N, F-Codoped Microporous Carbon Nanofibers as Efficient Metal-Free Electrocatalysts for ORR
Corresponding Author: Hong Li
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 9
Abstract
Currently, the oxygen reduction reaction (ORR) mainly depends on precious metal platinum (Pt) catalysts. However, Pt-based catalysts have several shortcomings, such as high cost, scarcity, and poor long-term stability. Therefore, development of efficient metal-free electrocatalysts to replace Pt-based electrocatalysts is important. In this study, we successfully prepared nitrogen- and fluorine-codoped microporous carbon nanofibers (N, F-MCFs) via electrospinning polyacrylonitrile/polyvinylidene fluoride/polyvinylpyrrolidone (PAN/PVDF/PVP) tricomponent polymers followed by a hydrothermal process and thermal treatment, which was achieved for the first time in the literature. The results indicated that N, F-MCFs exhibit a high catalytic activity (Eonset: 0.94 V vs. RHE, E1/2: 0.81 V vs. RHE, and electron transfer number: 4.0) and considerably better stability and methanol tolerance for ORR in alkaline solutions as compared to commercial Pt/carbon (Pt/C, 20 wt%) catalysts. Furthermore, in acidic media, N, F-MCFs showed a four-electron transfer pathway for ORR. This study provides a new strategy for in situ synthesis of N, F-MCFs as highly efficient metal-free electrocatalysts for ORR in fuel cells.
Highlights:
1 A new and facile method to synthesize N, F-codoped microporous carbon nanofiber (N, F-MCF) electrocatalysts via electrospinning, hydrothermal process, and thermal treatment.
2 Polyvinylidene fluoride is applied as a fluorine source in oxygen reduction reaction (ORR) catalysis for the first time in literature.
3 N, F-MCFs exhibit distinguished electrocatalytic activity, stability, and methanol tolerance for ORR in alkaline media.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.T. Wagner, B. Lakshmanan, M.F. Mathias, Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1(14), 2204–2219 (2010). https://doi.org/10.1021/jz100553m
- M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594 (2016). https://doi.org/10.1021/acs.chemrev.5b00462
- P.C.K. Vesborg, T.F. Jaramillo, Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. ChemInform 43(50), 7933–7947 (2015). https://doi.org/10.1039/C2RA20839C
- M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43–51 (2012). https://doi.org/10.1038/nature11115
- A. Rabis, P. Rodriguez, T.J. Schmidt, Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catal. 2(5), 864–890 (2012). https://doi.org/10.1021/cs3000864
- T. Binninger, E. Fabbri, R. Kötz, T.J. Schmidt, Determination of the electrochemically active surface area of metal-oxide supported platinum catalyst. J. Electrochem. Soc. 161(3), H121–H128 (2014). https://doi.org/10.1149/2.055403jes
- D.D.F. Vliet, D.C. Wang, D. Li, A.P. Paulikas, D.J. Greeley et al., Unique electrochemical adsorption properties of pt-skin surfaces & dagger. Angew. Chem. Int. Ed. 13(51), 3139–3142 (2012). https://doi.org/10.1002/anie.201107668
- M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 11(9), 3714–3719 (2011). https://doi.org/10.1021/nl2017459
- M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C.Y. Chen et al., Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354(6318), 1414–1419 (2016). https://doi.org/10.1126/science.aaf9050
- N. Jung, D.Y. Chung, J. Ryu, S.J. Yoo, Y.-E. Sung, Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today 9(4), 433–456 (2014). https://doi.org/10.1016/j.nantod.2014.06.006
- B. Wu, N. Zheng, Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8(2), 168–197 (2013). https://doi.org/10.1016/j.nantod.2013.02.006
- MathSciNet
- L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015). https://doi.org/10.1021/cr5003563
- R. Othman, A.L. Dicks, Z. Zhu, Non precious metal catalysts for the pem fuel cell cathode. Int. J. Hydrog. Energy 37(1), 357–372 (2012). https://doi.org/10.1016/j.ijhydene.2011.08.095
- D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832
- S. Li, X. Yuan, H. Kong, J. Xu, Z. Ma, Fe-PPy-TsOH/C as cathode catalyst for proton exchange membrane fuel cells. J. Inorg. Mater. 32(4), 393–399 (2017). https://doi.org/10.15541/jim20160399
- J. Liu, B.V. Cunning, T. Daio, A. Mufundirwa, K. Sasaki, S.M. Lyth, Nitrogen-doped carbon foam as a highly durable metal-free electrocatalyst for the oxygen reduction reaction in alkaline solution. Electrochim. Acta 220, 554–561 (2016). https://doi.org/10.1016/j.electacta.2016.10.090
- D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang, Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10(2), 29 (2018). https://doi.org/10.1007/s40820-017-0181-1
- R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu, J. Luo, J. Wang, Creation of triple hierarchical micro–meso–macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10(1), 3 (2018). https://doi.org/10.1007/s40820-017-0157-1
- L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen et al., Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50(31), 7132–7135 (2011). https://doi.org/10.1002/anie.201101287
- E. Pourazadi, E. Haque, S.N. Faisal, A.T. Harris, Identification of electrocatalytic oxygen reduction (ORR) activity of boron in graphene oxide; incorporated as a charge-adsorbate and/or substitutional p-type dopant. Mater. Chem. Phys. 207, 380–388 (2018). https://doi.org/10.1016/j.matchemphys.2017.12.090
- L. Zhang, Y. Wang, K. Wan, J. Piao, Z. Liang, Effective sulfur-doping in carbon by high-temperature molten salt bath and its electrocatalysis for oxygen reduction reaction. Electrochem. Commun. 86, 53–56 (2018). https://doi.org/10.1016/j.elecom.2017.11.015
- J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 124(46), 11664–11668 (2012). https://doi.org/10.1002/ange.201206720
- H. Huang, X. Feng, C. Du, W. Song, High-quality phosphorus-doped MOS2 ultrathin nanosheets with amenable ORR catalytic activity. Chem. Commun. 51(37), 7903–7906 (2015). https://doi.org/10.1039/C5CC01841B
- C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 25(35), 4932–4937 (2013). https://doi.org/10.1002/adma.201301870
- X. Sun, Y. Zhang, P. Song, J. Pan, L. Zhuang, W. Xu, W. Xing, Fluorine-doped carbon blacks: highly efficient metal-free electrocatalysts for oxygen reduction reaction. ACS Catal. 3(8), 1726–1729 (2013). https://doi.org/10.1021/cs400374k
- H. Wang, A. Kong, Mesoporous fluorine-doped carbon as efficient cathode material for oxygen reduction reaction. Mater. Lett. 136, 384–387 (2014). https://doi.org/10.1016/j.matlet.2014.08.081
- S.G. Peera, A.K. Sahu, A. Arunchander, S.D. Bhat, J. Karthikeyan, P. Murugan, Nitrogen and fluorine co-doped graphite nanofibers as high durable oxygen reduction catalyst in acidic media for polymer electrolyte fuel cells. Carbon 93, 130–142 (2015). https://doi.org/10.1016/j.carbon.2015.05.002
- X. Yue, C. He, C. Zhong, Y. Chen, S.P. Jiang, P.K. Shen, Fluorine-doped and partially oxidized tantalum carbides as nonprecious metal electrocatalysts for methanol oxidation reaction in acidic media. Adv. Mater. 28(11), 2163–2169 (2016). https://doi.org/10.1002/adma.201504401
- K. Kakaei, A. Balavandi, Hierarchically porous fluorine-doped graphene nanosheets as efficient metal-free electrocatalyst for oxygen reduction in gas diffusion electrode. J. Colloid Interface Sci. 490, 819–824 (2017). https://doi.org/10.1016/j.jcis.2016.12.011
- G. Panomsuwan, N. Saito, T. Ishizaki, Simple one-step synthesis of fluorine-doped carbon nanoparticles as potential alternative metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 3(18), 9972–9981 (2015). https://doi.org/10.1039/C5TA00244C
- H. Zhou, Y. Peng, H.B. Wu, F. Sun, H. Yu, F. Liu, Q. Xu, Y. Lu, Fluorine-rich nanoporous carbon with enhanced surface affinity in organic electrolyte for high-performance supercapacitors. Nano Energy 21, 80–89 (2016). https://doi.org/10.1016/j.nanoen.2015.12.016
- H. Wang, J. Ding, J. Zhang, C. Wang, W. Yang, H. Ren, A. Kong, Fluorine and nitrogen co-doped ordered mesoporous carbon as a metal-free electrocatalyst for oxygen reduction reaction. RSC Adv. 6(83), 79928–79933 (2016). https://doi.org/10.1039/C6RA14748H
- S. Zhang, Y. Cai, H. He, Y. Zhang, R. Liu et al., Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium. J. Mater. Chem. A 4(13), 4738–4744 (2016). https://doi.org/10.1039/C5TA10579J
- Y. Lv, L. Yang, D. Cao, Nitrogen and fluorine-codoped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction in fuel cells. ACS Appl. Mater. Interfaces 9(38), 32859–32867 (2017). https://doi.org/10.1021/acsami.7b11371
- K. Kakaei, A. Balavandi, Synthesis of halogen-doped reduced graphene oxide nanosheets as highly efficient metal-free electrocatalyst for oxygen reduction reaction. J. Colloid Interface Sci. 463, 46–54 (2016). https://doi.org/10.1016/j.jcis.2015.10.030
- Y. Huang, Y.E. Miao, S. Ji, W.W. Tjiu, T. Liu, Electrospun carbon nanofibers decorated with Ag–Pt bimetallic nanoparticles for selective detection of dopamine. ACS Appl. Mater. Interfaces 6(15), 12449–12456 (2014). https://doi.org/10.1021/am502344p
- K. Mayrhofer, G. Wiberg, M. Arenz, Impact of glass corrosion on the electrocatalysis on Pt electrodes in alkaline electrolyte. J. Electrochem. Soc. 155(1), 1–5 (2008). https://doi.org/10.1149/1.2800752
- W.C. Min, H.C. Chang, S.Y. Lee, S.I. Woo, Dimensionality-dependent oxygen reduction activity on doped graphene: is graphene a promising substrate for electrocatalysis? Nano Energy 11, 526–532 (2015). https://doi.org/10.1016/j.nanoen.2014.11.002
References
F.T. Wagner, B. Lakshmanan, M.F. Mathias, Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1(14), 2204–2219 (2010). https://doi.org/10.1021/jz100553m
M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594 (2016). https://doi.org/10.1021/acs.chemrev.5b00462
P.C.K. Vesborg, T.F. Jaramillo, Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. ChemInform 43(50), 7933–7947 (2015). https://doi.org/10.1039/C2RA20839C
M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43–51 (2012). https://doi.org/10.1038/nature11115
A. Rabis, P. Rodriguez, T.J. Schmidt, Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catal. 2(5), 864–890 (2012). https://doi.org/10.1021/cs3000864
T. Binninger, E. Fabbri, R. Kötz, T.J. Schmidt, Determination of the electrochemically active surface area of metal-oxide supported platinum catalyst. J. Electrochem. Soc. 161(3), H121–H128 (2014). https://doi.org/10.1149/2.055403jes
D.D.F. Vliet, D.C. Wang, D. Li, A.P. Paulikas, D.J. Greeley et al., Unique electrochemical adsorption properties of pt-skin surfaces & dagger. Angew. Chem. Int. Ed. 13(51), 3139–3142 (2012). https://doi.org/10.1002/anie.201107668
M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 11(9), 3714–3719 (2011). https://doi.org/10.1021/nl2017459
M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C.Y. Chen et al., Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354(6318), 1414–1419 (2016). https://doi.org/10.1126/science.aaf9050
N. Jung, D.Y. Chung, J. Ryu, S.J. Yoo, Y.-E. Sung, Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today 9(4), 433–456 (2014). https://doi.org/10.1016/j.nantod.2014.06.006
B. Wu, N. Zheng, Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8(2), 168–197 (2013). https://doi.org/10.1016/j.nantod.2013.02.006
MathSciNet
L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015). https://doi.org/10.1021/cr5003563
R. Othman, A.L. Dicks, Z. Zhu, Non precious metal catalysts for the pem fuel cell cathode. Int. J. Hydrog. Energy 37(1), 357–372 (2012). https://doi.org/10.1016/j.ijhydene.2011.08.095
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832
S. Li, X. Yuan, H. Kong, J. Xu, Z. Ma, Fe-PPy-TsOH/C as cathode catalyst for proton exchange membrane fuel cells. J. Inorg. Mater. 32(4), 393–399 (2017). https://doi.org/10.15541/jim20160399
J. Liu, B.V. Cunning, T. Daio, A. Mufundirwa, K. Sasaki, S.M. Lyth, Nitrogen-doped carbon foam as a highly durable metal-free electrocatalyst for the oxygen reduction reaction in alkaline solution. Electrochim. Acta 220, 554–561 (2016). https://doi.org/10.1016/j.electacta.2016.10.090
D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang, Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10(2), 29 (2018). https://doi.org/10.1007/s40820-017-0181-1
R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu, J. Luo, J. Wang, Creation of triple hierarchical micro–meso–macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10(1), 3 (2018). https://doi.org/10.1007/s40820-017-0157-1
L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen et al., Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50(31), 7132–7135 (2011). https://doi.org/10.1002/anie.201101287
E. Pourazadi, E. Haque, S.N. Faisal, A.T. Harris, Identification of electrocatalytic oxygen reduction (ORR) activity of boron in graphene oxide; incorporated as a charge-adsorbate and/or substitutional p-type dopant. Mater. Chem. Phys. 207, 380–388 (2018). https://doi.org/10.1016/j.matchemphys.2017.12.090
L. Zhang, Y. Wang, K. Wan, J. Piao, Z. Liang, Effective sulfur-doping in carbon by high-temperature molten salt bath and its electrocatalysis for oxygen reduction reaction. Electrochem. Commun. 86, 53–56 (2018). https://doi.org/10.1016/j.elecom.2017.11.015
J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 124(46), 11664–11668 (2012). https://doi.org/10.1002/ange.201206720
H. Huang, X. Feng, C. Du, W. Song, High-quality phosphorus-doped MOS2 ultrathin nanosheets with amenable ORR catalytic activity. Chem. Commun. 51(37), 7903–7906 (2015). https://doi.org/10.1039/C5CC01841B
C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 25(35), 4932–4937 (2013). https://doi.org/10.1002/adma.201301870
X. Sun, Y. Zhang, P. Song, J. Pan, L. Zhuang, W. Xu, W. Xing, Fluorine-doped carbon blacks: highly efficient metal-free electrocatalysts for oxygen reduction reaction. ACS Catal. 3(8), 1726–1729 (2013). https://doi.org/10.1021/cs400374k
H. Wang, A. Kong, Mesoporous fluorine-doped carbon as efficient cathode material for oxygen reduction reaction. Mater. Lett. 136, 384–387 (2014). https://doi.org/10.1016/j.matlet.2014.08.081
S.G. Peera, A.K. Sahu, A. Arunchander, S.D. Bhat, J. Karthikeyan, P. Murugan, Nitrogen and fluorine co-doped graphite nanofibers as high durable oxygen reduction catalyst in acidic media for polymer electrolyte fuel cells. Carbon 93, 130–142 (2015). https://doi.org/10.1016/j.carbon.2015.05.002
X. Yue, C. He, C. Zhong, Y. Chen, S.P. Jiang, P.K. Shen, Fluorine-doped and partially oxidized tantalum carbides as nonprecious metal electrocatalysts for methanol oxidation reaction in acidic media. Adv. Mater. 28(11), 2163–2169 (2016). https://doi.org/10.1002/adma.201504401
K. Kakaei, A. Balavandi, Hierarchically porous fluorine-doped graphene nanosheets as efficient metal-free electrocatalyst for oxygen reduction in gas diffusion electrode. J. Colloid Interface Sci. 490, 819–824 (2017). https://doi.org/10.1016/j.jcis.2016.12.011
G. Panomsuwan, N. Saito, T. Ishizaki, Simple one-step synthesis of fluorine-doped carbon nanoparticles as potential alternative metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 3(18), 9972–9981 (2015). https://doi.org/10.1039/C5TA00244C
H. Zhou, Y. Peng, H.B. Wu, F. Sun, H. Yu, F. Liu, Q. Xu, Y. Lu, Fluorine-rich nanoporous carbon with enhanced surface affinity in organic electrolyte for high-performance supercapacitors. Nano Energy 21, 80–89 (2016). https://doi.org/10.1016/j.nanoen.2015.12.016
H. Wang, J. Ding, J. Zhang, C. Wang, W. Yang, H. Ren, A. Kong, Fluorine and nitrogen co-doped ordered mesoporous carbon as a metal-free electrocatalyst for oxygen reduction reaction. RSC Adv. 6(83), 79928–79933 (2016). https://doi.org/10.1039/C6RA14748H
S. Zhang, Y. Cai, H. He, Y. Zhang, R. Liu et al., Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium. J. Mater. Chem. A 4(13), 4738–4744 (2016). https://doi.org/10.1039/C5TA10579J
Y. Lv, L. Yang, D. Cao, Nitrogen and fluorine-codoped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction in fuel cells. ACS Appl. Mater. Interfaces 9(38), 32859–32867 (2017). https://doi.org/10.1021/acsami.7b11371
K. Kakaei, A. Balavandi, Synthesis of halogen-doped reduced graphene oxide nanosheets as highly efficient metal-free electrocatalyst for oxygen reduction reaction. J. Colloid Interface Sci. 463, 46–54 (2016). https://doi.org/10.1016/j.jcis.2015.10.030
Y. Huang, Y.E. Miao, S. Ji, W.W. Tjiu, T. Liu, Electrospun carbon nanofibers decorated with Ag–Pt bimetallic nanoparticles for selective detection of dopamine. ACS Appl. Mater. Interfaces 6(15), 12449–12456 (2014). https://doi.org/10.1021/am502344p
K. Mayrhofer, G. Wiberg, M. Arenz, Impact of glass corrosion on the electrocatalysis on Pt electrodes in alkaline electrolyte. J. Electrochem. Soc. 155(1), 1–5 (2008). https://doi.org/10.1149/1.2800752
W.C. Min, H.C. Chang, S.Y. Lee, S.I. Woo, Dimensionality-dependent oxygen reduction activity on doped graphene: is graphene a promising substrate for electrocatalysis? Nano Energy 11, 526–532 (2015). https://doi.org/10.1016/j.nanoen.2014.11.002