10.1002/slct.201701178
- S.J. Zhen, T.T. Wang, Y.X. Liu, Z.L. Wu, H.Y. Zou, C.Z. Huang, Reduced graphene oxide coated Cu2−xSe nanoparticles for targeted chemo-photothermal therapy. J. Photochem. Photobiol., B 180, 9–16 (2018). https://doi.org/10.1016/j.jphotobiol.2018.01.020
- Y. Hu, D. Sun, J. Ding, L. Chen, X. Chen, Decorated reduced graphene oxide for photo-chemotherapy. J. Mater. Chem. B 4, 929–937 (2016). https://doi.org/10.1039/C5TB02359A
- G. Shim, J.Y. Kim, J. Han, S.W. Chung, S. Lee, Y. Byun, Y.K. Oh, Reduced graphene oxide nanosheets coated with an anti-angiogenic anticancer low-molecular-weight heparin derivative for delivery of anticancer drugs. J. Control. Release 189, 80–89 (2014). https://doi.org/10.1016/j.jconrel.2014.06.026
- W. Miao, G. Shim, S. Lee, Y.S. Choe, Y.K. Oh, Safety and tumor tissue accumulation of pegylated graphene oxide nanosheets for co-delivery of anticancer drug and photosensitizer. Biomaterials 34(13), 3402–3410 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.010
- Y.J. Choi, S. Gurunathan, J.H. Kim, Graphene oxide–silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): a novel approach for cancer therapy. Int. J. Mol. Sci. 19(3), 710 (2018). https://doi.org/10.3390/ijms19030710
- H. Shen, L. Zhang, M. Liu, Z. Zhang, Biomedical applications of graphene. Theranostics 2(3), 283–294 (2012). https://doi.org/10.7150/thno.3642
- O.S. Kwon, S.J. Park, J.Y. Hong, A.R. Han, J.S. Lee, J.S. Lee, J.H. Oh, J. Jang, Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6(2), 1486–1493 (2012). https://doi.org/10.1021/nn204395n
- P. Suvarnaphaet, S. Pechprasarn, Graphene-based materials for biosensors: a Review. Sensors (Basel) 17(10), 2161 (2017). https://doi.org/10.3390/s17102161
- L.H. Hess, M. Jansen, V. Maybeck, M.V. Hauf, M. Seifert, M. Stutzmann, I.D. Sharp, A. Offenhausser, J. Garrido, Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23, 5045–5049 (2011). https://doi.org/10.1002/adma.201102990
- C. Chung, Y.K. Kim, D. Shin, S.R. Ryoo, B.H. Hong, D.H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013). https://doi.org/10.1021/ar300159f
- Y. Huang, X. Dong, Y. Liu, L.J. Li, P. Chen, Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 21(33), 12358–12362 (2011). https://doi.org/10.1039/c1jm11436k
- F. Qu, T. Li, M. Yang, Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosens. Bioelectron. 26(9), 3927–3931 (2011). https://doi.org/10.1016/j.bios.2011.03.013
- S.K. Lim, P. Chen, F.L. Lee, S. Moochhala, B. Liedberg, Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection. Anal. Chem. 87(18), 9408–9412 (2015). https://doi.org/10.1021/acs.analchem.5b02270
- L. Bai, Y. Chai, X. Pu, R. Yuan, A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale 6(5), 2902–2908 (2014). https://doi.org/10.1039/c3nr05930h
- B. Jurado-Snchez, M. Pacheco, J. Rojo, A. Escarpa, Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew. Chem. Int. Ed. 129(24), 7061–7065 (2017). https://doi.org/10.1002/ange.201701396
- S.J. Cheng, H.Y. Chiu, P.V. Kumar, K.Y. Hsieh, J.W. Yang, Y.-R. Lin, Y.C. Shen, G.Y. Chen, Simultaneous drug delivery and cellular imaging using graphene oxide. Biomater. Sci. 6(4), 813–819 (2018). https://doi.org/10.1039/C7BM01192J
- S. Jin, D. Kim, G. Jun, S. Hong, S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7(2), 1239–1245 (2013). https://doi.org/10.1021/nn304675g
- J. Shen, Y. Zhu, C. Chen, X. Yang, C. Li, Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun. 47(9), 2580–2582 (2011). https://doi.org/10.1039/C0CC04812G
- Y. Wang, Z. Li, D. Hu, C.T. Lin, J. Li, Y. Lin, Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132(27), 9274–9276 (2010). https://doi.org/10.1021/ja103169v
- W. Chen, P. Yi, Y. Zhang, L. Zhang, Z. Deng, Z. Zhang, Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl. Mater. Interfaces 3(10), 4085–4091 (2011). https://doi.org/10.1021/am2009647
- O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10), 5731–5736 (2010). https://doi.org/10.1021/nn101390x
- S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9), 6971–6980 (2011). https://doi.org/10.1021/nn202451x
- X. Guo, N. Mei, Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 22(1), 105–115 (2014). https://doi.org/10.1016/j.jfda.2014.01.009
- K. Krishnamoorthy, M. Veerapandian, L.H. Zhang, K. Yun, S.J. Kim, Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. C 116(32), 17280–17287 (2012). https://doi.org/10.1021/jp3047054
- I. Zarafu, I. Turcu, D.C. Culită, S. Petrescu, M. Popa, M.C. Chifiriuc, C. Limban, A. Telehoiu, P. Ionit, Antimicrobial features of organic functionalized graphene-oxide with selected amines. Materials 11(9), 1704 (2018). https://doi.org/10.3390/ma11091704
- M. Cao, W. Zhao, L. Wang, R. Li, H. Gong, Y. Zhang, H. Xu, J.R. Lu, Graphene oxide-assisted accumulation and layer-by-layer assembly of antibacterial peptide for sustained release applications. ACS Appl. Mater. Interfaces 10(29), 24937–24946 (2018). https://doi.org/10.1021/acsami.8b07417
- O.N. Ruiz, K.A.S. Fernando, B. Wang, N.A. Brown, P.G. Luo, N.D. McNamara, M. Vangsness, Y.P. Sun, C.E. Bunker, Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5(10), 8100–8107 (2011). https://doi.org/10.1021/nn202699t
- M.D. Giulio, R. Zappacosta, S.D. Lodovico, E.D. Campli, G. Siani, A. Fontana, L. Cellini, Antimicrobial and antibiofilm efficacy of graphene oxide against chronic wound microorganisms. Antimicrob. Agents Chemother. 62(7), e00547-18 (2018). https://doi.org/10.1128/AAC.00547-18
- H.E. Karahan, C. Wiraja, C. Xu, J. Wei, Y. Wang, L. Wang, F. Liu, Y. Chen, Graphene materials in antimicrobial nanomedicine: current status and future perspectives. Adv. Healthc. Mater. 7(13), 1701406 (2018). https://doi.org/10.1002/adhm.201701406
- M. Kalbacova, A. Broz, J. Kong, M. Kalbac, Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15), 4323–4329 (2010). https://doi.org/10.1016/j.carbon.2010.07.045
- S.R. Ryoo, Y.K. Kim, M.H. Kim, D.H. Min, Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4(11), 6587–6598 (2010). https://doi.org/10.1021/nn1018279
- C.X. Guo, X.T. Zheng, Z.S. Lu, X.W. Lou, C.M. Li, Biointerface by cell growth on layered graphene–artificial peroxidase–protein nanostructure for in situ quantitative molecular detection. Adv. Mater. 22(45), 5164–5167 (2010). https://doi.org/10.1002/adma.201001699
- W.C. Lee, C.H.Y.X. Lim, H. Shi, L.A.L. Tang, Y. Wang, C.T. Lim, K.P. Loh, Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9), 7334–7341 (2011). https://doi.org/10.1021/nn202190c
- N. Li, X. Zhang, Q. Song, R. Su, Q. Zhang, T. Kong, L. Liu, G. Jin, M. Tang, G. Cheng, The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials 32(35), 9374–9382 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.065
- S. Sayyar, E. Murray, B. Thompson, S. Gambhir, D. Officer, G. Wallace, Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 52, 296–304 (2013). https://doi.org/10.1016/j.carbon.2012.09.031
- H.L. Fan, L.L. Wang, K.K. Zhao, N. Li, Z.J. Shi, Z.G. Ge, Z.X. Jin, Fabrication, mechanical properties and biocompatibility of graphene-reinforced chitosan composites. Biomacromol 11(9), 2345–2351 (2010). https://doi.org/10.1021/bm100470q
- H.N. Lim, N.M. Huang, S.S. Lim, I. Harrison, C.H. Chia, Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int. J. Nanomedicine 6, 1817–1823 (2011). https://doi.org/10.2147/IJN.S23392
- G. Yang, J. Su, J. Gao, X. Hu, C. Geng, Q. Fu, Fabrication of well-controlled porous foams of graphene oxide modified poly(propylene-carbonate) using supercritical carbon dioxide and its potential tissue engineering applications. J. Supercrit. Fluids 73, 1–9 (2013). https://doi.org/10.1016/j.supflu.2012.11.004
- S. Shah, P.T. Yin, T.M. Uehara, S.D. Chueng, L. Yang, K. Lee, Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv. Mater. 26(22), 3673–3680 (2014). https://doi.org/10.1002/adma.201400523
- S. Saravanan, N. Sareen, E. Abu-El-Rub, H. Ashour, G.L. Sequiera et al., Graphene oxide-gold nanosheets containing chitosan scaffold improves ventricular contractility and function after implantation into infarcted heart. Sci. Rep. 8, 15069 (2018). https://doi.org/10.1038/s41598-018-33144-0
- S.R. Shin, C.Z.M. Akbari, P. Assawes, L. Cheung, K. Zhang et al., Reduced graphene oxide-GelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small 12(27), 3677–3689 (2016). https://doi.org/10.1002/smll.201600178
- G. Zhao, H. Qing, G. Huang, G.M. Genin, T.J. Lu, Z. Luo, F. Xu, X. Zhang, Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Mater. 10, 982–994 (2018). https://doi.org/10.1038/s41427-018-0092-8
- M.H. Norahan, M. Amroon, R. Ghahremanzadeh, M. Mahmoodi, N. Baheiraei, Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac tissue engineering. J. Biomed. Mater. Res. A 107A(1), 204–219 (2018). https://doi.org/10.1002/jbm.a.36555
- P. Hitscherich, A. Aphale, R. Gordan, R. Whitaker, P. Singh, L.H. Xie, P. Patra, E.J. Lee, Electroactive graphene composite scaffolds for cardiac tissue engineering. J. Biomed. Mater. Res. A 106(11), 2923–2933 (2018). https://doi.org/10.1002/jbm.a.36481
- S. Malik, F.M. Ruddock, A.H. Dowling, K. Byrne, W. Schmitt et al., Graphene composites with dental and biomedical applicability. Beilstein J. Nanotechnol. 9, 801–808 (2018). https://doi.org/10.3762/bjnano.9.73
- V. Rosa, H. Xie, N. Dubey, T.T. Madanagopal, S.S. Rajan, J.L.P. Morin, I. Islam, A.H.C. Neto, Graphene oxide-based substrate: physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells. Dent. Mater. 32, 1019–1025 (2016). https://doi.org/10.1016/j.dental.2016.05.008
- G.Y. Chen, D.W.P. Pang, S.M. Hwang, H.Y. Tuan, Y.C. Hu, A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2), 418–427 (2012). https://doi.org/10.1016/j.biomaterials.2011.09.071
- A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4), 4636–4648 (2015). https://doi.org/10.1021/acsnano.5b01179
- Q. Chen, J.D. Mangadlao, J. Wallat, A.D. Leon, J.K. Pokorski, R.C. Advincula, 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl. Mater. Interfaces 9(4), 4015–4023 (2017). https://doi.org/10.1021/acsami.6b11793
- A.E. Jakus, R.N. Shah, Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J. Biomed. Mater. Res. A 105(1), 274–283 (2017). https://doi.org/10.1002/jbm.a.35684
- Z. Gu, Z. Yang, L. Wang, H. Zhou, C.A. Jimenez-Cruz, R. Zhou, The role of basic residues in the adsorption of blood proteins onto the graphene surface. Sci. Rep. 5, 10873 (2015). https://doi.org/10.1038/srep10873
- Y. Chong, C. Ge, Z. Yang, J.A. Garate, Z. Gu, J.K. Weber, J. Liu, R. Zhou, Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano 9(6), 5713–5724 (2015). https://doi.org/10.1021/nn5066606
- W. Hu, C. Peng, M. Lv, X. Li, Y. Zhang, N. Chen, C. Fan, Q. Huang, Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5), 3693–3700 (2011). https://doi.org/10.1021/nn200021j
- G. Duan, S. Kang, X. Tian, J.A. Garate, L. Zhao, C. Ge, R. Zhou, Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale 7(37), 15214–15224 (2015). https://doi.org/10.1039/C5NR01839K
- F. Zhou, D. Xing, B. Wu, S. Wu, Z. Ou, W. Chen, New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett. 10(5), 1677–1681 (2010). https://doi.org/10.1021/nl100004m
- Y. Li, Y. Liu, Y. Fu, T. Wei, L.L. Guyader, G. Gao, R. Liu, Y. Chang, C. Chen, The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33(2), 402–411 (2012). https://doi.org/10.1016/j.biomaterials.2011.09.091
- A. Sasidharan, L. Panchakarla, P. Chandran, D. Menon, S. Nair, C. Rao, M. Koyakutty, Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3(6), 2461–2464 (2011). https://doi.org/10.1039/c1nr10172b
- S.P. Mukherjee, N. Lozano, M. Kucki, A.E. Del Rio-Castillo, L. Newman, E. Vázquez, K. Kostarelos, P. Wick, B. Fadeel, Detection of endotoxin contamination of graphene based materials using the TNF-α expression test and guidelines for endotoxin-free graphene oxide production. PLoS ONE 11(11), e0166816 (2016). https://doi.org/10.1371/journal.pone.0166816
- M.H. Lahiani, K. Gokulan, K. Williams, M.V. Khodakovskaya, S. Khare, Graphene and carbon nanotubes activate different cell surface receptors on macrophages before and after deactivation of endotoxins. J. Appl. Toxicol. 37(11), 1305–1316 (2017). https://doi.org/10.1002/jat.3477
- A. Jarosz, M. Skoda, I. Dudek, D. Szukiewicz, Oxidative stress and mitochondrial activation as the main mechanisms underlying graphene toxicity against human cancer cells. Oxid. Med. Cell Longev. (2016). https://doi.org/10.1155/2016/5851035
- Y. Kang, J. Liu, J. Wu, Q. Yin, H. Liang, A. Chen, L. Shao, Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways. Int. J. Nanomedicine 12, 5501–5510 (2017). https://doi.org/10.2147/IJN.S141032
- X. Tian, Z. Yang, G. Duan, A. Wu, Z. Gu et al., Graphene oxide nanosheets retard cellular migration via disruption of actin cytoskeleton. Small (2017). https://doi.org/10.1002/smll.201602133
- G. Chen, H. Yang, C. Lu, Y. Chao, S. Hwang et al., Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials 33(27), 6559–6569 (2012). https://doi.org/10.1016/j.biomaterials.2012.05.064
- A. Wang, K. Pu, B. Dong, Y. Liu, L. Zhang, Z. Zhang, W. Duan, Y. Zhu, Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J. Appl. Toxicol. 33(10), 1156–1164 (2013). https://doi.org/10.1002/jat.2877
- K.H. Liao, Y.S. Lin, C.W. Macosko, C.L. Haynes, Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces 3(7), 2607–2615 (2011). https://doi.org/10.1021/am200428v
- D. Wang, L. Zhu, J.F. Chen, L. Dai, Can graphene quantum dots cause DNA damage in cells? Nanoscale 7(21), 9894–9901 (2015). https://doi.org/10.1039/C5NR01734C
- Z.M. Markovic, B.Z. Ristic, K.M. Arsikin, D.G. Klisic, L.M. Harhaji-Trajkovic et al., Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials 33(29), 7084–7092 (2012). https://doi.org/10.1016/j.biomaterials.2012.06.060
- X. Tian, B. Xiao, A. Wu, L. Yu, J. Zhou, Y. Wang, N. Wang, H. Guan, Z. Shang, Hydroxylated-graphene quantum dots induce cells senescence in both p53-dependent and -independent manner. Toxicol. Res. 5(6), 1639–1648 (2016). https://doi.org/10.1039/C6TX00209A
- L. Mao, M. Hu, B. Pan, Y. Xie, E.J. Petersen, Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part. Fibre Toxicol. 13, 7 (2016). https://doi.org/10.1186/s12989-016-0120-1
- S. Syama, W. Paul, A. Sabareeswaran, P.V. Mohanan, Raman spectroscopy for the detection of organ distribution and clearance of PEGylated reduced graphene oxide and biological consequences. Biomaterials 131, 121–130 (2017). https://doi.org/10.1016/j.biomaterials.2017.03.043
- M.C.P. Mendonça, E.S. Soares, M.B. de Jesus, H.J. Ceragioli, M.S. Ferreira, R.R. Catharino, M.A. da Cruz-Hofling, Reduced graphene oxide induces transient blood–brain barrier opening: an in vivo study. J. Nanobiotechnology 13(1), 78 (2015). https://doi.org/10.1186/s12951-015-0143-z
- S. Xu, Z. Zhang, M. Chu, Long-term toxicity of reduced graphene oxide nanosheets: effects on female mouse reproductive ability and offspring development. Biomaterials 54, 188–200 (2015). https://doi.org/10.1016/j.biomaterials.2015.03.015
- S.K. Singh, M.K. Singh, M.K. Nayak, S. Kumari, S. Shrivastava, J.J.A. Grácio, D. Dash, Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 5(6), 4987–4996 (2011). https://doi.org/10.1021/nn201092p
- H. Yue, W. Wei, Z. Yue, B. Wang, N. Luo, Y. Gao, D. Ma, G. Ma, Z. Su, The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33(16), 4013–4021 (2012). https://doi.org/10.1016/j.biomaterials.2012.02.021
References
J. Liu, L. Cui, D. Losic, Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9(12), 9243–9257 (2013). https://doi.org/10.1016/j.actbio.2013.08.016
A. Lerf, J. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, H.P. Boehm, Hydration behavior and dynamics of water molecules in graphite oxide. J. Phys. Chem. Solids 67(5–6), 1106–1110 (2006). https://doi.org/10.1016/j.jpcs.2006.01.031
A. Buchsteiner, A. Lerf, J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110(45), 22328–22338 (2006). https://doi.org/10.1021/jp0641132
K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2(12), 1015–1024 (2010). https://doi.org/10.1038/nchem.907
M. Konios, M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014). https://doi.org/10.1016/j.jcis.2014.05.033
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008). https://doi.org/10.1021/jp710931h
M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010). https://doi.org/10.1021/jp100603h
H.J. Shin, K.K. Sim, A. Benayad, S.M. Yoon, H.K. Park et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009). https://doi.org/10.1002/adfm.200900167
X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008). https://doi.org/10.1002/adma.200801306
H.P. Boehm, A. Clauss, G.O. Fischer, U.Z. Hofmann, The adsorption behavior of very thin carbon films. Anorg. Allg. Chem. 316, 119–127 (1962). https://doi.org/10.1002/zaac.19623160303
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). https://doi.org/10.1021/ja01539a017
K.R. Koch, Oxidation by Mn207: an impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide. J. Chem. Educ. 59(11), 973 (1982). https://doi.org/10.1021/ed059p973.3
B.C. Brodie, On the atomic weight of graphite. Proc. R. Soc. Lond. 10, 11–12 (1859)
V. Kampars, M. Legzdina, Thermal deoxygenation of graphite oxide at low temperature. IOP Conf. Ser. Mater. Sci. Eng. 77, 012033 (2015). https://doi.org/10.1088/1757-899X/77/1/012033
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). https://doi.org/10.1021/nn1006368
D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). https://doi.org/10.1039/B917103G
M.S. Khan, A. Shakoor, G.T. Khan, S. Sultana, A. Zia, A study of stable graphene oxide dispersions in various solvents. J. Chem. Soc. Pak. 37(01), 62–67 (2015)
J. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560–10564 (2008). https://doi.org/10.1021/la801744a
T.Y. Zhang, D. Zhang, Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication. Bull. Mater. Sci. 34(1), 25–28 (2011). https://doi.org/10.1007/s12034-011-0048-x
G. Gonçalves, M. Vila, I. Bdikin, A. de Andrés, N. Emami, R.A. Ferreira, L.D. Carlos, J. Gracio, P.A. Marques, Breakdown into nanoscale of graphene oxide: confined hot spot atomic reduction and fragmentation. Sci. Rep. 4, 6735 (2014). https://doi.org/10.1038/srep06735
Z.S. Wu, W. Ren, L. Ago, B. Liu, C. Jiang, H.M. Cheng, Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2), 493–499 (2009). https://doi.org/10.1016/j.carbon.2008.10.031
M. McAllister, J. Li, D. Adamson, H. Schniepp, H. Abdala et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007). https://doi.org/10.1021/cm0630800
M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry 15(25), 6116–6120 (2009). https://doi.org/10.1002/chem.200900596
A. Kumar, C.H. Lee, in Advances in Graphene Science, ed. by M. Aliofkhazraei (InTech, Croatia, 2013), pp. 55–75
J. Gao, F. Lui, Y. Lui, N. Ma, Z. Wang, X. Zhang, Environment-friendly method to produce graphene that employs Vitamin C and amino acid. Chem. Mater. 22(7), 2213–2218 (2010). https://doi.org/10.1021/cm902635j
O. Akhavan, M. Kalaee, Z.S. Alavi, S.M.A. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 50(8), 3015–3025 (2012). https://doi.org/10.1016/j.carbon.2012.02.087
Y. Wang, Z. Shi, J. Yin, Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mater. Interface 3(4), 1127–1133 (2011). https://doi.org/10.1021/am1012613
A. Esfandiar, O. Akhavan, A. Irajizad, Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem. 21(29), 10907–10914 (2011). https://doi.org/10.1039/c1jm10151j
O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, A. Talebi, The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J. Mater. Chem. 22(27), 13773–13781 (2012). https://doi.org/10.1039/c2jm31396k
C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010). https://doi.org/10.1021/nn1002387
J. Liu, S. Fu, B. Yuan, Y. Li, Z. Deng, Toward a universal “Adhesive Nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132(21), 7279–7281 (2010). https://doi.org/10.1021/ja100938r
E.C. Salas, Z. Sun, A. Luttge, J.M. Tour, Reduction of graphene oxide via bacterial respiration. ACS Nano 4(8), 4852–4856 (2010). https://doi.org/10.1021/nn101081t
S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50(14), 5331–5339 (2012). https://doi.org/10.1016/j.carbon.2012.07.023
Y. Hong, Z. Wang, X. Jin, Sulfuric acid intercalated graphite oxide for graphene preparation. Sci. Rep. 3(1), 3439 (2013). https://doi.org/10.1038/srep03439
O. Jankovský, P. Marvan, M. Nováček, J. Luxa, V. Mazánek, K. Klímová, D. Sedmidubský, Z. Sofer, Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Appl. Mater. Today 4, 45–53 (2016). https://doi.org/10.1016/j.apmt.2016.06.001
T.D. Dao, H.M. Jeong, Graphene prepared by thermal reduction–exfoliation of graphite oxide: effect of raw graphite particle size on the properties of graphite oxide and graphene. Mater. Res. Bull. 70, 651–657 (2015). https://doi.org/10.1016/j.materresbull.2015.05.038
C.H.A. Wong, O. Jankovský, Z. Sofer, M. Pumera, Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide. Carbon 77, 508–517 (2014). https://doi.org/10.1016/j.carbon.2014.05.056
Z. Lin, Y. Yao, Z. Li, Y. Liu, Z. Li, C.P. Wong, Solvent-assisted thermal reduction of graphite oxide. J. Phys. Chem. C 114(35), 14819–14825 (2010). https://doi.org/10.1021/jp1049843
B. Yuan, C. Bao, X. Qian, P. Wen, W. Xing, L. Song, Y. Hu, A facile approach to prepare graphene via solvothermal reduction of graphite oxide. Mater. Res. Bull. 55, 48–52 (2014). https://doi.org/10.1016/j.materresbull.2014.04.016
D.R. Dreyer, S. Murali, Y. Zhu, R.S. Ruoff, C.W. Bielawski, Reduction of graphite oxide using alcohols. J. Mater. Chem. 21(10), 3443–3447 (2011). https://doi.org/10.1039/C0JM02704A
C. Cai, N. Sang, Z. Shen, X. Zhao, Facile and size-controllable preparation of graphene oxide nanosheets using high shear method and ultrasonic method. J. Exp. Nanosci. 12(1), 247–262 (2017). https://doi.org/10.1080/17458080.2017.1303853
N. Blomquist, A.C. Engstrom, M. Hummelgard, B. Andres, S. Frosberg, H. Olin, Large-scale production of nanographite by tube-shear exfoliation in water. PLoS ONE 11(4), e0154686 (2016). https://doi.org/10.1371/journal.pone.0154686
X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1(3), 203–212 (2008). https://doi.org/10.1007/s12274-008-8021-8
Z. Liu, J.T. Robinson, X.M. Sun, H. Dai, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130(33), 10876–10877 (2008). https://doi.org/10.1021/ja803688x
X. Yang, X. Zhang, Z. Liu, Y. Ma, Y. Huang, Y. Chen, High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C 112(45), 17554–17558 (2008). https://doi.org/10.1021/jp806751k
C.S. Wang, J.Y. Li, C. Amatore, Y. Chen, H. Jiang, X.M. Wang, Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem. Int. Ed. 50(49), 11644–11648 (2011). https://doi.org/10.1002/anie.201105573
M. de Sousa, L.A. Visani de Luna, L. Fonseca, S. Giorgio, O.L. Alves, Folic acid-functionalized graphene oxide nanocarrier: synthetic approaches, characterization, drug delivery study and anti-tumor screening. ACS Appl. Nano Mater. 1(2), 922–932 (2018). https://doi.org/10.1021/acsanm.7b00324
B. Saifullah, K. Buskaran, R.B. Shaikh, F. Barahuie, S. Fakurazi, M.A. Mohd Moklas, M.Z. Hussein, Graphene oxide–PEG–protocatechuic acid nanocomposite formulation with improved anticancer properties. Nanomaterials 8(10), 8100820 (2018). https://doi.org/10.3390/nano8100820
L.M. Zhang, J. Xia, Q. Zhao, L. Liu, Z. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4), 537–544 (2010). https://doi.org/10.1002/smll.200901680
Y. Tang, H. Hu, M.G. Zhang, J. Song, L. Nie et al., An aptamer-targeting photoresponsive drug delivery system using “off–on” graphene oxide wrapped mesoporous silica nanoparticles. Nanoscale 7(14), 6304–6310 (2015). https://doi.org/10.1039/C4NR07493A
L.Z. Feng, S. Zhang, Z. Liu, Graphene based gene transfection. Nanoscale 3(3), 1252–1257 (2011). https://doi.org/10.1039/c0nr00680g
L. Zhang, Z. Lu, Q. Zhao, J. Huang, H. Shen, Z. Zhang, Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7(4), 460–464 (2011). https://doi.org/10.1002/smll.201001522
K. Yang, L. Feng, X. Shi, Z. Liu, Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 42(2), 530–547 (2013). https://doi.org/10.1039/C2CS35342C
A. Paul, A. Hasan, H.A. Kindi, A.K. Gaharwar, V.T. Rao et al., Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8(8), 8050–8062 (2014). https://doi.org/10.1021/nn5020787
W.G. La, M. Jin, S. Park, H.H. Yoon, G.J. Jeong, S.H. Bhang, H. Park, K. Char, B.S. Kim, Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. Int. J. Nanomedicine 9(1), 107–116 (2014). https://doi.org/10.2147/IJN.S50742
F. Emadi, A. Amini, A. Gholami, Y. Ghasemi, Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity. Sci. Rep. 10(7), 42258 (2017). https://doi.org/10.1038/srep42258
Y. Liu, Y. Qi, C. Yin, S. Wang, S. Zhang, A. Xu, W. Chen, S. Liu, Bio-transformation of graphene oxide in lung fluids significantly enhances its photothermal efficacy. Nanotheranostics 2(3), 222–232 (2018). https://doi.org/10.7150/ntno.25719
A.M. Jastrzębska, P. Kurtycz, A.R. Olszyna, Recent advances in graphene family materials toxicity investigations. J. Nanopart. Res. 14(12), 1320 (2012). https://doi.org/10.1007/s11051-012-1320-8
K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10(9), 3318–3323 (2010). https://doi.org/10.1021/nl100996u
X. Shi, H. Gong, Y. Li, C. Wang, L. Cheng, Z. Liu, Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 34(20), 4786–4793 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.023
J.L. Li, X.L. Hou, H.C. Bao, L. Sun, B. Tang, J.F. Wang, X.G. Wang, M. Gu, Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. J. Biomed. Mater. Res. A 102(7), 2181–2188 (2014). https://doi.org/10.1002/jbm.a.34871
X. Zhang, X. Nan, W. Shi, Y. Sun, H. Su, Y. He, X. Liu, Z. Zhang, D. Ge, Polydopamine-functionalized nanographene oxide: a versatile nanocarrier for chemotherapy and photothermal therapy. Nanotechnology 28(29), 295102 (2017). https://doi.org/10.1088/1361-6528/aa761b
Y.A. Cheon, J.H. Bae, B.G. Chung, Reduced graphene oxide nanosheet for chemo-photothermal therapy. Langmuir 32(11), 2731–2736 (2016). https://doi.org/10.1021/acs.langmuir.6b00315
P. Huang, C. Xu, J. Lin, C. Wang, X. Wang, C. Zhang, X. Zhou, S. Guo, D. Cui, Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 1, 240–250 (2011). https://doi.org/10.7150/thno/v01p0240
S. Su, J. Wang, J. Wei, R. Martínez-Zaguilán, J. Qiu, S. Wang, Efficient photothermal therapy of brain cancer through porphyrin functionalized graphene oxide. New J. Chem. 39(7), 5743–5749 (2015). https://doi.org/10.1039/C5NJ00122F
P. Rong, K. Yang, A. Srivastan, D.O. Kiesewetter, X. Yue et al., Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics 4(3), 229–239 (2014). https://doi.org/10.7150/thno.8070
Y.W. Chen, Y.L. Su, S.H. Hu, S.Y. Chen, Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliv. Rev. 105(Pt B), 190–204 (2016). https://doi.org/10.1016/j.addr.2016.05.022
I. Ocsoy, N. Isiklan, S. Cansiz, N. Ozdemir, W. Tan, ICG-Conjugated magnetic graphene oxide for dual photothermal and photodynamic therapy. RSC Adv. 6(36), 30285–30292 (2016). https://doi.org/10.1039/C6RA06798K
M.S.C. dos Santos, A.L. Gouvêa, L.D. de Moura, L.G. Paterno, P.E.N. de Souza et al., Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model. J. Nanobiotechnology 16(9), 29382332 (2018). https://doi.org/10.1186/s12951-018-0333-6
Q. Li, L. Hong, H. Li, C. Liu, Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosens. Bioelectron. 89(1), 477–482 (2017). https://doi.org/10.1016/j.bios.2016.03.072
D.Y. Zhang, Y. Zhang, C.P. Tan, J.H. Sun, W. Zhang, L.N. Ji, Z.W. Mao, Graphene oxide decorated with Ru(II)–polyethylene glycol complex for lysosome-targeted imaging and photodynamic/photothermal therapy. ACS Appl. Mater. Interfaces 9(8), 6761–6771 (2017). https://doi.org/10.1021/acsami.6b13808
J.H. Lim, D.E. Kim, E.J. Kim, C.D. Ahrberg, B.G. Chung, Functional graphene oxide-based nanosheets for photothermal therapy. Macromol. Res. 26(6), 557–565 (2018). https://doi.org/10.1007/s13233-018-6067-3
Y. Jang, S. Kim, S. Lee, C.M. Yoon, I. Lee, J. Jang, Graphene oxide wrapped SiO2/TiO2 hollow nanoparticles loaded with photosensitizer for photothermal and photodynamic combination therapy. Chem. Eur. J. 23, 3719–3727 (2017). https://doi.org/10.1002/chem.201605112
A. Gulzar, J. Xu, D. Yang, L. Xu, F. He, S. Gai, P. Yang, Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Trans. 47(11), 3931–3939 (2018). https://doi.org/10.1039/C7DT04141A
X. Yan, G. Niu, J. Lin, A.J. Jin, H. Hu et al., Enhanced fluorescence imaging guided photodynamic therapy of sinoporphyrin sodium loaded graphene oxide. Biomaterials 42, 94–102 (2015). https://doi.org/10.1016/j.biomaterials.2014.11.040
P. Huang, S. Wang, X. Wang, G. Shen, J. Lin et al., Surface functionalization of chemically reduced graphene oxide for targeted photodynamic therapy. J. Biomed. Nanotechnol. 11(1), 117–125 (2015). https://doi.org/10.1166/jbn.2015.2055
Y. Wei, F. Zhou, D. Zhang, Q. Chen, D. Xing, A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy. Nanoscale 8(6), 3530–3538 (2016). https://doi.org/10.1039/C5NR07785K
L. Hou, Y. Shi, G. Jiang, W. Liu, H. Han et al., Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery. Nanotechnology 27(31), 315105 (2016). https://doi.org/10.1088/0957-4484/27/31/315105
Z. Xu, S. Wang, Y. Li, M. Wang, P. Shi, X. Huang, Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl. Mater. Interfaces 6(19), 17268–17276 (2014). https://doi.org/10.1021/am505308f
H. Hu, J. Yu, Y. Li, J. Zhao, H. Dong, Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. J. Biomed. Mater. Res. A 100(1), 141–148 (2012). https://doi.org/10.1002/jbm.a.33252
H. Bao, Y. Pan, Y. Ping, N.G. Sahoo, T. Wu, L. Li, J. Li, L.H. Gan, Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7(11), 1569–1578 (2011). https://doi.org/10.1002/smll.201100191
M. Alibolandi, M. Mohammadi, S.M. Taghdisi, M. Ramezani, K. Abnous, Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr. Polym. 155, 218–229 (2017). https://doi.org/10.1016/j.carbpol.2016.08.046
C. Wang, J. Li, C. Amatore, Y. Chen, H. Jiang, X.M. Wang, Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem. Int. Ed. 50(49), 11644–11648 (2011). https://doi.org/10.1002/anie.201105573
X. Wang, X. Sun, J. Lao, H. He, T. Cheng, M. Wang, S. Wang, F. Huang, Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf. B 122, 638–644 (2014). https://doi.org/10.1016/j.colsurfb.2014.07.043
G. Russel-Jones, K. McTavish, J. McEvan, J. Rice, D. Nowotnik, Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumors. J. Inorg. Biochem. 98(10), 1625–1633 (2004). https://doi.org/10.1016/j.jinorgbio.2004.07.009
N.R. Ko, M. Nafiujjaman, J.S. Lee, H.N. Lim, Y.K. Lee, I.K. Kwon, Graphene quantum dot-based theranostic agents for active targeting of breast cancer. RSC Adv. 7(19), 11420–11427 (2017). https://doi.org/10.1039/C6RA25949A
A. Jafarizad, A. Aghanejad, M. Sevim, Ö. Metin, J. Barar, Y. Omidi, D. Ekinci, Gold nanoparticles and reduced graphene oxide-gold nanoparticle composite materials as covalent drug delivery systems for breast cancer treatment. Chem. Sel. 2(23), 6663–6672 (2017). https://doi.org/10.1002/slct.201701178
S.J. Zhen, T.T. Wang, Y.X. Liu, Z.L. Wu, H.Y. Zou, C.Z. Huang, Reduced graphene oxide coated Cu2−xSe nanoparticles for targeted chemo-photothermal therapy. J. Photochem. Photobiol., B 180, 9–16 (2018). https://doi.org/10.1016/j.jphotobiol.2018.01.020
Y. Hu, D. Sun, J. Ding, L. Chen, X. Chen, Decorated reduced graphene oxide for photo-chemotherapy. J. Mater. Chem. B 4, 929–937 (2016). https://doi.org/10.1039/C5TB02359A
G. Shim, J.Y. Kim, J. Han, S.W. Chung, S. Lee, Y. Byun, Y.K. Oh, Reduced graphene oxide nanosheets coated with an anti-angiogenic anticancer low-molecular-weight heparin derivative for delivery of anticancer drugs. J. Control. Release 189, 80–89 (2014). https://doi.org/10.1016/j.jconrel.2014.06.026
W. Miao, G. Shim, S. Lee, Y.S. Choe, Y.K. Oh, Safety and tumor tissue accumulation of pegylated graphene oxide nanosheets for co-delivery of anticancer drug and photosensitizer. Biomaterials 34(13), 3402–3410 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.010
Y.J. Choi, S. Gurunathan, J.H. Kim, Graphene oxide–silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): a novel approach for cancer therapy. Int. J. Mol. Sci. 19(3), 710 (2018). https://doi.org/10.3390/ijms19030710
H. Shen, L. Zhang, M. Liu, Z. Zhang, Biomedical applications of graphene. Theranostics 2(3), 283–294 (2012). https://doi.org/10.7150/thno.3642
O.S. Kwon, S.J. Park, J.Y. Hong, A.R. Han, J.S. Lee, J.S. Lee, J.H. Oh, J. Jang, Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6(2), 1486–1493 (2012). https://doi.org/10.1021/nn204395n
P. Suvarnaphaet, S. Pechprasarn, Graphene-based materials for biosensors: a Review. Sensors (Basel) 17(10), 2161 (2017). https://doi.org/10.3390/s17102161
L.H. Hess, M. Jansen, V. Maybeck, M.V. Hauf, M. Seifert, M. Stutzmann, I.D. Sharp, A. Offenhausser, J. Garrido, Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23, 5045–5049 (2011). https://doi.org/10.1002/adma.201102990
C. Chung, Y.K. Kim, D. Shin, S.R. Ryoo, B.H. Hong, D.H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013). https://doi.org/10.1021/ar300159f
Y. Huang, X. Dong, Y. Liu, L.J. Li, P. Chen, Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 21(33), 12358–12362 (2011). https://doi.org/10.1039/c1jm11436k
F. Qu, T. Li, M. Yang, Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosens. Bioelectron. 26(9), 3927–3931 (2011). https://doi.org/10.1016/j.bios.2011.03.013
S.K. Lim, P. Chen, F.L. Lee, S. Moochhala, B. Liedberg, Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection. Anal. Chem. 87(18), 9408–9412 (2015). https://doi.org/10.1021/acs.analchem.5b02270
L. Bai, Y. Chai, X. Pu, R. Yuan, A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale 6(5), 2902–2908 (2014). https://doi.org/10.1039/c3nr05930h
B. Jurado-Snchez, M. Pacheco, J. Rojo, A. Escarpa, Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew. Chem. Int. Ed. 129(24), 7061–7065 (2017). https://doi.org/10.1002/ange.201701396
S.J. Cheng, H.Y. Chiu, P.V. Kumar, K.Y. Hsieh, J.W. Yang, Y.-R. Lin, Y.C. Shen, G.Y. Chen, Simultaneous drug delivery and cellular imaging using graphene oxide. Biomater. Sci. 6(4), 813–819 (2018). https://doi.org/10.1039/C7BM01192J
S. Jin, D. Kim, G. Jun, S. Hong, S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7(2), 1239–1245 (2013). https://doi.org/10.1021/nn304675g
J. Shen, Y. Zhu, C. Chen, X. Yang, C. Li, Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun. 47(9), 2580–2582 (2011). https://doi.org/10.1039/C0CC04812G
Y. Wang, Z. Li, D. Hu, C.T. Lin, J. Li, Y. Lin, Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132(27), 9274–9276 (2010). https://doi.org/10.1021/ja103169v
W. Chen, P. Yi, Y. Zhang, L. Zhang, Z. Deng, Z. Zhang, Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl. Mater. Interfaces 3(10), 4085–4091 (2011). https://doi.org/10.1021/am2009647
O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10), 5731–5736 (2010). https://doi.org/10.1021/nn101390x
S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9), 6971–6980 (2011). https://doi.org/10.1021/nn202451x
X. Guo, N. Mei, Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 22(1), 105–115 (2014). https://doi.org/10.1016/j.jfda.2014.01.009
K. Krishnamoorthy, M. Veerapandian, L.H. Zhang, K. Yun, S.J. Kim, Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. C 116(32), 17280–17287 (2012). https://doi.org/10.1021/jp3047054
I. Zarafu, I. Turcu, D.C. Culită, S. Petrescu, M. Popa, M.C. Chifiriuc, C. Limban, A. Telehoiu, P. Ionit, Antimicrobial features of organic functionalized graphene-oxide with selected amines. Materials 11(9), 1704 (2018). https://doi.org/10.3390/ma11091704
M. Cao, W. Zhao, L. Wang, R. Li, H. Gong, Y. Zhang, H. Xu, J.R. Lu, Graphene oxide-assisted accumulation and layer-by-layer assembly of antibacterial peptide for sustained release applications. ACS Appl. Mater. Interfaces 10(29), 24937–24946 (2018). https://doi.org/10.1021/acsami.8b07417
O.N. Ruiz, K.A.S. Fernando, B. Wang, N.A. Brown, P.G. Luo, N.D. McNamara, M. Vangsness, Y.P. Sun, C.E. Bunker, Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5(10), 8100–8107 (2011). https://doi.org/10.1021/nn202699t
M.D. Giulio, R. Zappacosta, S.D. Lodovico, E.D. Campli, G. Siani, A. Fontana, L. Cellini, Antimicrobial and antibiofilm efficacy of graphene oxide against chronic wound microorganisms. Antimicrob. Agents Chemother. 62(7), e00547-18 (2018). https://doi.org/10.1128/AAC.00547-18
H.E. Karahan, C. Wiraja, C. Xu, J. Wei, Y. Wang, L. Wang, F. Liu, Y. Chen, Graphene materials in antimicrobial nanomedicine: current status and future perspectives. Adv. Healthc. Mater. 7(13), 1701406 (2018). https://doi.org/10.1002/adhm.201701406
M. Kalbacova, A. Broz, J. Kong, M. Kalbac, Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15), 4323–4329 (2010). https://doi.org/10.1016/j.carbon.2010.07.045
S.R. Ryoo, Y.K. Kim, M.H. Kim, D.H. Min, Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4(11), 6587–6598 (2010). https://doi.org/10.1021/nn1018279
C.X. Guo, X.T. Zheng, Z.S. Lu, X.W. Lou, C.M. Li, Biointerface by cell growth on layered graphene–artificial peroxidase–protein nanostructure for in situ quantitative molecular detection. Adv. Mater. 22(45), 5164–5167 (2010). https://doi.org/10.1002/adma.201001699
W.C. Lee, C.H.Y.X. Lim, H. Shi, L.A.L. Tang, Y. Wang, C.T. Lim, K.P. Loh, Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9), 7334–7341 (2011). https://doi.org/10.1021/nn202190c
N. Li, X. Zhang, Q. Song, R. Su, Q. Zhang, T. Kong, L. Liu, G. Jin, M. Tang, G. Cheng, The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials 32(35), 9374–9382 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.065
S. Sayyar, E. Murray, B. Thompson, S. Gambhir, D. Officer, G. Wallace, Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 52, 296–304 (2013). https://doi.org/10.1016/j.carbon.2012.09.031
H.L. Fan, L.L. Wang, K.K. Zhao, N. Li, Z.J. Shi, Z.G. Ge, Z.X. Jin, Fabrication, mechanical properties and biocompatibility of graphene-reinforced chitosan composites. Biomacromol 11(9), 2345–2351 (2010). https://doi.org/10.1021/bm100470q
H.N. Lim, N.M. Huang, S.S. Lim, I. Harrison, C.H. Chia, Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int. J. Nanomedicine 6, 1817–1823 (2011). https://doi.org/10.2147/IJN.S23392
G. Yang, J. Su, J. Gao, X. Hu, C. Geng, Q. Fu, Fabrication of well-controlled porous foams of graphene oxide modified poly(propylene-carbonate) using supercritical carbon dioxide and its potential tissue engineering applications. J. Supercrit. Fluids 73, 1–9 (2013). https://doi.org/10.1016/j.supflu.2012.11.004
S. Shah, P.T. Yin, T.M. Uehara, S.D. Chueng, L. Yang, K. Lee, Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv. Mater. 26(22), 3673–3680 (2014). https://doi.org/10.1002/adma.201400523
S. Saravanan, N. Sareen, E. Abu-El-Rub, H. Ashour, G.L. Sequiera et al., Graphene oxide-gold nanosheets containing chitosan scaffold improves ventricular contractility and function after implantation into infarcted heart. Sci. Rep. 8, 15069 (2018). https://doi.org/10.1038/s41598-018-33144-0
S.R. Shin, C.Z.M. Akbari, P. Assawes, L. Cheung, K. Zhang et al., Reduced graphene oxide-GelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small 12(27), 3677–3689 (2016). https://doi.org/10.1002/smll.201600178
G. Zhao, H. Qing, G. Huang, G.M. Genin, T.J. Lu, Z. Luo, F. Xu, X. Zhang, Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Mater. 10, 982–994 (2018). https://doi.org/10.1038/s41427-018-0092-8
M.H. Norahan, M. Amroon, R. Ghahremanzadeh, M. Mahmoodi, N. Baheiraei, Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac tissue engineering. J. Biomed. Mater. Res. A 107A(1), 204–219 (2018). https://doi.org/10.1002/jbm.a.36555
P. Hitscherich, A. Aphale, R. Gordan, R. Whitaker, P. Singh, L.H. Xie, P. Patra, E.J. Lee, Electroactive graphene composite scaffolds for cardiac tissue engineering. J. Biomed. Mater. Res. A 106(11), 2923–2933 (2018). https://doi.org/10.1002/jbm.a.36481
S. Malik, F.M. Ruddock, A.H. Dowling, K. Byrne, W. Schmitt et al., Graphene composites with dental and biomedical applicability. Beilstein J. Nanotechnol. 9, 801–808 (2018). https://doi.org/10.3762/bjnano.9.73
V. Rosa, H. Xie, N. Dubey, T.T. Madanagopal, S.S. Rajan, J.L.P. Morin, I. Islam, A.H.C. Neto, Graphene oxide-based substrate: physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells. Dent. Mater. 32, 1019–1025 (2016). https://doi.org/10.1016/j.dental.2016.05.008
G.Y. Chen, D.W.P. Pang, S.M. Hwang, H.Y. Tuan, Y.C. Hu, A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2), 418–427 (2012). https://doi.org/10.1016/j.biomaterials.2011.09.071
A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4), 4636–4648 (2015). https://doi.org/10.1021/acsnano.5b01179
Q. Chen, J.D. Mangadlao, J. Wallat, A.D. Leon, J.K. Pokorski, R.C. Advincula, 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl. Mater. Interfaces 9(4), 4015–4023 (2017). https://doi.org/10.1021/acsami.6b11793
A.E. Jakus, R.N. Shah, Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J. Biomed. Mater. Res. A 105(1), 274–283 (2017). https://doi.org/10.1002/jbm.a.35684
Z. Gu, Z. Yang, L. Wang, H. Zhou, C.A. Jimenez-Cruz, R. Zhou, The role of basic residues in the adsorption of blood proteins onto the graphene surface. Sci. Rep. 5, 10873 (2015). https://doi.org/10.1038/srep10873
Y. Chong, C. Ge, Z. Yang, J.A. Garate, Z. Gu, J.K. Weber, J. Liu, R. Zhou, Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano 9(6), 5713–5724 (2015). https://doi.org/10.1021/nn5066606
W. Hu, C. Peng, M. Lv, X. Li, Y. Zhang, N. Chen, C. Fan, Q. Huang, Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5), 3693–3700 (2011). https://doi.org/10.1021/nn200021j
G. Duan, S. Kang, X. Tian, J.A. Garate, L. Zhao, C. Ge, R. Zhou, Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale 7(37), 15214–15224 (2015). https://doi.org/10.1039/C5NR01839K
F. Zhou, D. Xing, B. Wu, S. Wu, Z. Ou, W. Chen, New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett. 10(5), 1677–1681 (2010). https://doi.org/10.1021/nl100004m
Y. Li, Y. Liu, Y. Fu, T. Wei, L.L. Guyader, G. Gao, R. Liu, Y. Chang, C. Chen, The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33(2), 402–411 (2012). https://doi.org/10.1016/j.biomaterials.2011.09.091
A. Sasidharan, L. Panchakarla, P. Chandran, D. Menon, S. Nair, C. Rao, M. Koyakutty, Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3(6), 2461–2464 (2011). https://doi.org/10.1039/c1nr10172b
S.P. Mukherjee, N. Lozano, M. Kucki, A.E. Del Rio-Castillo, L. Newman, E. Vázquez, K. Kostarelos, P. Wick, B. Fadeel, Detection of endotoxin contamination of graphene based materials using the TNF-α expression test and guidelines for endotoxin-free graphene oxide production. PLoS ONE 11(11), e0166816 (2016). https://doi.org/10.1371/journal.pone.0166816
M.H. Lahiani, K. Gokulan, K. Williams, M.V. Khodakovskaya, S. Khare, Graphene and carbon nanotubes activate different cell surface receptors on macrophages before and after deactivation of endotoxins. J. Appl. Toxicol. 37(11), 1305–1316 (2017). https://doi.org/10.1002/jat.3477
A. Jarosz, M. Skoda, I. Dudek, D. Szukiewicz, Oxidative stress and mitochondrial activation as the main mechanisms underlying graphene toxicity against human cancer cells. Oxid. Med. Cell Longev. (2016). https://doi.org/10.1155/2016/5851035
Y. Kang, J. Liu, J. Wu, Q. Yin, H. Liang, A. Chen, L. Shao, Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways. Int. J. Nanomedicine 12, 5501–5510 (2017). https://doi.org/10.2147/IJN.S141032
X. Tian, Z. Yang, G. Duan, A. Wu, Z. Gu et al., Graphene oxide nanosheets retard cellular migration via disruption of actin cytoskeleton. Small (2017). https://doi.org/10.1002/smll.201602133
G. Chen, H. Yang, C. Lu, Y. Chao, S. Hwang et al., Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials 33(27), 6559–6569 (2012). https://doi.org/10.1016/j.biomaterials.2012.05.064
A. Wang, K. Pu, B. Dong, Y. Liu, L. Zhang, Z. Zhang, W. Duan, Y. Zhu, Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J. Appl. Toxicol. 33(10), 1156–1164 (2013). https://doi.org/10.1002/jat.2877
K.H. Liao, Y.S. Lin, C.W. Macosko, C.L. Haynes, Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces 3(7), 2607–2615 (2011). https://doi.org/10.1021/am200428v
D. Wang, L. Zhu, J.F. Chen, L. Dai, Can graphene quantum dots cause DNA damage in cells? Nanoscale 7(21), 9894–9901 (2015). https://doi.org/10.1039/C5NR01734C
Z.M. Markovic, B.Z. Ristic, K.M. Arsikin, D.G. Klisic, L.M. Harhaji-Trajkovic et al., Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials 33(29), 7084–7092 (2012). https://doi.org/10.1016/j.biomaterials.2012.06.060
X. Tian, B. Xiao, A. Wu, L. Yu, J. Zhou, Y. Wang, N. Wang, H. Guan, Z. Shang, Hydroxylated-graphene quantum dots induce cells senescence in both p53-dependent and -independent manner. Toxicol. Res. 5(6), 1639–1648 (2016). https://doi.org/10.1039/C6TX00209A
L. Mao, M. Hu, B. Pan, Y. Xie, E.J. Petersen, Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part. Fibre Toxicol. 13, 7 (2016). https://doi.org/10.1186/s12989-016-0120-1
S. Syama, W. Paul, A. Sabareeswaran, P.V. Mohanan, Raman spectroscopy for the detection of organ distribution and clearance of PEGylated reduced graphene oxide and biological consequences. Biomaterials 131, 121–130 (2017). https://doi.org/10.1016/j.biomaterials.2017.03.043
M.C.P. Mendonça, E.S. Soares, M.B. de Jesus, H.J. Ceragioli, M.S. Ferreira, R.R. Catharino, M.A. da Cruz-Hofling, Reduced graphene oxide induces transient blood–brain barrier opening: an in vivo study. J. Nanobiotechnology 13(1), 78 (2015). https://doi.org/10.1186/s12951-015-0143-z
S. Xu, Z. Zhang, M. Chu, Long-term toxicity of reduced graphene oxide nanosheets: effects on female mouse reproductive ability and offspring development. Biomaterials 54, 188–200 (2015). https://doi.org/10.1016/j.biomaterials.2015.03.015
S.K. Singh, M.K. Singh, M.K. Nayak, S. Kumari, S. Shrivastava, J.J.A. Grácio, D. Dash, Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 5(6), 4987–4996 (2011). https://doi.org/10.1021/nn201092p
H. Yue, W. Wei, Z. Yue, B. Wang, N. Luo, Y. Gao, D. Ma, G. Ma, Z. Su, The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33(16), 4013–4021 (2012). https://doi.org/10.1016/j.biomaterials.2012.02.021