Thermal Management Technologies for Improving the Thermal Stability of Perovskite Solar Cells
Corresponding Author: Chunyang Jia
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 207
Abstract
Perovskite solar cells (PSCs) have achieved excellent power conversion efficiencies; however, under direct sunlight, device temperatures can exceed ambient temperatures by more than 50 ℃, making thermal stability a critical challenge for commercialization. This review first summarizes the degradation mechanisms of PSCs induced by elevated temperatures, followed by a discussion of heat generation, with Joule heat identified as the primary contributor. Advanced thermal management strategies are then highlighted, including the use of high thermal conductivity materials, integration with thermoelectric devices, external radiative cooling layers, down-conversion approaches, and tandem structures. By systematically presenting these strategies, this review provides guidance for enhancing both the efficiency and thermal stability of PSCs, thereby supporting their pathway toward commercialization
Highlights:
1 Joule heating is the dominant cause of elevated device temperature in perovskite solar cells (PSCs) under operation, significantly degrades their long-term thermal stability.
2 High temperatures degrade PSCs primarily through accelerated material decomposition and interfacial reactions, posing a major barrier to commercialization.
3 Key thermal management strategies, such as integrating thermally conductive materials, radiative cooling layers, and tandem structures, effectively suppress heat accumulation and enhance device durability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
- C. Chen, S. Zheng, H. Song, Photon management to reduce energy loss in perovskite solar cells. Chem. Soc. Rev. 50(12), 7250–7329 (2021). https://doi.org/10.1039/d0cs01488e
- M.B. Hayat, D. Ali, K.C. Monyake, L. Alagha, N. Ahmed, Solar energy-a look into power generation, challenges, and a solar-powered future. Int. J. Energy Res. 43(3), 1049–1067 (2019). https://doi.org/10.1002/er.4252
- M. Hosenuzzaman, N.A. Rahim, J. Selvaraj, M. Hasanuzzaman, A.B.M.A. Malek et al., Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable Sustainable Energy Rev. 41, 284–297 (2015). https://doi.org/10.1016/j.rser.2014.08.046
- T.G. Allen, J. Bullock, X. Yang, A. Javey, S. De Wolf, Passivating contacts for crystalline silicon solar cells. Nat. Energy 4(11), 914–928 (2019). https://doi.org/10.1038/s41560-019-0463-6
- B. Chen, Z.J. Yu, S. Manzoor, S. Wang, W. Weigand et al., Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4(4), 850–864 (2020). https://doi.org/10.1016/j.joule.2020.01.008
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13(1), 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
- T. Zhang, F. Wang, H.-B. Kim, I.-W. Choi, C. Wang et al., Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377(6605), 495–501 (2022). https://doi.org/10.1126/science.abo2757
- T. Nie, Z. Fang, X. Ren, Y. Duan, S.F. Liu, Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15(1), 70 (2023). https://doi.org/10.1007/s40820-023-01040-6
- M.T. Mbumba, D.M. Malouangou, J.M. Tsiba, L. Bai, Y. Yang et al., Degradation mechanism and addressing techniques of thermal instability in halide perovskite solar cells. Sol. Energy 230, 954–978 (2021). https://doi.org/10.1016/j.solener.2021.10.070
- K.T. Cho, S. Paek, G. Grancini, C. Roldán-Carmona, P. Gao et al., Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 10(2), 621–627 (2017). https://doi.org/10.1039/C6EE03182J
- F.H. Isikgor, S. Zhumagali, L.V.T. Merino, M. De Bastiani, I. McCulloch et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8(2), 89–108 (2023). https://doi.org/10.1038/s41578-022-00503-3
- Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che et al., Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620(7974), 545–551 (2023). https://doi.org/10.1038/s41586-023-06207-0
- J.T. Wang, Z. Wang, S. Pathak, W. Zhang, D.W. de Quilettes et al., Efficient perovskite solar cells by metal ion doping. Energy Environ. Sci. 9(9), 2892–2901 (2016). https://doi.org/10.1039/c6ee01969b
- H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
- H. Zhu, Y. Ren, L. Pan, O. Ouellette, F.T. Eickemeyer et al., Synergistic effect of fluorinated passivator and hole transport dopant enables stable perovskite solar cells with an efficiency near 24. J. Am. Chem. Soc. 143(8), 3231–3237 (2021). https://doi.org/10.1021/jacs.0c12802
- M.I. Asghar, J. Zhang, H. Wang, P.D. Lund, Device stability of perovskite solar cells–a review. Renew. Sustain. Energy Rev. 77, 131–146 (2017). https://doi.org/10.1016/j.rser.2017.04.003
- N. Yang, F. Pei, J. Dou, Y. Zhao, Z. Huang et al., Improving heat transfer enables durable perovskite solar cells. Adv. Energy Mater. 12(24), 2200869 (2022). https://doi.org/10.1002/aenm.202200869
- H. Yu, X. Cheng, Y. Wang, Y. Liu, K. Rong et al., Waterproof perovskite-hexagonal boron nitride hybrid nanolasers with low lasing thresholds and high operating temperature. ACS Photonics 5(11), 4520–4528 (2018). https://doi.org/10.1021/acsphotonics.8b00977
- L. Zhao, K. Roh, S. Kacmoli, K. Al Kurdi, S. Jhulki et al., Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32(25), e2000752 (2020). https://doi.org/10.1002/adma.202000752
- Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36(7), 914–944 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.004
- F. Pei, N. Li, Y. Chen, X. Niu, Y. Zhang et al., Thermal management enables more efficient and stable perovskite solar cells. ACS Energy Lett. 6(9), 3029–3036 (2021). https://doi.org/10.1021/acsenergylett.1c00999
- B. Yue, S. Liu, Y. Chai, G. Wu, N. Guan et al., Zeolites for separation: fundamental and application. J. Energy Chem. 71, 288–303 (2022). https://doi.org/10.1016/j.jechem.2022.03.035
- Z. Zhang, Y. Tang, Y. Wang, Z. Zeng, R. Shi et al., Heat transfer enhancement of n-type organic semiconductors by an insulator blend approach. ACS Appl. Mater. Interfaces 14(26), 30174–30181 (2022). https://doi.org/10.1021/acsami.2c05503
- B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen et al., Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5(15), 1500477 (2015). https://doi.org/10.1002/aenm.201500477
- E.J. Juarez-Perez, Z. Hawash, S.R. Raga, L.K. Ono, Y. Qi, Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 9(11), 3406–3410 (2016). https://doi.org/10.1039/C6EE02016J
- Q. Meng, Y. Chen, Y.Y. Xiao, J. Sun, X. Zhang et al., Effect of temperature on the performance of perovskite solar cells. J. Mater. Sci. Mater. Electron. 32(10), 12784–12792 (2021). https://doi.org/10.1007/s10854-020-03029-y
- A. Buin, P. Pietsch, J. Xu, O. Voznyy, A.H. Ip et al., Materials processing routes to trap-free halide perovskites. Nano Lett. 14(11), 6281–6286 (2014). https://doi.org/10.1021/nl502612m
- Z. Fan, H. Xiao, Y. Wang, Z. Zhao, Z. Lin et al., Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates. Joule 1(3), 548–562 (2017). https://doi.org/10.1016/j.joule.2017.08.005
- A. Kumar, U. Bansode, S. Ogale, A. Rahman, Understanding the thermal degradation mechanism of perovskite solar cells via dielectric and noise measurements. Nanotechnology 31(36), 365403 (2020). https://doi.org/10.1088/1361-6528/ab97d4
- T. Malinauskas, D. Tomkute-Luksiene, R. Sens, M. Daskeviciene, R. Send et al., Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS Appl. Mater. Interfaces 7(21), 11107–11116 (2015). https://doi.org/10.1021/am5090385
- Y. Zheng, J. Kong, D. Huang, W. Shi, L. McMillon-Brown et al., Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale 10(24), 11342–11348 (2018). https://doi.org/10.1039/C8NR01763H
- S. Kim, S. Bae, S.-W. Lee, K. Cho, K.D. Lee et al., Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Sci. Rep. 7(1), 1200 (2017). https://doi.org/10.1038/s41598-017-00866-6
- K. Domanski, J.-P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate et al., Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10(6), 6306–6314 (2016). https://doi.org/10.1021/acsnano.6b02613
- T. Ma, Y. An, Z. Yang, Z. Ai, Y. Zhang et al., Thermodynamic processes of perovskite photovoltaic devices: mechanisms, simulation, and manipulation. Adv. Funct. Mater. 33(15), 2212596 (2023). https://doi.org/10.1002/adfm.202212596
- P.B.M. Wolbert, G.K.M. Wachutka, B.H. Krabbenborg, T.J. Mouthaan, Nonisothermal device simulation using the 2D numerical process/device simulator TRENDY and application to SOI-devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 13(3), 293–302 (1994). https://doi.org/10.1109/43.265671
- N. Brinkmann, G. Micard, Y. Schiele, G. Hahn, B. Terheiden, Free energy loss analysis of heterojunction solar cells. Phys. Status Solidi RRL 7(5), 322–325 (2013). https://doi.org/10.1002/pssr.201307080
- Y. An, C. Wang, G. Cao, X. Li, Heterojunction perovskite solar cells: opto-electro-thermal physics, modeling, and experiment. ACS Nano 14(4), 5017–5026 (2020). https://doi.org/10.1021/acsnano.0c01392
- G. Tong, T. Chen, H. Li, W. Song, Y. Chang et al., High efficient hole extraction and stable all-bromide inorganic perovskite solar cells via derivative-phase gradient bandgap architecture. Sol. RRL 3(5), 1900030 (2019). https://doi.org/10.1002/solr.201900030
- D. Zhao, C. Chen, C. Wang, M.M. Junda, Z. Song et al., Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3(12), 1093–1100 (2018). https://doi.org/10.1038/s41560-018-0278-x
- D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha et al., Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017). https://doi.org/10.1038/nenergy.2017.18
- M. Abdi-Jalebi, Z. Andaji-Garmaroudi, A.J. Pearson, G. Divitini, S. Cacovich et al., Potassium- and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability. ACS Energy Lett. 3(11), 2671–2678 (2018). https://doi.org/10.1021/acsenergylett.8b01504
- M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016). https://doi.org/10.1126/science.aah5557
- Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018
- A. Shang, X. Li, Photovoltaic devices: opto-electro-thermal physics and modeling. Adv. Mater. 29(8), 1603492 (2017). https://doi.org/10.1002/adma.201603492
- R. Heiderhoff, T. Haeger, N. Pourdavoud, T. Hu, M. Al-Khafaji et al., Thermal conductivity of methylammonium lead halide perovskite single crystals and thin films: a comparative study. J. Phys. Chem. C 121(51), 28306–28311 (2017). https://doi.org/10.1021/acs.jpcc.7b11495
- W. Lee, H. Li, A.B. Wong, D. Zhang, M. Lai et al., Ultralow thermal conductivity in all-inorganic halide perovskites. Proc. Natl. Acad. Sci. U. S. A. 114(33), 8693–8697 (2017). https://doi.org/10.1073/pnas.1711744114
- K. Choi, J. Lee, H. Choi, G.-W. Kim, H.I. Kim et al., Heat dissipation effects on the stability of planar perovskite solar cells. Energy Environ. Sci. 13(12), 5059–5067 (2020). https://doi.org/10.1039/D0EE02859B
- Y. Yin, Y. Zhou, S. Fu, X. Zuo, Y.-C. Lin et al., Enhancing crystallization in hybrid perovskite solar cells using thermally conductive 2D boron nitride nanosheet additive. Small 19(15), e2207092 (2023). https://doi.org/10.1002/smll.202207092
- J. Li, J. Duan, Q. Guo, Z. Qi, X. Duan et al., Accelerating thermal transfer in perovskite films for high-efficiency and stable photovoltaics. Adv. Funct. Mater. 33(50), 2308036 (2023). https://doi.org/10.1002/adfm.202308036
- M. Shahiduzzaman, E.Y. Muslih, A.K. Mahmud Hasan, L. Wang, S. Fukaya et al., The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics. Chem. Eng. J. 411, 128461 (2021). https://doi.org/10.1016/j.cej.2021.128461
- Y. Zhang, Z. He, J. Xiong, S. Zhan, F. Liu et al., Multi-functional thermal management for efficient and stable inverted perovskite solar cells. J. Mater. Chem. A 12(17), 10369–10384 (2024). https://doi.org/10.1039/D4TA00784K
- X. Zhu, S. Yang, Y. Cao, L. Duan, M. Du et al., Ionic-liquid-perovskite capping layer for stable 24.33%-efficient solar cell. Adv. Energy Mater. 12(6), 2103491 (2022). https://doi.org/10.1002/aenm.202103491
- D.B. Khadka, Y. Shirai, M. Yanagida, K. Uto, K. Miyano, Analysis of degradation kinetics of halide perovskite solar cells induced by light and heat stress. Sol. Energy Mater. Sol. Cells 246, 111899 (2022). https://doi.org/10.1016/j.solmat.2022.111899
- X. Liu, L. Chen, H. Xu, S. Jiang, Y. Zhou et al., Straightforward synthesis of beta zeolite encapsulated Pt nanops for the transformation of 5-hydroxymethyl furfural into 2, 5-furandicarboxylic acid. Chin. J. Catal. 42(6), 994–1003 (2021). https://doi.org/10.1016/S1872-2067(20)63720-2
- M.-H. Sun, J. Zhou, Z.-Y. Hu, L.-H. Chen, L.-Y. Li et al., Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency. Matter 3(4), 1226–1245 (2020). https://doi.org/10.1016/j.matt.2020.07.016
- N. Wang, Q. Sun, T. Zhang, A. Mayoral, L. Li et al., Impregnating subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets. J. Am. Chem. Soc. 143(18), 6905–6914 (2021). https://doi.org/10.1021/jacs.1c00578
- P. Cnudde, R. Demuynck, S. Vandenbrande, M. Waroquier, G. Sastre et al., Light olefin diffusion during the MTO process on H-SAPO-34: a complex interplay of molecular factors. J. Am. Chem. Soc. 142(13), 6007–6017 (2020). https://doi.org/10.1021/jacs.9b10249
- H. Kim, G. Park, S. Park, W. Kim, Strategies for manipulating phonon transport in solids. ACS Nano 15(2), 2182–2196 (2021). https://doi.org/10.1021/acsnano.0c10411
- W. Wang, J. Zhang, K. Lin, J. Wang, B. Hu et al., Heat diffusion optimization in high performance perovskite solar cells integrated with zeolite. J. Energy Chem. 86, 308–317 (2023). https://doi.org/10.1016/j.jechem.2023.07.001
- P. Fu, W. Qin, S. Bai, D. Yang, L. Chen et al., Integrating large-area perovskite solar module with thermoelectric generator for enhanced and stable power output. Nano Energy 65, 104009 (2019). https://doi.org/10.1016/j.nanoen.2019.104009
- F. Hao, P. Qiu, Y. Tang, S. Bai, T. Xing et al., High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃. Energy Environ. Sci. 9(10), 3120–3127 (2016). https://doi.org/10.1039/C6EE02017H
- L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong et al., Efficient perovskite photovoltaic-thermoelectric hybrid device. Adv. Energy Mater. 8(13), 1702937 (2018). https://doi.org/10.1002/aenm.201702937
- Y. Deng, W. Zhu, Y. Wang, Y. Shi, Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design. Sol. Energy 88, 182–191 (2013). https://doi.org/10.1016/j.solener.2012.12.002
- Y. Vorobiev, J. González-Hernández, P. Vorobiev, L. Bulat, Thermal-photovoltaic solar hybrid system for efficient solar energy conversion. Sol. Energy 80(2), 170–176 (2006). https://doi.org/10.1016/j.solener.2005.04.022
- X.-Z. Guo, Y.-D. Zhang, D. Qin, Y.-H. Luo, D.-M. Li et al., Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum. J. Power. Sources 195(22), 7684–7690 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.033
- N. Wang, L. Han, H. He, N.-H. Park, K. Koumoto, A novel high-performance photovoltaic–thermoelectric hybrid device. Energy Environ. Sci. 4(9), 3676 (2011). https://doi.org/10.1039/c1ee01646f
- Y. Zhang, J. Fang, C. He, H. Yan, Z. Wei et al., Integrated energy-harvesting system by combining the advantages of polymer solar cells and thermoelectric devices. J. Phys. Chem. C 117(47), 24685–24691 (2013). https://doi.org/10.1021/jp4044573
- J.J. Lee, D. Yoo, C. Park, H.H. Choi, J.H. Kim, All organic-based solar cell and thermoelectric generator hybrid device system using highly conductive PEDOT: PSS film as organic thermoelectric generator. Sol. Energy 134, 479–483 (2016). https://doi.org/10.1016/j.solener.2016.05.006
- D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu et al., Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9(10), 3071–3078 (2016). https://doi.org/10.1039/C6EE02139E
- J. Zhang, Y. Xuan, L. Yang, A novel choice for the photovoltaic-thermoelectric hybrid system: the perovskite solar cell: energy conversion, storage, and management. Int. J. Energy Res. 40(10), 1400–1409 (2016). https://doi.org/10.1002/er.3532
- Z.Y. Liu, B. Sun, Y. Zhong, X.Y. Liu, J.H. Han et al., A novel choice for the photovoltaic-thermoelectric hybrid system: the perovskite solar cell. Nano Energy 38, 456–466 (2017). https://doi.org/10.1016/j.nanoen.2017.06.016
- H. Apostoleris, M. Stefancich, M. Chiesa, Tracking-integrated systems for concentrating photovoltaics. Nat. Energy 1(4), 16018 (2016). https://doi.org/10.1038/nenergy.2016.18
- P. Caprioglio, M. Stolterfoht, C.M. Wolff, T. Unold, B. Rech et al., On the relation between the open-circuit voltage and quasi-Fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9(33), 1901631 (2019). https://doi.org/10.1002/aenm.201901631
- Q. Guo, Y. Zhao, Q. Tang, J. Duan, Heat management strategy for all-inorganic, full-spectral concentrator CsPbBr3/Bi2Te3-integrated solar cells. Solar RRL 6(10), 2200570 (2022). https://doi.org/10.1002/solr.202200570
- H. Zhang, Y. Cheng, D.G. Lek, T. Liu, F. Lin et al., Membrane-free redox flow cell based on thermally regenerative electrochemical cycle for concurrent electricity storage, cooling and waste heat harnessing of perovskite solar cells. J. Power. Sources 548, 232081 (2022). https://doi.org/10.1016/j.jpowsour.2022.232081
- C. Gao, S.W. Lee, Y. Yang, Thermally regenerative electrochemical cycle for low-grade heat harvesting. ACS Energy Lett. 2(10), 2326–2334 (2017). https://doi.org/10.1021/acsenergylett.7b00568
- S.W. Lee, Y. Yang, H.-W. Lee, H. Ghasemi, D. Kraemer et al., An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun. 5, 3942 (2014). https://doi.org/10.1038/ncomms4942
- H. Zhang, F. Zhang, J. Yu, M. Zhou, W. Luo et al., Redox targeting-based thermally regenerative electrochemical cycle flow cell for enhanced low-grade heat harnessing. Adv. Mater. 33(5), e2006234 (2021). https://doi.org/10.1002/adma.202006234
- J. Dumoulin, E. Drouard, M. Amara, Radiative sky cooling of solar cells: fundamental modelling and cooling potential of single-junction devices. Sustain. Energy Fuels 5(7), 2085–2096 (2021). https://doi.org/10.1039/D0SE01536A
- A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
- E. Lee, T. Luo, Black body-like radiative cooling for flexible thin-film solar cells. Sol. Energy Mater. Sol. Cells 194, 222–228 (2019). https://doi.org/10.1016/j.solmat.2019.02.015
- Y. Zhan, H. Yin, J. Wang, C. Fan, Enhanced performance of diurnal radiative cooling for solar cells based on a grating-textured PDMS photonic structure. Mater. Today Commun. 35, 106117 (2023). https://doi.org/10.1016/j.mtcomm.2023.106117
- G. Perrakis, A.C. Tasolamprou, G. Kenanakis, E.N. Economou, S. Tzortzakis et al., Submicron organic–inorganic hybrid radiative cooling coatings for stable, ultrathin, and lightweight solar cells. ACS Photonics 9(4), 1327–1337 (2022). https://doi.org/10.1021/acsphotonics.1c01935
- H. Ma, K. Yao, S. Dou, M. Xiao, M. Dai et al., Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling. Sol. Energy Mater. Sol. Cells 212, 110584 (2020). https://doi.org/10.1016/j.solmat.2020.110584
- R. Datt, S. Bishnoi, D. Hughes, P. Mahajan, A. Singh et al., Downconversion materials for perovskite solar cells. Solar RRL 6(8), 2200266 (2022). https://doi.org/10.1002/solr.202200266
- C.-S. Huang, K. Jakubowski, S. Ulrich, S. Yakunin, M. Clerc et al., Nano-domains assisted energy transfer in amphiphilic polymer conetworks for wearable luminescent solar concentrators. Nano Energy 76, 105039 (2020). https://doi.org/10.1016/j.nanoen.2020.105039
- T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92(7), 4117–4122 (2002). https://doi.org/10.1063/1.1505677
- X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42(1), 173–201 (2013). https://doi.org/10.1039/C2CS35288E
- K. Li, D. Van, Enhancing the energy transfer from Mn4+ to Yb3+ via a Nd3+ bridge role in Ca3La2W2O12: Mn4+, Nd3+, Yb3+ phosphors for spectral conversion of c-Si solar cells. Dyes Pigm. 162, 990–997 (2019). https://doi.org/10.1016/j.dyepig.2018.11.030
- X. Liu, J. Qiu, Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications. Chem. Soc. Rev. 44(23), 8714–8746 (2015). https://doi.org/10.1039/C5CS00067J
- X. Qin, X. Liu, W. Huang, M. Bettinelli, X. Liu, Lanthanide-activated phosphors based on 4f–5d optical transitions: theoretical and experimental aspects. Chem. Rev. 117(5), 4488–4527 (2017). https://doi.org/10.1021/acs.chemrev.6b00691
- B.S. Richards, Luminescent layers for enhanced silicon solar cell performance: down-conversion. Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006). https://doi.org/10.1016/j.solmat.2005.07.001
- B.M. van der Ende, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009). https://doi.org/10.1039/b913877c
- J. Zheng, H. Mehrvarz, C. Liao, J. Bing, X. Cui et al., Large-area 23%-efficient monolithic perovskite/homojunction-silicon tandem solar cell with enhanced UV stability using down-shifting material. ACS Energy Lett. 4(11), 2623–2631 (2019). https://doi.org/10.1021/acsenergylett.9b01783
- J. Jia, J. Dong, J. Lin, Z. Lan, L. Fan et al., Improved photovoltaic performance of perovskite solar cells by utilizing down-conversion NaYF4: Eu3+ nanophosphors. J. Mater. Chem. C 7(4), 937–942 (2019). https://doi.org/10.1039/C8TC05864D
- N.U. Rahman, W.U. Khan, S. Khan, X. Chen, J. Khan et al., A promising europium-based down conversion material: organic–inorganic perovskite solar cells with high photovoltaic performance and UV-light stability. J. Mater. Chem. A 7(11), 6467–6474 (2019). https://doi.org/10.1039/C9TA00551J
- N.U. Rahman, W.U. Khan, W. Li, S. Khan, J. Khan et al., Simultaneous enhancement in performance and UV-light stability of organic–inorganic perovskite solar cells using a samarium-based down conversion material. J. Mater. Chem. A 7(1), 322–329 (2019). https://doi.org/10.1039/C8TA09362H
- L. Jiang, J. Zheng, W. Chen, Y. Huang, L. Hu et al., High-performance perovskite solar cells with a weak covalent TiO2: Eu3+ mesoporous structure. ACS Appl. Energy Mater. 1(1), 93–102 (2018). https://doi.org/10.1021/acsaem.7b00008
- F. Bella, G. Griffini, J.-P. Correa-Baena, G. Saracco, M. Grätzel et al., Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354(6309), 203–206 (2016). https://doi.org/10.1126/science.aah4046
- A. Gheno, T. Trigaud, J. Bouclé, P. Audebert, B. Ratier et al., Stability assessments on luminescent down-shifting molecules for UV-protection of perovskite solar cells. Opt. Mater. 75, 781–786 (2018). https://doi.org/10.1016/j.optmat.2017.11.027
- J. Cao, X. Lv, P. Zhang, T.T. Chuong, B. Wu et al., Plant sunscreen and co(II)/(III) porphyrins for UV-resistant and thermally stable perovskite solar cells: from natural to artificial. Adv. Mater. 30(27), e1800568 (2018). https://doi.org/10.1002/adma.201800568
- Q. Wang, X. Zhang, Z. Jin, J. Zhang, Z. Gao et al., Energy-down-shift CsPbCl3: Mn quantum dots for boosting the efficiency and stability of perovskite solar cells. ACS Energy Lett. 2(7), 1479–1486 (2017). https://doi.org/10.1021/acsenergylett.7b00375
- Y.-C. Wang, S.-K. Huang, T. Nakamura, Y.-T. Kao, C.-H. Chiang et al., Quantum-assisted photoelectric gain effects in perovskite solar cells. NPG Asia Mater. 12, 54 (2020). https://doi.org/10.1038/s41427-020-00236-1
- Z. Hosseini, T. Ghanbari, Designing an efficient graphene quantum dot-filled luminescent down shifting layer to improve the stability and efficiency of perovskite solar cells by simple optical modeling. RSC Adv. 8(55), 31502–31509 (2018). https://doi.org/10.1039/C8RA06196C
- K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2(4), 17009 (2017). https://doi.org/10.1038/nenergy.2017.9
- R. Santbergen, R. Mishima, T. Meguro, M. Hino, H. Uzu et al., Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell. Opt. Express 24(18), A1288–A1299 (2016). https://doi.org/10.1364/OE.24.0A1288
- Y. Wu, P. Zheng, J. Peng, M. Xu, Y. Chen et al., 27.6% perovskite/c-Si tandem solar cells using industrial fabricated TOPCon device. Adv. Energy Mater. 12(27), 2200821 (2022). https://doi.org/10.1002/aenm.202200821
- M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč et al., CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt. Express 23(7), A263–A278 (2015). https://doi.org/10.1364/OE.23.00A263
- Z. Yang, A. Rajagopal, C.-C. Chueh, S.B. Jo, B. Liu et al., Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells. Adv. Mater. 28(40), 8990–8997 (2016). https://doi.org/10.1002/adma.201602696
- C. Wang, Y. Zhao, T. Ma, Y. An, R. He et al., A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nat. Energy 7(8), 744–753 (2022). https://doi.org/10.1038/s41560-022-01076-9
- G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green et al., Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354(6314), 861–865 (2016). https://doi.org/10.1126/science.aaf9717
- T. Zhu, Y. Yang, Y. Liu, R. Lopez-Hallman, Z. Ma et al., Wireless portable light-weight self-charging power packs by perovskite-organic tandem solar cells integrated with solid-state asymmetric supercapacitors. Nano Energy 78, 105397 (2020). https://doi.org/10.1016/j.nanoen.2020.105397
- J. Guo, Y. Wu, R. Sun, W. Wang, J. Guo et al., Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. J. Mater. Chem. A 7(43), 25088–25101 (2019). https://doi.org/10.1039/C9TA09961A
- W. Chen, J. Zhang, G. Xu, R. Xue, Y. Li et al., A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 30(21), 1800855 (2018). https://doi.org/10.1002/adma.201800855
- X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai et al., Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4(7), 1594–1606 (2020). https://doi.org/10.1016/j.joule.2020.06.006
- C. Li, Y. Wang, W.C.H. Choy, Efficient interconnection in perovskite tandem solar cells. Small Methods 4(7), 2000093 (2020). https://doi.org/10.1002/smtd.202000093
- C. Yan, S. Barlow, Z. Wang, H. Yan, A.K.Y. Jen et al., Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3(3), 18003 (2018). https://doi.org/10.1038/natrevmats.2018.3
- K.O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann et al., Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022). https://doi.org/10.1038/s41586-022-04455-0
- A. Andruszkiewicz, X. Zhang, M.B. Johansson, L. Yuan, E.M.J. Johansson, Perovskite and quantum dot tandem solar cells with interlayer modification for improved optical semitransparency and stability. Nanoscale 13(12), 6234–6240 (2021). https://doi.org/10.1039/D0NR08375E
- I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet et al., Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3(10), 3023–3030 (2009). https://doi.org/10.1021/nn900863a
- Y. Xia, S. Liu, K. Wang, X. Yang, L. Lian et al., Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 30(4), 1907379 (2020). https://doi.org/10.1002/adfm.201907379
- A. Manekkathodi, B. Chen, J. Kim, S.-W. Baek, B. Scheffel et al., Solution-processed perovskite-colloidal quantum dot tandem solar cells for photon collection beyond 1000 nm. J. Mater. Chem. A 7(45), 26020–26028 (2019). https://doi.org/10.1039/C9TA11462A
- A. Karani, L. Yang, S. Bai, M.H. Futscher, H.J. Snaith et al., Perovskite/colloidal quantum dot tandem solar cells: theoretical modeling and monolithic structure. ACS Energy Lett. 3(4), 869–874 (2018). https://doi.org/10.1021/acsenergylett.8b00207
- R. Wang, T. Huang, J. Xue, J. Tong, K. Zhu et al., Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 15(6), 411–425 (2021). https://doi.org/10.1038/s41566-021-00809-8
References
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
C. Chen, S. Zheng, H. Song, Photon management to reduce energy loss in perovskite solar cells. Chem. Soc. Rev. 50(12), 7250–7329 (2021). https://doi.org/10.1039/d0cs01488e
M.B. Hayat, D. Ali, K.C. Monyake, L. Alagha, N. Ahmed, Solar energy-a look into power generation, challenges, and a solar-powered future. Int. J. Energy Res. 43(3), 1049–1067 (2019). https://doi.org/10.1002/er.4252
M. Hosenuzzaman, N.A. Rahim, J. Selvaraj, M. Hasanuzzaman, A.B.M.A. Malek et al., Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable Sustainable Energy Rev. 41, 284–297 (2015). https://doi.org/10.1016/j.rser.2014.08.046
T.G. Allen, J. Bullock, X. Yang, A. Javey, S. De Wolf, Passivating contacts for crystalline silicon solar cells. Nat. Energy 4(11), 914–928 (2019). https://doi.org/10.1038/s41560-019-0463-6
B. Chen, Z.J. Yu, S. Manzoor, S. Wang, W. Weigand et al., Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4(4), 850–864 (2020). https://doi.org/10.1016/j.joule.2020.01.008
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13(1), 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
T. Zhang, F. Wang, H.-B. Kim, I.-W. Choi, C. Wang et al., Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377(6605), 495–501 (2022). https://doi.org/10.1126/science.abo2757
T. Nie, Z. Fang, X. Ren, Y. Duan, S.F. Liu, Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15(1), 70 (2023). https://doi.org/10.1007/s40820-023-01040-6
M.T. Mbumba, D.M. Malouangou, J.M. Tsiba, L. Bai, Y. Yang et al., Degradation mechanism and addressing techniques of thermal instability in halide perovskite solar cells. Sol. Energy 230, 954–978 (2021). https://doi.org/10.1016/j.solener.2021.10.070
K.T. Cho, S. Paek, G. Grancini, C. Roldán-Carmona, P. Gao et al., Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 10(2), 621–627 (2017). https://doi.org/10.1039/C6EE03182J
F.H. Isikgor, S. Zhumagali, L.V.T. Merino, M. De Bastiani, I. McCulloch et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8(2), 89–108 (2023). https://doi.org/10.1038/s41578-022-00503-3
Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che et al., Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620(7974), 545–551 (2023). https://doi.org/10.1038/s41586-023-06207-0
J.T. Wang, Z. Wang, S. Pathak, W. Zhang, D.W. de Quilettes et al., Efficient perovskite solar cells by metal ion doping. Energy Environ. Sci. 9(9), 2892–2901 (2016). https://doi.org/10.1039/c6ee01969b
H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
H. Zhu, Y. Ren, L. Pan, O. Ouellette, F.T. Eickemeyer et al., Synergistic effect of fluorinated passivator and hole transport dopant enables stable perovskite solar cells with an efficiency near 24. J. Am. Chem. Soc. 143(8), 3231–3237 (2021). https://doi.org/10.1021/jacs.0c12802
M.I. Asghar, J. Zhang, H. Wang, P.D. Lund, Device stability of perovskite solar cells–a review. Renew. Sustain. Energy Rev. 77, 131–146 (2017). https://doi.org/10.1016/j.rser.2017.04.003
N. Yang, F. Pei, J. Dou, Y. Zhao, Z. Huang et al., Improving heat transfer enables durable perovskite solar cells. Adv. Energy Mater. 12(24), 2200869 (2022). https://doi.org/10.1002/aenm.202200869
H. Yu, X. Cheng, Y. Wang, Y. Liu, K. Rong et al., Waterproof perovskite-hexagonal boron nitride hybrid nanolasers with low lasing thresholds and high operating temperature. ACS Photonics 5(11), 4520–4528 (2018). https://doi.org/10.1021/acsphotonics.8b00977
L. Zhao, K. Roh, S. Kacmoli, K. Al Kurdi, S. Jhulki et al., Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32(25), e2000752 (2020). https://doi.org/10.1002/adma.202000752
Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36(7), 914–944 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.004
F. Pei, N. Li, Y. Chen, X. Niu, Y. Zhang et al., Thermal management enables more efficient and stable perovskite solar cells. ACS Energy Lett. 6(9), 3029–3036 (2021). https://doi.org/10.1021/acsenergylett.1c00999
B. Yue, S. Liu, Y. Chai, G. Wu, N. Guan et al., Zeolites for separation: fundamental and application. J. Energy Chem. 71, 288–303 (2022). https://doi.org/10.1016/j.jechem.2022.03.035
Z. Zhang, Y. Tang, Y. Wang, Z. Zeng, R. Shi et al., Heat transfer enhancement of n-type organic semiconductors by an insulator blend approach. ACS Appl. Mater. Interfaces 14(26), 30174–30181 (2022). https://doi.org/10.1021/acsami.2c05503
B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen et al., Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5(15), 1500477 (2015). https://doi.org/10.1002/aenm.201500477
E.J. Juarez-Perez, Z. Hawash, S.R. Raga, L.K. Ono, Y. Qi, Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 9(11), 3406–3410 (2016). https://doi.org/10.1039/C6EE02016J
Q. Meng, Y. Chen, Y.Y. Xiao, J. Sun, X. Zhang et al., Effect of temperature on the performance of perovskite solar cells. J. Mater. Sci. Mater. Electron. 32(10), 12784–12792 (2021). https://doi.org/10.1007/s10854-020-03029-y
A. Buin, P. Pietsch, J. Xu, O. Voznyy, A.H. Ip et al., Materials processing routes to trap-free halide perovskites. Nano Lett. 14(11), 6281–6286 (2014). https://doi.org/10.1021/nl502612m
Z. Fan, H. Xiao, Y. Wang, Z. Zhao, Z. Lin et al., Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates. Joule 1(3), 548–562 (2017). https://doi.org/10.1016/j.joule.2017.08.005
A. Kumar, U. Bansode, S. Ogale, A. Rahman, Understanding the thermal degradation mechanism of perovskite solar cells via dielectric and noise measurements. Nanotechnology 31(36), 365403 (2020). https://doi.org/10.1088/1361-6528/ab97d4
T. Malinauskas, D. Tomkute-Luksiene, R. Sens, M. Daskeviciene, R. Send et al., Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS Appl. Mater. Interfaces 7(21), 11107–11116 (2015). https://doi.org/10.1021/am5090385
Y. Zheng, J. Kong, D. Huang, W. Shi, L. McMillon-Brown et al., Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale 10(24), 11342–11348 (2018). https://doi.org/10.1039/C8NR01763H
S. Kim, S. Bae, S.-W. Lee, K. Cho, K.D. Lee et al., Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Sci. Rep. 7(1), 1200 (2017). https://doi.org/10.1038/s41598-017-00866-6
K. Domanski, J.-P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate et al., Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10(6), 6306–6314 (2016). https://doi.org/10.1021/acsnano.6b02613
T. Ma, Y. An, Z. Yang, Z. Ai, Y. Zhang et al., Thermodynamic processes of perovskite photovoltaic devices: mechanisms, simulation, and manipulation. Adv. Funct. Mater. 33(15), 2212596 (2023). https://doi.org/10.1002/adfm.202212596
P.B.M. Wolbert, G.K.M. Wachutka, B.H. Krabbenborg, T.J. Mouthaan, Nonisothermal device simulation using the 2D numerical process/device simulator TRENDY and application to SOI-devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 13(3), 293–302 (1994). https://doi.org/10.1109/43.265671
N. Brinkmann, G. Micard, Y. Schiele, G. Hahn, B. Terheiden, Free energy loss analysis of heterojunction solar cells. Phys. Status Solidi RRL 7(5), 322–325 (2013). https://doi.org/10.1002/pssr.201307080
Y. An, C. Wang, G. Cao, X. Li, Heterojunction perovskite solar cells: opto-electro-thermal physics, modeling, and experiment. ACS Nano 14(4), 5017–5026 (2020). https://doi.org/10.1021/acsnano.0c01392
G. Tong, T. Chen, H. Li, W. Song, Y. Chang et al., High efficient hole extraction and stable all-bromide inorganic perovskite solar cells via derivative-phase gradient bandgap architecture. Sol. RRL 3(5), 1900030 (2019). https://doi.org/10.1002/solr.201900030
D. Zhao, C. Chen, C. Wang, M.M. Junda, Z. Song et al., Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3(12), 1093–1100 (2018). https://doi.org/10.1038/s41560-018-0278-x
D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha et al., Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017). https://doi.org/10.1038/nenergy.2017.18
M. Abdi-Jalebi, Z. Andaji-Garmaroudi, A.J. Pearson, G. Divitini, S. Cacovich et al., Potassium- and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability. ACS Energy Lett. 3(11), 2671–2678 (2018). https://doi.org/10.1021/acsenergylett.8b01504
M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016). https://doi.org/10.1126/science.aah5557
Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018
A. Shang, X. Li, Photovoltaic devices: opto-electro-thermal physics and modeling. Adv. Mater. 29(8), 1603492 (2017). https://doi.org/10.1002/adma.201603492
R. Heiderhoff, T. Haeger, N. Pourdavoud, T. Hu, M. Al-Khafaji et al., Thermal conductivity of methylammonium lead halide perovskite single crystals and thin films: a comparative study. J. Phys. Chem. C 121(51), 28306–28311 (2017). https://doi.org/10.1021/acs.jpcc.7b11495
W. Lee, H. Li, A.B. Wong, D. Zhang, M. Lai et al., Ultralow thermal conductivity in all-inorganic halide perovskites. Proc. Natl. Acad. Sci. U. S. A. 114(33), 8693–8697 (2017). https://doi.org/10.1073/pnas.1711744114
K. Choi, J. Lee, H. Choi, G.-W. Kim, H.I. Kim et al., Heat dissipation effects on the stability of planar perovskite solar cells. Energy Environ. Sci. 13(12), 5059–5067 (2020). https://doi.org/10.1039/D0EE02859B
Y. Yin, Y. Zhou, S. Fu, X. Zuo, Y.-C. Lin et al., Enhancing crystallization in hybrid perovskite solar cells using thermally conductive 2D boron nitride nanosheet additive. Small 19(15), e2207092 (2023). https://doi.org/10.1002/smll.202207092
J. Li, J. Duan, Q. Guo, Z. Qi, X. Duan et al., Accelerating thermal transfer in perovskite films for high-efficiency and stable photovoltaics. Adv. Funct. Mater. 33(50), 2308036 (2023). https://doi.org/10.1002/adfm.202308036
M. Shahiduzzaman, E.Y. Muslih, A.K. Mahmud Hasan, L. Wang, S. Fukaya et al., The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics. Chem. Eng. J. 411, 128461 (2021). https://doi.org/10.1016/j.cej.2021.128461
Y. Zhang, Z. He, J. Xiong, S. Zhan, F. Liu et al., Multi-functional thermal management for efficient and stable inverted perovskite solar cells. J. Mater. Chem. A 12(17), 10369–10384 (2024). https://doi.org/10.1039/D4TA00784K
X. Zhu, S. Yang, Y. Cao, L. Duan, M. Du et al., Ionic-liquid-perovskite capping layer for stable 24.33%-efficient solar cell. Adv. Energy Mater. 12(6), 2103491 (2022). https://doi.org/10.1002/aenm.202103491
D.B. Khadka, Y. Shirai, M. Yanagida, K. Uto, K. Miyano, Analysis of degradation kinetics of halide perovskite solar cells induced by light and heat stress. Sol. Energy Mater. Sol. Cells 246, 111899 (2022). https://doi.org/10.1016/j.solmat.2022.111899
X. Liu, L. Chen, H. Xu, S. Jiang, Y. Zhou et al., Straightforward synthesis of beta zeolite encapsulated Pt nanops for the transformation of 5-hydroxymethyl furfural into 2, 5-furandicarboxylic acid. Chin. J. Catal. 42(6), 994–1003 (2021). https://doi.org/10.1016/S1872-2067(20)63720-2
M.-H. Sun, J. Zhou, Z.-Y. Hu, L.-H. Chen, L.-Y. Li et al., Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency. Matter 3(4), 1226–1245 (2020). https://doi.org/10.1016/j.matt.2020.07.016
N. Wang, Q. Sun, T. Zhang, A. Mayoral, L. Li et al., Impregnating subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets. J. Am. Chem. Soc. 143(18), 6905–6914 (2021). https://doi.org/10.1021/jacs.1c00578
P. Cnudde, R. Demuynck, S. Vandenbrande, M. Waroquier, G. Sastre et al., Light olefin diffusion during the MTO process on H-SAPO-34: a complex interplay of molecular factors. J. Am. Chem. Soc. 142(13), 6007–6017 (2020). https://doi.org/10.1021/jacs.9b10249
H. Kim, G. Park, S. Park, W. Kim, Strategies for manipulating phonon transport in solids. ACS Nano 15(2), 2182–2196 (2021). https://doi.org/10.1021/acsnano.0c10411
W. Wang, J. Zhang, K. Lin, J. Wang, B. Hu et al., Heat diffusion optimization in high performance perovskite solar cells integrated with zeolite. J. Energy Chem. 86, 308–317 (2023). https://doi.org/10.1016/j.jechem.2023.07.001
P. Fu, W. Qin, S. Bai, D. Yang, L. Chen et al., Integrating large-area perovskite solar module with thermoelectric generator for enhanced and stable power output. Nano Energy 65, 104009 (2019). https://doi.org/10.1016/j.nanoen.2019.104009
F. Hao, P. Qiu, Y. Tang, S. Bai, T. Xing et al., High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃. Energy Environ. Sci. 9(10), 3120–3127 (2016). https://doi.org/10.1039/C6EE02017H
L. Xu, Y. Xiong, A. Mei, Y. Hu, Y. Rong et al., Efficient perovskite photovoltaic-thermoelectric hybrid device. Adv. Energy Mater. 8(13), 1702937 (2018). https://doi.org/10.1002/aenm.201702937
Y. Deng, W. Zhu, Y. Wang, Y. Shi, Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design. Sol. Energy 88, 182–191 (2013). https://doi.org/10.1016/j.solener.2012.12.002
Y. Vorobiev, J. González-Hernández, P. Vorobiev, L. Bulat, Thermal-photovoltaic solar hybrid system for efficient solar energy conversion. Sol. Energy 80(2), 170–176 (2006). https://doi.org/10.1016/j.solener.2005.04.022
X.-Z. Guo, Y.-D. Zhang, D. Qin, Y.-H. Luo, D.-M. Li et al., Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum. J. Power. Sources 195(22), 7684–7690 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.033
N. Wang, L. Han, H. He, N.-H. Park, K. Koumoto, A novel high-performance photovoltaic–thermoelectric hybrid device. Energy Environ. Sci. 4(9), 3676 (2011). https://doi.org/10.1039/c1ee01646f
Y. Zhang, J. Fang, C. He, H. Yan, Z. Wei et al., Integrated energy-harvesting system by combining the advantages of polymer solar cells and thermoelectric devices. J. Phys. Chem. C 117(47), 24685–24691 (2013). https://doi.org/10.1021/jp4044573
J.J. Lee, D. Yoo, C. Park, H.H. Choi, J.H. Kim, All organic-based solar cell and thermoelectric generator hybrid device system using highly conductive PEDOT: PSS film as organic thermoelectric generator. Sol. Energy 134, 479–483 (2016). https://doi.org/10.1016/j.solener.2016.05.006
D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu et al., Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9(10), 3071–3078 (2016). https://doi.org/10.1039/C6EE02139E
J. Zhang, Y. Xuan, L. Yang, A novel choice for the photovoltaic-thermoelectric hybrid system: the perovskite solar cell: energy conversion, storage, and management. Int. J. Energy Res. 40(10), 1400–1409 (2016). https://doi.org/10.1002/er.3532
Z.Y. Liu, B. Sun, Y. Zhong, X.Y. Liu, J.H. Han et al., A novel choice for the photovoltaic-thermoelectric hybrid system: the perovskite solar cell. Nano Energy 38, 456–466 (2017). https://doi.org/10.1016/j.nanoen.2017.06.016
H. Apostoleris, M. Stefancich, M. Chiesa, Tracking-integrated systems for concentrating photovoltaics. Nat. Energy 1(4), 16018 (2016). https://doi.org/10.1038/nenergy.2016.18
P. Caprioglio, M. Stolterfoht, C.M. Wolff, T. Unold, B. Rech et al., On the relation between the open-circuit voltage and quasi-Fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9(33), 1901631 (2019). https://doi.org/10.1002/aenm.201901631
Q. Guo, Y. Zhao, Q. Tang, J. Duan, Heat management strategy for all-inorganic, full-spectral concentrator CsPbBr3/Bi2Te3-integrated solar cells. Solar RRL 6(10), 2200570 (2022). https://doi.org/10.1002/solr.202200570
H. Zhang, Y. Cheng, D.G. Lek, T. Liu, F. Lin et al., Membrane-free redox flow cell based on thermally regenerative electrochemical cycle for concurrent electricity storage, cooling and waste heat harnessing of perovskite solar cells. J. Power. Sources 548, 232081 (2022). https://doi.org/10.1016/j.jpowsour.2022.232081
C. Gao, S.W. Lee, Y. Yang, Thermally regenerative electrochemical cycle for low-grade heat harvesting. ACS Energy Lett. 2(10), 2326–2334 (2017). https://doi.org/10.1021/acsenergylett.7b00568
S.W. Lee, Y. Yang, H.-W. Lee, H. Ghasemi, D. Kraemer et al., An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun. 5, 3942 (2014). https://doi.org/10.1038/ncomms4942
H. Zhang, F. Zhang, J. Yu, M. Zhou, W. Luo et al., Redox targeting-based thermally regenerative electrochemical cycle flow cell for enhanced low-grade heat harnessing. Adv. Mater. 33(5), e2006234 (2021). https://doi.org/10.1002/adma.202006234
J. Dumoulin, E. Drouard, M. Amara, Radiative sky cooling of solar cells: fundamental modelling and cooling potential of single-junction devices. Sustain. Energy Fuels 5(7), 2085–2096 (2021). https://doi.org/10.1039/D0SE01536A
A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
E. Lee, T. Luo, Black body-like radiative cooling for flexible thin-film solar cells. Sol. Energy Mater. Sol. Cells 194, 222–228 (2019). https://doi.org/10.1016/j.solmat.2019.02.015
Y. Zhan, H. Yin, J. Wang, C. Fan, Enhanced performance of diurnal radiative cooling for solar cells based on a grating-textured PDMS photonic structure. Mater. Today Commun. 35, 106117 (2023). https://doi.org/10.1016/j.mtcomm.2023.106117
G. Perrakis, A.C. Tasolamprou, G. Kenanakis, E.N. Economou, S. Tzortzakis et al., Submicron organic–inorganic hybrid radiative cooling coatings for stable, ultrathin, and lightweight solar cells. ACS Photonics 9(4), 1327–1337 (2022). https://doi.org/10.1021/acsphotonics.1c01935
H. Ma, K. Yao, S. Dou, M. Xiao, M. Dai et al., Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling. Sol. Energy Mater. Sol. Cells 212, 110584 (2020). https://doi.org/10.1016/j.solmat.2020.110584
R. Datt, S. Bishnoi, D. Hughes, P. Mahajan, A. Singh et al., Downconversion materials for perovskite solar cells. Solar RRL 6(8), 2200266 (2022). https://doi.org/10.1002/solr.202200266
C.-S. Huang, K. Jakubowski, S. Ulrich, S. Yakunin, M. Clerc et al., Nano-domains assisted energy transfer in amphiphilic polymer conetworks for wearable luminescent solar concentrators. Nano Energy 76, 105039 (2020). https://doi.org/10.1016/j.nanoen.2020.105039
T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92(7), 4117–4122 (2002). https://doi.org/10.1063/1.1505677
X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42(1), 173–201 (2013). https://doi.org/10.1039/C2CS35288E
K. Li, D. Van, Enhancing the energy transfer from Mn4+ to Yb3+ via a Nd3+ bridge role in Ca3La2W2O12: Mn4+, Nd3+, Yb3+ phosphors for spectral conversion of c-Si solar cells. Dyes Pigm. 162, 990–997 (2019). https://doi.org/10.1016/j.dyepig.2018.11.030
X. Liu, J. Qiu, Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications. Chem. Soc. Rev. 44(23), 8714–8746 (2015). https://doi.org/10.1039/C5CS00067J
X. Qin, X. Liu, W. Huang, M. Bettinelli, X. Liu, Lanthanide-activated phosphors based on 4f–5d optical transitions: theoretical and experimental aspects. Chem. Rev. 117(5), 4488–4527 (2017). https://doi.org/10.1021/acs.chemrev.6b00691
B.S. Richards, Luminescent layers for enhanced silicon solar cell performance: down-conversion. Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006). https://doi.org/10.1016/j.solmat.2005.07.001
B.M. van der Ende, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009). https://doi.org/10.1039/b913877c
J. Zheng, H. Mehrvarz, C. Liao, J. Bing, X. Cui et al., Large-area 23%-efficient monolithic perovskite/homojunction-silicon tandem solar cell with enhanced UV stability using down-shifting material. ACS Energy Lett. 4(11), 2623–2631 (2019). https://doi.org/10.1021/acsenergylett.9b01783
J. Jia, J. Dong, J. Lin, Z. Lan, L. Fan et al., Improved photovoltaic performance of perovskite solar cells by utilizing down-conversion NaYF4: Eu3+ nanophosphors. J. Mater. Chem. C 7(4), 937–942 (2019). https://doi.org/10.1039/C8TC05864D
N.U. Rahman, W.U. Khan, S. Khan, X. Chen, J. Khan et al., A promising europium-based down conversion material: organic–inorganic perovskite solar cells with high photovoltaic performance and UV-light stability. J. Mater. Chem. A 7(11), 6467–6474 (2019). https://doi.org/10.1039/C9TA00551J
N.U. Rahman, W.U. Khan, W. Li, S. Khan, J. Khan et al., Simultaneous enhancement in performance and UV-light stability of organic–inorganic perovskite solar cells using a samarium-based down conversion material. J. Mater. Chem. A 7(1), 322–329 (2019). https://doi.org/10.1039/C8TA09362H
L. Jiang, J. Zheng, W. Chen, Y. Huang, L. Hu et al., High-performance perovskite solar cells with a weak covalent TiO2: Eu3+ mesoporous structure. ACS Appl. Energy Mater. 1(1), 93–102 (2018). https://doi.org/10.1021/acsaem.7b00008
F. Bella, G. Griffini, J.-P. Correa-Baena, G. Saracco, M. Grätzel et al., Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354(6309), 203–206 (2016). https://doi.org/10.1126/science.aah4046
A. Gheno, T. Trigaud, J. Bouclé, P. Audebert, B. Ratier et al., Stability assessments on luminescent down-shifting molecules for UV-protection of perovskite solar cells. Opt. Mater. 75, 781–786 (2018). https://doi.org/10.1016/j.optmat.2017.11.027
J. Cao, X. Lv, P. Zhang, T.T. Chuong, B. Wu et al., Plant sunscreen and co(II)/(III) porphyrins for UV-resistant and thermally stable perovskite solar cells: from natural to artificial. Adv. Mater. 30(27), e1800568 (2018). https://doi.org/10.1002/adma.201800568
Q. Wang, X. Zhang, Z. Jin, J. Zhang, Z. Gao et al., Energy-down-shift CsPbCl3: Mn quantum dots for boosting the efficiency and stability of perovskite solar cells. ACS Energy Lett. 2(7), 1479–1486 (2017). https://doi.org/10.1021/acsenergylett.7b00375
Y.-C. Wang, S.-K. Huang, T. Nakamura, Y.-T. Kao, C.-H. Chiang et al., Quantum-assisted photoelectric gain effects in perovskite solar cells. NPG Asia Mater. 12, 54 (2020). https://doi.org/10.1038/s41427-020-00236-1
Z. Hosseini, T. Ghanbari, Designing an efficient graphene quantum dot-filled luminescent down shifting layer to improve the stability and efficiency of perovskite solar cells by simple optical modeling. RSC Adv. 8(55), 31502–31509 (2018). https://doi.org/10.1039/C8RA06196C
K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2(4), 17009 (2017). https://doi.org/10.1038/nenergy.2017.9
R. Santbergen, R. Mishima, T. Meguro, M. Hino, H. Uzu et al., Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell. Opt. Express 24(18), A1288–A1299 (2016). https://doi.org/10.1364/OE.24.0A1288
Y. Wu, P. Zheng, J. Peng, M. Xu, Y. Chen et al., 27.6% perovskite/c-Si tandem solar cells using industrial fabricated TOPCon device. Adv. Energy Mater. 12(27), 2200821 (2022). https://doi.org/10.1002/aenm.202200821
M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč et al., CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt. Express 23(7), A263–A278 (2015). https://doi.org/10.1364/OE.23.00A263
Z. Yang, A. Rajagopal, C.-C. Chueh, S.B. Jo, B. Liu et al., Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells. Adv. Mater. 28(40), 8990–8997 (2016). https://doi.org/10.1002/adma.201602696
C. Wang, Y. Zhao, T. Ma, Y. An, R. He et al., A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nat. Energy 7(8), 744–753 (2022). https://doi.org/10.1038/s41560-022-01076-9
G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green et al., Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354(6314), 861–865 (2016). https://doi.org/10.1126/science.aaf9717
T. Zhu, Y. Yang, Y. Liu, R. Lopez-Hallman, Z. Ma et al., Wireless portable light-weight self-charging power packs by perovskite-organic tandem solar cells integrated with solid-state asymmetric supercapacitors. Nano Energy 78, 105397 (2020). https://doi.org/10.1016/j.nanoen.2020.105397
J. Guo, Y. Wu, R. Sun, W. Wang, J. Guo et al., Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. J. Mater. Chem. A 7(43), 25088–25101 (2019). https://doi.org/10.1039/C9TA09961A
W. Chen, J. Zhang, G. Xu, R. Xue, Y. Li et al., A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 30(21), 1800855 (2018). https://doi.org/10.1002/adma.201800855
X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai et al., Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4(7), 1594–1606 (2020). https://doi.org/10.1016/j.joule.2020.06.006
C. Li, Y. Wang, W.C.H. Choy, Efficient interconnection in perovskite tandem solar cells. Small Methods 4(7), 2000093 (2020). https://doi.org/10.1002/smtd.202000093
C. Yan, S. Barlow, Z. Wang, H. Yan, A.K.Y. Jen et al., Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3(3), 18003 (2018). https://doi.org/10.1038/natrevmats.2018.3
K.O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann et al., Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022). https://doi.org/10.1038/s41586-022-04455-0
A. Andruszkiewicz, X. Zhang, M.B. Johansson, L. Yuan, E.M.J. Johansson, Perovskite and quantum dot tandem solar cells with interlayer modification for improved optical semitransparency and stability. Nanoscale 13(12), 6234–6240 (2021). https://doi.org/10.1039/D0NR08375E
I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet et al., Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3(10), 3023–3030 (2009). https://doi.org/10.1021/nn900863a
Y. Xia, S. Liu, K. Wang, X. Yang, L. Lian et al., Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv. Funct. Mater. 30(4), 1907379 (2020). https://doi.org/10.1002/adfm.201907379
A. Manekkathodi, B. Chen, J. Kim, S.-W. Baek, B. Scheffel et al., Solution-processed perovskite-colloidal quantum dot tandem solar cells for photon collection beyond 1000 nm. J. Mater. Chem. A 7(45), 26020–26028 (2019). https://doi.org/10.1039/C9TA11462A
A. Karani, L. Yang, S. Bai, M.H. Futscher, H.J. Snaith et al., Perovskite/colloidal quantum dot tandem solar cells: theoretical modeling and monolithic structure. ACS Energy Lett. 3(4), 869–874 (2018). https://doi.org/10.1021/acsenergylett.8b00207
R. Wang, T. Huang, J. Xue, J. Tong, K. Zhu et al., Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 15(6), 411–425 (2021). https://doi.org/10.1038/s41566-021-00809-8